Чем отличается белый чугун от серого: Чем отличается серый чугун от белого

alexxlab | 12.04.1988 | 0 | Разное

Содержание

Чугун: серый и белый: cвойства, производство, литье, маркировка

Мытье сковороды после использования

Чугун — неприхотливый материал, но за ним важно правильно ухаживать. Чтобы избежать сильных загрязнений сковородки после использования и облегчить последующую очистку, соблюдают следующие правила:

  1. Хорошо разогревают сковородку перед эксплуатацией: на холодной поверхности пища пригорает чаще всего.
  2. Внутри изделие не очищают агрессивными веществами: они разрушают естественное покрытие и приводят к постоянному пригоранию пищи.
  3. Не применяют для чистки скребки из металла: любая малейшая царапина способна спровоцировать появление ржавчины.
  4. Обязательно прокаливают посуду перед первым применением и далее для восстановления антипригарных свойств.
  5. Очищают сковороду сразу после приготовления пищи, чтобы остатки еды не превратились в застывшую корку.

Мытье в посудомоечной машине

Современные хозяйки стараются по максимуму использовать бытовую технику при выполнении домашних дел. На многих кухнях есть посудомоечные машины, но подходят ли они для сковородок из чугуна?

Чугун — материал с особыми свойствами. Поэтому такую посуду нежелательно помещать в посудомоечную машину.

Поверхность сковородки пористая, имеет неровности. При нагревании она впитывает масло, которое полимеризуется под воздействием кислорода. В результате образуется пленка, делающая дно посуды более гладким и ровным. В посудомоечной машине защитная пленка смывается чистящими веществами — дно становится шершавым. Поэтому при приготовлении еда прилипает к поверхности, а прямое попадание в поры углерода, кислорода и азота активизирует процессы ржавления.

Белый чугун

Белый чугун применяется в машиностроении значительно реже, чем серый, ввиду его большей хрупкости и высокой твердости, вследствие чего он не поддается механической обработке режущими инструментами.

Белый чугун применяется в машиностроении значительно реже, чем серый, ввиду его большой хрупкости и высокой твердости, вследствие чего он не поддается механической обработке режущими инструментами.

Белый чугун главным образом идет на переделку в сталь. Он содержит от 2 2 до 4 % углерода, который находится в химически связанном состоянии. Белый чугун отличается высокой твердостью и хрупкостью. Литейные свойства этого чугуна низкие.

Белый чугун содержит углерод в виде цементита и имеет белый лучистый вид излома. Такой чугун отличается высокой твердостью, прочностью, высокими износостойкостью и хрупкостью. Он плохо поддается обработке резанием, поэтому его почти не используют. Применяют обычно серый чугун с включениями графита и отбеленной поверхностью, т.е. чугун, поверхностные слои которого имеют структуру белого чугуна для увеличения износостойкости, а сердцевина – структуру серого чугуна. Серый чугун обладает наилучшими технологическими и хорошими физико-механическими свойствами и является основным материалом для различных отливок. Структура металлической основы такого чугуна может быть ферритной, перлитной или перлитно-ферритной, а форма графита – пластинчатая. Излом чугуна серый, обусловленный выделением графита в металлической основе.

Белый чугун по сравнению с серым чугуном обладает худшими литейными свойствами, очень твердый и трудно поддается резанию.

Белый чугун для ковкого чугуна часто плавят в двух печах: вначале в вагранке, затем в электроплавильных печах, где доводят чугун до определенного химического состава и перегрева.

Белые чугуны состоят из перлита и цементита. Из-за большого количества цементита белые чугуны имеют очень высокую твердость ( НВ 450 – 600), но весьма низкую обрабатываемость. Скорости резания деталей из белого чугуна ( чаще всего применяют отбеленный чугун, получаемый из серого чугуна путем его закалки) твердосплавным инструментом не превышают 3 – 10 м / мин.

Белый чугун, применяемый для производства перлитного бело-сердечного ковкого чугуна, содержит повышенное количество углерода, поэтому для его плавки применяют только вагранку.

Определение минимальной высоты стояка.| Типовая литниковая система для отливки из ковкого чугуна.| Значение угла а, градусы.

Белый чугун имеет большую усадку ( до 2 %), плохо заполняет форму и к тому же отличается хрупкостью. Для того чтобы усадка при затвердевании металла проходила более спокойно и не образовывалось трещин в отливке, металл рекомендуется подводить через один питатель. Габаритные размеры и масса отливок позволяют это делать, так как из ковкого чугуна обычно получают мелкие отливки, масса которых не превышает 100 кг.

Белые чугуны, применяемые для производства бронефутеровоч-ных плит ( типа плавок № 115 и 226), имеют сравнительно низкую удароустойчивость, но использование их для изготовления плит – с гладкой или волнистой поверхностью ( большой площадью соприкосновения с мелющими телами и измельчаемым материалом) может быть вполне оправдано.

Белые чугуны, расположенные в табл. 6 от плавки № 105 и ниже, по удароустоичивости аналогичны высокоуглеродистой хромо-титановой стали в литом состоянии. Чугуны типа плавки № 120 могут работать в условиях многократных ударных нагрузок.

Белый чугун отличается твердостью и хрупкостью. Он плохо отливается и плохо поддается механической обработке.

Белый чугун ( передельный) – густоплавкий, хрупкий, твердый, трудно поддается обработке резанием. Он используется для получения ковкого чугуна и перерабатывается в сталь.

Белые чугуны используют как износостойкие конструкционные материалы. В таких чугунах весь углерод находится в связанном состоянии с карбидообразующими элементами. Наиболее дешевым и очень эффективным карбидообразующпм элементом является хром.

Производство

Технология промышленного извлечения железа из железосодержащего сырья и получение чугуна достаточно трудоёмкая и сложная. Нет смысла описывать все химические и технологические процессы и углубляться в терминологию. Изучить вопрос можно при желании в источниках по металлургии.

Чугун выплавляют из магнитного, красного, бурого железняка, на металлургических комбинатах, в специальных доменных печах. Топливом служит кокс, который частично могут заменять мазутом или газом.

Руда проходит предварительную подготовку, прежде чем попасть в доменную печь. Помимо руды и топлива, для плавки используют флюсы – известняки, необходимые для образования шлака и удаления серы из расплава.

Методы подготовки зависят от качества руды – это дробление, сортировка, окусковывание, обогащение и другие.

Пройдя все сложные процессы, руда превращается в шихту, которая непрерывно загружается в доменную печь.

Через фурмы в нижней части подается раскаленный воздух, обогащенный кислородом и природный газ, который сгорает под воздействием высоких температур, образуя диоксид кислорода. Поднимаясь выше, газ соединяется с кислородом и с еще не сгоревшим углеродом, преобразуясь в угарный газ СО. Он вступает в реакцию с оксидами железа, «отбирая» у них кислород.

В результате образуется почти чистый металл. Расплавленная чугунная масса стекает в горн. Несгораемые остатки также стекают вниз.

Готовый чугун сливают через определенные промежутки времени в специальные ковши.

Пока в печи идет процесс плавки, отверстие, через которое выпускают чугун, забивают специальной пробкой из тугоплавкой массы. Чтобы выпустить металл, в пробке пробивают отверстие. По специальным каналам в полу цеха поток расплавленного металла течет «красным сливом».

Жидкий шлак также выпускают из печи по другому каналу.

С каждой плавки берется проба. Металл заливают в специальную форму и делают анализ. Все процессы автоматизированы. За ними следят операторы.

А простому обывателю домна представляется гигантской пробиркой, в которой происходит «таинство» превращения железной руды в чугун.

Чугун серый

Серый чугун широко применяется в машиностроении. Такое название он получил по серому цвету излома, обусловленному наличием в структуре чугуна свободного углерода в виде графита. По виду металлической основы различают серые чугуны перлитные, перлитно-ферритные и ферритные.

Таблица 1. Чугуны серые литейные, их основные свойства и применение

Маркаσв МПаНВСвойства и применение
Сч10275139-274Малоответственные отливки с толщиной стенок до 15 мм (корпуса, крышки, кожухи и др.), детали, для которых прочностная характеристика не является обязательной,- опоки, арматуру, рамки, сковороды, декоративные детали, массивные строительные колонны, фундаментные плиты
СЧ15314160-224Малоответственные отливки с толщиной стенок 10 — 30 мм (трубы, корпуса клапанов, вентили при давлении — до 20 МПа и др.), корпусные малонагруженные детали, подмоторные плиты, рычаги, шкивы, маховики, емкости для масла и охлаждающей жидкости, корпуса фильтров, фланцы, крышки, звездочки цепных передач
СЧ18354167-224Ответственные отливки с толщиной стенок 10 — 20 мм (шкивы, зубчатые колеса, станины, суппорты и др. )
СЧ20397167-236Ответственные отливки с толщиной стенок до 30 мм (блоки цилиндров, поршни, тормозные барабаны, каретки и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются требования герметичности при давлении до 8 МПа (80 кгс/см2), корпусов, коробок передач, шпиндельных бабок, балансиров, планшайб, гильз, кареток, цилиндров, насосов, золотников, арматуры, компрессоров
СЧ25450176-245Ответственные отливки с толщиной стенок до 40 мм (кокильные формы, поршневые кольца и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются повышенные требования к герметичности
СЧ3О490177-250Ответственные отливки с толщиной стенок до 60 мм (поршни, гильзы дизелей, рамы, штампы и др.), для изготовления кронштейнов, салазок столов и суппортов, деталей с поверхностной закалкой, цилиндров, корпусов насосов, дизелей и двигателей внутреннего сгорания, поршневых колец, коленчатых и распределительных валов
СЧ35 СЧ45540193-264Ответственные высоконагруженные отливки с толщиной стенок до 100 мм (малые коленчатые валы, детали паровых двигателей и др. ) деталей, для изготовления к которым предъявляются требования герметичности при давлении свыше 8 МПа

Графит обладает низкими механическими свойствами. Он нарушает целостность металлической основы. Располагаясь между зернами металлической основы, графит ослабляет связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкую пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки к показателям стали, имеющей такую же структуру, как у металлической основы чугуна.

Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, повышает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.

Механические свойства серого чугуна могут быть улучшены равномерным распределением мелкопластинчатого графита в отливке. Это достигается путем специальной обработки — модифицирования, когда в жидкий чугун перед его разливкой вводят добавки, которые образуют дополнительные центры графитизации, в результате чего получается мелкопластинчатый графит. Чугун с таким графитом называют модифицированным. От обычного серого чугуна он отличается более высоким сопротивлением разрыву, однако пластичность и вязкость его при модифицировании не улучшаются.

По ГОСТ 1412-85 буквы СЧ в обозначении марки чугуна означают — серый чугун. Двузначная цифра соответствует пределу прочности при растяжении σв МПа. Стандарт нормирует предел прочности серых чугунов σв = 274÷637 МПа, твердость — 143÷637 НВ и химический состав.

Основные свойства серого чугуна и его применение приведены в таблице 1.

Свойства, маркировка и применение ферритного ковкого чугуна

Длительное «томление» металла в печи имеет следствием полный распад цементита и ледебурита на феррит. Благодаря технологическим хитростям, получают сплав с высоким содержанием углерода – ферритная структура, характерная для низкоуглеродистой стали. Однако карбон сам по себе никуда не девается – он переходит из связанного с железом состояния в свободное. Температурное воздействие меняет форму графитовых включений до хлопьеобразной.

Ферритная структура обуславливает понижение твердости, увеличение значений прочности, наличие таких характеристик, как ударная вязкость и пластичность.

Маркировка чугунов ковких ферритного класса: КЧ30-6, КЧ33-8, КЧ35-10, КЧ37-12, где:

КЧ – обозначение разновидности – ковкий;

30, 33, 35, 37: σв, 300, 330, 350, 370 Н/мм2 – максимальная нагрузка, которую он может выдержать, не разрушаясь;

6, 8, 10, 12 – относительное удлинение, δ, % – показатель пластичности (чем выше значение, тем больше металл поддается обработке давлением).

Твердость – около 100-160 НВ.

Этот материал по своим показателям занимает среднее положение между такими, как сталь и железоуглеродистый сплав серый. Ковкий чугун с ферритной основой уступает перлитному по показателям износостойкости, коррозионной и усталостной прочности, однако выше по механической выдержке, пластичности, литейным характеристикам. Благодаря невысокой цене широко используется в промышленности для изготовления деталей, работающих при малых и средних нагрузках: зубчатые колеса, картеры, задние мосты, сантехника.

Разновидности чугунов

Сплавы железа с углеродом, содержащие более 2,14 % С, называются чугунами. В отличие от стали чугуны имеют более высокое содержание углерода, заканчивают кристаллизацию образованием эвтектики, обладают низкой способностью к пластической деформации и высокими литейными свойствами. Их технологические свойства обусловлены наличием эвтектики в структуре. Стоимость чугунов ниже стоимости стали.

Чугуны выплавляют в доменных печах, вагранках и электропечах.

Выплавляемые в доменных печах чугуны бывают передельными, специальными (ферросплавы) и литейными. Передельные и специальные чугуны используют для последующей выплавкистали и чугуна. В вагранках и электропечах переплавляют литейные чугуны. Около 20 % всего выплавляемого чугуна используют для изготовления литья. В литейном чугуне обычно содержится не более 4,0 % С. Кроме углерода обязательно присутствуют при­меси S, P, Mn, Si причем в значительно большем количестве, чем в углеродистой стали.

В зависимости от формы выделения углерода различают сле­дующие виды чугунов.

  1. Белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита Fe3С. Чугун в изломе имеет белый цвет и характерный блеск.
  2. Половинчатый чугун, в котором основное количество угле­рода (более 0,8%) находится в виде цементита. Чугун имеет структуру перлита, ледебурита и пластинчатого графита.
  3. Серый чугун, в котором весь углерод или его большая часть находится в свободном состоянии в виде пластинчатого графита, а содержание углерода в связанном состоянии в виде цементита со­ставляет не более 0,8 %.
  4. Чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой — белого чугуна. Отбеленный слой получают в толстостенных мас­сивных деталях при литье их в металлические формы. По мере удаления от поверхности вследствие уменьшения скорости охла­ждения структура белом чугуна постепенно переходит в структу­ру серого. Чугун поверхностного слоя в микроструктуре содержит много твердого и хрупкого цементита, который хорошо сопротив­ляется износу. Поэтому чугуны с отбеленной поверхностью ис­пользуют для деталей с высокой износостойкостью, для валков прокатных станов, мукомольных валов, вагонных колес с отбе­ленным ободом, лемехов плугов с отбеленным носком и лезвием. Отбел может достигаться путем местного увеличения скорости охлаждения за счет установки в литейную форму холодильников в виде металлических вставок.
  5. Высокопрочные чугуны, в которых графит имеет шаровид­ную форму.
  6. Ковкие чугуны, в которых углерод находится в виде хлопь­евидного графита, получаются из белых чугунов путем отжига.

Свойства и характеристики

Чугун обладает следующими свойствами:

  1. Физическими. К этим характеристикам относятся: удельный вес, коэффициент линейного расширения, действительная усадка. Удельный вес меняется в зависимости от содержания в материале углерода.
  2. Тепловыми. Теплопроводность материала принята рассчитывать по правилу смещения. Для твердого чугуна объемная теплоемкость равна 1 кал/см3*оС. Если чугун жидкий, то она равна примерно 1,5 кал/см3*оС.
  3. Механическими. Эти свойства зависят от самой основы, а так же от размеров и формы графита. Самым прочным считается серый чугун с перлитной основой, а самым пластичным — с ферритной основой. Максимальное снижение прочности наблюдается при форме графита «пластинка», а минимальное – при форме «шар».
  4. Гидродинамическими. Вязкость в чугуне меняется в зависимости от наличия марганца и серы. Так же она резко возрастает когда температура чугуна переходит точку начала затвердевания.
  5. Технологическими. Чугун обладает отличными литейными свойствами, стойкости к износу и вибрации.
  6. Химическими. По электродному потенциалу (по мере убывания) структурные составляющие чугуна располагаются в следующем виде: цементит — фосфидная эвтектика — феррит.

Отличия чугуна от стали по химическому составу и свойствам

На свойства чугуна влияют специальные примеси.

  • Так добавление серы позволяет существенно уменьшить жидкотекучесть и снизить тугоплавкость.
  • Добавление фосфора одновременно дает возможность создать изделие сложной формы, но не дает ему повышенной прочности.
  • Примесь в виде кремния делает температуру плавления не такой высокой и значительно улучшает свойства литья. Различное процентное содержания кремния позволяет создать разный чугун: от чисто-белого до ферритного.
  • Марганец ухудшает литейные и технологические свойства, но повышает прочность и твердость.

Помимо названных примесей в состав чугуна могут входить и другие компоненты. Тогда такие материалы будут называться легированными. Наиболее часто в чугун примешивают титан, хром, алюминий, никель и медь.

Далее вы узнаете, какие элементы входят в хим.состав чугуна.

О том, как сварить чугун электросваркой, расскажет видеоролик ниже:

Эксплуатационные характеристики серого чугуна

Одним из важнейших его качеств является износостойкость, которая выражается скоростью потери металла и измеряется в весовых и линейных единицах.

Износостойкость

В свою очередь, износ бывает абразивный (возникающий при сухом трении) и эрозионно-кавитационный (возникающий при трении со смазкой).

В случае серого чугуна износостойкость поставлена в зависимость от таких его показателей, как структура и твердость. Высокой износостойкостью характеризуются те виды, в которых размеры графитовых включений минимальны. В то же самое время феррит в структуре серого чугуна демонстрирует свои полезные свойства лишь при невысоких скоростях и небольшом давлении (при трении качения и постоянном вращении в одну сторону). Как показывает практика, при трении скольжения и разностороннем вращении преимущества остаются за перлитной структурой серого чугуна.

Также износостойкость зависит и от твердости (с ростом этого показателя износостойкость повышается). Детали, подвергающиеся постоянному ударно-абразивному износу, должны обладать высокой твердостью. С этой целью и применяется легирование серого чугуна.

Герметичность

Данный показатель выражается скоростью утечки, снижением давления и изменениями пограничных параметров, появлением течи. Детали из чугуна, работающие в условиях давления газов или жидкостей, должны обладать высокой герметичностью: трубопроводы, арматура, элементы тормозных пневматических систем, гидроприводная аппаратура, резервуары, отливки компрессоров и насосов.

Снижению герметичности способствует наличие в структуре серого чугуна раковин и микропор

Особенно важно избежать в отливке т. н

транзитной микропористости, т. е. сообщающихся друг с другом пор.

Белый и серый чугун

Серый и белый чугуны резко различаются но свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатываются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ковкого чугуна.

Серые чугуны – это литейный чугун. Серый чугун поступает в производство в виде отливок. Серый чугун является дешевым конструкционным материалом. Он обладает хорошими литейными свойствами, хорошо обрабатывается резанием, сопротивляется износу, обладает способностью рассеивать колебания при вибрационных и переменных нагрузках. Свойство гасить вибрации называют демпфирующей способностью. Демпфирующая способность чугуна в 2-4 раза выше, чем стали. Высокая демпфирующая способность и износостойкость обусловили применение чугуна для изготовления станин различного оборудования, коленчатых и распределительных валов тракторных и автомобильных двигателей и др. В соответствии с ГОСТ 1412-80 выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ): СЧ 10 (143-229), СЧ 15 (163-229), СЧ 20 (170-241), СЧ 25 (180—250), СЧ 30 (181-255), СЧ 35 (197-269), СЧ 40 (207-285), СЧ 45 (229-289).

Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введении в сплав кремния около 5% цементит серого чугуна практически полностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная структура с включениями графита. При дальнейшем уменьшении содержания кремния формируется структура серого чугуна на перлитной основе с включениями графита.

Механические свойства серых чугунов зависят от металлической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на перлитной основе, а наиболее пластичными – серые чугуны на ферритной основе. Поскольку графит имеет очень малую прочность и не имеет связи с (.металлической основой чугуна, полости, занятые графитом, можно рассматривать как пустоты, надрезы или трещины в металлической основе чугуна, которые значительно снижают его прочность и пластичность. Наибольшее снижение прочностных свойств вызывают включения графита (рис. 25, а) в виде пластинок, наименьшее – включения точечной или шарообразной формы.

Рис. 25. Микроструктура чугуна с различной формой графита: а – пластинчатый графит в сером чугуне, б – шаровидный графит в высокопрочном чугуне, в – хлопьевидный графит в ковком чугуне

По физико-механическим характеристикам серые чугуны условно можно разделить па четыре группы: малой прочности, повышенной прочности, высокой прочности и со специальными свойствами. Серый чугун малой прочности имеет в основе микроструктуру феррита или феррита и перлита с пластинчатым графитом (рис. 25, а). Такой чугун обладает прочностью на растяжение 300 МПа и соответствует маркам до СЧ 30. В марке буквы сокращенно обозначают наименование чугуна, а следующая за ними двухзначная цифра – предел прочности на растяжение.

Серый чугун повышенной прочности имеет перлитную основу и более мелкое, завихренное строение графита. Он соответствует маркам от СЧ 35 до СЧ 40. Прочность этих чугунов обеспечивается легированием и модифицированием чугуна.

Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших количеств никеля и хрома, молибдена, а иногда титана или меди.

Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Химический состав шихты для изготовления модифицированного чугуна подбирают таким, чтобы обычный немодифицированный чугун затвердевал бы в отливке с отбелом (т. е. белым или половинчатым). Модификаторы – ферросилиций, силикоалюминий, силикокальций и др. – добавляют в количестве 0,1-0,3% от массы чугуна непосредственно в ковш во время его заполнения. В структуре отливок из модифицированного серого чугуна не содержится ледебуритного цементита. Вследствие малого количества вводимого в чугун модификатора его химический состав практически остается неизменным. Жидкий модифицированный чугун необходимо немедленно разливать в литейные формы, так как эффект модифицирования исчезает через 10-15 мин.

Половинчатый чугун

Классификация чугунов будет неполной, если не упомянуть об этой разновидности металлического сплава.

Для указанного чугуна характерно сочетание карбидной эвтектики и графита в его структуре. В целом же, полноценная структура имеет следующий вид: графит, перлит, ледебурит. Если же чугун подвергнуть термической обработке или легированию, то это приведет к образованию аустенита, мартенсита или игольчатого троостита.

Этот вид чугуна достаточно хрупок, поэтому его применение весьма ограничено. Само же название сплав получил потому, что его излом – сочетание темных и светлых участков кристаллического строения.

Влияние добавок на свойства

Кроме железоуглеродистой основы и графита они имеют в своем составе и другие составляющие, которые также обуславливают свойства чугуна: марганец, силиций, фосфор, серу, некоторые легирующие элементы.

Манган повышает текучесть жидкого металла, коррозионную стойкость и износостойкость. Он способствует повышению твердости и прочности, связыванию карбона с железом в химическую формулу Fe3C, образованию зернистого перлита.

Силиций также положительно влияет на текучесть жидкого сплава, способствует распаду цементита и выделению графитовых включений.

Сера – негативная, но неизбежная составляющая. Она снижает механические и химические свойства, стимулирует образование трещин. Однако рациональное соотношение ее содержания с другими элементами (например, с марганцем) позволяет корректировать микроструктурные процессы. Так, при соотношении Mn-S 0,8-1,2 сохраняется перлит при любых сроках температурных влияний. При повышении соотношения до 3 появляется возможность получить любую необходимую структуру в зависимости от заданных параметров.

Фосфор меняет жидкотекучесть в лучшую сторону, влияет на прочность, снижает ударную вязкость и пластичность, влияет на длительность графитизации.

Хром и молибден затрудняют образования графитовых хлопьев, в некоторых содержаниях способствуют образованию зернистого перлита.

Вольфрам повышает износостойкость при работе в зонах высоких температур.

Алюминий, никель, медь способствуют графитизации.

Корректируя количество химических элементов, входящих в состав железоуглеродистого сплава, а также их соотношения, можно влиять на итоговые свойства чугуна.

Классификация чугунов

Металлургическая промышленность выпускает разные виды чугуна. Сорт зависит от участвующих в сплаве форм графита или цементита и остальных компонентов.

Серый чугун (СЧ)

Обозначают буквами СЧ. На разрезе – серовато-черный, что обусловлено присутствием графита, этого природного цвета. В составе также присутствуют различные примеси, в том числе и кремний. Этот вид чугуна, свободно поддающийся резке и часто употребляющийся в машиностроительной отрасли для «неосновных» деталей, при добавлении фосфора становится жидкотекучим. Применим для всех видов литья, в том числе художественного.

Белый чугун

На разрезе светлый, благодаря присутствию карбида железа. Подвергается дальнейшей переработке на ковкий чугун и сталь. Поэтому сорт называют передельным. Свойства – хрупкость и твердость, слабо обрабатываемый, не годится для самостоятельного использования. Твердый, слабо подвержен обработке, хрупкий – такие свойства делают его непригодным для самостоятельного использования.

Ковкий чугун

Обозначение – КЧ. При длительном отжиге белый чугун преобразуется в ковкий.

Свойства – не поддаётся обработке давлением, но при этом обладает повышенной сопротивляемостью ударам и прочностью при растяжении. Ковкий чугун подходит для изготовления деталей усложненной конфигурации.

Высокопрочный 

Маркируют буквами ВЧ. Получают при введении в серый жидкий чугун спецдобавок, для придания графиту сфероидальной формы. Высокопрочный вид чугуна применяют для изготовления ответственных деталей – шестерён, коленвалов, поршней, которые должны иметь высокую износоустойчивость.

Форма выпуска передельного и литейного видов – специальные формы – чушки. Современные технологии позволяют получить полуфабрикаты, квадратные, листовые, пластинчатые, брусковые заготовки разновидностей чугуна.

В зависимости от назначения и химсостава выделяют следующие разновидности чугуна:

  1. ферросплавы 
  2. легированные.

Они имеют названия, соответствующие металлам-добавкам:

  • циркониевые;
  • хромистые;
  • ванадиевые; 
  • медные;
  • титановые.

Легированные виды более всего востребованы в производстве агрегатов, механизмов, узлов и деталей, работающих в особо неблагоприятных средах и условиях.

Чугун, отличающийся увеличенным процентным включением ферромарганца или ферросилиция, относят к специальным – ферросплавам. Добавляются в сталеплавильном производстве для выделения кислорода – раскисления.

К легированным чугунам относят:

  1. Антифрикционные;
  2. Жаростойкие;
  3. Жаропрочные;
  4. Коррозионностойкие.

Антифрикционные виды маркируются первыми буквами АЧ. Например, АЧС – это антифрикционный серый чугун. Ещё можно увидеть маркировку АЧВ – антифрикционный высокопрочный чугун и АЧК – антифрикционный ковкий.

Жаростойкий вид маркируют буквами ЖЧ. Далее указывается буква обозначающая легирующий элемент. Например, ЖЧХ-2,5. Это жаростойкий чугун с добавлением хрома 2,5%.

К жаростойким относят марки: ЧН19ХЗШ.

К коррозионностойким: маркировка ЧНХТ, ЧН1МХД

Еще их называют специальными чугунами.

КЛАССИФИКАЦИЯ И МАРКИРОВКА ЧУГУНОВ

В зависимости от того, в какой форме содержится углерод в чугунах, различают следующие их виды. В белом чугуне весь углерод находится в связанном состоянии в виде цементита. Структура белого чугуна соответствует диаграмме Fe-Fe3C. В сером чугуне большая часть углерода находится в виде графита, включения которого имеют пластинчатую форму. В высокопрочном чугуне графитные включения имеют шаровидную форму, а в ковком — хлопьевидную. Содержание углерода в виде цементита в сером, высокопрочном и ковком чугунах может составлять не более 0,8%.

Белый чугун обладает высокой твердостью, хрупкостью и очень плохо

обрабатывается. Поэтому для изготовления изделий он не используется и

применяется как предельный чугун, т.е. идет на производство стали. Для деталей с высокой износостойкостью используется чугун с отбеленной поверхностью, в котором основная масса металла имеет структуру серого чугуна, а поверхностный слой — белого чугуна. Машиностроительными чугунами, идущими на изготовление деталей, являются серый, высокопрочный и ковкий чугуны. Детали из них изготовляются литьем, так как чугуны имеют очень хорошие литейные свойства. Благодаря графитным включениям эти чугуны хорошо обрабатываются, имеют высокую износостойкость, гасят колебания и вибрации.

Но графитные включения уменьшают прочность.

Серый чугун имеет пластинчатые графитные включения. Структура серого чугуна схематически изображена на рис. 21.1,а. Получают серый чугун путем первичной кристаллизации из жидкого сплава.

На графитизацию (процесс выделения графита) влияют скорость охлаждения

и химический состав чугуна. При быстром охлаждении графитизации не

происходит и получается белый чугун. По мере уменьшения скорости охлаждения получаются, соответственно, перлитный, феррито-перлитный и ферритный серые чугуны. Способствуют графитизации углерод и кремний. Кремния содержится в чугуне от 0,5 до 5%. Иногда его вводят специально. Марганец и сера препятствуют графитизации. Кроме того, сера ухудшает механические и литейные свойства.

Фосфор не влияет на графитизацию, но улучшает литейные свойства.

Механические свойства серого чугуна зависят от количества и размера

графитных включений. По сравнению с металлической основой графит имеет

низкую прочность. Поэтому фафитные включения можно считать нарушениями сплошности, ослабляющими металлическую основу. Так как пластинчатые включения наиболее сильно ослабляют металлическую основу, серый чугун имеет наиболее низкие характеристики, как прочности, так и пластичности среди всех машиностроительных чугунов. Уменьшение размера графитных включений улучшает механические свойства. Измельчению графитных включений способствует кремний.

Маркируется серый чугун буквами СЧ и числом, показывающем предел прочности в десятых долях мегапаскаля. Имеются следующие марки серых чугунов: СЧ 10, СЧ 15, СЧ 20, СЧ 45.

Рис. 21.1 – Схематическое изображение структур чугунов: а – серого, б -высокопрочного, в – ковкого

Высокопрочный чугун имеет шаровидные графитные включения. Структура высокопрочного чугуна изображена на рис. 21.1,б. Получают высокопрочный чугун добавкой в жидкий чугун небольшого количества щелочных или щелочноземельных металлов, которые округляют графитные включения в чугуне, что объясняется увеличением поверхностного натяжения графита. Чаще всего для этой цели применяют магний в количестве 0,03-0,07%. По содержанию других элементов высокопрочный чугун не отличается

от серого. Шаровидные графитные включения в наименьшей степени ослабляют металлическую основу. Именно поэтому высокопрочный чугун имеет более высокие механические свойства, чем серый. При этом он сохраняет хорошие литейные свойства, обрабатываемость резанием, способность гасить вибрации и т.д.

Маркируется высокопрочный чугун буквами. ВЧ и цифрами, показывающими предел прочности в десятых долях мегапаскаля. Например, чугун ВЧ 60 имеет а = 600 МПа.

Существуют следующие марки высокопрочных чугунов: ВЧ 35, ВЧ 40, ВЧ 45, ВЧ-50, ВЧ 60, ВЧ 70, ВЧ S0, ВЧ 100.

Применяются высокопрочные чугуны для изготовления ответственных деталей — зубчатых колес, валов и др.

Ковкий чугун имеет хлопьевидные графитные включения Его получают из белою чугуна путем графитизирующего отжига, который заключается в длительной (до 2 суток) выдержке при температуре 950-970°С.

Если после этого чугун охладить, то получается ковкий перлитный чугун, металлическая основа которого состоит- из перлита и небольшого количества (до 20%) феррита. Такой чугун называют также светлосердечным. Если в области эвтектоидного превращения (72()-760°С) проводить очень медленное охлаждение или даже дать выдержку, то получится ковкий ферритный чугун, металлическая основа которого состоит из феррита и очень небольшого количества перлита (до 10%). Этот чугун называют черносердечным, так как он содержит сравнительно много графита.

Маркируется ковкий чугун буквами КЧ и двумя числами,показывающими предел прочности в десятых долях мегапаскаля и относительное удлинение в %.

Так, чугун КЧ 45-7 имеет σв= 450 МПа и δ = 7%. Ферритные ковкие чугуны (КЧ 33- 8, КЧ 37″-12) имеют более высокую пластичность, а перлитные (КЧ 50-4, КЧ 60-3) более высокую прочность. Применяют ковкий чугун для деталей небольшого сечения, работающих при ударных и вибрационных нагрузках.

 

 



Дата добавления: 2017-03-12; просмотров: 2693; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Серый чугун: свойства, применения, состав, маркировка

В химический состав сплава, кроме железа и углерода, входит также некоторое содержание кремния. Свойства сплава зависят от условий охлаждения, поскольку время изменения температуры влияет на формирование внутренней структуры материала.

При медленном остывании образуются крупные кристаллы железа, и соединения металла с углеродом приобретают перлитную основу. Медленное остывание вызывает рост геометрических размеров не только кристаллов железа, но и включений углерода, поэтому, перлитный металл имеет высокую прочность, но повышенную хрупкость.

Микроструктура серого чугуна

В условиях быстрого охлаждения углерод не успевает сформировать крупные включения графита, поэтому сплав приобретает ферритную структуру.

Ферритный серый чугун имеет несколько меньшую хрупкость, чем перлитный.

Выбирая режим охлаждения литой заготовки, можно определенным образом влиять на итоговые свойства материала, в зависимости от предъявляемых требований.

Маркировка

Металлургические комбинаты производят несколько марок этого материала. Его маркировку осуществляют следующим образом. Две буквы в начале аббревиатуры обозначают тип чугуна, маркировка серого чугуна начинается с СЧ, цифры, которые расположены после букв, говорят о пределе прочности во время растяжения

Принята следующая классификация серого чугуна:

  1. СЧ10 — ферритный;
  2. СЧ15, СЧ18, СЧ20 — ферритно-перлитные чугуны;
  3. начиная с СЧ25 — перлитные чугуны.

Стандарты

НазваниеКодСтандарты
Отливки со специальными свойствами (чугунные и стальные)В83KSt 81-033:2009
ЧугунВ11ГОСТ 1412-85
Трубы из черных металлов и сплавов литые и соединительные части к нимВ61ГОСТ 5525-88, ГОСТ 9583-75
Отливки чугунные (серого и ковкого чугуна)В81ОСТ 108. 962.01-85, ОСТ 24.207.01-90, ОСТ 23.4.258-86, ОСТ 23.4.117-84, TУ 26-0401-725-86, TУ 1-812-0072-94

Состав серого чугуна и его структура

Параметры и свойства сплава напрямую зависят от режима охлаждения, дело в том, что именно во время охлаждения формируется структура материала.

В процессе медленного охлаждения происходит образование немалых кристаллов железа, а сочетание металла и углерода становится перлитным. В ходе такого охлаждения происходит не только увеличение размера кристаллов металла, но и углеродных включений. Такое сочетание приводит к тому, что перлитный материал имеет не только высокую прочность, но и повышенную хрупкость.

Оценка структуры СЧ определяет:

  • размеры включений графита, измеряя в микрометрах (МКМ), их распределение, количество (в %), вид структуры металлической основы и при наличии перлита — его дисперсность.

По строению металлической основы серые чугуны делят на:

  1. перлитные — в составе структуры перлит и графит;
  2. ферритно-перлитные — феррит, перлит и графит;
  3. ферритные — структура состоит из феррита и графита.

Какая основа будет зависит от скорости охлаждения после затвердевания.

Для обозначения частей микроструктуры чугун этого типа используют терминологию определенную в ГОСТ 3443-87, например, пластинчатый графит обозначают буквами ПГ. Углерод включен в материал в следующих формах.

  • пластинчатая прямолинейная, ее обозначают ПГФ1;
  • пластинчатая завихреная — ПГФ2;
  • игольчатая — ПГФ3;
  • гнездообразная -ПГФ4.

Первоочередную значимость для приобретения требуемых параметров чугунной отливки имеет его структура, именно поэтому при выполнении заготовок требуется тщательное выполнение технологии плавления и заливания сырья. Для обретения требуемых параметров серого чугуна и устранения дефектов применяют операцию модификации.

В составе СЧ, в зависимости от его марки, могут входить следующие вещества:

Основа — Fe (железо), остальное:

  • C (углерод) — 2,9-3,7%;
  • Si (кремний) -1,2-2,6%;
  • Mn (марганец) — 0,5-1,1;
  • P (фосфор) не больше 0,2-0,3%;
  • S (сера) не больше 0,12-0,15%.

Допустимо легирование серого чугуна с использованием таких веществ как Cr, Ni, Cu, и некоторыми другими элементами.

Кремний в составе увеличивает графитизацию углерода. Марганец несмотря на то что затрудняет графитизацию, улучшает его механические свойства.

Химический состав СЧ определен в ГОСТ 1412-85. Серый чугун производят во многих странах мира, в США аналогом этого материала считается A48-30B, в Британии BS 200 или 220, в КНР GB HT 20, в Европейском союзе EN-JL1030 FG20.

Чугун серый

Серый чугун, широко применяется в машиностроении и представляет собой не сплошной металл, а пористую металлическую губку — сплав железа с графитом, поры которой заполнены рыхлым неметаллическим веществом — графитом. Чугун весьма хрупок. Его относительное удлинение при разрыве очень низко. Он разбивается на куски ударом.

Механические свойства серых чугунов зависят от свойств металлической основы и в основном, от количества, формы и размеров графитных включений. Перлитная основа обеспечивает наибольшие значения показателей прочности и износостойкости. Марки серых чугунов согласно ГОСТ 1412—85 состоят из букв «СЧ» и цифр, соответствующих минимальному пределу прочности при растяжении Ств, МПа / 10. Чугун СЧ10 — ферритный; СЧ15, СЧ18, СЧ20 — ферритно-перлитные чугуны, начиная с СЧ25 — перлитные чугуны.

На долю серого чугуна с пластинчатым графитом приходится около 80 % общего производства чугунных отливок.

Серый чугун отличается высокими литейными свойствами (для него свойственна низкая температура кристаллизации, текучесть в жидком состоянии, малая усадка) и поэтому служит основным материалом для литья. Он широко применяется в машиностроении для отливки станин станков и механизмов, поршней, цилиндров.

Серый чугун весьма склонен к образованию трещин при сварке, и борьбе с трещинами приходится уделять особое внимание при сварке.

Часто в процессе сварки происходит отбеливание чугуна, что придает ему высокую твердость и хрупкость в зоне сварки и делает его совершенно непригодным для механической обработки после сварки.

Встречаются сорта чугуна, практически совершенно не поддающиеся сварке, например так называемый горелый серый чугун, подвергавшийся длительному воздействию высокой температуры, кислот, пара и т. п.

Влияние химического свойства на структуру и физико-механические свойства серого чугуна. Влияние основных элементов на графитизацию чугуна :

Углерод. Повышение содержания углерода в сером чугуне приводит в общем к уменьшению прочности, модуля упругости и твердости и к увеличению пластичности и циклической вязкости. Нижний предел содержания углерода в чугуне с повышенной прочностью ограничивается снижением литейных свойств чугуна. Обычно содержание углерода в сером чугуне колеблется в пределах 2,4—4,2%.

Кремний с точки зрения его влияния на графитизацию серого чугуна является аналогом углерода. Однако его влияние на механические свойства принципиально отлично от влияния углерода. Кремний образует с ферритом твердый раствор и повышает твердость и прочность феррита, снижая одновременно его вязкость. Суммарное (графитизирующее и легирующее) воздействие кремния может существенно изменять механические свойства серого чугуна. Обычно повышение содержания кремния связано с ростом величины графитовых включений и повышением доли феррита в матрице; прочность серого чугуна при этом снижается. При высоком содержании кремния снижается пластичность серого чугуна за счет образования силикоферрита. Твердость серого чугуна с увеличением содержания кремния сначала понижается вследствие графитизации, а затем увеличивается за счет образования силикоферрита.

Влияние углерода и кремния на механические свойства серого чугуна обычно рассматривают совместно. В простейшем случае учитывают суммарное содержание углерода и кремния, более точным является способ определения углеродного эквивалента или степени эвтектичности.

Сера. Ослабляя границы зерен, эвтектика Fe—FeS снижает прочность и пластичность чугуна. С другой стороны, сера способствует перлитизации структуры и может повышать прочность и твердость ферритного или феррито-перлитного серого чугуна. Кроме того, сера повышает износостойкость чугуна.

Марганец тормозит графитизацию, легирует феррит, способствует размельчению перлита и иногда образованию свободных карбидов. Влияние марганца на механические свойства чугуна показано на рис. 38. Марганец, взаимодействуя с серой, нейтрализует ее вредное воздействие, поэтому выбор количества марганца должен быть увязан с содержанием серы. При выплавке малосернистого чугуна содержание марганца следует снижать.

Фосфор легирует феррит, способствует размельчению эвтектического зерна и образованию включений фосфидной эвтектики. С повышением содержания фосфора увеличивается твердость и износостойкость чугуна.

Хром. С увеличением содержания хрома растет прочность и твердость чугунных отливок; нарастание прочности происходит быстрее у модифицированного чугуна. Хром тормозит графитизацию и является активным карбидообразующим элементом. На рис. 40 показано изменение твердости в отливках с различной толщиной стенки при изменении содержания хрома. Рост твердости в тонких сечениях с увеличением содержания хрома происходит более интенсивно, чем в толстых.

Никель благоприятно влияет на выравнивание механических свойств чугуна в отливках с различной толщиной стенки. В чугуне с содержанием никеля несколько больше 3% прочность почти не изменяется при толщине стенок от 22 до 88 мм. Каждый процент никеля повышает твердость серого чугуна приблизительно на 10 НВ. С увеличением содержания никеля возрастает коррозионная устойчивость чугуна, особенно в щелочных средах; улучшается обрабатываемость и, кроме того, повышается герметичность, так как при высокой эвтектичности графит приобретает благоприятную форму, а величина зерна уменьшается.

Молибден является интенсивным карбидообразующим элементом и тормозит графитизацию. Прочность и твердость чугуна с увеличением содержания молибдена повышается. С увеличением содержания молибдена прочность чугуна возрастает линейно: 1% Мо повышает прочность примерно на 1 кГ/мм2 при любой степени эвтектичности от 0,8 до 1,0. Ударная вязкость при этом не падает, а даже несколько увеличивается. Молибден увеличивает прочность чугуна при повышенных температурах. Максимум прочности достигается при содержании 1,9% Мо, затем происходит падение свойств из-за образования ледебурита. Повышение твердости вследствие повышения однородности не сопровождается ухудшением обрабатываемости. Молибден повышает также сопротивление чугуна износу и его росто-устойчивость.

Медь оказывает на серый чугун двойное действие: способствует графитизации при затвердевании и образованию перлита при эвтектоид-ном превращении. С увеличением содержания меди увеличивается жидкотекучесть и уменьшается усадка. При увеличении содержания меди повышается модуль упругости чугуна, прочность и твердость.

Отмечается повышение модуля упругости с 13000 до 20000 кГ/мм2 предел прочности при изгибе — с 35 до 67 кГ/мм2 твердости — с 137 до 20 НВ, причем при 2,6 % Си она оставалась равномерной по всему сечению отливок.

Медистый чугун обрабатывается лучше нелегированного. Добавка меди к чугуну, легированному карбидообразующими элементами (хромом, молибденом, ванадием), понижает его твердость и улучшает обрабатываемость, а также может повышать прочность, снижая охрупчивающее действие карбидов. Вследствие положительного влияния меди на образование тонкопластинчатого перлита повышается коррозионная стойкость медистого чугуна во многих средах.

Повышение предела прочности при растяжении медистого чугуна происходит независимо от его эвтектичности; увеличение твердости зависит от эвтектичности (при низкой эвтектичности твердость возрастает интенсивнее).

Олово при содержании до 0,1% повышает твердость, а также прочность и модуль упругости серого чугуна. Однако одновременно с повышением твердости увеличивается склонность чугуна к отбелу. Поэтому во избежание отбела содержание олова не должно превышать 0,05—0,08%.

Олово как легирующий элемент рекомендуется использовать вместо хрома для устранения больших колебаний в твердости по различным сечениям отливок.

Олово заметно понижает рост чугуна и образование окалины.

Сурьма в сером чугуне препятствует выделению свободного феррита подобно олову, но более эффективно. Влияние сурьмы обнаруживается при ее содержании 0,015%, а добавки 0,03—0,08% Sb обеспечивают эффективное легирование чугуна. Прочность чугуна увеличивается примерно при содержании в нем до 0,1% Sb, пока не будет достигнута чисто перлитная структура, а при дальнейшем увеличении содержания сурьмы снижается прочность. Сурьма влияет только на кристаллизацию металлической основы чугуна, не изменяя ни формы, ни распределения графитовых включений. Ударная вязкость чугуна при легировании сурьмой снижается.

С увеличением содержания сурьмы заметно снижается чувствительность чугуна к толщине стенки. Влияние сурьмы на механические свойства приведено в табл. 26.

Бор повышает прочность чугуна, способствуя выделению измельченных карбидов. При чрезвычайно малых добавках бор видимо оказывает на чугун графитизирующее влияние и несколько повышает стрелу прогиба и ударную вязкость; при больших содержаниях бора повышается прочность и снижается пластичность и вязкость чугуна.

При подобранном соотношении бора и кремния в широком пределе толщин стенок и эвтектичности чугуна получается своеобразная половинчатая структура с равномерно распределенной цементитной сеткой на перлитной основе. В зависимости от количества введенного бора возможно получение твердости до 260 НВ. Серый чугун с тонкой цементитной сеткой хорошо обрабатывается. Аналогичное влияние на свойства чугуна оказывают комплексные добавки бора и алюминия. Путем легирования бором можно значительно повысить износостойкость чугуна без опасения понизить его обрабатываемость.

Наиболее широкое применение находит комплексное легирование с введением в чугун нескольких элементов одновременно.

Сварку чугуна применяют для исправления различных литейных дефектов, в ремонтных работах при восстановлении изношенных и разрушившихся деталей машин, а также при изготовлении комбинированных деталей машин из чугуна и из чугуна в сочетании с другими сплавами.

Основными способами сварки чугуна являются: газовая, электродуговая и электроконтактная точечная, применяемая для соединения чугунных деталей с медными, бронзовыми и латунными деталями.

Служебные свойства серого чугуна. Износостойкость определяется скоростью потери металла, выраженной в весовом или линейном измерениях.

Основные виды износа классифицируются следующим образом: абразивный, при сухом трении, при трении со смазкой, эрозионно-кавитационный.

Износостойкость серого чугуна зависит прежде всего от его структуры и твердости. Чем меньше общее количество графита и размеры графитовых включений, тем большей износостойкостью обладает чугун. Наличие феррита в структуре оказывается полезным только при сравнительно мягком контртеле, при малых давлениях и скоростях, в условиях трения качения при непрерывном одностороннем вращении, а также при возможных перекосах трущейся пары в процессе приработки. В большинстве случаев значительные преимущества имеет перлитная структура, особенно при трении скольжения и возвратно-поступательном движении.

В подавляющем большинстве случаев износостойкость находится в прямой зависимости от твердости чугуна и повышается с ростом твердости последнего. Особенно высокую твердость должны иметь детали, работающие в условиях ударно-абразивного износа.

Износостойкость серого чугуна может быть существенно повышена за счет применения легирования (рис. 50).

Герметичность оценивают по скорости утечки, падению давления или по граничным параметрам (толщина стенки, давление), при которых обнаруживается течь.

Требования герметичности предъявляются к чугунным деталям, работающим под давлением жидкости или газа. Давление жидкости может быть равно атмосферному (картеры, открытые резервуары). Высокой герметичностью должны обладать отливки насосов и компрессоров, трубопроводов, арматуры, тормозной пневматики, гидроприводов и др.

Основным фактором, определяющим герметичность отливок, является наличие раковин и микропористости. Главную роль играет «транзитная», т. е. сообщающаяся между собой микропористость.

Применение серого чугуна в станкостроении. К первому классу отливок относятся базовые, корпусные и другие детали высокой прочности или износостойкости. Чугун в преобладающих по толщине участках отливок, которые определяют в основном прочность и жесткость деталей, должен иметь предел прочности на растяжение около 25—30 кГ/мм- и модуль упругости около (1,15-е-1,35) 104. В зависимости от конкретных толщин стенок для обеспечения в отливках этой заданной прочности рекомендуются для предпочтительного использования следующие марки серого чугуна: СЧ 21-40, СЧ 28-48, СЧ 32-52.

Детали, относящиеся к первому классу — это детали, несущие высокие нагрузки: кронштейны, зубчатые колеса. Детали, к которым предъявляются требования по стабильности геометрической формы и работающие на износ при трении скольжения в условиях большой загрязненности смазки, а также при трении качения: станины с направляющими скольжения токарно-винторезных, револьверных, горизонтально-расточных, фрезерных и других станков, а также коордннатно-расточных, шлифовальных с недостаточной защитой направляющих; станины координатно-расточных, резьбошлифовальных, шлифовальных станков с направляющими качения; ползуны, поперечины, накладные направляющие; шабровочные и поверочные плиты и линейки. Детали, к которым предъявляются требования в части герметичности при давлении свыше 80 кГ/сма: детали гидро- и пневмоаппаратуры — цилиндры, корпусы насосов, золотников.

К отливкам первого класса, работающим в условиях износа рабочих поверхностей (направляющих), предъявляются дополнительные требования в отношении твердости и микроструктуры. Твердость направляющих на глубине 3/4 припуска на механическую обработку должна быть не ниже 180 НВ. Для тяжелых отливок весом более 7000 кг или при толщине направляющих более 100 мм твердость может быть снижена до 170 НВ. Такое же снижение твердости допускается, если направляющие скольжения хорошо защищены от загрязнения (не выходят из контакта с направляющими сопряженных деталей).

Микроструктура отливок развесом до 4000 кг при толщине направляющих до 60 мм должна состоять из мелкопластинчатого высокодисперсного перлита в количестве не менее 98% и мелких пластинок графита размером от 10 до 125 мкм графитовые включения, изолированные или в виде колоний малой степени изолированности. При весе отливок от 4000 до 10 000 кг или при толщине литых направляющих от 60 до 100 мм перлита должно быть не менее 95%. Для особо тяжелых станочных отливок более 10 000 кГ или при толщине направляющих более 100 мм перлит может быть от среднепластинчатого до мелкопластинчатого с содержанием в структуре более 90%, а графит размером от 10 до 250 мкм.

Для наиболее ответственных деталей первого класса: базовые, корпусные и другие детали высокой прочности и высокой износостойкости прецизионных станков, т. е. станков повышенной, высокой и особо высокой точности предпочтительно применение чугуна марки СЧ 32-52.

Высокие показатели прочностных свойств и твердости рабочих поверхностей достигаются за счет легирования чугуна никелем, хромом и молибденом.

Ко второму классу отливок относятся базовые и корпусные детали повышенной прочности или износостойкости. Для обеспечения необходимой прочности и жесткости чугун в отливках (в преобладающих по толщине сечения участках) должен иметь предел прочности на растяжение около 20—25 кГ/мм3. В зависимости от толщин стенок отливок для обеспечения такой прочности рекомендуется применение следующих марок серого чугуна: СЧ 15-32, СЧ 21-40 и СЧ 28-48.

Отливки второго класса — детали, к которым предъявляются требования по стабильности геометрической формы и не работающие на износ: станины и салазки с накладными направляющими револьверных, токарно-винторезных станков и т.д.

Более подробно применение серого чугуна и других типов чугуна рассмотрено в статье применение чугуна.

Разновидности чугунов:

В зависимости от того, какой формы присутствует углерод в сплавах различают белые, серые, ковкие и высокопрочные чугуны.

  • Белый чугун Такое название он получил по виду излома, который имеет матово-белый цвет. Весь углерод в этом чугуне находится в связанном состоянии в виде цементит. Белые чугуны имеют большую твердость (НВ 450-550) и , как следствие этого, они очень хрупкие и для изготовления деталей машин не используются.

Высокая твердость белого чугуна обеспечивает его износостойкость, в том числе и при воздействии агрессивных сред. Это свойство учитывают при изготовлении из него поршневых колец. Однако белый чугун применяют главным образом для отливки деталей на ковкий чугун, поэтому его называют передельным.

  • Серый чугун В сером чугуне углерод находится в виде графита пластинчатой формы. Серые чугуны маркируются сочетанием букв «С» – серый, «Ч»- чугун и цифрами, которые обозначают временное сопротивление разрыву при растяжении в Мпа.
  • Высокопрочный чугун Отличительной особенностью высокопрочного чугуна являются его высокие механические свойства, так как структура углерода в нем – шаровидный графит. Это повышает прочность чугуна и позволяет получить сплавы с достаточно высокой пластичностью и вязкостью.

Обозначение марки включает буквы «В» – высокопрочный, «Ч» – чугун и цифры, обозначающие временное сопротивление разрыву при растяжении в Мпа.

  • Ковкий чугун Ковкими называют чугуны, в которых графит имеет хлопьевидную форму. Несмотря на свое название, они никогда не подвергаются ковке. Конфигурация детали из ковкого чугуна определяется формой отливки. Ковкие чугуны маркируют «К» – ковкий, «Ч» – чугун и цифрами.

Первая группа цифр – показывает предел прочности чугуна при растяжении, МПа:

Вторые – относительное удлинение при разрыве в %.

Чугуны со специальными свойствами.

В зависимости от назначения различают износостойкие, антифрикционные, жаростойкие и коррозионностойкие чугуны.

Износостойкие (антифрикционные ) чугуны.

Обозначают сочетанием букв АЧС, АЧК, АЧВ. Буквы С, К, В обозначают вид чугуна: серый, ковкий, высокопрочный. Цифра обозначает номер чугуна.

Для легирования антифрикционных чугунов применяют хром, никель, медь, титан.

Жаростойкие и жаропрочные чугуны.

Обозначают набором заглавных букв русского алфавита и следующими за ними букв. Буква «Ч» – чугун. Буква «Ш», стоящая в конце марки означает шаровидную форму графита. Остальные буквы означают легирующие элементы, а числа, следующие за ними, соответствуют их процентному содержанию в чугуне.

Жаростойкие чугуны применяют для изготовления деталей контактных аппаратов химического оборудования, работающих в газовых средах при 0 температуре 900-1100 С.

Коррозионностойкие чугуны.

Коррозионностойкие чугуны, обладают высокой стойкостью в газовой, воздушной и щелочных средах. Их применяют для изготовления деталей узлов трения, работающих при повышенных температурах.

Примеры обозначения и расшифровки:

1. СЧ15 – серый чугун, временное сопротивление при растяжении 150Мпа.

2. КЧ45-7 – ковкий чугун, временное сопротивление при растяжении 450Мпа, относительное удлинение 7%.

3. ВЧ70 – высокопрочный чугун, временное сопротивление при растяжении 700 МПА

Применение

Серый чугун нашел свое применение при получении отливок разной формы, для которых требуется высокая прочность при сжатии. Эта характеристика важна в основном при производстве литых станин, предназначенных для изготовления станочного оборудования. Применение этого материала ограничено высокой хрупкостью готовых изделий. Особенно это проявляется при наличии серьезных нагрузок на изгиб.

Не так давно, литейные характеристики серого чугуна были использованы при изготовлении кухонной посуды и иной бытовой утвари, в частности, чугунки, сковородки и пр. Выпущенная, с использованием литья, продукция отличалась простотой в производстве и низкой себестоимостью.

В наши дни с использованием литья производят нагруженные компоненты машин, которые работают без изгибающих нагрузок, например, детали поршневой группы которые установлены в ДВС.

Детали высокой прочности, отлитые из этого материал, обладают небольшой стоимостью и длительным временем эксплуатации. Можно смело сказать, что литые станины и корпуса станочного оборудования – это вечные компоненты станочного оборудования, в сравнении с другими узлами оборудования.

Чугуны марки СЧ15, СЧ18, СЧ20 применяют для слабо нагруженных деталей. Это: фланцы, крышки, маховик, корпус редуктора.

Марки СЧ20 и СЧ25 используют, где требуется повышенная нагрузка на детали. Это: поршни цилиндров, блоки цилиндров двигателя, станина станка.

Марки повышенной прочности и износостойкости СЧ30, СЧ35, СЧ40, СЧ45 использую в зубчатых колесах, гильзах двигателей, распределительных валах, шпинделях, для деталей паровых котлов. Эти марки обладают высокой теплостойкостью.

Источник

Охарактеризуйте способ получения белого чугуна и назовите области его применения? — Студопедия.Нет

Безграфитный отбеленный чугун, получаемый путем соответствующего легирования при определенных условиях затвердевания, обладает очень высокой износостойкостью. Из него делают, например, валки для сталепрокатных станов.

20. Охарактеризуйте способ получения ковкого чугуна и назовите области его применения?

Ковкий чугун (рис.2,б) получают путем длительного отжига отливок из отбеленного чугуна. При этом свободный углерод частично выгорает (происходит обезуглероживающий отжиг), либо связанный углерод выделяется из распадающегося цементита и остается внутри отливки в виде хлопьев или чешуек (углерод отжига) . Типичное применение ковких чугунов – изделия небольшого веса, например, водопроводные и газовые тройники, муфты, краны. Следует заметить, что название «ковкий чугун» условно, оно отражает только некоторое свойство чугунов этого класса, а именно , большую пластичность. Изделия из этих чугунов получают литьем, а не ковкой.

 

21. Как маркируют серый чугун?

Серый чугун. В зависимости от прочности подразделяются на 10 марок (ГОСТ 1412-9). Три из них представлены в табл.1. Марка чугуна складывается из букв СЧ (серый чугун) и числа, который показывает предел прочности на разрыв.

22. Каков химический состав серых чугунов?

 Химический состав серых чугунов примерно следующий:

С=3,2-3,5%; Si=1,9-2,5%; Mn=0,5-0,8%; Р=0,1-0,3%; S<0,12%.

Как влияет углерод и кремний на структуру и свойства серого чугуна?

Структура металлической основы серых чугунов зависит от состава (прежде всего от количества углерода и кремния). С увеличением С и Si увеличивается степень графитизации и склонность к образованию ферритной структуры металлической основы. Это ведет к разупрочнению чугуна без повышения пластичности. Лучшими прочностными свойствами обладает перлитный серый чугун.

 24. Назовите другие факторы, определяющие структуру серого чугуна?

Другим фактором, влияющим на структуру, является скорость охлаждения чугуна, которая зависит от толщины стенки отливок и материала формы. В значитьельной степени уменьшает влияние разностенности отливок на структуру и свойства чугуна модифицирование. Для модифицирования применяются чугуны с пониженным содержанием углерода и кремния (С=2,8-3,2%;Si=1,0-1,5%) В качестве модификаторов используется ферросилиций, силикокальций, алюминий. Ускоряя первую стадию графитизации, модифицирование устраняет цементитную фазу (отбел).

Какое основное требование предъявляют к чугуну для литья кабинетных украшений?

Одним из основных требований, предъявляемых к чугуну для литья кабинетных украшений, является высокая жидкотекучесть, которая обеспечивает заполнение форм, как правило, имеющих очень сложную, ажурную конфигурацию. Повышать жидкотекучесть чугуна за счет его перегрева нельзя, так как это может привести к образованию пригара на поверхности отливки.

Каслинский чугун содержит примерно 3,6%С; 2,2% Si; до 1% Р

26. Какой чугун применяют для изготовления массивных статуй?

Для изготовления массивных статуй применяют обычный серый чугун. Химический состав чугуна должен быть близок к эвтектической концентрации, обеспечивающей высокую жидкотекучесть. Одним из основных требований является исключение отбела (образования на поверхности цементита), который делает отливку непригодной для отделочных работ, особенно чеканки.

27. Какой чугун применяют для изготовления оград, перил, архитектурных украшений?

Ограды, перила, архитектурные украшения отливают также из серого чугуна как наиболее дешевого и технологичного материала, поскольку эти крупносерийные изделия не требуют никакой обработки, кроме зачистки. Каких-либо особых требований, кроме качества внешнего вида, к этим отливкам не предъявляется.

Как маркируют высокопрочный чугун?

 Различают девять марок высокопрочных чугунов, часть которых приведена в табл.1 (ГОСТ 7293-79). Перед маркой ставятся буквы ВЧ (высокопрочный чугун), далее следует число, которое характеризует предел прочности

29. Каков химический состав высокопрочного чугуна и каковы области его применения?

. Химический состав высокопрочных чугунов примерно следующий: С=3,2-3,1 %; Si=2,9-2,6 %; Mn=0,6-0,8 %; Р до 0,12 %; S до 0,03 %, 0,02-0,03 % Mg или Zr. Высокопрочный чугун находит применение как заменитель углеродистой стали, ковкого и серого чугуна. Применение высокопрочного чугуна взамен серого дает экономический эффект в тех случаях, когда за счет более высокой прочности снижается масса отливок.

 30. Охарактеризуйте ковкий чугун (маркировка, хим. состав. области применения)?

Ковкий чугун. Различают семь марок ковкого чугуна. Ковкий чугун маркируется буквами КЧ и двумя цифрами: первая показывает предел прочности на разрыв, вторая – относительное удлинение. В табл.1 приведены несколько марок ковкого чугуна, их свойства и структура. Ориентировочный состав ковкого чугуна: С=2,4-3,0 %; Si=0,8-1,4 %; Mn=0,3-1,0 %; Р< 0,2 %; S<0,1 %.

По механическим и технологическим свойствам ковкий чугун занимает промежуточное место по сравнению с высокопрочным и серым чугуном. Недостатком ковкого чугуна по сравнению с высокопрочным является ограничение толщины стенок для отливок (не более 25 мм) и необходимость отжига.

31. Охарактеризуйте белый чугун (свойства, хим. состав. области применения)? 

Белые чугуны. Для изготовления деталей, работающих в условиях образивного износа применяются белые чугуны, легированные хромом, хромом и марганцем, хромом и никелем. Отливки из этих чугунов отличаются высокой твердостью и износостойкостью. Жаростойкость достигается легированием чугуна кремнием (5,6%) и алюминием (1,0-2,0%). Коррозионная стойкость чугунов повышается при легировании хромом, никелем, кремнием.

 

 Вопросы по теме 6. Система железо-углерод, основные фазы. Чугун и сталь.

1. Назовите области применения чугуна.

2. Сколько углерода содержится в чугунах?

3. Какова структура эвтектических чугунов?

 4. Охарактеризуйте структуру заэвтектических чугунов?

5. Охарактеризуйте структуру доэвтектических чугунов?

6. Как различают чугуны по излому?

7. Чем отличается белый чугун от серого?

8. Охарактеризуйте структуру серых чугунов?

9. Почему чугун выдерживает меньшую нагрузку при растяжении , чем сталь?

10. Как работает чугун под сжимающей нагрузкой?

11. Какой процесс называют модифицированием? какова его цель?

12. Что способствует повышению прочности чугунов?

13. Охарактеризуйте высокопрочный чугун?

14. Как же добиться, чтобы графит в чугуне выделялся в виде шариков, а не пластинок?

15. Назовите факторы, способствующие графитизации.

16. Назовите факторы, тормозящие процесс графитизации.

17. От каких факторов зависит текучесть расплавленного чугуна?

18. Сравните свойства чугунов и сталей.

19. Охарактеризуйте способ получения белого чугуна и назовите области его применения?

20. Охарактеризуйте способ получения ковкого чугуна и назовите области его применения?

21. Как маркируют серый чугун?

22. Каков химический состав серых чугунов?

23. Как влияет углерод и кремний на структуру и свойства серого чугуна?

24. Назовите другие факторы, определяющие структуру серого чугуна?

25. Какое основное требование предъявляют к чугуну для литья кабинетных украшений?

26. Какой чугун применяют для изготовления массивных статуй?

27. Какой чугун применяют для изготовления оград, перил, архитектурных украшений?.

28. Как маркируют высокопрочный чугун?

29. Каков химический состав высокопрочного чугуна и каковы области его применения?

30. Охарактеризуйте ковкий чугун (маркировка, хим. состав. области применения).

31. Охарактеризуйте белый чугун (свойства, хим. состав. области применения).

 

 

Контрольная работа № 2. Стали.

 

1. Нарисовать диаграмму Fe-Fe3C. Указать структурный состав стальной части диаграммы. 

 

 

 

2. Рассчитайте, сколько % перлита в стали 40.

3. Нарисовать структуру доэвтектоидной стали (Сталь 60) при температуре: а)выше АС3, в) ниже АС1.

 

4. Нарисовать структуру заэвтектоидной стали (У10) при температуре: а)выше АС СМ, в) ниже АС1.

 

5. Дайте определение следующим фазам:

Феррит –

 

Аустенит –

 

Цементит

 

7.Дайте определение структуры «Перлит».

 

Перлитный серый чугун | Справочник конструктора-машиностроителя

?СЕРЫЙ, который был перекрыт по виду излома, имеющего серый цвет ) – чугун, в структуре которого имеются включения пластинчатого графита.
По строению металлической основы серые чугуны разделяют на перлитные, феррито – перлитные, ферритные ( рис.
С – 1 ).
Для подробностей из серого чугуна характерны небольшая чувствительность к действию внешних концентраторов напряжения при циклических нагрузках, высочайший коэффициент поглощения колебаний при вибрациях подробностей ( в 2 – 4 раза выше, чем у стали ), высокие антифрикционные свойства ( наличие графита улучшает условия смазывания при трении ).

Перлитный серый чугун обладает высокой крепостью, умеренной твердостью и хорошей обрабатываемостью резцом.
Высокая крепость этого чугуна объясняется наличием в его структуре перлита и тонких пластинок графита.
Вязкость и хорошая обрабатываемость получаются вследствие того, что цементит находится не в пустом состоянии, а в сочетании с вязким ферритом, вникающим в состав перлита.
идет только на получение литых ответственных деталей машин и станков , потому что перлитный чугун дорог .

Структура серого ( литейного ) чугуна состоит из металлической основы с графитом пластинчатой формы, вкрапленным в эту основу.
Такая структура образуется непосредственно при кристаллизации чугуна в отливке в соответствии с диаграммой состояния системы Fe – С ( постоянной ).
Причем, чем больше углерода и кремния в сплаве и чем ниже скорость его охлаждения, тем выше вероятность кристаллизации по этой диаграмме с образованием графитной эвтектики.
При коротком содержании углерода и кремния чугун модифицируют небольшими дозами некоторых элементов ( например, алюминий, кальций, церий ).

Серый чугун был прозван так по виду излома, имеющего серый тон.
Прозвание серый чугун не абсолютно корректно распространилось на литейный чугун, в структуре которого имеются включения пластинчатого графита.
чугун с пластинчатым графитом так и продолжают называть серым чугуном , потому что эта ошибка была закреплена на уровне государственного стандарта ( ГОСТ 1412 – 85 ) .
В то же времечко не стоит забывать, что первый симптом, благодаря которому серый чугун получил своё название, а именно – серый тон, можно видеть, например, у ковкого чугуна.
Серый цвет чугуна зависит от числа свободного графита, а не от формы графитных включений в чугуне.
Вообще, в систематизации и названиях чугунов существует историческая каша, которая особливо очень наблюдается и мешает при работе с зарубежными источниками научно – технической информации.

При производстве отливок в чугунолитейных цехах чугун подразделяют : в зависимости от степени графитизации, обусловливающей вид излома – на серый, бледный и половинчатый ( или отбелённый ) ;
в зависимости от формы включений графита – на чугун с пластинчатым, шаровидным ( высокопрочный чугун ), вермикулярным и хлопьевидным ( ковкий чугун ) графитом ;
в зависимости от характера металлической основы – на перлитный, ферритный, перлитно – ферритный, аустенитный, бейнитный и мартенситный ;
в зависимости от предназначения – на конструкционный и чугун со специальными характеристиками ;
по химическому составу — на легированные и нелегированные.

Включая небольшое сопротивление отливок из серого чугуна растягивающим и ударным нагрузкам, следует использовать сей материал для подробностей, которые подвергаются сжимающим или изгибающим нагрузкам.
В станкостроении это – базовые, корпусные детали, кронштейны, зубчатые колеса, ведущие ;
в автостроении – блоки цилиндров, поршневые кольца, распределительные валы, диски сцепления.
Отливки из серого чугуна также используются в электромашиностроении, для изготовления товаров народного потребления.

На часть серого чугуна с пластинчатым графитом приходится около 80% общего производства чугунных отливок.
Серые чугуны обладают высокими литейными качествами ( жидкотекучесть, малая усадка, незначительный пригар металла к фигуре и др. ), хорошо обрабатываются и сопротивляются износу, однако из – за низких прочности и пластических характеристик в основном используются для неответственных деталей.
В станкостроении серый чугун является главным конструкционным материалом ( станины станков, столики и верхние салазки, колонки, каретки и др. ) ;
в автомобилестроении из ферритно – перлитных чугунов делают картеры, покрышки, тормозные барабаны и др., а из перлитных чугунов – блоки цилиндров, гильзы, маховики и др.
В строительстве серый чугун применяют, главнейшим типом, для изготовления деталей, служащих при сжатии ( ботинков, колонн ), а также санитарно – технических деталей ( отопительных радиаторов, труб ).
Внушительное количество чугуна расходуется для изготовления тюбингов, из которых сооружается туннель метрополитена.
Из серого чугуна, содержащего фосфор ( 0, 5% ), изготавливают архитектурно – художественные изделия.

Памятники авито объявления в воронеже: Памятники на заказ в воронеже ritual-036.ru.

Виды чугуна и их свойства

Главная » Разное » Виды чугуна и их свойства

Виды чугуна

Чугун это сплав железа с углеродом, а так же как правило с кремнием, марганцем, фосфором и серой, при этом в составе чугуна количество углерода находится в диапазоне от 2,14 до 6,67% (в стали углерод находится в количестве до 2,14%).

По своим техническим характеристкикам чугун представляет собой достаточно хрупкий материал.

Углерод в чугуне находится либо в виде центита (Fe3C), либо в виде графита, в зависимости от количества содержания в чугуне этих соединений выделяют следующие виды чугуна:

– серый;

– белый;

– половинчатый;

– ковкий;

– высокопрочный.

Теперь давайте немного поподробней остановимся на каждом из них.

Серый чугун.

В данном виде чугуна большая часть углерода, либо вообще весь находится в виде графита. Цвет излом чугуна – серый (от сюда и название). Данный вид чугуна имеет высокие литейные свойства, в связи с этим используется для литья, хорошо поддаётся металлопобработке.

Белый чугун

В отличии от серого чугуна, данный вид чугуна плохо поддаётся металлообработке. Углерод содержащийся в нём находится исключительно в цементите. Цвет излома – светлый. Белый чугун характеризуется высокой твёрдость, что не позволяет обрабатывать его режущим инстурментм. Используют белый чугун, как правило полупродукта, для получения ковкого чугуна.

Ковкий чугун 

Данный вид чугуна получают от отливки и термической обработки белого чугуна, в процессе которой образуется хлопьевидный графит.

Основной сферой использования ковкого чугуна является производство автомобилей и сельхоз технике.

Половинчатый чугун

В данном виде чугуна углерод находится как в виде цементита, так и в виде графита.

Используется половинчатый чугун, как фрикционный материал в условиях сухого трения. Из данного вида чугуна производят детали с повышенной износоустойчивостью.

Высокопрочный чугун

Высокопрочный чугун содержит углерод в виде шаровидного графита, который образуется в процессе кристаллизации. Как правило данный вид чугуна используют для производства важных деталей в машиностроении, а так же для производства высокопрочных труб для газопроводов, нефтепроводов, а так же водоснабжения.

Главной особенностью всех чугунов является их плохая свариваемость.

Читайте так же:

Перевозка и хранение медного порошка

Легированный чугун

Обогащении руд флотацией, обогащение медной руды

Виды и особенности чугуна – Печное и каминное литьё из чугуна. Рубцовск.

Чугунные сплавы являются неотъемлемой частью человеческой жизни. Его применение распространилось от тяжёлой промышленности до произведений искусства. Давайте разберёмся, в чём же особенность чугуна, почему он настолько универсален и незаменим.

Чугун – это сплав, основными элементами которого является железо и углерод (более 2, 14 %). Механические и литейные свойства чугуна определяются концентрацией углерода и наличием прочих химических элементов.

Если говорить о чугуне в целом и в сравнении с прочими сплавами, он отличается высокой жаростойкостью, теплоёмкостью, устойчивостью к коррозии, и т.д. Положительные характеристики сплава делают его применение необходимостью как в тяжёлой промышленности, так и в быту.

Выплавка чугуна осуществляется в доменных печах, вагранках и электропечах.

В процессе нагрева в печах проходят химические реакции, позволяющие создавать чугун различных марок с различными механическими и литейными свойствами.

В вагранках(только серый) и электропечах обычно переплавляют отливки в изделия, что с точки зрения затраты топлива более экономично, да и в целом более практично если завод занимается изготовлением изделий, а не производством чугуна разных марок.

Виды чугунов:

На физические и химические свойства чугуна влияют его  химический состав и вид термической обработки.

Белые чугуны – получаются в процессе ускоренного охлаждения.

Белые чугуны отличаются высокой твёрдостью и хрупкостью. Тяжело поддаётся резке, в процессе откалываются куски. В связи с этим в большей степени используются не как конструктивный металл, а как заготовка для производства ковкого и иных марок чугуна.


Производные белых чугунов:

Ковкие чугуны получаются в результате обработки (отжига) белого чугуна.

Название ковкий никак не связано с процессом деформации (ковки) металла. Историки утверждают, что подобное название появилось вследствие того, что  из чугуна с характерными свойствами делали подковы.

Ковкий чугун обладает высокими механическими свойствами, такими как прочность, износостойкость и т.д.. Благодаря чему металл активно используется в автомобильной промышленности, сельскохозяйственном машиностроении  при производстве мелких деталей


В результате средней между белым и серым чугуном интенсивности охлаждения образуются половинчатые чугуны. Как следствие, имеющие промежуточные свойства и структуру металла.

Помимо изменения химического состава металла, регулируя интенсивность его охлаждения возможно получать отливки с различным уровнем прочности, пластичности и прочими механическими свойствами чугуна.

Чугуны со специальными свойствами:

Подобной классификации подвергаются белые и серые чугуны, отливаемые с применением определённой технологии для дальнейшего использования в определённых условиях или по специальному назначению. К таким относятся:

  • Антифрикционные чугуны. Применяются для изготовления деталей, используемых в особо нагруженных узлах трения (корпус подшипников, втулки, вкладыши, валы)
  • Износостойкие чугуны. Применяются в отраслях с высоким уровнем воздействия внешней среды: детали агрегатов для азотной промышленности, насосного оборудования, печного литья (дверки, колосники и т.д.).
  • Жаростойкий чугун. Применяется для изготовления деталей, подверженных интенсивному воздействию высоких температур: печное литьё, в частности колосники, детали коксохимического оборудования, трубокомплексов, газотурбинных двигателей и т.д.
  • Коррозионностойкие чугуны. Применяются для изготовления деталей, используемых в агрессивных средах. В большей степени химическая и авиационная промышленность.
  • Жаропрочные чугуны. Благодаря высокой прочности при нормальных и повышенных температурах  применяется для изготовления деталей арматуры и котлов, промышленных колосниковых решёток, обжиговых печей.

На сегодняшний день простое перечисление деталей, которые изготавливают из чугуна, составит приличную книгу. Сложно переоценить значимость чугуна и изделий из него в промышленности и быту не только нашей страны, но и всего мира.

Свойства и виды чугуна

Чугунами называются железоуглеродистые сплавы, которые имеют не больше 2% содержания углерода, и затвердевают с образование эвтектики. Чугуны имеют низкую пластичность, что собственно и отличает их от стали. Однако такие преимущества как высокие литейные свойства, дешевизна и прочность, чугуны получили широкое применение в области машиностроения. Выплавка чугунов происходит в электропечах, вангарках и доменных печах, чугуны которые выплавляются в доменных печах, могут быть: передельными, литейными, специальными, так называемые ферросплавы. Для дальнейшей выплавки стали и чугуна, используют передельные и специальные чугуны. Литейные чугуны переплавляются в литейных печах. Из всех выплавляемых чугунов, 20 % используют для изготовления чугунных отливок.

Все сплавы железа, которые содержат более 2,14% углерода, относятся к чугунам. Обычно такие сплавы имеют в составе кремень, немного марганца, фосфор, серу, а так же могут присутствовать и другие элементы, для придания определенных свойств материалу. Такими легирующими элементами могут выступать хром, магний, никель и другие. В зависимости от того, какую структуру имеет чугун, они подразделяются на серые и белые. Разница заключается в следующем: углерод белого чугуна связан химическим соединением в карбид железа Fe3C – цементит, а в сером чугуне, углерод находится в свободном состоянии и имеет вид графита. Серые чугуны прекрасно поддаются механической обработке, а белые в свою очередь имеют высокую твердость, его невозможно обработать режущим инструментом. Именно по этой причине, белые чугуны крайне редко используются с целью изготовления изделия, они используются как полупродукт, чтобы получить из них, ковкий чугун. Состав и скорость охлаждения, влияет на получение серого и белого чугунов.

Структура влияет на прочность, бывают чугуны ковкие и высокопрочные. В свою очередь по степени легирования, бывают: простые, низколегированные, среднелегированные, а так же высоколегированные. Наиболее широкое применение имеют простые, а так же серые низколегированные литейные чугуны.

Чугун – это материал, широко распространенный как материал конструкционный. Очень часто применяется в машиностроении, металлургии и других промышленных отраслях, так как имеет ряд преимуществ перед другими отраслями, за счет хороших литейных качеств и невысокой стоимости. А изделия из него – износостойки, прочны и менее чувствительны, чем сталь. Главнейший процесс, который формирует структуру чугуна – процесс графитизации, то есть выделение углерода в структурно-свободном виде. Самое графитизирующее действие на чугун оказывает углерод и кремний, самое меньшее – медь и кобальт. Отбеливающее действие на чугун оказывает сера, олово и ванадий. Именно по этой причине, в чугунных отливках всегда содержится большое количество кремния.

80% общего производства, составляют чугунные отливки серого чугуна с пластинчатым графитом, с большим количеством внутренних концентратов напряжений, имеющих вид пластин, что делает чугун малочувствительным ко всем внешним концентраторам напряжения, таким как: царапины, надрезы, сечения чугунных отливок, неровности на поверхности и иные неровности.

Так как строение чугуна зависит не только от его состава. Но также от условий литья и плавки, но условия влияют и на его механические свойства. Уменьшение графита и увеличение свойств перлита приводят к повышению прочности, а так же твердости при заданном химическом составе.

Виды чугунов, статьи о чугуне и стали, отливки из чугуна| ООО «СамЛит»

Чугун – сплав железа с углеродом (содержанием более 2,14%). Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют: белый, серый, ковкий и высокопрочные чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и др. ).

ГОСТы
  • ГОСТ 977-88 – Отливки стальные. Общие технические условия.
  • ГОСТ 1412-85 – Чугун с пластинчатым графитом для отливок. Марки.
  • ГОСТ 1585-85 – Чугун антифрикционный для отливок. Марки.
  • ГОСТ 7769-82 – Чугун легированный для отливок со специальными свойствами. Марки.
  • ГОСТ 14637-89 – Прокат толстолистовой из углеродистой стали обыкновенного качества. Технические условия.
  • ГОСТ 26645-85 – Отливки из металлов и сплавов. Допуски размеров, массы и припуски на механическую обработку.
  • ГОСТ 1050-88 – Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия.
Виды чугунов
статьи чугунное литье, стальное литье, художественное литье

Фазовая диаграмма состояния Fe – С (стабильная) представлена на рисунке выше (штриховые линии соответствуют выделению графита, а сплошные – цементита). Температуры плавления чугунов значительно ниже (на 300. ..400 °С), чем у стали.

Углерод в чугуне может находиться в виде цементита, графита или одновременно в виде цементита и графита. Образование стабильной фазы – графита в чугуне может происходить в результате непосредственного выделения его из жидкого (твердого) раствора или вследствие распада предварительно образовавшегося цементита (при замедленном охлаждении расплавленного чугуна цементит может подвергнуться разложению РезС -> Fe + ЗС с образованием феррита и графита). Процесс образования в чугуне (стали) графита называют графитизацией.

Графит повышает износостойкость и антифрикционные свойства чугуна вследствии собственного смазочного действия и повышения прочности пленки смазочного материала. Чугуны с графитом, как мягкой и хрупкой составляющей, хорошо обрабатываются резанием (с образованием ломкой стружки) и обеспечивают более чистую поверхность, чем стали (кроме автоматных сталей).

Присутствие эвтектики в структуре чугунов обусловливает его использование исключительно в качестве литейного сплава. Высокие литейные свойства при небольшой стоимости обеспечили широкое применение чугунов в промышленности.

Механические свойства чугуна обусловлены, главным образом, количеством и структурными особенностями графитной составляющей. Влияние графитных включений на механические свойства чугуна можно оценить количественно (ГОСТ 3443-87). Чем меньше графитных включений, чем они мельче и больше степень их изолированности, тем выше прочность чугуна при одной и той же металлической основе. Наиболее высокую прочность обеспечивает шаровидная форма графитной составляющей, а для хлопьевидной составляющей характерны высокие пластические свойства. Чугун с пластинчатым графитом можно рассматривать как сталь, в который графит играет роль надрезов, ослабляющих металлическую основу.

Применяемые для отливок чугуны имеют в среднем состав: С – 2,0…3,7%, Si – 1,4…2,6%, Mn – 0,5…1,1%, P – 0,l…0,3%, S – 0,12%.

Углерод определяет количество графита в чугуне: чем выше его содержание, тем больше образуется графита и тем ниже механические свойства. В то же время для обеспечения высоких литейных свойств (хорошей жидкотекучести) должно быть не меньше 2,4% С.

Кремний оказывает большое влияние на структуру и свойства чугунов, так как величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от его содержания. Чем больше содержание кремния, тем шире эвтектический интервал температур. Таким образом, кремний способствует процессу графитизации, действуя в том же направлении, что и замедление скорости охлаждения. Изменяя, с одной стороны, содержание в чугуне углерода и кремния, а с другой – скорость охлаждения, можно получить различную структуру металлической основы чугуна.

Сера и марганец являются вредными технологическими примесями, содержание которых в чугунах ограничивают. Сера ухудшает механические и литейные свойства. И сера, и марганец препятствуют графитизации.

Фосфор не влияет на графитизацию, а при повышенном (до 0,4…0,5%) содержании повышает износостоикость чугунов, так как образуются твердые включения фосфидной эвтектики.

Самым распространенным видом термообработки чугунов является отжиг отливок при 430…600 °С для уменьшения литейных напряжений, которые могут вызвать даже коробление фасонных изделий. Нормализация чугуна проводится для аустенизации ферритной и ферритно-перлитной матриц и последующего перлитного превращения, что обеспечивает упрочнение. Закалку чугуна на мартенсит с нагревом до 850…930 °С и охлаждением в воде и масле применяют для повышения прочности и износостойкости.

После закалки проводят низкий отпуск (200 °С) для уменьшения закалочных напряжений или высокий отпуск (600…700 °C) для получения микроструктур сорбита или зернистого перлита, обеспечивающих повышенную вязкость.

Классификацию чугунов проводят по виду и форме углеродосодержащей структурной составляющей, то есть по наличию и форме графита.

По виду структурной составляющей выделяют чугуны без графита – белые чугуны, в которых практически весь углерод находится в химически связанном состоянии в виде цементита. Промежуточное положение занимает половинчатый чугун, большая часть углерода которого находится в РезС. Структура половинчатого чугуна – перлит, ледебурит и пластинчатый графит.

Чугуны с графитом в зависимости от формы последнего разделяют на серые, ковкие и высокопрочные. Серыми называют чугуны, в структуре которых графит имеет пластинчатую форму. В ковких чугунах графит имеет хлопьевидную форму, в высокопрочных чугунах – шаровидную. К числу высокопрочных относят также чугуны с графитом вермикулярной (греч. – червячок) формы, которые по свойствам (ГОСТ 28394-89) занимают промежуточное положение между чугунами с шаровидным и пластинчатым графитом.

А уж если вы работаете в лаборатории металлов или литейке, исследуете свойства чугунов, то хороший маникюр в Долгопрудном Nail’s Bar & Art of Manicure поможет вашим ноготкам всегда выглядеть привлекательно.

что полезно знать о качествах данного материала?

Чугун является сплавом из железа с углеродом. Углерод входит в состав сплава в пределах 2,14—6,67%.  Чугун является недорогим машиностроительным материалом, что обладает отличными литейными характеристиками. Свойства чугуна позволяют ему служить сырьевым продуктом для выплавки стали, а также реализации других полезных задач.

Ближе к сути: описание материала, виды и области применения

Чугун вырабатывается посредством добываемой железной руды, посредством флюсов и топлива. Получение чугунов представляет собой достаточно сложный технологический процесс. Хим. процедура получения металлов состоит из нескольких стадий: восстановления железа, преобразования железа в чугун, а также шлакообразования. Свойства чугуна более наглядно и в деталях показывает курс химии.

Структура чугуна распределяет рассматриваемый материал на белый и черный чугун. Стоит отметить, что углерод, который содержит белый чугун, связан в химическое соединение карбид железа Fe3C – цементит. Относительно серых чугунов, — значительная часть углерода находится в структурно-свободном состоянии, представляя собой графит.

Говоря относительно серых чугунов, стоит упомянуть, что они поддаются мех. обработке, а вот как белый чугун используется в качестве сырья для производства различных изделий довольно редко. Связано это с тем, что белый чугун обладает высокой твердостью, вследствие чего режущий инструментарий его обрабатывать не имеет фактической способности.

Белый чугун используется по большей части в качестве полупродукта для выработки ковких металлов. Полезно знать, что белый и серый чугун получают, опираясь на состав, а также скорость охлаждения чугунов. Отметим, что свойства чугуна позволяют ему использоваться как конструкционный материал в металлургической, машиностроительной отрасли, других видах промышленности. Связано подобное распространение рассматриваемого материала по причине многочисленных преимуществ, которыми облает чугун.

Положительные свойства чугуна наряду с незначительной стоимостью и отличными литейными характеристиками – это основные выгодные стороны большого списка преимуществ этого материала. Изделия, изготовленные из чугунов, обладают достаточной степенью прочности, износостойкости во время работы на трение, к тому же характеризуются менее значительной чувствительностью к концентраторам напряжений.

к меню ↑

О характеристиках

Свойства чугуна классифицируются по многим параметрам, о которых следует знать. Ниже следует рассмотреть полезные характеристики и параметры, которые имеет белый чугун.

Типы параметров:
  • Физические свойства;
  • Тепловой свойства;
  • Механические свойства;
  • Гидродинамические свойства;
  • Технологические свойства;
  • Химические свойства.

Внимания в первую очередь заслуживают основные свойства, которые имеет белый и серый материал. Поэтому целесообразной считается информация, дающие исчерпывающие ответы на вопросы относительно того, какими качествами обладает данный материал, чем полезен, из чего состоит?

Общие характеристики

Свойства материала определяют благодаря структуре металлической массы, составляющей основу материала, формой, количеством, расположением включений графита. Говоря о равновесном состоянии материала, структуру железоуглеродистых сплавов определяют посредством диаграммы.

Во время изменений состава меняются некоторые параметры:
  • Количество скопление углерода в эвтектике;
  • Эвтектическая температура;
  • Количество скопления углерода в эвтектоиде;
  • Эвтектоидная температура.

Положение критических точек определяется нагревом, то есть при охлаждении точки расположены ниже. Точно применяются для нелегированного чугуна преимущественного большинства марок материала упрощенные формулы.

Формулы:
  • C = 4.3 — 0.3 (Si + P) — вхождение углерода в эвтектике;
  • C = 0.8 — 0.15Si – вхождение углерода в эвтектоиде.

Ниже интересно разобраться с тем, какие основные свойства материала есть, их характерными параметрами и другой полезной информацией. Белый вариант металла обладает достаточной хрупкостью, твердостью, по причине чего недостаточно качественно поддается отливке. Вдобавок ко всему такой вид тяжело обрабатывается различными видами инструментов. Если говорить о машиностроительной отрасли, то для нее оптимальным образом подходит серый тип сырья.

Опираясь на химическую составляющую рассматриваемого промышленного сырья, металл может подразделяться на легированный, ферросплавный, специальный, ковкий, а также высокопрочный. Ковкий материал производится путем термообработки из белого сырья. Получил свое имя благодаря повышенной степени пластичности, вязкости. Стоит также отметить, что ковкий металл имеет высокую прочность при растяжении, к тому же готов похвастать высокой степенью сопротивления.

Высокопрочный материал производится за счет введения специализированных добавок в серый вариант металла. Применяется для производства ответственных изделий, тем самым отлично справляясь с ролью альтернативы стали. Маркировка рассматриваемого сырья производится буквами и числами.

к меню ↑

Физические и механические параметры

Удельный вес материала может меняться достаточно существенно в зависимости от числа связанного углерода, присутствия пористости. Полезно знать, что удельная масса жидких металлов при температуре плавления приравнивается 70,0±0,1 грамма на сантиметр квадратный. Данный показатель снижается по мере увеличения состава примесей. Обратимый коэффициент линейного расширения и структура чугунов – зависимые друг от друга понятия.

к меню ↑

Тепловые параметры

Тепловая емкость данного материала заданной структуры может быть определена, опираясь на правило смещения. Теплоемкость материала при достижении температурного предела, превышающего фазовые превращения, до температуры плавления, может приниматься как 0,18 кал/Го С (превышающих температурную отметку плавления металла -0,23+/—0,03 кал/Го С.

Объемная теплоемкость, что равняется произведению удельной теплоемкости на удельную массу, может приниматься для укрупненных расчетов. Теплопроводность не определяется по правилу смешения. Теплопроводность структурных составляющих материала, по мере возрастания уровня дисперсности, уменьшается. Стоит обратить внимание, что типичная величина теплопроводности чугунов зависит от влияния некоторых параметров.

к меню ↑

Механические параметры

Предел прочности материала во время растяжения может эффективно оцениваться по структуре материала соответственно определенным данным. Так, прочность структурных составляющих увеличивается постепенно, по мере возрастания уровня дисперсности. Величина, форма, количество, а также распределение графитных включений оказывают существенное влияние на предел прочности, при этом влияние это имеет большие пределы, нежели структура основной металлической массы.

Самое заметное уменьшение предела прочности наблюдается во время расположения графитных включений в качестве цепочки, что прерывает сплошность металлической массы. Наиболее значимая прочность получается в случае со сфероидальной формой графита. Данный показатель достигается за счет отсутствия тепловой обработки.

к меню ↑

Технологическая составляющая

Жидкотекучие свойства тесно сопряжены со свойствами материал, а также формой. Таким образом, рассматриваемый параметр определяется различными способами, однако, наиболее часто жидкотекучесть определяется длиной L заполненной пробы, и увеличивается по мере уменьшения вязкости, увеличении степени перегревания, уменьшении интервала затвердевания. Зависит жидкотекучесть от скрытой теплоты плавления, теплоемкости.

к меню ↑

Химические параметры

Свойства сопротивления материала под названием чугун зависимы от внешней среды и структуры чугунов. По убывающему электродному потенциалу составляющие структуры материала могут располагаться в последовательности следующего образца: графит – цементит, фосфидная эвтектика – феррит. Стоит отметить, что разность потенциалов, наблюдаемая между ферритом, а также графитом, колеблется около 0,56 в. Сопротивление коррозии снижается по уровню увеличения дисперсности структурных составляющих.

Свойства рассматриваемого материала позволяют ему использоваться во многих отраслях современной промышленности, по причине чего объясняется его популярность и широкое распространение.

Похожие статьи

Чугуны

САНКТ-ПЕТЕРБУРГСКОЕ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«МАЛООХТИНСКИЙ КОЛЛЕДЖ»

 

 

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

ПО ПРЕДМЕТУ МАТЕРИАЛОВЕДЕНИЕ

 

ЧУГУНЫ

 

 

Преподаватель спецдисциплин:  Н.Н. Годова

 

 

Санкт-Петербург

2013

 

 

Настоящее пособие предназначено для профессионально – технических заведений, подготавливающих квалифицированных рабочих по профессиям, связанных с ремонтом и обслуживанием машин и механизмов и обработкой различных материалов. Пособие   содержит общие и частные цели, информацию об изучаемой теме, задания на проверку достижения цели, контрольные вопросы.

Содержание

      1.Введение………………………..………………………………………3   

   2.Чугуны 

      2.1. получение чугуна……………………………….. …………………..46

2.2 методы  получения отливок………………………………………..69

2.3. классификация чугунов……………………………………………….9-11

2.4. влияние «С» и вредных примесей на свойства  чугуна…12-14

2.5.свойства чугунов. Применение…………………………………..1416

2.6.марки чугунов……………………………………………………….17-20

3. Контрольные вопросы и контрольные задания………………..20-21

4. Литература ……………………………………… ……………………….22

5. Приложения……………………………………………………………22-24       

ВВЕДЕНИЕ

Пособие  выполнено в виде модуля

Структура пособия в целом соответствует структуре учебника. Каждая подтема (учебный элемент) пособия состоит из:

 – краткого содержания;

– практических упражнений, включающих цели конкретного упражнения

Общие цели

После изучения модуля обучающиеся смогут:

– раскрыть основные понятия, связанные с чугунами

– классифицировать чугуны

– указать свойства чугунов и их применение

– расшифровать марки чугунов

Частные цели

После изучения учебных элементов обучающиеся смогут:

– раскрыть понятие чугун

– назвать исходные материалы для получения чугуна

– указать назначение флюса, шлака, кокса

– описать три стадии получения чугуна

– указать цель обогащения руды

               – раскрыть понятия: отливка, литниковая система, лигатура, металлическая шихта

– назвать способы получения отливок

                – сопоставить процессы, проводимые для улучшения свойств литейных сплавов

                – классифицировать чугуны в зависимости от состояния углерода и химического состава, назначения

– назвать примеси

                – определить зависимость свойств чугунов от влияния углерода и постоянных  примесей

– назвать свойства чугунов

– указать применение чугунов в зависимости от их свойств

– расшифровать марки чугунов

Учебные элементы, входящие в состав модуля:

УЭ 03-01- Получение  чугуна.

УЭ 03-02- Методы получения отливок

УЭ 03-03- Классификация чугунов

УЭ 03-04- Влияние углерода и постоянных примесей на свойства    чугуна

УЭ 03-05- Свойства чугунов.

УЭ 03-06- Марки чугунов

Рекомендуемая последовательность изучения учебных элементов:

03-01 →  ( 03-02 ↔ 03-03 ↔ 03-04 ) →  ( 03-05 ↔ 03-06 )

Имеется контрольная карта преподавателя

УЭ 03 – 01    ПОЛУЧЕНИЕ ЧУГУНА

Цели:

Изучив данный учебный элемент, вы сможете

– раскрыть понятие чугун

– назвать исходные материалы для получения чугуна

– указать назначение флюса, шлака, кокса, ферросплавов

– описать три стадии получения чугуна

– указать цель обогащения руды

– назвать печь, в которой выплавляют чугун

Оборудование, материалы и вспомогательные средства

              Наименование

              Количество

презентация

 

 

 

УЭ 03 – 01        ПОЛУЧЕНИЕ ЧУГУНА.

Чугун получают из железной руды с помощью топлива и флюсов. Железная руда в основном состоит из оксидов железа и пустой породы (песок, глина, минеральные  примеси). Для частичного удаления из руды вредных примесей (серы и фосфо­ра) и получения легкоплавких шлаков приме­няется флюс –известняк СаСО. Шлак защищает металл от печных газов и воздуха при плавке. В качестве топлива применяется кокс, который полу­чают из

высококачественного угля (антрацита) нагревом без до­ступа воздуха до 1000… 1100°С, а также природный газ.

Чугун выплавляют  в доменных печах. Процесс получения чугуна состоит из трех стадий:

                 1. восстановление железа из окислов

 2. науглероживание ( насыщение железа углеродом)

 3. шлакообразование

Восстановление железа из руды идет по схеме:Fe2O3–  Fe3O4– FeO-Fe.

(Часть окислов железа восстанавливается твердым углеродом кокса. )

Полученное железо соединяется  с углеродом кокса или вступает с ним в химическое соединение ( 3Fe+С =Fe3C).  Получается сплав железа с углеродом – чугун. В процессе плавки в чугун  попадают из руды кремний, марганец и фосфор, из кокса – сера.  Таким  образом  чугун – это сплав  железа ( до 92%) с углеродом ( от 2,14 до 5 %)   и  примесями  кремния, марганца, серы и фосфора. Кроме чугуна в процессе доменной плавки получают шлак,  ферросплавы и доменные газы. Шлак используется в строительстве, ферросплавы – при производстве стали и для

 раскисления, а доменные газы после очистки – как топливо.

 

УЭ 03 – 01   ПОЛУЧЕНИЕ ЧУГУНА

Проверка достижения целей

1.     Выберите правильный ответ:

Чугун – это:

а) сплав железа с углеродом ( менее 2,14% ) и примесями кремния, марганца, серы, фосфора.

 б) сплав железа с углеродом ( до 2,14% ) и примесями кремния, марганца, серы.

 в) сплав железа с углеродом ( более 2,14% ) и примесями кремния, марганца, серы и фосфора.

  г) сплав железа с углеродом ( от 2,14% ) и примесями  марганца, серы и фосфора.

   2.   Выберите правильный ответ (+)

           Для выплавки чугуна необходимо:

Шлак

 

Железная руда

 

Флюсы

 

Модификаторы

 

Топливо

 

 

3.   Сопоставьте понятие и его назначение

понятие

назначение

  1

Шлак

  А

Раскисление стали

  2

флюс

  Б

Защита металла от печных газов

  3

Кокс

  В

Удаление вредных примесей из

руды

  4       

Ферросплавы

  Г

 Топливо

         

 

 1

 2

 3

 4

 

 

 

 

 

 

 

 

4.      Выбрать и расположить по порядку стадии получения чугуна

 ( есть лишние ответы )

  А

  Шлакообразование

  Б

  Формование

  В

  Восстановление железа из окислов

  Г

  Науглероживание железа

  Д

  Спекание железа

  Е

  Легирование железа

 

5.     Дополните:

Цель обогащения руды – повышение концентрации   …    и удаление …           .

6.      Выберите правильный ответ ( + )

Чугун выплавляют в:

  Конвертерах

 

  Газовых печах

 

  Доменных печах

 

  Томасовских печах

 

 

УЭ 03 – 02          МЕТОДЫ ПОЛУЧЕНИЯ ОТЛИВОК

Цели:

Изучив данный учебный элемент, вы сможете:

               – раскрыть понятия: отливка, литниковая система, лигатура, металлическая   шихта

– назвать методы получения отливок

               – сопоставить процессы, проводимые для улучшения свойств литейных сплавов

Оборудование, материалы и вспомогательные средства

      Наименование

      Количество

презентация

 

 

 

 

УЭ 03 – 02    МЕТОДЫ ПОЛУЧЕНИЯ ОТЛИВОК

Отливкой называют литую деталь или заготовку, полученную заливкой расплавленного металла  в литейную форму, полость которой имеет конфигурацию детали или заготовки. Литейную форму заливают жидким металлом через систему каналов,называемую литниковой системой.

Способы литья отливок можно разделить на две группы. К первой относят способы получения отливок в разовых формах, заполняемых расплавом однократно, после чего их разрушают для извлечения отливки (литье в песчаные сухие или сырые формы, литье в оболочковые формы). Ко второй группе относят способы получения отливок в многократных металлических формах, заполняемых расплавом от нескольких сотен до десятков тысяч раз (центробежное литье, литье в кокиль, под давлением). Каждый  из перечисленных способов изготовления отливок имеет свое назначение и область применения.

При выплавке литейных сплавов в плавильные печи загружают металлическую шихту, ферросплавы, лигатуры и флюсы. Металлическая шихта – слитки технически чистых металлов, лом, отходы производства. Лигатура – вспомогательный сплав, вводимый в расплавленный металл с целью восполнения угарающих в процессе плавки химических элементов. Например, для выплавки чугуна и стали лигатурой  служат ферросплавы (ферромарганец, ферросилиций и др.), которые одновременно раскисляют металл. Флюсы служат для образования шлака с требуемыми физико- химическими свойствами (для плавки чугуна и стали флюсом служит известняк). Шлак предохраняет в процессе плавки металл от окисления, служит для удаления неметаллических включений, попадающих в металл вместе с шихтой и образующихся в процессе плавки.

Для улучшения свойств литейных сплавов в процессе плавки, после плавки, в литейном раздаточном ковше, или непосредственно в литейной форме производят модифицирование, легирование и рафинирование.

Модифицирование – введение в жидкий сплав после его плавки специальных добавок – модификаторов, которые служат дополнительными центрами кристаллизации, обеспечивая более мелкозернистое строение сплава и более высокие его механические свойства. Для чугунов и стали модификаторами  являются силикокальций, ферросилиций и др.

Легирование – введение в жидкий сплав различных добавок химических элементов для придания сплаву требуемых свойств (жаропрочности, зносостойкости, коррозионной стойкости т. п.). Рафинирование  – очистка сплавов от ненужных и вредных примесей. Удаление вредных примесей (серы и фосфора) из чугуна и стали выполняют рафинированием их марганцем и известняком.

УЭ 03 -02  МЕТОДЫ ПОЛУЧЕНИЯ ОТЛИВОК      

Проверка достижения целей:

1.     Сопоставьте понятие и  определение

понятие

определение

 1

Лигатура

 А

 Литая деталь или заготовка,

полученная заливкой расплава в литейную форму

 2

Металлическая шихта

 Б

 Система каналов, через которые заливают     жидкий металл

 3

Литниковая система

 В

 Вспомогательный сплав,

вводимый в расплав с целью восполнения угорающих

химических элементов

4

Отливка

 Г

 Отходы производства

 

 1

 2

 3

4

 

 

 

 

 

2.      Дополните схему

                       Методы получения отливок

 

…                                                            многократные формы

 

 

 литье в оболоч                                   литье в         

 ковые формы                                         кокиль                         

 

 

3.     Сопоставьте названия процессов и их назначение

 

название процесса

назначение

1

Легирование

А

Обеспечение высоких

механических свойств сплава

2

Рафинирование

Б

Для придания сплаву особых свойств

3

Модифицирование

В

Очистка сплавов от ненужных и вредных примесей

 

 

УЭ 03 – 03         КЛАССИФИКАЦИЯ ЧУГУНОВ

Цели:

Изучив данный учебный элемент, вы сможете:

                          – классифицировать чугуны в зависимости от состояния углерода и  химического состава, назначения

Оборудование, материалы и вспомогательные средства

       Наименование

       Количество

презентация

 

 

 

 

УЭ 03 – 03                    КЛАССИФИКАЦИЯ       ЧУГУНОВ

 

Классификация чугунов  осуществляется по следующим признакам:

               – по  назначению – передельные, ферросплавы, литейные

               – по состоянию углерода – свободный и связанный

– по химическому составу – нелегированные ( общего назначения) и легированные (специльного назначения)

По назначению : Передельный (белый) чугун предназначен для переработки на  сталь в плавильных агрегатах, называемых конверторами, а также мартеновских и электрических печах.

         Ферросплавы  выплавляют с высоким процентом кремния или марганца, применяют в качестве специальных добавок (раскислителей) при выплавлении стали. Литейный чугун предназначается главным образом для производства литых заготовок (литья). Он поступает в литейные цеха в виде небольших слитков (чушек) весом до 25кг.  Характерной особенностью чугунов является то, что углерод в сплаве может находиться не только в растворенном и связанном состоянии ( в виде химического соединения – цементита Fe C), но также в свободном состоянии – в виде графита. В зависимости от состояния углерода различают:

–  белый чугун, в котором весь углерод находится в связанном состоянии в виде цементита Fe C;

–  серый чугун, в котором весь углерод или большая его часть находится в свободном состоянии – в виде графита ;

–  ковкий чугун,  который получают из белого путем отжига, углерод находится в виде графита;

–  высокопрочный чугун, который получают из серого путем модифицирования, углерод – в виде графита

В  зависимости от химического состава различают:

1. нелегированные чугуны

         – белый чугун

         –  серый чугун ( СЧ)

  –  ковкий чугун (КЧ)

          –  высокопрочный чугун (ВЧ)

2. легированные чугуны (Ч)- чугуны со специальными свойствами

–  жаростойкий чугун

  –  жаропрочный 

  –  износостойкий

  –  антифрикционный

УЭ 03 – 03  КЛАССИФИКАЦИЯ ЧУГУНОВ

Проверка достижения целей

1.     Дополните схему классификации чугунов в зависимости от

состояния  углерода

                                        Чугуны

                                                                                                              

        …                                                                 Белый чугун

           

 

Высокопрочный                                                                   …      

                                                                         

 

2.      Сопоставьте виды чугунов с их характерными признаками

 

виды чугунов

признаки

 1

 Высокопрочный

 А

Весь углерод в свободном состоянии

 2

 Белый

 Б

Получаемый из белого путем отжига

 3

 Ковкий

 В

Весь углерод в виде цементита

 4

 Серый

 Г

Получаемый модифицированием

    

 1

 2

 3

 4

 

 

 

 

 

  3.     Сопоставьте классификацию чугуна по химическому составу и          названия чугунов:

классификация чугуна по химическому составу

легированный

нелегированный

 

 

 

 

 

 

 

 

         1.     белый

          2.     жаростойкий

          3.     серый

          4.     износостойкий

           5.     высокопрочны

           6.     ковкий

           7.      жаропрочный

           8.     антифрикционный                
                                                                               

4.   Соотнесите данные виды  чугунов и их назначение

виды чугунов

            назначение

1

передельный

А

Производство чугунного

литья

2

ферросплавы

Б

Переплавка в сталь

3

литейный

В

Раскисление стали

 

УЭ 03 – 04   ВЛИЯНИЕ «С» И ПРИМЕСЕЙ НА СВОЙСТВА ЧУГУНА

Изучив данный учебный элемент, вы сможете:

– назвать  постоянные примеси чугуна

               – определить зависимость свойств чугунов от влияния углерода и  постоянных примесей

Оборудование, материалы и вспомогательные средства

        Наименование

        Количество

презентация

 

 

 

 

УЭОЗ-04     ВЛИЯНИЕ УГЛЕРОДА И ПРИМЕСЕЙ НА СВОЙСТВА ЧУГУНА.

Входящие в состав чугуна элементы определяют его структуру и свойства.

Углерод — важнейшая составляющая чугуна. Если углерод находится в сплаве в  свободном состоянии в виде графита, то чугун становится мягким и хорошо обрабатывается резанием. Если углерод находится в виде цементита (в химически связанном с железом со­стоянии — Ре2С), то чугун имеет высокую твердость и плохо обрабатывается. В машиностроительных чугунах углерод присутствует в виде графита.  Так как  графит обладает очень низкими механическими свойствами, поэтому чем больше его в чугуне, тем хуже свойства чугуна. Но он способствует повышению обрабатываемости чугунов резанием, придает им антифрикционные свойства при трении и гасит влияние вибраций и ударов. Прочные чугуны содержат 2,8-3 % С.

Кремний является важнейшей после углерода приме­сью в чугуне, способствует выделению углерода в виде графита. Улучшает литейные свойства чугуна (жидкоте­кучесть, усадка) и делает чугун более мягким.

Марганец препятствует графитообразованию, так как связывает углерод в виде цементита. При содержании до 1 % марганец очень полезен, так как повышает проч­ность чугуна и способствует удалению серы из сплава, образуя сернистый марганец (МпS), который, всплывая, уходит в шлак. Этим частично нейтрализует вредное действие серы.

Сера в чугуне является вредной примесью, так как вызывает явление красноломкости (в отливках в горя­чем состоянии образуются трещины). Кроме того, при­сутствие серы ухудшает жидкотекучесть чугуна, вслед­ствие чего он плохо заполняет литейные формы.

Фосфор повышает жидкотекучесть чугуна, но понижает механические свойства чугуна,ухудшает обрабатываемость и вызывает хладноломкость, т. е. склонность к образова­нию трещин в отливках в холодном состоянии.

   Государственные стандарты строго регламентируют массовую долю полезных и вредных примесей в чугунах. Как правило, содержание этих элементов ограничивается следующими верхними пределами, %:

Марганец           0,3 – 1,5

Кремний             0,3 – 5,0

Фосфор             0,20 – 0,65

Сера                  0,08 – 0,12

 

УЭ 03 -04    ВЛИЯНИЕ «С» И ПРИМЕСЕЙ НА СВОЙСТВА ЧУГУНА

Проверка достижения целей:

1.      Допишите

 

                                                          Примеси чугуна

                                               

……..                      …..…                        сера                         ……..

 

2.     Установите соответствие между углеродом, названиями примесей и их влиянием на чугун

 

углерод и примеси

влияние на чугун

 1

Кремний

 А

При содержании 2,8-3% –

повышение прочности чугуна

 2

Сера

 Б

До 1 % полезен, т. к. повышает

прочность чугуна, способствует

удалению серы

 3

Марганец

 В

Вызывает явление хладноломкости

 4

Фосфор

 Г

Улучшает литейные свойства

чугуна, обрабатываемость резанием

 5        

Углерод

 Д

Вызывает явление красноломкости

         

 

 1

 2

 3

 4

5

 

 

 

 

 

 

 

 

 

3.      Определите влияние элементов на обрабатываемость чугуна 

( найдите соответствие)                                                                     

Углерод в виде графита

 А

Марганец

 Б

Кремний

 В

Углерод в виде цементита

 Г

                                                                                                                        

1

Чугун хорошо обрабатывается

 2

Чугун плохо обрабатывается

 

 

 

 

 

 

 

 

УЭ 03 – 05    СВОЙСТВА ЧУГУНОВ. ПРИМЕНЕНИЕ.

Изучив данный учебный элемент, вы сможете:

– назвать свойства чугунов

– указать применение чугунов в зависимости от их свойств

Оборудование, материалы и вспомогательные средства

          Наименование

         Количество

презентация

 

 

 

   

УЭОЗ-05    СВОЙСТВА ЧУГУНОВ. ПРИМЕНЕНИЕ.

 Белые чугуныочень твердые и хрупкие, плохо обрабаты­ваются режущим инструментом, идут на пере­плавку в сталь.Часть белого чугуна идет на получение ковкого чугуна. Серые чугуныэто литейный чугун.Он хорошо обрабатывается резанием, сопротивляется износу. Высокая демпфирующая способность и износостойкость обусловили при­менение чугуна для изготовления станин различ­ного оборудования, коленчатых и распредели­тельных валов тракторных и автомобильных дви­гателей и др.

Ковкий чугун – условное   название  мягкого и вязкого чугуна, получаемого из белого  чугуна отливкой и дальнейшей термической обработкой. Из-за своей высокой для чугунов пластичности он получил название ковкий. Из ковкого

чугуна изготавливают детали   способные воспринимать по­вторно-переменные и ударные нагрузки и рабо­тающие в условиях повышенного износа, такие, как картер заднего моста, тормозные колодки, ступицы, пальцы режущих аппаратов сельскохо­зяйственных машин, шестерни, крючковые цепи и др.

Высокопрочный чугун получают из серого путем модифицирования его магнием.Этот чугун обладает повышенной прочностью, твердостью по  сравнению с обычными серыми чугунами.

Используется для изготовления де­талей машин, работающих в тяжелых условиях, вместо поковок или отливок из стали. (лопатки направляющего аппарата), тракторов, автомобилей (коленчатые валы, пор­шни) и др.

Легированные чугуны получают путем добавок в расплавленный жидкий чугун  различных легирующих элементов.  Легированные чугуны обладают высокими  механическими свойствами, высокими эксплуатационными свойствами,  имеют высокие литейные свойства, хорошую обрабатываемость различными способами механической обработки

Жаростойкий легированный чугун ( ЧЮ ).  Жаростойкие чугуны способны противостоять коррозионному разрушению под действием воздуха или других газовых сред при высоких температурах. Применяют  для изготовления   деталей контактных аппаратов химического оборудования, компрессоров. Жаропрочный  легированный чугун  ( ЧН ). Жаропрочные чугуны способны выдерживать механические нагрузки без существенных деформаций при

высоких температурах,применяются для изготовления деталей дизелей, компрессоров  и др.

 Износостойкий легированный чугун ( ЧХ ).  Эти чугуны применяют для изготовления деталей, работающих в агрессивных средах.  

Антифрикционные легированные чугуны ( АЧ ).Отливки из антифрикционного чугуна предназначены для работы в паре в узлах трения со смазкой ( подшипники скольжения ). Антифрикционные чугуны представляют собой

железоуглеродистый сплав с твердой металлической основой и мягкими графитовыми включениями, которые создают пористость. Благодаря пористости  вкладыша  в подшипниках длительное время удерживается смазка.

УЭ 03 – 05    СВОЙСТВА ЧУГУНОВ. ПРИМЕНЕНИЕ.

Проверка достижения целей:

1.     Установите соответствие между видами чугунов и их свойствами

              виды  чугунов

            свойства чугунов

 

 1

Серый

 А

Низкий коэффициент трения, способность удерживать смазку

 2

Жаростойкий

 Б

Высокая устойчивость к

абразивному износу и истиранию при высоких температурах

 3

Белый

 В

 Способность выдерживать

большие механические нагрузки при высоких температурах

 4

Антифрикционный

 Г

Высокая коррозионная стойкость при высоких температурах

 5

Высокопрочный

 Д

Высокая пластичность

 6              

Ковкий

 Е

Высокие механические свойства

 7

 Жаропрочный

 Ж

Высокая демпфирующая

способность

 8

 Износостойкий

 З

 Очень твердый, хрупкий

 

1

2

3

4

5

6

7

8

 

 

 

 

 

 

 

 

 

2.      Сопоставьте виды чугунов и их применение

виды чугунов

применение

 

 1

Высокопрочный

 А

Детали дизелей

 2

Серый

 Б

Аппаратура, устойчивая к

воздействию концентрированной азотной и фосфорной кислот

 3

Ковкий

 В

Получение стали

 4

 Антифрикционный

 Г

Детали машин, работающих в

тяжелых условиях ( Коленчатые валы)

 5

 Жаростойкий

 Д

 Подшипники скольжения

 6     

 Белый

 Е

 Износостойкие детали

гидромашин

 7

 Жаропрочный

 Ж

Детали, способные воспринимать повторно переменные нагрузки  (Тормозные колодки)

 8

  Износостойкий

 З

 Станины станков

         

 

 1

 2

 3

 4

 5

 6

7

8

 

 

 

 

 

 

 

 

 

 

 

 

УЭ 03- 06     МАРКИ ЧУГУНОВ

Изучив данный учебный элемент, вы сможете

– расшифровать марки различных видов чугунов

– определить марку чугуна по результатам  механического испытания

Оборудование, материалы и вспомогательные средства

         Наименование 

      Количество

презентация

 

 

 

 

УЭОЗ-06      МАРКИ ЧУГУНОВ.

Серый чугун

Согласно ГОСТ 1412-70 установлены следующие марки серого чугуна: СЧ00, СЧ120-280, СЧ150-320, СЧ180-360, СЧ210-400, СЧ240-400, СЧ280-480, СЧ320-560, СЧ400-600, СЧ440-640, где буквы СЧ означают серый чугун, первое число показывает предел прочности ( в МПа ) при испытании на разрыв, а второе- предел прочности при испытании на изгиб ( в МПа ) .Чугун марки СЧ00 не испытывается.

Пример расшифровки марки серого чугуна:

СЧ 360-560

       СЧ- серый чугун

        360- предел прочности на разрыв, 360 МПа

        560- предел прочности на изгиб, 560 МПа

Согласно ГОСТ 1412-85 выпускают следующие марки серого чугуна: СЧ10, СЧ15, СЧ20, СЧ21, СЧ24, СЧ25, СЧ30, СЧ35, СЧ40, СЧ45, где буквы СЧ означают серый чугун, а цифры- предел прочности на растяжение( на разрыв) в кгс/ мм.

 Пример расшифровки марки серого чугуна:

              СЧ35

СЧ- серый чугун

35- предел прочности на растяжение 35 кгс/мм ( 350 МПа ) 1кгс/мм =10      МПа

Ковкий чугун

Согласно ГОСТ 1412-70 установлены марки ковкого чугуна: КЧ330-8, КЧ370-12 и т. д., Где буквы КЧ означают ковкий чугун, первое число показывает предел прочности на разрыв в МПа , второе число, стоящее после тире- относительное удлинение в %, характеризующее пластичность.

Согласно ГОСТ1215-79 выпускают следующие марки ковкого чугуна: КЧ30-6, КЧ35-10, КЧ70-2 и т. д. ( предел прочности на разрыв в кгс/мм, относительное удлинение в %)

Пример расшифровки марки ковкого чугуна:

КЧ60-3

КЧ- ковкий чугун

60- предел прочности при растяжении, 60 кгс/мм ( 600 МПа)

3- относительное удлинение, 3%

УЭ 03- 06

Высокопрочный чугун

Согласно ГОСТ 1412-70 установлены марки высокопрочного чугуна: ВЧ450-5, ВЧ600-2, ВЧ1200-4 и т. д., где буквы  ВЧ означают высокопрочный чугун, первое число показывает предел прочности на разрыв в МПа, второе число, стоящее после тире – относительное удлинение в %, характеризующее пластичность.

Согласно ГОСТ 7293-85 выпускают следующие марки высокопрочного чугуна: ВЧ 38. ВЧ40 и т.д. ( цифры означают  предел прочности при растяжении в кгс/мм )

Пример расшифровки марки чугуна:

ВЧ450-5  

ВЧ- высокопрочный чугун

450- предел прочности при растяжении, 450 МПа

               5- относительное удлинение, 5 %

Легированные чугуны

Жаропрочные, жаростойкие, износостойкие чугуны.

По ГОСТ 7769-75 различают следующие марки легированного жаростойкого чугуна:ЖЧХ ,   ЖЧХ16,    ЖЧХ 20  и т.д. В обозначении марок чугуна буквы ЖЧ означают жаростойкий чугун,  остальные    буквы – легирующие элементы: Х- хром, С- кремний, Ю- алюминий, Г- кремний, М- молибден,   Д- медь, Т- титан, П- фосфор. Цифры, стоящие после букв, указывают примерное содержание легирующего элемента в целых еденицах. Отсутствие цифры означает, что содержание элемента до 1 %.

П  Пример расшифровки марки чугуна:

     ЖЧХ30

  ЖЧ-  жаростойкий чугун , легированный

   Х30- хром 30%

По ГОСТ 7769-82 различают следующие виды легированных чугунов: жаропрочный, жаростойкий, износостойкий. В маркировке легированных чугунов приняты следующие обозначения: Буквы ЧН- чугун жаропрочный, ЧЮ- чугун жаростойкий, ЧХ- чугун износостойкий. Буквы, стоящие после буквыЧ указывают на наличие легирующих элементов, а число за ними- соответствующее содержание этих элементов в процентах. Буква Ш в конце обозначения марки указывает на то, что чугун с шаровидным графитом.

 Пример расшифровки марки чугуна:

ЧН19Х3Ш

  ЧН- жаропрочный чугун, легированный

  Н19- никель 19%

  Х3- хром 3%

  Ш- шаровидный графит

УЭ 03 -06

Легированные

Антифрикционные чугуны

По ГОСТ 1585-85 выпускаются следующие марки антифрикционных чугунов:  АЧС-6, АЧВ-1, АЧК-2 и т.д. В обозначении марок приняты следующие сокращения: АЧ- антифрикционный чугун, С –серый чугун, В- высокопрочный чугун, К- ковкий чугун. Цифры в маркировке чугунов означают условный номер, который соответствует степени легирования.

Пример расшифровки марки антифрикционного чугуна:

  АЧК-1

 АЧ- антифрикционный чугун

 К- ковкий

 1- условный номер

 

УЭ 03 – 06                    МАРКИ ЧУГУНОВ

Проверка достижения цели:

1.                Закончите расшифровку:

КЧ 38-8                                                               

КЧ –  …                                                                         

 38 –  …                                                                

   8 –  …

СЧ 300 -20

СЧ – …                                                                            

300 –  …                                                                             

20 –  …

 

АЧВ – 2                                                                         

 АЧВ –  …                                                                              

2               –  …

                                                                                             

ЧХ28                                                                               

 ЧХ – …                                                                          

  Х28 – …                                                                       

 

2.      Определите предел прочности при растяжении в данной марке чугуна и пользуясь справочником переведите его в МПа :  ВЧ 45- 5

3.     Расшифровать следующие марки чугунов: 

ЧХ32      ЧН11Г7Ш     АЧК-3     ВЧ 100-4   

 4.  Определите марку чугуна, если  при испытании определили, что предел прочности чугуна    при изгибе равен 64 кгс/мм, а предел прочности  при растяжении – 44 кгс/мм.

 

Контрольные вопросы и задания

1.     Что называется чугуном?

2.     Дайте классификацию чугуна.

3.     Перечислите основные виды чугунов.

4.     Чем обусловлено различие свойств серого и белого чугунов?

5.     Как называется металлургический агрегат, в котором выплавляют чугун?

6.     Какое влияние оказывает углерод и постоянные примеси на свойства чугуна?

7.     Каковы особенности получения ковкого чугуна и высокопрочного?

8.      Где применяются основные виды чугунов?

9.     Что такое легированный чугун? Назовите его марки и применение.

10.   Каким образом подразделяются легированные чугуны по своему назначению?

11.   Укажите назначение и некоторые марки антифрикционных чугунов.

12.    Определите марку чугуна по его механическим свойствам:

Высокопрочный чугун, предел прочности при растяжении – 380 Мпа, относительное удлинение – 17 %. 

 

1.   Заполните таблицу, пользуясь справочником

Марки чугунов

Названия чугунов

Химический состав(легированные чугуны)

Механические свойства

Предел прочности при растяжении

  σВ,Мпа

Относительное

удлинение

 δ, %

НВ, не

более

ЧХ3

 

 

 

 

 

ЧЮ22Ш

 

 

 

 

 

ЧН19Х3Ш

 

 

 

 

 

КЧ 55-4

 

 

 

 

 

ВЧ 80-2

 

 

 

 

 

СЧ 18

 

 

 

 

 

АЧВ – 1

 

 

 

 

 

 

 

2.      Пользуясь справочником определите марки чугунов

Области применения

Марки чугунов

 

 

Станины станков

 

Подшипники скольжения

 

Детали узлов трения, работающие при повышенных температурах: компрессоры, головки цилиндров

 

турбокомпрессоры

 

Суппорты, резцедержатели

 

 

 

3.      Пользуясь справочником выберите материал режущего инструмента ( фрезы)

 

Материал заготовки

Характер обработки

Марка материала инструмента

Химический состав

Механические и физические свойства

Чугун  240 НВ

черновая

 

 

 

 

 

Литература

 

     1.Адаскин А.М. Материаловедение (металлообработка): Учебник для        нач.проф.   образования/       А. М.Адаскин,В.М.З.уев.- 3-е изд., стер.- М.:Издательский центр «Академия»,2004.-240с.

2.  Козлов Ю.С. Материаловедение: Учебн.пособие для средн. проф.техн. училищ. – М.: Высш.шк. 1983.-80с., ил.-(Профтехобразлвание).                             

 3.Чумаченко Ю.Т. Материаловедение. Учебник/Ю.Т.Чумаченко, Г.В.Чумаченко.-4-е изд.,перераб.-Ростов н/д Феникс,2005

4. Никифоров В.М. Технология металлов и конструкционные материалы:  Учебник для  средних специальных учебных заведений. —7-е изд., перераб. и доп. – Л.: Машиностроение, Ленингр. отд-ние, 1987. – 363 с, ил.

   5. Макиенко Н.И. Слесарное дело с основами материаловедения. Учебник                        для подготовки рабочих на производстве. Изд. 5-е, перераб. М.: “Высшая школа”, 1974.

 

Приложения.  Конторольная  карта преподавателя

 

УЭ 03-01    Чугун. Общая схема получения чугуна.         

1. в

 2. железная руда, топливо, флюсы

 

3.       

 

 

 

4.

 

 

 

  5.        оксидов железа, пустой породы

 

6.           доменных печах

 

УЭ 03 – 02

 1.

 

 2.

разовые формы

песчаные формы

центробежное литье

под давлением

 3.

 

УЭ 03-03

1.                          серый, ковкий

 

2.        

     1

2

3

4

Г

В

Б

А

 

3

легиров

нелегиров

2

1

4

3

7

5

8

6

 

4.

 

УЭ 03-04

1. кремний, марганец, фосфор

 

2.

 

 

3

 

УЭ 03-05

1.          

1

2

3

4

5

6

7

8

Ж

Г

З

А

Е

Д

В

Б

2.

1

2

3

4

5

6

7

8

Г

З

Ж

Д

Б

В

А

Е

 

УЭ 03-06

1. КЧ -7

38- 4,6

 8-1

 

 СЧ-8

 300-4,6

 20-10

 

 

АЧВ-3

 2-5

 

ЧХ-2

 Х28-9

 

2.        45кг/мм =450 МПа

 

3.                      ЧХ32

ЧХ- легированный, износостойкий

 Х32-хром 32%

 

ЧН11Г 7Ш

ЧН-легиров, жаропрочный

 Н11-никель 11%

  Г 7- марганец 7%

  Ш – Шаровидная форма графита

 

АКЧ-3

Антифрикц.ковкий чугун

3- условный номер

 

ВЧ 100-4

ВЧ-высокопрочный чугун

100-предел прочности при растяжении

4- относит.удлинение

 

4. СЧ 44-64

Классификация чугунов – ГП Стальмаш

Справочная информация

Чугун – железоуглеродистый сплав, содержащий углерода свыше 2,14%.
Кроме железа и углерода в состав чугуна входят постоянные примеси:
*марганец,
*кремний,
*сера,
*фосфор.
Чугун превосходит сталь по ряду показателей:
*он дешевле,
*имеет лучшие литейные свойства,
*легче обрабатывается резанием.
Структура и свойства чугунов, а следовательно, и область применения чугунного литья, зависят главным образом от условий получения отливок — температуры жидкого металла при заливке, скорости затвердевания отливки, использования модификаторов и т.д.
При маркировке чугунов химический состав не указывается. Исключение составляют легированные чугуны, в марке которых приводится массовая доля легирующих элементов.

Отливки из чугуна классифицируют по:
*состоянию углерода,
*форме включений графита,
*структуре металлической основы,
*химическому составу,
*технологии получения,
*назначению.
По состоянию углерода (химически связанный или структурно свободный) различают:
*чугун белый,
*чугун серый,
*чугун половинчатый (отбеленный).
В белом чугуне (такое название он получил по цвету излома) углерод химически связан с железом в виде цементита Fe3С.
Белый чугун обладает высокой твёрдостью, хрупкостью и плохой обрабатываемостью резанием.
Основная масса белого чугуна идет на переделку в сталь.

В сером чугуне (серый излом) углерод находится в свободном состоянии в виде графитовых включений.
Серый чугун отличается от белого меньшей твёрдостью и хрупкостью, а также хорошей обрабатываемостью резанием.
Хорошие литейные свойства серого чугуна играют важную роль при получении отливок.

Половинчатый (отбеленный) чугун характеризуется одновременным наличием в его структуре цементита и графита.
Цементит находится в поверхностном слое отливки (охлаждающемся с наибольшей скоростью), а графит – во внутренней полости (сердцевине), охлаждающейся с наименьшей скоростью.
Такой чугун имеет высокую износостойкость, но плохо обрабатывается резанием.

По форме графитовых включений различают:
*чугун серый с пластинчатым графитом,
*чугун высокопрочный с шаровидным графитом,
*чугун ковкий с хлопьевидным графитом,
*чугун с вермикулярным (червеобразным) графитом.

По типу структуры металлической основы чугун бывает:
*чугун ферритный,
*чугун перлитный,
*чугун ферритно-перлитный.
*обычные или немодифицированные чугуны,
*модифицированные чугуны.

Модифицирование – введение в расплав чугуна в небольших количествах специальных добавок – модификаторов, которые способствуют измельчению пластин графита или получению частиц графита в форме шара. В результате модифицирования механические свойства чугуна улучшаются: возрастает прочность, пластичность и вязкость.

По назначению различают чугун:
*чугун общего назначения (серый, ковкий, высокопрочный и др.),
*чугун специального назначения (антифрикционный, коррозионно-стойкий, жаростойкий, жаропрочный и др.).

Чугун – типы, сварка, применение, свойства

Свойства чугуна

Чугун – материал с множеством возможностей и широким применением. Хотя он обычно ассоциируется с чугунными радиаторами или кастрюлями, его можно использовать для изготовления многих других изделий. Если вы хотите узнать, что такое чугун и для чего он используется, читайте дальше!

Чугун представляет собой сплав с концентрацией углерода более 2%, и его максимальное содержание непостоянно. Он может быть от 3,8 до даже 6,7%. Кроме того, стоит знать, что чугун образуется в процессе литья и не подвергается пластической обработке.

Что такое чугун и как его производят?

Чугун представляет собой сплав железа с углеродом и очень часто также с кремнием, серой, фосфором или марганцем. Производится в шахтных печах, т.н. купола. Он изготовлен из комбинации чугуна и металлолома. Отдельные детали из чугуна изготавливаются методом литья в формы. Отливки могут иметь самую разнообразную и сложную форму, благодаря тому, что чугун обладает прекрасными литейными свойствами.

Среди наиболее распространенных преимуществ чугуна — его превосходная прочность, высокая стойкость к истиранию, эффективность гашения вибраций, простота литья сложных форм и низкая стоимость производства.

Чугун — это материал, который сотни лет использовался для различных целей. Это один из первых сплавов, который не был найден человеком в виде самородных металлов, но мы научились делать его сами, плавя железную руду. При плавке в расплавленный чугун чаще всего попадал уголь. При плавлении углерод растворялся в жидком азоте и в расплаве углерод вступал в химическую реакцию с железом или образовывал раствор. Учитывая, сколько углерода перешло в расплав при плавке, железо было получено после затвердевания. Чугун был получен, когда во время плавки было введено больше углерода. Было обнаружено, что когда сплав содержит много углерода, он становится более твердым и хрупким. Однако со временем стали отличать чугун от стали, а также получать нужный процент углерода в сплаве.Затем, когда технология значительно развилась, стали разрабатываться все новые и новые виды механической обработки и сварки чугуна.

Типы чугуна

Чугун бывает не менее пяти различных сортов. Ниже мы представим и кратко опишем каждый из них. Среди прочих различаем:

Чугун белый – отличается твердостью и хрупкостью одновременно. Не пригоден для механической обработки (кроме шлифовки).

Серый чугун – его название связано с тем, что в нем присутствует графит.Конечные свойства серого чугуна зависят от формы используемого графита. В случае пыльцы чугун не очень прочен и имеет низкую пластичность.

Легированный чугун – это тип чугуна, который можно комбинировать с различными легирующими добавками, придающими ему особые свойства, такие как коррозионная стойкость и жаростойкость.

Ковкий чугун – это сплав железа и углерода, который образуется в результате затвердевания расплавленной шихты с углеродными частицами, имеющими форму шара.Отличается лучшей прочностью по сравнению с чугуном с пластинчатым графитом. Ковкий чугун является ковким материалом.

Чугун ковкий – в отличие от ковкого чугуна его пластичность достигается термической обработкой, которая называется графитизирующим отжигом.

Применение чугуна

Ниже мы представляем наиболее популярное использование чугуна, разделенного на определенные типы:

Белый чугун – используется для изготовления отливок с высокой стойкостью к истиранию, которые больше не требуют дополнительной механической обработки. Среди них выделяются среди прочих мельничные шары, тормозные колодки или мешалки для сыпучих материалов.

Чугун серый с пластинчатым графитом – в основном используется для создания отливок, не передающих нагрузки, т.е. нагревателей, ванн, умывальников, компонентов печей (дверцы, решетки), а также деталей машин, таких как цилиндры, изложницы или поршни .

Чугун ковкий (ферритная матрица) – используется для изготовления деталей швейных машин, сельскохозяйственных машин и предметов домашнего обихода.

Чугун ковкий (перлитная матрица) – из него изготавливают более нагруженные отливки, например, распределительные валы, коленчатые валы, ключи и шестерни.

Ковкий чугун – используется для производства деталей автомобилей, таких как распределительные валы, компоненты системы рулевого управления и коленчатые валы, а также для производства фитингов, шестерен и шпинделей станков.

Примером использования чугуна являются, например, чугунные ступицы, доступные в магазине EBMiA.pl – https://www.ebmia.pl/1714-piasty-gh-zeliwne

Сварка чугуна

Газовая сварка чугуна представляет собой комбинацию элементов с пламенем и стержнем из присадочного металла. Сварку применяют для соединения металлических и неметаллических деталей, а также сплавов с различной температурой плавления, но их толщина не должна превышать 30 мм. Наиболее распространенным методом сварки является электродуговая сварка чугуна. Благодаря ему расплавленный металл, соединяющий различные элементы, взаимодействует с металлом электрода, что создает прочный шов.Чтобы шов не окислялся, электрод необходимо покрыть специальным защитным покрытием. Это может быть, среди прочего флюс или инертный газ, такой как гелий или аргон. Дуговая сварка – как ручная, так и на полуавтоматических и автоматических аппаратах – позволяет соединять детали из чугуна, меди, конструкционной стали, алюминия и других сплавов. Что касается температуры плавления, то она зависит от углерода, который содержится в материале. Чем выше это содержание, тем ниже температура и выше текучесть при нагревании.

Температура плавления чугуна

Чугун – это сплав железа, в котором, помимо компонентов, в смеси содержатся также стойкие вещества, такие как кремний, сера, марганец, фосфор и присадки. Этот материал может быть разных типов в зависимости от сплава, который определяется структурой излома. Температура плавления чугуна составляет примерно 1200°С, что означает, что она примерно на 300°С ниже, чем температура плавления чистого железа. Также стоит различать серый чугун, температура плавления которого 1260°С, а после заливки в форму – 1400°С, и белый чугун, температура плавления которого 1350°С, а после заливки в форму – 1450°С. С.

Чугун – один из лучших металлов для плавки. Это связано с его малой усадкой и высокой текучестью, что делает его действительно очень эффективным при литье. Интересно, что их бывает около сотни разных видов, и каждый из них отличается по использованию, фактуре и технологии изготовления.

Как сварить чугун?

Сварка чугуна – работа не для дилетантов. Это, несомненно, требует опыта, но для тех, кто хотя бы раз имел дело с обработкой этого материала – это реальный процесс, который необходимо выполнить.Это связано с тем, что в большинстве ситуаций речь идет о ремонте чугунных элементов, а не о соединении их с другими металлами. Ремонт обычно производят в литейном цехе при изготовлении чугунных изделий или для устранения дефектов литья, обнаруженных при обработке. Ремонт необходим, в частности, когда просверленные отверстия расположены не на своем месте.

Проблемы, связанные со сваркой чугуна, возникают из-за его функции. Во-первых, в нем высокое содержание углерода, что вызывает осаждение графита.Они отвечают за серый оттенок чугуна. Во время литья расплавленный чугун заливают в форму, а затем охлаждают. При работе с высоким содержанием углерода медленное охлаждение предотвратит растрескивание материала. Это следует иметь в виду при сварке чугуна.

Из самых популярных способов сварки чугуна различают холодную и горячую сварку. Реже используется метод полупробки.

Сварка чугуна ВИГ

Сварка чугуна ВИГ представляет собой не что иное, как аргонную сварку износостойким вольфрамовым электродом.Существует три основных направления сварки. Первый из них касается ситуации, когда свариваемые элементы соединяются чугунным швом. Второй примерно такой же, но отличается тем, что шов выполнен из низколегированной стали. Третий касается ситуации, когда шов выполнен из цветного металла.

Таким образом, можно с уверенностью сказать, что TIG-сварка железа в аргоне может выполняться с использованием различных составов присадок. Однако стоит иметь в виду, что та же аргонная технология сварки чугуна должна предусматривать нагрев заготовок.Несмотря на то, что часто встречаются добавки, позволяющие варить чугун, не нагревая его.

При наличии незначительных дефектов, например в виде мелких трещин, а также в случае сварки тонких отливок применяют метод ВИГ с применением присадки из никеля, железо-никелевых проволок или чугуна стержни.

Холодная сварка чугуна

Горячая сварка не всегда возможна. Это обусловлено, в частности, слишком большой размер детали. В этой ситуации используется холодная сварка, что означает, что деталь охлаждается, но не холодная.Температура деталей повышается примерно до 38°С. Если элемент находится рядом с двигателем, его можно запустить за несколько минут до сварки. Однако стоит иметь в виду, что этот элемент должен быть такой температуры, чтобы к нему можно было прикасаться руками.

При холодной сварке чугуна делают короткие швы длиной не более 2-3 см. Также не забудьте проковать соединение после сварки. Однако перед этим необходимо дождаться, пока сварной шов и детали остынут сами по себе.Их нельзя охлаждать сжатым воздухом или водой. Также стоит следить за тем, чтобы сварка выполнялась в одном направлении и чтобы концы сварных швов не сходились.

Чем сварить чугун

Сварку чугуна чаще всего выполняют инверторными аппаратами MIG и TIG для чугуна. Если речь идет о сварке чугуна методом MIG/MAG, то для этой цели используется мигомат или полуавтомат. И первый, и второй вариант предполагают использование электрической дуги переменного тока и обеспечивают отличное качество сварных швов.Сварка MIG/MAG выполняется плавящимся электродом. В свою очередь, сварка чугуна методом TIG выполняется неплавящимся вольфрамовым электродом в среде инертного газа. В результате могут быть достигнуты очень хорошие результаты сварки. Для этого процесса используется электрическая дуга постоянного тока.

Электроды чугунные

При сварке чугуна в холодном состоянии для получения наилучшего результата необходимо использовать специальные электроды для чугуна, которые содержат в качестве основного компонента никель и/или медь.Никель неограниченно растворяется в железе и не образует карбидов. Благодаря этому не создается зона беленого чугуна, а наплавленный металл характеризуется низкой твердостью, а также очень просто обрабатывается. Медь также не образует соединений с углеродом, но и не растворяется в железе, а значит, сварочный шов не будет однородным.

На рынке представлен широкий выбор электродов с покрытием для чугуна – как на основе меди, так и на основе никеля.Медно-железные электроды представляют собой медные стержни с покрытием, содержащим железный порошок. В свою очередь никель и железо-никель содержат до 90% и более никеля.

Цена сварки чугуна

Когда речь идет о сварке чугуна для герметичности, ее стоимость колеблется в пределах 350-450 злотых.

В следующих статьях мы описали:

Полиэтилен (ПЭ) – что это такое, применение, свойства

Тефлон – применение и свойства

Типы, состав, свойства, применение бронзы

7

7

7

7

Латунь – свойства, применение, состав, виды

Медь – что это такое, свойства, применение

.

Марки чугуна

Мы производим чугун следующих марок:

Серый чугун согласно PN-EN 1561
  • EN-GJL 200
  • EN-GJL 250
  • EN-GJL 300
  • EN-GJL 350

В диапазоне веса: 500 – 40 000 кг

Серый чугун — популярный материал, используемый, в том числе, в железнодорожной, автомобильной и машиностроительной промышленности, например, из него изготавливают корпуса машин и тормозные барабаны.

Преимуществами серого чугуна являются очень хорошие литейные свойства, хорошая обрабатываемость и обрабатываемость.Он также характеризуется способностью гасить вибрации и относительно низкой себестоимостью производства.

Относительно низкая прочность и низкая пластичность чугуна в сочетании с плохой стойкостью к истиранию и коррозии в химических средах являются основными недостатками серого чугуна.

Ковкий чугун согласно PN-EN 1563
  • EN-GJS 400-18
  • EN-GJS 400-15
  • EN-GJS 400-12
  • EN-GJS 500-7
  • EN-GJS 600-3
  • EN-GJS 700-2

В диапазоне веса: 500 – 30. 000 кг

По сравнению с серым чугуном ковкий чугун характеризуется более высокими прочностными и пластическими свойствами, меньшей склонностью к концентрации напряжений, лучшей литейностью, усталостной прочностью и стойкостью к высоким давлениям.

Недостатками ковкого чугуна являются более высокая стоимость производства, низкая теплопроводность и отсутствие остаточных напряжений в отливке.

Чугуны специального назначения:

В диапазоне веса: 500 – 20.000 кг

Чугун специального сплава

– это чугун, в производстве которого используются различные виды добавок для модификации физико-химических свойств, такие как никель, хром, медь, кремний и многие другие. В результате такие чугуны могут характеризоваться, например, высокой термостойкостью, стойкостью к истиранию или действию кислот.

Обозначение чугуна

EN – обозначение стандартного материала;

EN-GJL — серый чугун, EN-GJS — чугун с шаровидным графитом;

G означает литой материал, J — чугун.

Следующая буква определяет форму графита: S – шаровидный графит, L – чешуйчатый графит.

Числовые значения указывают предел текучести в мегапаскалях (МПа) и значение относительного удлинения (в процентах).

Значение графита в литье.

Форма и количество графита, содержащегося в чугуне, существенно влияет на его свойства. Благодаря графиту чугун более устойчив к усталости, обладает лучшими свойствами скольжения, легче режется и снижает литейную усадку материала.Однако следствием повышенного количества графита в чугуне является снижение его прочности на растяжение. Чугун обычно характеризуется высокой коррозионной стойкостью и прочностью.

.

Чугун: его свойства, применение и уход

Чрезвычайно прочный, устойчивый к коррозии материал и в то же время дает практически неограниченные возможности формовки. Садовая мебель, кастрюли и сковородки, украшения отлиты из чугуна.

Этот универсальный материал производится путем легирования стали углеродом, фосфором, марганцем и множеством других элементов. В зависимости от сплава получаемый чугун различается по свойствам и, следовательно, по применению. Всевозможные заклепки, болты, люки и другие элементы, работающие под большим напряжением, изготавливаются из более гибкого, стойкого к сжатию чугуна с шаровидным графитом, легко выдерживающего нагрузки в несколько десятков тонн.

С другой стороны, большинство предметов повседневного обихода, таких как садовая мебель, декоративные элементы или посуда, изготавливаются из серого чугуна (GG-20).

Каковы свойства этого материала? Это прежде всего очень тяжелый -й. Поэтому он вряд ли подойдет для крупных предметов (например, мебели), которые предполагается часто переставлять. Однако на чугунной скамье будут сидеть наши правнуки, а может и будущие поколения, ведь прочность материала гарантирует, что она прослужит долгие годы.Это связано, в том числе, с коррозионной стойкостью . Из-за содержания углерода чугун подвергается коррозии только на поверхности . Если мы увидим на нем пятна ржавчины, просто очистите их, чтобы убедиться, что ржавчина не проникла глубоко в металл.
Особенностью в пользу использования этой посуды на кухне является ее теплоемкость .

Пригласите чугун в свой дом

Какие изделия из чугуна пригодятся в квартире и саду? Прочную, тяжелую мебель, будь то чугунную или дополненную элементами из дерева (скамейка) или стекла (столешница), можно оставлять в саду круглый год, не утруждая себя переноской и хранением ее на зимний период.Это касается и другого садового инвентаря: фонарей, ограждений, садовых скульптур.

Блюда, приготовленные в чугунной посуде, также имеют несколько иной, более полный вкус, что связано с кругом энтузиастов, которые также ценят тот факт, что блюда можно готовить при более высокой температуре. Кастрюли и сковороды подходят для использования в духовке, а также на газовых, электрических и индукционных плитах. Также популярны сковороды из этого сплава : обычные, гриль или со специальными выемками для жарки яиц или лепешек. Вареные и запеченные блюда не прилипают к окисленной поверхности.

Интересный способ пообедать на свежем воздухе – чугунный котел, который ставится на угли в костре. Мясо, крупы, картофель и другие овощи, запеченные в ней, будут иметь неповторимый вкус.
Материал, используемый в кухне, также имеет один недостаток – его нельзя мыть в посудомоечной машине, поскольку химические вещества, используемые в посудомоечных машинах, вызывают коррозию и придают ему неприглядный вид.

Какие еще аксессуары из чугуна можно найти в магазинах? Разные: ступки, подсвечники, статуэтки, декоративные заглушки для карнизов, мебельная фурнитура, устройства для гриля и камина и даже половик.

На что обратить внимание при покупке изделий из чугуна

Поверхность изделий из чугуна никогда не будет идеально гладкой, но важно, чтобы она была как можно меньше пористой, без видимых вмятин, отверстий или т.н. несварные швы (продольные бороздки, похожие на трещины).

Обслуживание и уход за чугуном

Большинство сосудов подвергают окислительной обработке , , заключающейся в полном погружении сосуда в масло, его сушке и последующем обжиге в печи при температуре 300–350° С. Также существует эмалированная чугунная посуда , но их слабостью является склонность эмали к сколам с годами и при неправильном использовании. Такие предметы достаточно вымыть водой со средством для мытья посуды, высушить, а затем натереть небольшим количеством обычного растительного масла.
С другой стороны, все элементы, подверженные повышенной влажности или погодным условиям (например, мебель, фонари и т. д.), должны быть окрашены антикоррозионными красками .

видео

.

Серый чугун, чугун с шаровидным графитом |

Серый чугун, ковкий чугун

Серый чугун

Серый чугун

представляет собой отливку из железа и углерода, в которой углеродистая часть выполнена из чешуйчатого графита. Серый чугун характеризуется хорошей обрабатываемостью, высокой стойкостью к истиранию и хорошими литейными свойствами. Он также характеризуется пластичностью, способностью гасить вибрации и относительно низкой себестоимостью производства.

Преимуществами серого чугуна являются очень хорошие литейные свойства, хорошая обрабатываемость и обрабатываемость.Он также характеризуется способностью гасить вибрации и относительно низкой себестоимостью производства. Относительно низкая прочность и малая пластичность чугуна, а также низкая стойкость к истиранию и коррозии в химических средах являются основными недостатками серого чугуна.

Использование

Серый чугун — популярный материал, используемый, в том числе, в железнодорожной, автомобильной и машиностроительной промышленности, например, из него изготавливают корпуса машин и тормозные барабаны.

Технические данные

Серый чугун

подразделяется на классы в зависимости от их прочностных свойств.
Основанием для классификации является предел прочности чугуна на растяжение.
Наиболее популярными марками чугуна являются EN-GJL-250 и EN-GJL-350

Марка
из чугуна
согласно EN 1561
Марка
из чугуна
по DIN
Марка
из чугуна
по BS
Марка
из чугуна
по NFA
Мин. прочность на растяжение

Rm (МПа)

EN-GJL-150 ГГ-15 150 ФГЛ 150 150
EN-GJL-200 ГГ-20 200 ФГЛ 200 200
EN-GJL-250 ГГ-25 250 ФГЛ 250 250
EN-GJL-300 ГГ-30 300 ФГЛ 300 300
EN-GJL-350 ГГ-35 350 ФГЛ 350 350

Обозначения чугуна:
EN-GJL — серый чугун,
EN-GJS — ковкий чугун,
G — литой материал,
J — чугун,
S — шаровидный графит,
L — пластинчатый графит.

В начало страницы

Ковкий чугун

ВЧШГ представляет собой чугунный литейный сплав с углеродом, в котором углерод находится в форме сферического графита. Это чугун, который отличается высокой устойчивостью к механическим нагрузкам за счет модификации сплава магнием. Пластичность уменьшается с увеличением механических свойств. По сравнению с серым чугуном ковкий чугун характеризуется более высокими прочностными и пластическими свойствами, меньшей склонностью к концентрации напряжений, лучшей литейностью, усталостной прочностью и стойкостью к высоким давлениям.Недостатками высокопрочного чугуна являются более высокая стоимость производства, низкая теплопроводность и склонность к созданию остаточных напряжений в отливке.

Использование

Благодаря своим гибким свойствам это наиболее подходящий материал для строительства трубопроводов практически в любых условиях, особенно при возникновении непредвиденных перегрузок. Они не вызывают трещин и отказов трубопроводов, а возможные локальные деформации не сказываются отрицательно на функционировании трубопроводов.

Технические данные

Чугун

подразделяют на классы в зависимости от их прочностных свойств.
Основанием для классификации является предел прочности чугуна на растяжение.

Марка
согласно EN 1563
Марка
согласно DIN
Марка
по BS
Rm мин
МПа
R 0,2 мин
МПа
А 5
%
EN-GJS-400-15 ГГГ-40 420/112 400 250 15
EN-GJS-400-18 400/18 400 250 18
EN-GJS-450-10 ГГГ-45 450/10 450 310 10
EN-GJS-500-7 ГГГ-50 500/7 500 320 7
EN-GJS-600-3 ГГГ-60 600/3 600 370 3
EN-GJS-700-2 ГГГ-70 700/2 700 420 2

Обозначения чугуна:
EN-GJL – серый чугун,
EN-GJS – чугун с шаровидным графитом,
G – литейный материал,
J – чугун,
S – шаровидный графит,
L – чешуйчатый графит.

В начало страницы

.90,000 Основное строительство – 9000 1

Основной

Индивидуальное жилье в Чехословакии составляет значительную часть жилищного строительства. Только в Словакии за последние двадцать пять лет было построено более 300 000 новых домов на одну семью. В прошлом дома на одну семью строились из общедоступных средств и материалов. В настоящее время мы входим в первую фазу промышленного производства односемейных домов. Создаются легкие силикатные, деревянные и стальные конструкции.На практике также используются модернизированные технологии традиционного строительства. С 1969 года отделы строительства и архитектуры отвечали за каталогизацию технической документации для реализации индивидуального жилья. Эта инициатива встретила общественное признание, поэтому есть надежда, что дальнейшее освещение проблем строительства и архитектуры, чему также призвано служить данное издание, будет способствовать многим изменениям в реализации индивидуального жилья (пространственные решения, площадь управление, изменения программы). Мы утверждаем, что из того же количества материалов и с тем же объемом работы можно было построить столько, сколько было построено, но это могли быть дома лучшего качества и с более интересными пространственными решениями. В данной публикации представлена ​​наиболее важная информация о проектировании индивидуальных домов с учетом экономических и социальных условий. Это также дает ответ на вопросы: каким должен быть дом на одну семью, предполагающий разные специфические условия местности? Как это должно выглядеть? Чем он должен быть оснащен? Из чего он будет построен? Также на примерах сообщается о различных возможностях строительных решений в зависимости от способа застройки участка, его грунтовых условий, функционального расположения комнат и их количества, уровня оснащения, использования конструкций и материалов.Целью данной работы не является обучение каменной кладке, штукатурке, устройству крыш, укладке полов, утеплению, производству мебели, водоснабжению и центральному отоплению. Он предназначен только для информирования о том, как могут и должны формироваться отдельные элементы здания и как они должны выглядеть. Из-за ограниченного объема эта книга не может содержать подробных советов по архитектуре (пространственное планирование, планы застройки, выбор поперечного сечения здания, форма и характер, внутреннее убранство и обстановка), а также не может быть учебным пособием для всех мастеров, участвующих в строительство коттеджа.Бетонные работы по строительству коттеджа должны выполняться профессионалами или обученными рабочими. То же самое верно и для дизайна. Эта публикация не может научить дизайну или заменить профессиональную практику. Для проектировщиков, не занимающихся системным проектированием односемейных домов, в данной работе представлены многочисленные возможности решения конструктивных сечений, его корпуса, обзор типов зданий, влияние внешних и внутренних факторов на конструкцию здания, основные конструктивные решения. и множество предложений комплексных и частичных решений.В этой работе инвестор найдет обзор основных решений односемейных домов с учетом социологических условий и условий на конкретном участке застройки. Это также указывает на другие возможности, вытекающие из преобразования представленных примеров дизайна. Было показано, как должно выглядеть окружение односемейных домов, а также форма и оборудование дома. Работа способствует обогащению информации по темам, связанным с общим архитектурным проектом индивидуального дома.Его будут использовать дизайнеры и пользователи, которые по разным причинам не могут использовать типовой дизайн из каталога.

.

Чугун 6 9000 1

Чугун представляет собой сплав железа с углеродом с содержанием обычно > 2% С, предназначенный для отливок. Их получают путем переплавки чугуна с добавлением железного и стального лома в вагранке, пламенной печи, электродуговой или индукционной печи. В отечественной промышленности более 85 % отливок изготавливается из чугуна.

Классификация чугуна основана на структуре сплава: в частности, форме углерода и форме графитовых выделений. Однако химический состав важен только в случае чугунов с особыми свойствами. Общая классификация чугуна выглядит следующим образом:

Среди технологических свойств чугуна, определяющих его назначение, следует назвать хорошую текучесть вследствие низкой температуры плавления и редко хорошую текучесть. Литейная усадка белого чугуна такая же, как у стального литья (1,6÷2,1%), а усадка серого чугуна очень мала (0,6÷1,1%).

Обрабатываемость чугунов различна: белые из-за высокой твердости плохо поддаются резке, что ограничивает их применение, серые благодаря графитовым отложениям, покрывающим металлическую матрицу, хорошо режутся. Низкая пластичность и восприимчивость к термическим напряжениям затрудняют сварку чугунов. Отрицательной чертой чугуна является хрупкость из-за наличия цементита в белом чугуне или графита в сером. Поэтому для чугуна наиболее благоприятны напряжения сжатия, затем напряжения изгиба, а наименее благоприятны напряжения растяжения.

Благодаря присутствию графита серый чугун очень устойчив к истиранию, обладает хорошими свойствами скольжения и низким тепловым расширением. Потому что графит сам по себе обладает смазывающими свойствами, а также впитывает жир и удерживает его на трущихся поверхностях.

Относительно низкая прочность и высокая хрупкость чугуна, а с другой стороны, низкая цена материала на протяжении многих лет вдохновляли исследовательские работы, направленные на улучшение его механических свойств. Эта работа принесла результаты: применение теории кристаллизации привело к разработке модифицированного и высокопрочного чугуна.

Чугун белый (светлый излом) – сплав, в котором все количество углерода связано в виде цементита, согласно метастабильному равновесию системы Fe-Fe 3 С.

В промышленной практике литым называют белый чугун, имеющий одинаковую структуру по всему сечению. Белый чугун твердый (НВ≅550), очень устойчив к истиранию и сохраняет эти свойства до температур, превышающих 400°С, в то время как стали с меньшей стойкостью к истиранию при этих температурах показывают снижение твердости. Для обработки белого чугуна требуются инструменты из карбида вольфрама. В силу своих свойств белый чугун имеет ограниченное применение для изготовления износостойких отливок, не требующих серьезной механической обработки, например футеровок и смесительных шнеков, шаров шаровых мельниц.

Серым чугуном (темный излом) называют сплав, содержащий не более 0,8% связанного С в виде цементита, а оставшуюся часть в виде чешуйчатого графита. В сером чугуне цементит может быть только в виде перлита.Структура серого чугуна зависит в основном от степени графитизации. Для обеспечения дробления графита используется чугун модификации . Модификатор Si вводят в количестве около 0,5% в виде сплавов Fe-Si или Si-Ca. Чугун необходимо предварительно хорошо обессерить карбидом.

Ковкий чугун определяется как обычный или легированный серый чугун, содержащий не более 0,8% углерода, связанного в виде цементита, а остальную часть в виде сферического графита.Таким образом, тип металлической матрицы зависит от степени графитизации. Перлитная матрица имеет оптимальные свойства.

Высокопрочный чугун представляет собой пластифицированный термической или термохимической обработкой чугун, содержащий свободный углерод в виде так называемых светящийся уголь. Структура и свойства ковкого чугуна зависят от способа пластификации.

На испытания мы получили три образца чугуна:

Образцы чугуна исследовали под микроскопом, а образцы из ковкого и серого чугуна подвергались дополнительному травлению.

  1. чугун с шаровидным графитом (нетравленый)

  1. серый чугун (непротравленный)

  1. ковкий чугун (не травящийся)

  1. Ковкий чугун после травления

д) серый чугун после травления

Еще до исследования образцов под микроскопом мы заметили, что поверхности образцов были шероховатыми по сравнению с поверхностями стальных образцов. Поверхности стальных образцов были блестящими, а поверхности чугунных – матовыми. В сером чугуне после травления хорошо видна граница зерен, а также выявляется чешуйчатый графит. На границе зерен фосфорная эвтектика и пластины перлита. После травления образцов из ковкого чугуна помимо сферического графита можно увидеть перлит.

Поисковик

Похожие подстраницы:
МОДИФИЦИРОВАННОЕ ЧУГУН
Чугун, Материаловедение
Чугун
Чугун 5
Чугун 2
Чугун, Исследования, СЕМЕСТР 1, НОМ
Тяга 3 Чугун
Чугун
Чугун Идент. чугун
Часть 6 Ковкий чугун Часть 6
БЕЛЫЙ И СЕРЫЙ ЧУГУН МЕТАЛЛООБРАБОТКА, Исследования, Материаловедение, Металловедение и Основы Термической Обработки
Чугун качественный
Ведомость учета отходов Чугун Сталь
Чугун Piotrek SCIAGI экзамен, Металлургия и литье стальное литье, Сталь
Чугун,
Литая сталь, Сталь
Чугун, 4
Чугун, Сталь
Iron Science 4
чугун ADI

больше похожих страниц

.

Конструкторские и инженерные конструкции. Сухая обработка твердых материалов, часть III


Чугуны с твердостью выше 300 HB, такие как, например, отбеленные чугуны, изотермически закаленные ковкие чугуны и износостойкие легированные чугуны, из-за их высокой механической прочности, высокой твердости и стойкости к истиранию могут плохо поддаваться механической обработке . Большинство этих чугунов можно отнести к твердым материалам группы Н по стандарту ISO 513:2004, к которым относятся:в закаленные стали, закаленные чугунные материалы, отбеленный чугун [1-3].

Kazimierz Czechowski, Iwona Wronska

В настоящее время существует общее общее деление чугунов, в котором различают основные: белый чугун, ковкий чугун, серый чугун и ковкий чугун).
В целях классификации материалов с точки зрения их восприимчивости к механической обработке мы можем выделить следующие типы чугуна, как наиболее часто используемые сегодня:

  • Серый чугун (GCI),
  • Ковкий чугун (MCI),
  • Чугун с шаровидным графитом (NCI),
  • Чугун
  • с уплотненным графитом, называемый вермикулярным (CGI – Compacted Graphite Iron),
  • Высокопрочный чугун с аустенитным отпуском (ADI).

Более подробная классификация чугунов, приведенная, например, Дж. Р. Дэвисом в “Metals Handbook, Desk Edition – ASM International Handbook Committee” [4], учитывает форму углерода, а также микроструктуру и цвет излома. из чугуна (табл. 1). Так как в польской и англоязычной литературе по чугуну иногда встречаются различия в номенклатуре типов чугуна и их характеристиках, в Таблице 1 содержится текст в обоих вышеупомянутых языки.

Таб.1. Классификация чугунов с учетом формы углерода, а также микроструктуры и цвета излома – на основании литературы [4]

Кроме стандартных видов чугунов, перечисленных в табл. 1, существует также группа из специальных чугунов с содержанием легирующих элементов более 3%. Эти чугуны, известные как отливки из сплавов, обладают особыми свойствами, такими как устойчивость к высоким температурам, а также устойчивость к коррозии и абразивному износу. Различают: легированные чугуны, стойкие к абразивному износу (низколегированные, никель-хромовые, хромоникелевые, высокохромистые), жаростойкие легированные чугуны (хромовые, кремниевые, алюминиевые, высокохромистые, высоконикелевые) , коррозионно-стойкие легированные чугуны (кремниевые, никель-медные, высоконикелевые с шаровидным графитом, высоконикелевые серые, высокохромистые), аустенитные чугуны для работы при низких температурах [2-4].

полную статью см. в выпуске 10 (61) за октябрь 2012 г.

.


Смотрите также

  • Почему в квартире запотевают окна
  • Рубанок по дереву
  • Космофен клей как пользоваться
  • Не работает вай фай на телевизоре lg
  • Подготовка теплицы к зиме осенью
  • Что такое hdr в камере смартфона
  • Чертеж теплообменника
  • Гинура цветок уход
  • Прихожие светлая отделка мебели
  • Капилярка для кондиционера
  • Лошадь ахалтекинец

В чем разница между серым чугуном и белым чугуном?

Как и серый чугун, белый чугун имеет множество мелких трещин. Разница в том, что белый чугун содержит цементит под своей поверхностью, тогда как серый чугун содержит графит под своей поверхностью . Графит создает видимость серого цвета, а цементит создает видимость белого цвета.

Посмотреть полный ответ на sciencing. com

Серый чугун тверже белого?

Белый чугун тверже, чем серый, до такой степени, что он довольно хрупок. Серое железо, напротив, мягче, но прочнее. Эти два типа иногда комбинируются, что позволяет изготавливать изделие с твердым внешним покрытием из белого железа и прочной серой сердцевиной.

Посмотреть полный ответ на sciencing.com

В чем разница в поверхности излома серого и белого чугуна Объясните, почему их поверхность излома различна?

Основное различие между серым чугуном и белым чугуном заключается в том, что после разрушения белый чугун дает поверхность трещин белого цвета, а серый чугун дает поверхность излома серого цвета. В основном это связано с их составляющими в сплаве.

Посмотреть полный ответ наРазница между.com

Что более хрупкий серый чугун или белый чугун?

В сером чугуне большая часть углерода находится в виде чешуек графита, которые делают материал более мягким, поддающимся обработке и менее хрупким, чем белый чугун.

Посмотреть полный ответ на sciencedirect.com

Подходит ли белый чугун?

Белый чугун обладает высокой прочностью на сжатие и сохраняет хорошую твердость и прочность при более высокой температуре. Наличие различных карбидов, в зависимости от содержания сплава, делает белые чугуны чрезвычайно твердыми и устойчивыми к истиранию, но очень хрупкими.

Посмотреть полный ответ на sciencedirect.com

ТИПЫ ЧУГУНА | СВОЙСТВА ЧУГУНА | СЕРЫЙ ЧУГУН | БЕЛЫЙ ЧУГУН |ВЫСОКИЙ ЧУГУН

Для чего используется белый чугун?

Белый чугун используется в устойчивых к истиранию деталях, где его хрупкость не вызывает особого беспокойства, таких как футеровка корпуса, шламовые насосы, шаровые мельницы, подъемные штанги, экструзионные сопла, бетономешалки, трубная арматура, фланцы, дробилки и рабочие колеса насосов. Популярным сортом белого чугуна является белый чугун с высоким содержанием хрома, ASTM A532.

Посмотреть полный ответ на matmatch.com

Для чего используется серый чугун?

Высокая теплопроводность и удельная теплоемкость серого чугуна часто используются для изготовления чугунной посуды и роторов дисковых тормозов. Его прежнее широкое использование в тормозах грузовых поездов было значительно сокращено в Европейском Союзе из-за опасений по поводу шумового загрязнения.

Посмотреть полный ответ на en.wikipedia.org

Какие бывают 5 типов чугуна?

Различные типы чугунов производятся с использованием различных методов термообработки и обработки, включая серый чугун, белый чугун, ковкий чугун, ковкий чугун и чугун с уплотненным графитом.

Посмотреть полный ответ на сайте reliance-foundry.com

Как узнать, белый ли чугун?

Белый чугун получил свое название и внешний вид из-за соединений, известных как цементит и перлит в его структуре. Как и его серый аналог, белый чугун имеет множество мелких чешуек и трещин. Однако, в отличие от своего серого аналога, белый чугун имеет низкое содержание углерода и силикона.

Посмотреть полный ответ на muggyweld.com

Какой чугун самый твердый?

Из-за своей аустенитной матрицы и чешуйчатого графита чугуны с высоким содержанием никеля являются самыми прочными из всех чугунов. Чешуйчатый графит также придает им отличную обрабатываемость и хорошие литейные свойства, хотя это снижает их прочность на растяжение.

Посмотреть полный ответ на sciencedirect.com

Является ли серый чугун прочным?

Незакаленный серый чугун «хрупок» по сравнению с другими литыми металлами. Чешуйки графита создают слабые места в металле, где могут начаться трещины, которые расколут металл. Эта склонность к разрушению является причиной того, что серый чугун имеет низкую прочность на растяжение и ударную вязкость.

Посмотреть полный ответ на willmanind.com

Какой тип чугуна наиболее широко используется?

Серый чугун характеризуется графитовой микроструктурой, из-за которой изломы материала имеют серый цвет. Это наиболее часто используемый чугун и наиболее широко используемый литой материал в зависимости от веса.

Посмотреть полный ответ на en.wikipedia.org

Каковы преимущества ковкого чугуна по сравнению с белым или серым чугуном?

Ковкий чугун обладает большей пластичностью, чем серый чугун, и, хотя он твердый, ему не хватает хрупкости белого чугуна. Хотя он не так легко отливается, как серый чугун или ковкий чугун, он отливается лучше, чем некоторые другие материалы, включая белый чугун. Кроме того, ковкий чугун обеспечивает отличное поверхностное упрочнение.

Посмотреть полный ответ на buntyllc.com

Имеет ли серый чугун высокую температуру плавления?

Температура плавления чугуна

Температура плавления серого чугуна – сталь ASTM A48 составляет около 1260°C. Температура плавления мартенситного белого чугуна (ASTM A532 Class 1 Type A) составляет около 1260°C.

Посмотреть полный ответ на сайте Nuclear-Power.com

Какой тип чугуна мягкий?

Ковкий чугун также называют чугуном с шаровидным графитом, который, как выяснилось, является ковким чугуном и представляет собой тип мягкого ковкого чугунного сплава с высоким содержанием углерода.

Посмотреть полный ответ на engineeringlearn.com

Магнитен ли серый чугун?

Магнитные свойства

Реальная структура графита и тип серого чугуна влияют на такие свойства, как проницаемость, коэрцитивная сила и гистерезис. Все серые чугуны проявляют ферромагнетизм, кроме аустенитных марок.

Посмотреть полный ответ на azom.com

Почему его называют чугуном?

Термин «чугун» восходит к тому времени, когда горячий металл отливали в слитки перед загрузкой на сталелитейный завод. Формы раскладывали на песчаных подушках таким образом, чтобы их можно было подавать из общего желоба. Группа форм напоминала выводок поросят, причем слитки назывались «поросятами», а бегун — «свиньей».

Посмотреть полный ответ на metallics.org

Что такое чугун G3000?

Изготовленные в соответствии со спецификацией чугуна G3000, тормозные роторы DFC G3000 разработаны в соответствии со спецификациями OEM по долговечности, надежности и стабильности. Каждая отливка ротора отправляется на наше современное обрабатывающее оборудование, где она обрабатывается с самыми жесткими допусками, доступными на современном рынке.

Посмотреть полный ответ на dynamicfriction.com

Что такое белый чугун?

Что означает белый чугун? Белый чугун представляет собой разновидность углеродисто-железного сплава, который содержит более 2% углерода в виде цементита. Название «белая отливка» происходит от его белой поверхности, вызванной примесями карбида, которые допускают появление трещин по всему металлу.

Посмотреть полный ответ на corrospedia.com

Каковы 4 основных типа чугуна?

Четыре типа чугуна

  • Серый чугун.
  • Белый чугун.
  • Ковкий чугун.
  • Ковкий чугун.

Просмотреть полный ответ на сайте metalsupermarkets.com

Полезно ли готовить в чугунной сковороде?

Чугун не только для жарки

Но его способность удерживать тепло также позволяет готовить здоровую пищу, говорит Керри-Энн Дженнингс, зарегистрированный диетолог и тренер по питанию из Вермонта. Это включает в себя методы на водной основе, такие как тушение и варка, а также быстрое обжаривание и приготовление на гриле, для которых не требуется много масла.

Посмотреть полный ответ на epicurious.com

Ржавеет ли чугун?

Без защитного слоя карбонизированного масла, называемого приправой, чугун подвержен ржавчине. Даже хорошо приправленная сковорода может заржаветь, если ее оставить в раковине для замачивания, положить в посудомоечную машину, дать высохнуть на воздухе или хранить в условиях повышенной влажности.

Посмотреть полный ответ на Lodgecastiron.com

Каков процент серого чугуна?

Наличие графита придает поверхности излома чугуна серый оттенок. Поэтому, когда весь углерод в чугунах находится в форме графита, его называют серым чугуном. Серый чугун с содержанием углерода 2,4% – 3,8%.

Посмотреть полный ответ на testbook.com

Можно ли сваривать чугун?

Можно сваривать чугун, но это нужно делать с использованием правильных методов и с осторожностью, чтобы избежать растрескивания. Большинство методов сварки требуют очистки поверхности материала, а чугун получает преимущества от нагрева до и после сварки, а также от осторожного охлаждения.

Посмотреть полный ответ на twi-global.com

Предыдущий вопрос
Лив и Дигби снова вместе в 2022 году?

Следующий вопрос
Что такое мультимедиа объяснить элементы мультимедиа?

Разница между железом и чугуном

Основное отличие – железо против чугуна

Железо является важным металлическим элементом. Он используется в производстве многих различных полезных металлических сплавов, таких как сталь. Основной проблемой железа является ржавление поверхности. Для предотвращения ржавчины используются различные методы предотвращения, такие как цинкование, покраска и т. д. Металлические сплавы, такие как нержавеющая сталь, также производятся для предотвращения коррозии. Чугун — это форма железа, в которой содержится больше углерода, чем в других формах сплава железа. Основное отличие железа от чугуна в том, что 9Железо 0181 представляет собой чистый металл, тогда как чугун представляет собой металлический сплав.

Ключевые участки, охватываемые

1. Что такое железо
– Определение, химические свойства, экстракция
2. Чем чугун
– определение, свойства, различные типы
– определение, свойства, различные типы. Разница между чугуном и чугуном
      – Сравнение основных различий

Ключевые термины: чугун, ковкий чугун, серый чугун, железо, металл, ковкий чугун, металлический сплав, ржавчина, сталь, белый чугун, Кованое железо

Что такое железо

Железо — это металлический элемент с символом «Fe». Атомный номер 26, молярная масса около 56 г/моль. Этот химический элемент относится к d-блоку периодической таблицы. Он считается переходным элементом, так как имеет частично заполненные d-орбитали в соответствии с его электронной конфигурацией ([Ar] 3d 6 4s 2 ).

Рисунок 1: Атомная структура железа

Железо находится в твердом состоянии при комнатной температуре. Температура плавления составляет 1538 °С, а температура кипения составляет около 2862 °С. Он очень важен как металл, а также используется в производстве различных металлических сплавов. Железо под воздействием воздуха и влаги может разрушаться. Это называется образованием ржавчины. Это химическая реакция, которая включает окисление поверхности железа. Железные сплавы изготавливаются с пониженной или нулевой коррозией за счет добавления достаточного количества хрома к железу; нержавеющая сталь является лучшим примером для этого.

Существуют различные типы сплавов железа, включая сталь, кованое железо, чугун, антрацит и т. д. и т.д. Кованое железо представляет собой металлический сплав с низким содержанием углерода. Он жесткий и податливый. Чугун состоит из большого количества углерода. Он склонен к ломкости.

Железо может быть извлечено из железных руд с помощью доменной печи. Как правило, железная руда состоит из железа в двух формах: оксидов железа и железа. Эти формы могут быть восстановлены до железа в доменной печи путем нагревания сырья с коксом. Расплавленное железо можно получить со дна печи. Это расплавленное железо можно использовать для производства чугуна, стали и других форм сплавов.

Что такое чугун

Чугун – это твердый, относительно хрупкий сплав железа и углерода, который можно легко отлить в форму. Он содержит более высокую долю углерода, чем сталь. Чугун – это металлический сплав. Содержание углерода в этом сплаве составляет 2-4%. Чугун имеет относительно низкую температуру плавления, чем другие сплавы железа.

Помимо углерода и железа, чугун также содержит кремний, марганец и следовые количества серы и фосфора. Поскольку содержание углерода высокое, чугун затвердевает как гетерогенный сплав. Чугун имеет около 1-3% кремния. Следовательно, на самом деле это металлический сплав железа, углерода и кремния. Расплавленный чугун менее вступает в реакцию с формовочным материалом. Однако чугун не очень пластичен и не пригоден для прокатки.

Чугун является хорошим конструкционным материалом благодаря его низкой температуре плавления, хорошей текучести, хорошей обрабатываемости и т. д. Существует несколько типов чугуна, как указано ниже. Эта классификация основана на микроструктуре сплава.

  • Серый чугун
  • Ковкий чугун
  • Ковкий чугун
  • Белый чугун

Рис. 2: Чугунная сковорода

Эти чугунные формы отличаются друг от друга формой и формой углерода, присутствующего в чугуне. В производстве серый чугун модификаторы используются для контроля типа графита и размера сплава. При производстве ковкого чугуна следовые количества висмута используются для улучшения ковкости. Ковкий чугун производится путем добавления небольшого количества магния, что вызывает образование сфероидального графита в сплаве. Белый чугун имеет белые трещины при разрушении. Это связано с наличием примесей карбида железа. Точно так же присутствие некоторых других соединений может придать желаемые свойства чугуну.

Разница между железом и чугуном

Определение

Железо: Железо — это металлический элемент с символом «Fe».

Чугун: Чугун – это твердый, относительно хрупкий сплав железа и углерода, который можно легко отлить в форму.

Природа

Железо: Железо — чистый металл.

Чугун: Чугун представляет собой металлический сплав.

Содержание углерода

Железо: Чистое железо не состоит из углерода, но сплавы железа могут иметь различное процентное содержание углерода.

Чугун: Чугун состоит из 2-4% углерода.

Температура плавления

Железо: Железо имеет более высокую температуру плавления 1538 °C.

Чугун: Чугун имеет относительно низкую температуру плавления.

Образование ржавчины

Железо: Образование ржавчины происходит на поверхности железа и его сплавов, за исключением нержавеющей стали.

Чугун: Чугун подвержен образованию ржавчины.

Пластичность

Железо: Железо и большинство его сплавов ковкие.

Чугун: Чугун менее ковкий и хрупкий (кроме ковкого чугуна).

Заключение

Железо — это металл. Он используется в производстве различных типов металлических сплавов, которые используются для различных целей в зависимости от их благоприятных свойств. Чугун является одной из таких форм железа. Основное различие между железом и чугуном заключается в том, что железо представляет собой чистый металл, тогда как чугун представляет собой металлический сплав.

Ссылки:

1. «Знакомство с чугунами». Компания Atlas Foundry, доступна здесь.
2. «Чугун». Encyclopædia Britannica, Encyclopædia Britannica, Inc., 4 августа 2016 г., доступно здесь.
3. «Извлечение железа». Химия LibreTexts, Libretexts, 29 ноября 2015 г., доступно здесь.

Изображение предоставлено:

1. «Электронная оболочка 026 Железо — без этикетки». Автор: Commons: Пользователь: Pumbaa (оригинальная работа Commons: Пользователь: Грег Робсон) — http://commons.wikimedia.org/wiki/Category: Electron_shell_diagrams (соответствующая помеченная версия) (CC BY-SA 2.0 uk) через Commons Wikimedia
2. «Чугунная сковорода» Эван-Амос – собственная работа (общественное достояние) через Commons Wikimedia

Чугун | Металлургия для чайников

 

Чугун получают из чугуна, и хотя он обычно относится к серому чугуну, он также определяет большую группу ферросплавов, которые затвердевают с эвтектикой. Цвет поверхности излома можно использовать для идентификации сплава. Белый чугун назван в честь его белой поверхности при изломе из-за примесей карбида, которые позволяют трещинам проходить прямо насквозь. Серый чугун назван в честь его серой изломистой поверхности, которая возникает из-за того, что графитовые чешуйки отклоняют проходящую трещину и вызывают бесчисленное количество новых трещин по мере разрушения материала.

Чугун Автозапчасти

Углерод (C) и кремний (Si) являются основными легирующими элементами в количестве от 2,1 до 4 мас.% и от 1 до 3 мас.% соответственно. Сплавы железа с меньшим содержанием углерода известны как стали.

Хотя технически это делает эти базовые сплавы тройными сплавами Fe-C-Si, принцип затвердевания чугуна можно понять из бинарной фазовой диаграммы железо-углерод. Поскольку составы большинства чугунов находятся примерно в точке эвтектики системы железо-углерод, температуры плавления тесно связаны между собой, обычно в диапазоне от 1150 до 1200 °C (от 2102 до 2,19°С).2 °F), что примерно на 300 °C (572 °F) ниже температуры плавления чистого железа.

Фазовая диаграмма Сталь и чугун

Чугун имеет тенденцию быть хрупким, за исключением ковких чугунов. Благодаря относительно низкой температуре плавления, хорошей текучести, литейности, отличной обрабатываемости, устойчивости к деформации и износостойкости, чугуны стали конструкционным материалом с широким спектром применения и используются в трубах, машинах и деталях автомобильной промышленности, таких как цилиндры. головки (сокращение использования), блоки цилиндров и картеры коробок передач (сокращение использования). Он устойчив к разрушению и ослаблению при окислении (ржавчине).

Чугунные украшения

Чугун производится путем повторного плавления чугуна, часто вместе со значительным количеством железного и стального лома, и принятия различных мер для удаления нежелательных примесей, таких как фосфор и сера. В зависимости от применения содержание углерода и кремния снижается до желаемого уровня, который может составлять от 2 до 3,5% и от 1 до 3% соответственно. Затем в расплав добавляются другие элементы, прежде чем окончательная форма будет получена путем литья. После завершения плавки расплавленный чугун заливают в раздаточный котел или ковш.

Чугун Искусство

Свойства чугуна изменяются путем добавления различных легирующих элементов или сплавов. После углерода кремний является наиболее важным сплавом, потому что он вытесняет углерод из раствора. Вместо этого углерод образует графит, что приводит к более мягкому железу, уменьшает усадку, снижает прочность и плотность. Сера при добавлении образует сульфид железа, препятствующий образованию графита и повышающий твердость.

Проблема с серой заключается в том, что она делает расплавленный чугун вялым, что вызывает кратковременные браки. Чтобы противодействовать воздействию серы, добавляют марганец, потому что они образуют сульфид марганца вместо сульфида железа. Сульфид марганца легче расплава, поэтому он всплывает из расплава в шлак. Количество марганца, необходимое для нейтрализации серы, составляет 1,7×содержание серы+0,3%. Если добавить больше этого количества марганца, то образуется карбид марганца, который увеличивает твердость и холодостойкость, за исключением серого чугуна, где до 1% марганца увеличивает прочность и плотность.

Железо-углеродная фазовая диаграмма

Никель является одним из наиболее распространенных сплавов, поскольку он очищает перлитную и графитовую структуру, улучшает ударную вязкость и выравнивает разницу в твердости в зависимости от толщины среза. Хром добавляют в ковш в небольших количествах для уменьшения количества свободного графита, получения отбела и потому, что он является мощным стабилизатором карбида; никель часто добавляют вместе. Вместо 0,5% хрома можно добавить небольшое количество олова. Медь добавляется в ковш или в печь в количестве от 0,5 до 2,5% для уменьшения отбела, рафинирования графита и повышения текучести.

Кухонный гарнитур из чугуна

Молибден добавляется в количестве от 0,3 до 1% для повышения холодостойкости и улучшения структуры графита и перлита; его часто добавляют в сочетании с никелем, медью и хромом для получения высокопрочного железа. Титан добавляют в качестве дегазатора и раскислителя, но он также увеличивает текучесть. От 0,15 до 0,5% ванадия добавляют в чугун для стабилизации цементита, повышения твердости и повышения износостойкости и теплостойкости. От 0,1 до 0,3% циркония способствует образованию графита, раскислению и повышению текучести. В расплавы ковкого чугуна добавляется висмут в количестве от 0,002 до 0,01%, чтобы увеличить количество кремния, которое можно добавить. В белый чугун бор добавляется для облегчения производства ковкого железа, он также снижает огрубляющий эффект висмута.

Механический блок из чугуна

Серый чугун

Серый чугун характеризуется графитовой микроструктурой, из-за которой изломы материала приобретают серый цвет. Это наиболее часто используемый чугун и наиболее широко используемый литой материал в зависимости от веса.

Микроструктура серого чугуна

Большинство чугунов имеют химический состав от 2,5 до 4,0% углерода, от 1 до 3% кремния, а остальное — железо. Серый чугун имеет меньшую прочность на растяжение и ударопрочность, чем сталь, но его прочность на сжатие сравнима с низко- и среднеуглеродистой сталью.

Белый чугун

При более низком содержании кремния и более быстром охлаждении углерод в белом чугуне выделяется из расплава в виде метастабильной фазы цементита Fe3C, а не графита. Цементит, выделяющийся из расплава, образует относительно крупные частицы, обычно в эвтектической смеси, где другой фазой является аустенит (который при охлаждении может превратиться в мартенсит).

Белый чугун – это нелегированный чугун с низким содержанием углерода и кремния, структура которого представляет собой твердый хрупкий карбид железа без свободного графита. Белые чугуны широко используются в приложениях, связанных с абразивным износом, связанных с дроблением, шлифованием, измельчением и обработкой абразивных материалов

Эти эвтектические карбиды слишком велики, чтобы обеспечить дисперсионное твердение (как в некоторых сталях, где выделения цементита могут ингибировать пластическую деформацию, препятствуя движению дислокаций через ферритовую матрицу).

Скорее, они повышают объемную твердость чугуна просто благодаря своей очень высокой твердости и значительной объемной доле, так что объемная твердость может быть аппроксимирована по правилу смесей. В любом случае, они предлагают жесткость за счет жесткости. Поскольку карбид составляет большую часть материала, белый чугун можно с полным основанием отнести к кермету.

Микроструктура белого чугуна

Белый чугун слишком хрупок для использования во многих конструкционных компонентах, но благодаря хорошей твердости и стойкости к истиранию и относительно низкой стоимости он находит применение в таких областях, как изнашиваемые поверхности (рабочее колесо и улитка) шламовых насосов. , вкладыши и подъемные стержни в шаровых мельницах и мельницах самоизмельчения, шары и кольца в угольных измельчителях, а также зубья ковша обратной лопаты (хотя для этого применения чаще используется литая мартенситная сталь со средним содержанием углерода).

Ковкий чугун

Ковкий чугун представляет собой отливку из белого чугуна, которая затем подвергается термообработке при температуре около 900 °C (1650 °F). Графит в этом случае выделяется гораздо медленнее, так что поверхностное натяжение успевает сформировать из него сфероидальные частицы, а не чешуйки. Из-за меньшего соотношения сторон сфероиды относительно короткие и находятся далеко друг от друга, а также имеют меньшее поперечное сечение по отношению к распространяющейся трещине или фонону.

Ковкий чугун Микроструктура
Компонент фитинга из ковкого чугуна

Кроме того, они имеют тупые края, в отличие от чешуек, что облегчает проблемы концентрации напряжений, с которыми сталкивается серый чугун. В целом свойства ковкого чугуна больше напоминают мягкую сталь. Существует ограничение на то, насколько большая деталь может быть отлита из ковкого чугуна, поскольку она изготавливается из белого чугуна.

Детали из высокопрочного чугуна

Высокопрочный чугун

Более поздней разработкой является шаровидный или высокопрочный чугун. Небольшие количества магния или церия, добавленные к этим сплавам, замедляют рост графитовых отложений, связываясь с краями графитовых плоскостей.

Чугун с шаровидным графитом Микроструктура

Наряду с тщательным контролем других элементов и времени это позволяет углероду отделяться в виде сфероидальных частиц по мере затвердевания материала. Свойства аналогичны ковкому чугуну, но детали можно отливать с большим сечением.

Вам нужны ссылки на книги по чугуну? здесь…

Вам также может понравиться

Микроструктура металлов Микроструктура определяется как… Фазовая диаграмма стали Фазовая диаграмма Fe-Fe3C, Материаловедение… Высокопрочный чугун с аустенитным отпуском (ADI) Ковкий чугун из аустенитного сплава (ADI)… Фазовые диаграммы Fe-Mn, Fe-Co, Fe-Mo В чистом железе А4 (1394 °C) и…

Серый чугун, белый чугун и ковкий чугун — сравнение — плюсы и минусы

Чугуны

Серый чугун также обладает отличной демпфирующей способностью, которая обеспечивается графитом, поскольку он поглощает энергию и преобразует ее в тепло. Большая демпфирующая способность желательна для материалов, используемых в конструкциях, в которых во время работы возникают нежелательные вибрации, таких как основания станков или коленчатые валы.

В материаловедении  чугуны  представляют собой класс ферросплавов с содержанием углерода выше 2,14 мас.% . Как правило, чугуны содержат от от 2,14% до 4,0% по массе углерода и от 0,5% до 3% по массе кремния . Сплавы железа с более низким содержанием углерода известны как стали. Разница заключается в том, что чугуны могут использовать эвтектическое затвердевание в бинарной системе железо-углерод. Термин «эвтектика» в переводе с греческого означает « легко или хорошо плавится », а точка эвтектики представляет собой состав на диаграмме состояния, которого достигается самая низкая температура плавления . Для системы железо-углерод эвтектическая точка  возникает при составе 4,26 мас. % C и температуре 1148°C .

Чугун , следовательно, имеет более низкую температуру плавления (приблизительно между 1150°C и 1300°C), чем традиционная сталь, что облегчает литье по сравнению со стандартными сталями. Из-за своей высокой текучести в расплавленном состоянии жидкое железо легко заполняет сложные формы и может образовывать сложные формы. Большинство применений требуют очень небольшой отделки, поэтому чугуны используются для самых разных мелких деталей, а также для больших. Это идеальный материал для литья в песчаные формы сложных форм, таких как выпускные коллекторы, без необходимости дополнительной механической обработки. Кроме того, некоторые чугуны очень хрупкие, и литье  является наиболее удобной технологией изготовления. Чугуны стали конструкционным материалом с широким спектром применения и используются в трубах, машинах и деталях автомобильной промышленности, таких как головки цилиндров, блоки цилиндров и корпуса коробок передач. Он устойчив к повреждениям в результате окисления.

Типы чугунов

Чугуны также включают большое семейство различных типов железа, в зависимости от  того, как богатая углеродом фаза образуется во время затвердевания . Микроструктуру чугуна можно контролировать, чтобы получить изделия с отличной пластичностью, хорошей обрабатываемостью, отличным гашением вибрации, превосходной износостойкостью и хорошей теплопроводностью. При правильном легировании коррозионная стойкость   чугуна может быть равна стойкости нержавеющих сталей и сплавов на основе никеля во многих областях применения. В большинстве чугунов углерод существует в виде графита, а микроструктура и механическое поведение зависят от состава и термической обработки. Наиболее распространенные типы чугуна:

  • Серый чугун . Серый чугун является старейшим и наиболее распространенным типом чугуна. Серый чугун характеризуется графитовой микроструктурой, из-за которой изломы материала имеют серый цвет. Это связано с наличием в его составе графита. В сером чугуне графит образует чешуйки, приобретая трехмерную геометрию. Серый чугун имеет меньшую прочность на растяжение и ударопрочность, чем сталь, но его прочность на сжатие сравнима с низко- и среднеуглеродистой сталью. Серый чугун обладает хорошей теплопроводностью и удельной теплоемкостью, поэтому часто используется в кухонной посуде и тормозных роторах. Серый чугун  также обладает отличной демпфирующей способностью , которая обеспечивается графитом, поскольку он поглощает энергию и преобразует ее в тепло. Большая демпфирующая способность желательна для материалов, используемых в конструкциях, в которых во время работы возникают нежелательные вибрации, таких как основания станков или коленчатые валы. Такие материалы, как латунь и сталь, обладают небольшой демпфирующей способностью, что позволяет передавать через них энергию вибрации без затухания.
  • Белый чугун . Как было написано, чугуны — одни из самых сложных сплавов, используемых в промышленности. Из-за более высокого содержания углерода в структуре чугуна, в отличие от стали, присутствует фаза, богатая углеродом. В зависимости главным образом от состава, скорости охлаждения и обработки расплава богатая углеродом фаза может затвердевать с образованием либо стабильной (аустенит-графит), либо метастабильной (аустенит-Fe 3 C) эвтектики. При более низком содержании кремния (менее 1,0 мас.% Si – графитирующий агент) и более высокой скорости охлаждения углерод в чугуне осаждается из расплава в виде цементит метастабильной фазы, Fe 3 C , а не графит. Продукт этого отверждения известен как белый чугун (также известный как отбеленный чугун). Белый чугун  является твердым , хрупким и неподдающимся обработке , в то время как серый чугун с более мягким графитом достаточно прочен и поддается механической обработке. Поверхность излома этого сплава имеет белый вид , поэтому его называют белым чугуном. Трудно достаточно быстро охладить толстые отливки, чтобы полностью затвердеть расплав в виде белого чугуна. Однако можно использовать быстрое охлаждение для затвердевания оболочки из белого чугуна, после чего остаток охлаждается медленнее, образуя ядро ​​из серого чугуна. Этот тип литья, иногда называемый «9Отбеленная отливка 0181 ” имеет более твердую внешнюю поверхность и более прочный внутренний стержень. Белый чугун  слишком хрупок для использования во многих конструкционных компонентах, но благодаря хорошей твердости и стойкости к истиранию и относительно низкой стоимости он находит применение там, где желательна износостойкость, например, на зубьях экскаваторов, рабочих колесах и улитках шламовые насосы, вкладыши и подъемные стержни в шаровых мельницах.
  • Ковкий чугун . Ковкий чугун — это белый отожженный чугун. Благодаря термообработке отжигом хрупкая структура  по мере того, как первая отливка преобразуется в  податливую форму . Таким образом, его состав очень похож на состав белого чугуна с несколько большим содержанием углерода и кремния. Ковкий чугун  содержит графитовые узелки, которые не имеют истинно сферической формы, как в ковком чугуне, потому что они образуются в результате термической обработки, а не во время охлаждения из расплава. Ковкий чугун получают сначала отливкой белого чугуна, чтобы избежать чешуек графита, а весь нерастворенный углерод находится в форме карбида железа. Ковкий чугун начинается с отливки из белого чугуна, который затем подвергается термообработке в течение дня или двух при температуре около 950 ° C (1740 ° F), а затем охлаждали в течение дня или двух. В результате углерод в карбиде железа превращается в графитовые конкреции, окруженные ферритной или перлитной матрицей, в зависимости от скорости охлаждения. Медленный процесс позволяет поверхностному натяжению формировать графитовые узелки, а не чешуйки. . Ковкий чугун, как и ковкий чугун, обладает значительной пластичностью и ударной вязкостью благодаря сочетанию в нем шаровидного графита и металлической матрицы с низким содержанием углерода. Подобно ковкому чугуну, ковкий чугун также проявляет высокую стойкость к коррозии, отличную обрабатываемость. хорошая демпфирующая способность и усталостная прочность ковкого чугуна также полезны для долгой службы деталей, подвергающихся высоким нагрузкам. Существует два типа ферритного ковкого железа: черносердечное и белосердечное. Он часто используется для небольших отливок, требующих хорошей прочности на растяжение и способности изгибаться без разрушения (пластичность). Ковкий чугун применяется во многих важных автомобильных деталях, таких как корпуса дифференциалов, корпуса дифференциалов, крышки подшипников, корпуса рулевого механизма. Другое использование включает ручные инструменты, кронштейны, детали машин, электрическую арматуру, фитинги для труб, сельскохозяйственное оборудование и оборудование для горнодобывающей промышленности.
  • Ковкий чугун . Ковкий чугун , также известный как чугун с шаровидным графитом  или чугун с шаровидным графитом, по составу очень похож на серый чугун, но во время затвердевания графит зарождается в виде сферических частиц (узелков) в ковком чугуне, а не в виде чешуек. Ковкий чугун  – это не отдельный материал, а часть группы материалов, которые можно производить с широким диапазоном свойств за счет контроля их микроструктуры. Фаза матрицы, окружающая эти частицы, представляет собой либо перлит, либо феррит, в зависимости от термической обработки. Ковкий чугун  прочен и более ударопрочен, чем серый чугун, поэтому, хотя он дороже из-за легирующих примесей, он может быть предпочтительным экономичным выбором, поскольку более легкая отливка может выполнять ту же функцию. Типичные области применения этого материала включают клапаны, корпуса насосов, коленчатые валы, шестерни и другие компоненты автомобилей и машин благодаря его хорошей обрабатываемости, усталостной прочности и более высокому модулю упругости (по сравнению с серым чугуном), а также в зубчатых передачах для тяжелых условий эксплуатации из-за его высокий предел текучести и износостойкость.

Свойства серого чугуна, белого чугуна и ковкого чугуна момент. В основу материаловедения входит изучение структуры материалов и их связь с их свойствами (механическими, электрическими и т. д.). Как только материаловед узнает об этой корреляции структуры и свойств, он может приступить к изучению относительных характеристик материала в данном приложении. Основными факторами, определяющими структуру материала и, следовательно, его свойства, являются входящие в его состав химические элементы и то, каким образом он был обработан до конечной формы.

Плотность серого чугуна по сравнению с белым чугуном по сравнению с ковким чугуном

Плотность типичного чугуна составляет 7,03 г/см 3 .

Плотность  определяется как масса на единицу объема . Это интенсивное свойство , которое математически определяется как масса, деленная на объем:

ρ = m/V

Другими словами, плотность (ρ) вещества равна общей массе (m) этого вещества. разделить на общий объем (V), занимаемый этим веществом. Стандартная единица СИ – 9.0181 кг на кубический метр  ( кг/м 3 ). Стандартная английская единица измерения — 90 181 фунт массы на кубический фут 90 182 (90 181 фунт/фут 90 216 3   ).

Поскольку плотность (ρ) вещества равна общей массе (m) этого вещества, деленной на общий объем (V), занимаемый этим веществом, очевидно, что плотность вещества сильно зависит от его атомной массы и также на плотность атомного номера (N; атомов/см 3 ),

  • Атомный вес . Атомная масса переносится атомным ядром, которое занимает всего около 10 90 216 -12 90 217 общего объема атома или меньше, но содержит весь положительный заряд и не менее 99,95 % общей массы атома. Поэтому оно определяется массовым числом (количеством протонов и нейтронов).
  • Атомный номер Плотность . Плотность с атомным номером (N; атомов/см 3 ), которая связана с атомными радиусами, представляет собой количество атомов данного типа в единице объема (V; см 3 ) материала. Плотность с атомным номером (N; атомов/см 3 ) чистого материала, имеющего атомную или молекулярную массу (M; грамм/моль) и плотность материала (⍴; грамм/см 3 ) легко определить. вычислено из следующего уравнения с использованием числа Авогадро ( N A  = 6,022 × 10 23 атомов или молекул на моль):
  • Кристаллическая структура. Плотность кристаллического вещества существенно зависит от его кристаллической структуры. Структура ГЦК, наряду со своим гексагональным родственником (ГПУ), имеет наиболее эффективный коэффициент упаковки (74%). Металлы, содержащие структуры FCC, включают аустенит, алюминий, медь, свинец, серебро, золото, никель, платину и торий.

Механические свойства серого чугуна по сравнению с белым чугуном по сравнению с ковким чугуном

Материалы часто выбирают для различных применений, поскольку они имеют желаемое сочетание механических характеристик. Для структурных применений свойства материалов имеют решающее значение, и инженеры должны их учитывать.

Прочность серого чугуна по сравнению с белым чугуном по сравнению с ковким чугуном

В механике материалов прочность материала — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Прочность материалов в основном рассматривает взаимосвязь между внешними нагрузками , приложенными к материалу, и результирующей деформацией или изменением размеров материала. Прочность материала — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации.

Предел прочности при растяжении

Предел прочности при растяжении серого чугуна (ASTM A48 класс 40) составляет 295 МПа.

Предел прочности при растяжении мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет 350 МПа.

Предел прочности на растяжение ковкого чугуна – ASTM A220 – 580 МПа.

Предел прочности на растяжение ковкого чугуна – ASTM A536 – 60-40-18 составляет 414 МПа (>60 тысяч фунтов на кв. дюйм).

Предел прочности при растяжении является максимальным на инженерной кривой напряжения-деформации. Это соответствует максимальному напряжению , которое может выдержать конструкция при растяжении. Предельная прочность на растяжение часто сокращается до «предельной прочности» или даже до «предельной». Если это напряжение применяется и поддерживается, произойдет разрушение. Часто это значение значительно превышает предел текучести (на 50–60 % превышает предел текучести для некоторых типов металлов). Когда пластичный материал достигает предела прочности, он испытывает сужение, когда площадь поперечного сечения локально уменьшается. Кривая напряжение-деформация не содержит более высокого напряжения, чем предел прочности. Несмотря на то, что деформации могут продолжать увеличиваться, напряжение обычно уменьшается после достижения предела прочности. Это интенсивное свойство; поэтому его значение не зависит от размера испытуемого образца. Однако это зависит от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, температура испытательной среды и материала. Предел прочности при растяжении варьируется от 50 МПа для алюминия до 3000 МПа для очень высокопрочных сталей.

Модуль упругости Юнга

Модуль упругости Юнга серого чугуна (ASTM A48 класс 40) составляет 124 ГПа.

Модуль упругости Юнга мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет 175 ГПа.

Модуль упругости Юнга ковкого чугуна – ASTM A220 составляет 172 ГПа.

Модуль упругости Юнга ковкого чугуна – ASTM A536 – 60-40-18 составляет 170 ГПа.

Модуль упругости Юнга представляет собой модуль упругости для напряжения растяжения и сжатия в режиме линейной упругости при одноосной деформации и обычно оценивается испытаниями на растяжение. Вплоть до предельного напряжения тело сможет восстановить свои размеры при снятии нагрузки. Приложенные напряжения заставляют атомы в кристалле перемещаться из своего положения равновесия. Все атомы смещены на одинаковую величину и сохраняют свою относительную геометрию. Когда напряжения снимаются, все атомы возвращаются в исходное положение, и остаточная деформация не возникает. Согласно Закон Гука, напряжение пропорционально деформации (в упругой области), а наклон равен модулю Юнга . Модуль Юнга равен продольному напряжению, деленному на деформацию.

Твердость серого чугуна по сравнению с белым чугуном по сравнению с ковким чугуном

Твердость серого чугуна по Бринеллю (ASTM A48 класс 40) составляет приблизительно 235 МПа.

Твердость по Бринеллю серого чугуна мартенситного белого чугуна (ASTM A532 Class 1 Type A) составляет примерно 600 МПа.

Твердость ковкого чугуна по Бринеллю – ASTM A220 примерно 250 МПа.

Твердость ковкого чугуна по Бринеллю – ASTM A536 – 60-40-18 приблизительно составляет 150–180 МПа.

Измерение твердости по Роквеллу. В отличие от теста Бринелля, тестер Роквелла измеряет глубину проникновения индентора при большой нагрузке (большая нагрузка) по сравнению с проникновением, сделанным при предварительном нагружении (незначительная нагрузка). Незначительная нагрузка устанавливает нулевое положение. Прикладывается основная нагрузка, затем ее снимают, сохраняя при этом второстепенную нагрузку. Разница между глубиной проникновения до и после приложения основной нагрузки используется для расчета Число твердости по Роквеллу . То есть глубина проникновения и твердость обратно пропорциональны. Главным преимуществом твердости по Роквеллу является ее способность отображать значения твердости напрямую . Результатом является безразмерное число, обозначаемое как HRA, HRB, HRC и т. д., где последняя буква соответствует соответствующей шкале Роквелла.

Испытание Rockwell C выполняется с пенетратором Brale ( алмазный конус 120° ) и основной нагрузкой 150 кг.

Тепловые свойства серого чугуна по сравнению с белым чугуном по сравнению с ковким чугуном

Термические свойства  материалов относятся к реакции материалов на изменения их температуры и на приложение тепла. Когда твердое тело поглощает энергию в виде тепла, его температура повышается, а размеры увеличиваются. Но разные материалы реагируют на приложение тепла по-разному .

Теплоемкость, тепловое расширение и теплопроводность являются свойствами, которые часто имеют решающее значение при практическом использовании твердых тел.

Температура плавления серого чугуна, белого чугуна и ковкого чугуна

Температура плавления серого чугуна — сталь ASTM A48 составляет около 1260°C.

Температура плавления мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет около 1260°C.

Температура плавления ковкого чугуна — ASTM A220 — около 1260°C.

Температура плавления ковкого чугуна – ASTM A536 – сталь 60-40-18 составляет около 1150°C.

В общем,  плавление  является фазовым переходом  вещества из твердого состояния в жидкое. точка плавления  вещества — это температура, при которой происходит это фазовое превращение. Точка плавления также определяет состояние, при котором твердое тело и жидкость могут находиться в равновесии.

Теплопроводность серого чугуна по сравнению с белым чугуном по сравнению с ковким чугуном

Теплопроводность серого чугуна – ASTM A48 – 53 Вт/(м·К).

Теплопроводность мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет 15–30 Вт/(м·К).

Теплопроводность ковкого чугуна составляет примерно 40 Вт/(м·К).

Теплопроводность ковкого чугуна составляет 36 Вт/(м.К).

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м·К . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье  применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. В общем случае:

Большинство материалов почти однородны, поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностями в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.

Ссылки:

Материаловедение:

Министерство энергетики США, материаловедение. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
Министерство энергетики США, материаловедение. Справочник по основам Министерства энергетики, том 2 и 2. Январь 1993 г.
Уильям Д. Каллистер, Дэвид Г. Ретвиш. Материаловедение и инженерия: введение, 9-е издание, Wiley; 9 издание (4 декабря 2013 г.), ISBN-13: 978-1118324578.
Эберхарт, Марк (2003). Почему все ломается: понимание мира по тому, как он разваливается. Гармония. ISBN 978-1-4000-4760-4.
Гаскелл, Дэвид Р. (1995). Введение в термодинамику материалов (4-е изд.). Издательство Тейлор и Фрэнсис. ISBN 978-1-56032-992-3.
Гонсалес-Виньяс, В. и Манчини, Х.Л. (2004). Введение в материаловедение. Издательство Принстонского университета. ISBN 978-0-691-07097-1.
Эшби, Майкл; Хью Шерклифф; Дэвид Себон (2007). Материалы: инженерия, наука, обработка и дизайн (1-е изд.). Баттерворт-Хайнеманн. ISBN 978-0-7506-8391-3.
Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Мы надеемся, что эта статья «Серый чугун , белый чугун и ковкий чугун — сравнение — плюсы и минусы » поможет вам. Если это так, дайте нам лайк на боковой панели. Основная цель этого веб-сайта – помочь общественности узнать интересную и важную информацию о материалах и их свойствах.

Белый чугун – отбеленный чугун

На рисунке показана фазовая диаграмма железо–карбид железа (Fe–Fe3C). Процент присутствующего углерода и температура определяют фазу железоуглеродистого сплава, его физические характеристики и механические свойства. Процентное содержание углерода определяет тип ферросплава: железо, сталь или чугун. Источник: wikipedia.org Лэппле, Фолькер – Wärmebehandlung des Stahls Grundlagen. Лицензия: CC BY-SA 4.0

В материаловедении чугуны представляют собой класс ферросплавов с содержанием углерода выше 2,14 мас.% . Как правило, чугуны содержат от 2,14% масс. до 4,0% масс. углерода и от 0,5% масс. до 3% масс. кремния . Сплавы железа с более низким содержанием углерода известны как стали. Разница в том, что чугуны могут использовать эвтектическое затвердевание в бинарной системе железо-углерод. Эвтектика в переводе с греческого означает « легко или хорошо плавится» ». Эвтектическая точка представляет собой состав на фазовой диаграмме, при котором достигается самая низкая температура плавления . Для системы железо-углерод точка эвтектики возникает при составе 4,26 мас.% С и температуре 1148°С .

См. также: Типы чугунов

Белый чугун – Белый чугун

Как уже было сказано, чугуны являются одними из самых сложных сплавов, используемых в промышленности. Из-за более высокого содержания углерода в структуре чугуна, в отличие от стали, присутствует фаза, богатая углеродом. В зависимости от состава, скорости охлаждения и обработки расплава богатая углеродом фаза может затвердевать с образованием стабильной (аустенит-графит) или метастабильной (аустенит-Fe 3 В) эвтектический.

При более низком содержании кремния (менее 1,0 мас. % Si – графитирующий агент) и более высокой скорости охлаждения углерод в чугуне выделяется из расплава в виде цементита метастабильной фазы, Fe 3 C , а не графит. Продукт этого отверждения известен как белый чугун (также известный как отбеленный чугун). Белые чугуны являются твердыми , хрупкими и необрабатываемыми , в то время как серый чугун с более мягким графитом достаточно прочен и поддается механической обработке. Поверхность излома этого сплава имеет белый вид , поэтому его называют белым чугуном. Нелегко охладить толстые отливки достаточно быстро, чтобы расплав полностью затвердел в виде белого чугуна. Однако быстрое охлаждение может привести к затвердеванию оболочки из белого чугуна, после чего остаток охлаждается медленнее, образуя ядро ​​из серого чугуна. Этот тип литья, иногда называемый «охлажденное литье , » имеет более твердую внешнюю поверхность и более жесткое внутреннее ядро.

Белый чугун слишком хрупок для использования во многих конструкционных элементах. Тем не менее, обладая хорошей твердостью, стойкостью к истиранию и относительно низкой стоимостью, он находит применение там, где желательна износостойкость, например, на зубьях экскаваторов, рабочих колесах и улитках вкладышей корпуса шламовых насосов и подъемных стержнях шаровых мельниц.

Например, мартенситный белый чугун Ni-Cr-HC (никель-хром-высокоуглеродистый сплав), ASTM A532, класс 1, тип A, представляет собой мартенситный белый чугун, в котором никель является основным легирующим элементом, поскольку при уровнях От 3 до 5%, он эффективен для подавления превращения аустенитной матрицы в перлит, тем самым обеспечивая образование твердой мартенситной структуры при охлаждении в форме. Этот материал также может называться Ni-Hard 1. Ni-Hard 1 — это устойчивый к истиранию материал, используемый в приложениях, где удар также является проблемой в качестве механизма износа.

Свойства белого чугуна – мартенситный Ni-Cr-HC белый чугун

Свойства материала являются интенсивными свойствами , что означает, что они не зависят от количества массы и могут варьироваться от места к месту внутри системы в любой момент. Материаловедение включает в себя изучение структуры материалов и связывание их с их свойствами (механическими, электрическими и т. д.). Как только материаловед узнает об этой корреляции структура-свойство, он может приступить к изучению относительных характеристик материала в данном приложении. Основными факторами, определяющими структуру материала и, следовательно, его свойства, являются входящие в его состав химические элементы и то, как он был обработан до конечной формы.

Механические свойства белого чугуна – мартенситный Ni-Cr-HC белый чугун

Материалы часто выбирают для различных применений, поскольку они имеют желаемое сочетание механических характеристик. Для конструкционных приложений свойства материалов имеют решающее значение, и инженеры должны их учитывать.

Прочность белого чугуна – мартенситный Ni-Cr-HC белый чугун

В механике материалов прочность материала – это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. прочность материалов учитывает взаимосвязь между внешними нагрузками , приложенными к материалу, и результирующей деформацией или изменением размеров материала. Прочность  материала  – это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации.

Предел прочности при растяжении

Предел прочности при растяжении мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет 350 МПа.

Предел прочности при растяжении — максимум на инженерной кривой напряжения-деформации. Это соответствует максимальному напряжению , выдерживаемому конструкцией при растяжении. Предельная прочность на растяжение часто сокращается до «предельной прочности» или «предела прочности». Если это напряжение применяется и поддерживается, в результате произойдет перелом. Часто это значение значительно превышает предел текучести (на 50–60 % превышает предел текучести для некоторых типов металлов). Когда пластичный материал достигает предела прочности, он испытывает сужение, когда площадь поперечного сечения локально уменьшается. Кривая напряжение-деформация не содержит более высокого напряжения, чем предел прочности. Несмотря на то, что деформации могут продолжать увеличиваться, напряжение обычно уменьшается после достижения предела прочности. Это интенсивное свойство; следовательно, его значение не зависит от размеров испытуемого образца. Однако это зависит от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, температура испытательной среды и материала. Предел прочности при растяжении варьируется от 50 МПа для алюминия до 3000 МПа для очень высокопрочной стали.

Модуль упругости Юнга

Модуль упругости Юнга мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет 175 ГПа.

Модуль упругости Юнга представляет собой модуль упругости при растяжении и сжатии в режиме линейной упругости при одноосной деформации и обычно оценивается испытаниями на растяжение. Вплоть до предельного напряжения тело сможет восстановить свои размеры при снятии нагрузки. Приложенные напряжения заставляют атомы в кристалле перемещаться из своего положения равновесия, и все атомы смещаются на одинаковую величину и сохраняют свою относительную геометрию. Когда напряжения снимаются, все атомы возвращаются в исходное положение, и никакой остаточной деформации не происходит. Согласно Закон Гука, напряжение пропорционально деформации (в упругой области), а наклон равен модулю Юнга . Модуль Юнга равен продольному напряжению, деленному на деформацию.

Твердость белого чугуна – мартенситный белый чугун Ni-Cr-HC

Твердость по Бринеллю серого чугуна мартенситного белого чугуна (ASTM A532 класс 1 тип A) составляет приблизительно 600 МПа.

В материаловедении твердость — это способность выдерживать поверхностная вмятина ( локализованная пластическая деформация ) и царапание . Твердость , вероятно, является наиболее плохо определенным свойством материала, поскольку она может указывать на устойчивость к царапанию, истиранию, вдавливанию или даже сопротивляемость формованию или локальной пластической деформации. Твердость важна с инженерной точки зрения, потому что сопротивление износу при трении или эрозии паром, маслом и водой обычно увеличивается с увеличением твердости.

Испытание на твердость по Бринеллю является одним из испытаний на твердость при вдавливании, разработанных для определения твердости. В испытаниях по Бринеллю твердый сферический индентор вдавливается под определенной нагрузкой в ​​поверхность испытуемого металла. В типичном испытании используется шарик из закаленной стали диаметром 10 мм (0,39 дюйма) в качестве индентора с усилием 3000 кгс (29,42 кН; 6614 фунтов силы). Нагрузка поддерживается постоянной в течение заданного времени (от 10 до 30 с). Для более мягких материалов используется меньшее усилие; для более твердых материалов – 9Шарик из карбида вольфрама 0181 заменяет стальной шарик.

Тест дает численные результаты для количественного определения твердости материала, которая выражается числом твердости по Бринеллю – HB . Число твердости по Бринеллю обозначается наиболее часто используемыми стандартами испытаний (ASTM E10-14[2] и ISO 6506–1:2005) как HBW (H по твердости, B по Бринеллю и W по материалу индентора, вольфрамовому сплаву). (вольфрам) карбид). В прежних стандартах HB или HBS использовались для обозначения измерений, выполненных стальными инденторами.

Число твердости по Бринеллю (HB) представляет собой нагрузку, деленную на площадь поверхности вдавливания. Диаметр вдавления измеряют с помощью микроскопа с наложенной шкалой. Число твердости по Бринеллю вычисляется по уравнению:

Широко используются различные методы испытаний (например, Бринелля, Кнупа, Виккерса и Роквелла). В некоторых таблицах коррелируются значения твердости по различным методам испытаний, где корреляция применима. Во всех шкалах высокое число твердости соответствует твердому металлу.

Тепловые свойства белого чугуна – мартенситный Ni-Cr-HC белый чугун

Термические свойства материалов относятся к реакции материалов на изменения их температуры и приложение тепла. Когда твердое тело поглощает энергию в виде тепла, его температура повышается, а его размеры увеличиваются. Но разные материалы реагируют на приложение тепла по-разному .

Теплоемкость, тепловое расширение и теплопроводность часто имеют решающее значение при практическом использовании твердых тел.

Температура плавления белого чугуна – мартенситный белый чугун Ni-Cr-HC

Температура плавления стали мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет около 1260°C.

В общем, плавление  является фазовым переходом вещества из твердой фазы в жидкую. Точка плавления вещества — это температура, при которой происходит это фазовое превращение. Точка плавления 90 181  90 182 также определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии.

Теплопроводность белого чугуна – мартенситный белый чугун Ni-Cr-HC

Теплопроводность мартенситного белого чугуна (ASTM A532, класс 1, тип A) составляет 15–30 Вт/(м·K).

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в  Вт/м·K . Он измеряет способность вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применяется ко всем веществам, независимо от их состояния (твердое, жидкое или газообразное). Поэтому он также определен для жидкостей и газов.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры, а для паров она также зависит от давления. В целом:

Большинство материалов практически однородны. Поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностями в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.

Ссылки:

Материаловедение:

Министерство энергетики США, Материаловедение. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
Министерство энергетики США, материаловедение. Справочник по основам Министерства энергетики, том 2 и 2. Январь 1993 г.
Уильям Д. Каллистер, Дэвид Г. Ретвиш. Материаловедение и инженерия: введение, 9-е издание, Wiley; 9 издание (4 декабря 2013 г.), ISBN-13: 978-1118324578.
Эберхарт, Марк (2003). Почему все ломается: понимание мира по тому, как он разваливается. Гармония. ISBN 978-1-4000-4760-4.
Гаскелл, Дэвид Р. (1995). Введение в термодинамику материалов (4-е изд.). Издательство Тейлор и Фрэнсис. ISBN 978-1-56032-992-3.
Гонсалес-Виньяс, В. и Манчини, Х.Л. (2004). Введение в материаловедение. Издательство Принстонского университета. ISBN 978-0-691-07097-1.
Эшби, Майкл; Хью Шерклифф; Дэвид Себон (2007). Материалы: инженерия, наука, обработка и дизайн (1-е изд.). Баттерворт-Хайнеманн. ISBN 978-0-7506-8391-3.
Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд. , Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Разница между стальным литьем и чугуном

Самая большая разница между чугуном и стальным литьем заключается в их химическом составе. В технике принято считать, что в железе выше 2% содержания углерода, а в стали ниже этого значения. Из-за разного состава свойства и применение также различаются. Литая сталь против чугуна, что выбрать? В этой статье мы сначала разберем типы чугуна и типы литейной стали, а затем выясним их различия.

Различные типы чугуна

Чугун и литая сталь являются популярными материалами, используемыми в различных процессах литья, таких как литье под давлением , литье в песчаные формы, литье по выплавляемым моделям и т. д.

1) Серый чугун. Содержание углерода высокое (2,7% ~ 4,0%), углерод в основном существует в виде чешуйчатого графита, излом серый, для краткости называемый серым чугуном, а температура плавления низкая (1145 ~ 1250 ℃), малая усадка при затвердевании, прочность на сжатие и твердость близка к углеродистой стали, хорошая амортизация. Он используется для изготовления рабочего стола станка, цилиндров и других конструкционных деталей.

2)Белый чугун. Содержание углерода и кремния низкое, углерод в основном находится в форме цементита, излом серебристо-белый. Большая усадка при затвердевании, легко образуются усадочные полости и трещины. Обладает высокой твердостью, хрупкостью и не выдерживает ударной нагрузки. В основном используется как заготовка из ковкого чугуна и для изготовления износостойких деталей.

3) Ковкий чугун. Получаемый из отожженного белого чугуна, графит распространяется в хлопьевидной форме, которую для краткости называют ковким чугуном. Обладает однородной микроструктурой и свойствами, износостойкостью, хорошей пластичностью и ударной вязкостью. Он используется для изготовления деталей сложной формы и может выдерживать большие динамические нагрузки.

4) Ковкий чугун. Серый чугун получают путем сфероидизации расплавленного железа, а осажденный графит имеет сферическую форму, которую для краткости называют шаровидным чугуном. Он имеет более высокую прочность, лучшую ударную вязкость и пластичность, чем обычный серый чугун. Он используется для производства двигателей внутреннего сгорания, автозапчастей и сельскохозяйственной техники.

5) Чугун с уплотненным (вермикулярным) графитом. Серый чугун получают вермикулярной обработкой, а осажденный графит — вермикулярной. Механические свойства аналогичны свойствам чугуна с шаровидным графитом, а литейные свойства находятся между серым чугуном и чугуном с шаровидным графитом. Детали, используемые для изготовления автомобилей.

6) Легированный чугун. Обыкновенный чугун получают добавлением соответствующего количества легирующих элементов (таких как кремний, марганец, фосфор, никель, хром, молибден, медь, алюминий, бор, ванадий, олово и др.). Элементы сплава изменяют матричную структуру чугуна, поэтому он имеет соответствующие характеристики жаростойкости, износостойкости, коррозионной стойкости, низкотемпературной стойкости или немагнетизма. Он используется для изготовления деталей горнодобывающего, химического оборудования, инструментов и счетчиков.

Различные типы стального литья

Литая сталь — это сталь, используемая для изготовления отливок. Литейный сплав. Литая сталь делится на литейную углеродистую сталь, низколегированную литейную сталь и специальную литейную сталь.

1)Литье из углеродистой стали. Литая сталь с углеродом в качестве основного легирующего элемента и содержит небольшое количество других элементов. Литая низкоуглеродистая сталь с содержанием углерода менее 0,2%, литая среднеуглеродистая сталь с содержанием углерода 0,2-0,5% и литая высокоуглеродистая сталь с содержанием углерода более 0,5%. С увеличением содержания углерода повышается прочность и твердость литой углеродистой стали. Литая углеродистая сталь обладает высокой прочностью, пластичностью и ударной вязкостью, а также низкой стоимостью. Он используется в тяжелом машиностроении для изготовления деталей, несущих большую нагрузку, таких как рама прокатного стана, основание гидравлического пресса и т. д.; Он используется для изготовления деталей с большими нагрузками и ударами на железнодорожном транспорте, таких как надрессорная балка, боковая рама, колесо и сцепка.

2) Низколегированная сталь. Литая сталь, содержащая марганец, хром, медь и другие легирующие элементы. Общее количество легирующих элементов обычно составляет менее 5%, что обеспечивает высокую ударную вязкость и позволяет получить лучшие механические свойства за счет термической обработки. Литая низколегированная сталь имеет лучшие эксплуатационные характеристики, чем углеродистая сталь, что может снизить качество деталей и увеличить срок службы.

3) Специальная литая сталь. Существует много видов легированной литой стали, рафинированной для удовлетворения особых потребностей. Обычно он содержит один или несколько легирующих элементов с высоким содержанием для получения особых свойств.

Литая сталь и чугун — разница между стальным литьем и чугуном

Хотя оба они представляют собой сплавы железа с углеродом, из-за разного процентного содержания таких химических элементов, как углерод, кремний, марганец, фосфор и сера, после кристаллизации они имеют разную металлографическую структуру, демонстрируя множество различий в механических свойствах и технологических свойствах.

 

Например, в литом состоянии удлинение, уменьшение площади и ударная вязкость чугуна ниже, чем у литой стали. Прочность на сжатие и амортизация чугуна лучше, чем у литой стали; Серый чугун обладает лучшей жидкотекучестью, чем литая сталь, и больше подходит для литья тонкостенных отливок сложной структуры; При испытании на изгиб чугун подвергается хрупкому разрушению, а литая сталь – деформации изгиба. Поэтому они подходят для литья деталей с различными требованиями.

 

Как определить разницу между чугуном и стальным литьем в реальных условиях производства и эксплуатации:

1. Яркость. Литая сталь яркая. Чугун темный и серый. Серый чугун в чугуне отличается от чугуна с шаровидным графитом. Узловатое железо ярче серого.

2. Частицы. Литая сталь очень плотная, и частицы обычно невидимы невооруженным глазом. Частицы можно увидеть как в сером чугуне, так и в чугуне с шаровидным графитом, причем частицы серого чугуна крупнее.

3. Звук.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *