Цинк формула простого вещества: Формула цинка в химии

alexxlab | 13.08.1999 | 0 | Разное

Содержание

Цинк – это… Что такое Цинк?

Внешний вид простого вещества

Хрупкий металл голубовато-белого цвета
Свойства атома
Имя, символ, номер

Цинк / Zincum (Zn), 30

Атомная масса
(молярная масса)

65,39 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d10 4s2

Радиус атома

138 пм

Химические свойства
Ковалентный радиус

125 пм

Радиус иона

(+2e) 74 пм

Электроотрицательность

1,65 (шкала Полинга)

Электродный потенциал

-0,76 В

Степени окисления

=+2

Энергия ионизации
(первый электрон)

905,8(9,39) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

7,133 г/см³

Температура плавления

419,6 °C

Температура кипения

906,2 °C

Теплота плавления

7,28 кДж/моль

Теплота испарения

114,8 кДж/моль

Молярная теплоёмкость

25,4[1] Дж/(K·моль)

Молярный объём

9,2 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

гексагональная

Параметры решётки

a=2,6648 c=4,9468 Å

Отношение c/a

1,856

Температура Дебая

234 K

Прочие характеристики
Теплопроводность

(300 K) 116 Вт/(м·К)

Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк (CAS-номер: 7440-66-6) при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

История

Сплав цинка с медью — латунь — был известен ещё в Древней Греции, Древнем Египте, Индии (VII в.), Китае (XI в.). Долгое время не удавалось выделить чистый цинк. В 1746 А. С. Маргграф разработал способ получения чистого цинка путём прокаливания смеси его окиси с углём без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров цинка в холодильниках. В промышленном масштабе выплавка цинка началась в XVII в.

Происхождение названия

Слово «цинк» впервые встречается в трудах Парацельса, который назвал этот металл словом «zincum» или «zinken» в книге

Liber Mineralium II[2]. Это слово, вероятно, восходит к нем. Zinke, означающее «зубец» (кристаллиты металлического цинка похожи на иглы)[3].

Нахождение в природе

Известно 66 минералов цинка, в частности цинкит, сфалерит, виллемит, каламин, смитсонит, франклинит. Наиболее распространенный минерал — сфалерит, или цинковая обманка. Основной компонент минерала — сульфид цинка ZnS, а разнообразные примеси придают этому веществу всевозможные цвета. Из-за трудности определения этого минерала его называют обманкой (др.-греч. σφαλερός — обманчивый). Цинковую обманку считают первичным минералом, из которого образовались другие минералы элемента № 30: смитсонит ZnCO3, цинкит ZnO, каламин 2ZnO · SiO2 · Н2O. На Алтае нередко можно встретить полосатую «бурундучную» руду — смесь цинковой обманки и бурого шпата. Кусок такой руды издали действительно похож на затаившегося полосатого зверька.

Среднее содержание цинка в земной коре — 8,3·10-3%, в основных извержённых породах его несколько больше (1,3·10-2%), чем в кислых (6·10-3%). Цинк — энергичный водный мигрант, особенно характерна его миграция в термальных водах вместе со свинцом. Из этих вод осаждаются сульфиды цинка, имеющие важное промышленное значение. Цинк также энергично мигрирует в поверхностных и подземных водах, главным осадителем для него является сероводород, меньшую роль играет сорбция глинами и другие процессы.

Цинк — важный биогенный элемент, в живых организмах содержится в среднем 5·10-4% цинка. Но есть и исключения — так называемые организмы-концентраторы (например, некоторые фиалки).

Месторождения

Месторождения цинка известны в Австралии, Боливии[4]. В России крупнейшим производителем свинцово-цинковых концентратов является ОАО “ГМК Дальполиметалл”[5][неавторитетный источник? 156 дней

].

Получение

Цинк в природе как самородный металл не встречается. Цинк добывают из полиметаллических руд, содержащих 1-4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50-60 % Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты. Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в оксид ZnO; образующийся при этом сернистый газ SO2 расходуется на производство серной кислоты. Чистый цинк из оксида ZnO получают двумя способами. По пирометаллургическому (дистилляционному) способу, существующему издавна, обожженный концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200—1300 °C: ZnO + С = Zn + CO. Образующиеся при этом пары металла конденсируют и разливают в изложницы. Сначала восстановление проводили только в ретортах из обожженной глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда, затем — шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьем. Производительность постепенно повышалась, но цинк содержал до 3 % примесей, в том числе ценный кадмий. Дистилляционный цинк очищают ликвацией (то есть отстаиванием жидкого металла от железа и части свинца при 500 °C), достигая чистоты 98,7 %. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995 % и позволяет извлекать кадмий.

Основной способ получения цинка — электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95 %, полнота извлечения его из концентрата (при учете переработки отходов) 93-94 %. Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag; иногда также In, Ga, Ge, Tl.

Физические свойства

В чистом виде — довольно пластичный серебристо-белый металл. Обладает гексагональной решеткой с параметрами а = 0,26649 нм, с = 0,49431 нм, пространственная группа P 63/mmc, Z = 2. При комнатной температуре хрупок, при сгибании пластинки слышен треск от трения кристаллитов (обычно сильнее, чем «крик олова»). При 100—150 °C цинк пластичен. Примеси, даже незначительные, резко увеличивают хрупкость цинка. Собственная концентрация носителей заряда в цинке 13,1·1028 м−3

Химические свойства

Типичный пример металла, образующего амфотерные соединения. Амфотерными являются соединения цинка ZnO и Zn(OH)2. Стандартный электродный потенциал −0,76 В, в ряду стандартных потенциалов расположен до железа.

На воздухе цинк покрывается тонкой пленкой оксида ZnO. При сильном нагревании сгорает с образованием амфотерного белого оксида ZnO:

Оксид цинка реагирует как с растворами кислот:

так и щелочами:

Цинк обычной чистоты активно реагирует с растворами кислот:

и растворами щелочей:

образуя гидроксоцинкаты. С растворами кислот и щелочей очень чистый цинк не реагирует. Взаимодействие начинается при добавлении нескольких капель раствора сульфата меди CuSO4.

При нагревании цинк реагирует с галогенами с образованием галогенидов ZnHal2. С фосфором цинк образует фосфиды Zn3P2 и ZnP2. С серой и её аналогами — селеном и теллуром — различные халькогениды, ZnS, ZnSe, ZnSe2 и ZnTe.

С водородом, азотом, углеродом, кремнием и бором цинк непосредственно не реагирует. Нитрид Zn

3N2 получают реакцией цинка с аммиаком при 550—600 °C.

В водных растворах ионы цинка Zn2+ образуют аквакомплексы [Zn(H2O)4]2+ и [Zn(H2O)6]2+.

Применение

Чистый металлический цинк используется для восстановления благородных металлов, добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота (и других металлов) из чернового свинца в виде интерметаллидов цинка с серебром и золотом (так называемой «серебристой пены»), обрабатываемых затем обычными методами аффинажа.

Применяется для защиты стали от коррозии (оцинковка поверхностей, не подверженных механическим воздействиям, или металлизация — для мостов, емкостей, металлоконструкций).

Цинк используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах, например: марганцево-цинковый элемент, серебряно-цинковый аккумулятор (ЭДС 1,85 В, 150 Вт·ч/кг, 650 Вт·ч/дм³, малое сопротивление и колоссальные разрядные токи), ртутно-цинковый элемент (ЭДС 1,35 В, 135 Вт·ч/кг, 550—650 Вт·ч/дм³), диоксисульфатно-ртутный элемент, йодатно-цинковый элемент, медно-окисный гальванический элемент (ЭДС 0,7—1,6 Вольт, 84—127 Вт·ч/кг, 410—570 Вт·ч/дм³), хром-цинковый элемент, цинк-хлоросеребряный элемент, никель-цинковый аккумулятор (ЭДС 1,82 Вольт, 95—118 Вт·ч/кг, 230—295 Вт·ч/дм³), свинцово-цинковый элемент, цинк-хлорный аккумулятор, цинк-бромный аккумулятор и др.

Очень важна роль цинка в цинк-воздушных аккумуляторах, которые отличаются весьма высокой удельной энергоёмкостью. Они перспективны для пуска двигателей (свинцовый аккумулятор — 55 Вт·ч/кг, цинк-воздух — 220—300 Вт·ч/кг) и для электромобилей (пробег до 900 км).

Цинк вводится в состав многих твёрдых припоев для снижения их температуры плавления.

Окись цинка широко используется в медицине как антисептическое и противовоспалительное средство. Также окись цинка используется для производства краски — цинковых белил.

Цинк — важный компонент латуни. Сплавы цинка с алюминием и магнием (ЦАМ, ZAMAK) благодаря сравнительно высоким механическим и очень высоким литейным качествам очень широко используются в машиностроении для точного литья. В частности, в оружейном деле из сплава ZAMAK (-3, -5) иногда отливают затворы пистолетов, особенно рассчитанных на использование слабых или травматических патронов. Также из цинковых сплавов отливают всевозможную техническую фурнитуру, вроде автомобильных ручек, корпусы карбюраторов, масштабные модели и всевозможные миниатюры, а также любые другие изделия, требующие точного литья при приемлемой прочности.

Хлорид цинка — важный флюс для пайки металлов и компонент при производстве фибры.

Сульфид цинка используется для синтеза люминофоров временного действия и разного рода люминесцентов на базе смеси ZnS и CdS. Люминофоры на базе сульфидов цинка и кадмия, также применяются в электронной промышленности для изготовления светящихся гибких панелей и экранов в качестве электролюминофоров и составов с коротким временем высвечивания.

Теллурид, селенид, фосфид, сульфид цинка — широко применяемые полупроводники.

Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах.

На разные применения цинка приходится:

  • цинкование — 45-60 %
  • медицина (оксид цинка как антисептик) — 10 %
  • производство сплавов — 10 %
  • производство резиновых шин — 10 %
  • масляные краски — 10 %

Мировое производство

Производство цинка в мире за 2009 год составило 11,277 млн т, что на 3,2 % меньше чем в 2008 г.[6]

Список стран по производству цинка в 2006 году (на основе «Геологического обзора Соединенных Штатов»)[7]:

Список стран по производству цинка
МестоСтранаПроизводительность (тонн)
Весь мир10,000,000
1 Китай2,600,000[8]
2 Австралия1,380,000
3 Перу1,201,794
4 США727,000
5 Канада710,000
6 Мексика480,000[8]
7Ирландия425,700
8 Индия420,800
9 Казахстан400,000[8]
10 Швеция192,400
11 Россия190,000 [8]
12 Бразилия176,000[8]
13 Боливия175,000[8]
14 Польша135,600
15 Иран130,000[8]
16 Марокко73,000[8]
17 Намибия68,000[8]
18 Северная Корея67,000[8]
19 Турция50,000[8]
20 Вьетнам48,000[8]
21 Таиланд45,000[8]
22 Гондурас37,646
23 Финляндия35,700
24 ЮАР34,444
25 Чили31,725
26 Аргентина30,300[8]
27 Болгария17,300[8]
28 Румыния9,600[8]
29 Япония7,169
30 Алжир5,000[8]
31 Саудовская Аравия1,500[8]
32 Грузия400[8]
33 Босния и Герцеговина300[8]
34 Мьянма100[8]

Биологическая роль

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 11 мая 2011.

Цинк:

  • необходим для продукции спермы и мужских гормонов[9]
  • необходим для метаболизма витамина E.
  • важен для нормальной деятельности простаты.
  • участвует в синтезе разных анаболических гормонов в организме, включая инсулин, тестостерон и гормон роста[9].
  • необходим для расщепления алкоголя в организме, так как входит в состав алкогольдегидрогеназы.[9]

Содержание в продуктах питания

Среди продуктов, употребляемых в пищу человеком, наибольшее содержание цинка — в устрицах. Однако в тыквенных семечках содержится всего на 26 % меньше цинка, чем в устрицах. Например, съев 45 граммов устриц, человек получит столько же цинка, сколько содержится в 60 граммах тыквенных семечек. Практически во всех хлебных злаках цинк содержится в достаточном количестве и в легкоусваиваемой форме. Поэтому, биологическая потребность организма человека в цинке обычно полностью обеспечивается ежедневным употреблением в пищу цельнозерновых продуктов (нерафинированного зерна).

Содержание цинка:

  • ~0,25 мг/кг — яблоки, апельсины, лимоны, инжир, грейпфруты, все мясистые фрукты, зелёные овощи, минеральная вода.
  • ~0,31 мг/кг — мёд.
  • ~2—8 мг/кг — малина, чёрная смородина, финики, большая часть овощей, большинство морских рыб, постная говядина, молоко, очищенный рис, свёкла обычная и сахарная, спаржа, сельдерей, помидоры, картофель, редька, хлеб.
  • ~8—20 мг/кг — некоторые зерновые, дрожжи, лук, чеснок, неочищенный рис, яйца.
  • ~20—50 мг/кг — овсяная и ячменная мука, какао, патока, яичный желток, мясо кроликов и цыплят, орехи, горох, фасоль, чечевица, зелёный чай, сушёные дрожжи, кальмары.
  • ~30—85 мг/кг — говяжья печень, некоторые виды рыб.
  • ~130—202 мг/кг — отруби из пшеницы, проросшие зёрна пшеницы, тыквенные семечки, семечки подсолнечника.

Основные проявления дефицита цинка

Недостаток цинка в организме приводит к ряду расстройств. Среди них раздражительность, утомляемость, потеря памяти, депрессивные состояния, снижение остроты зрения, уменьшение массы тела, накопление в организме некоторых элементов (железа, меди, кадмия, свинца), снижение уровня инсулина, аллергические заболевания, анемия и другие [10].

Для оценки содержания цинка в организме определяют его содержание в волосах, сыворотке и цельной крови.

Токсичность

При длительном поступлении в организм в больших количествах все соли цинка, особенно сульфаты и хлориды, могут вызывать отравление из-за токсичности ионов Zn2+. 1 грамма сульфата цинка ZnSO4 достаточно, чтобы вызвать тяжелое отравление. В быту хлориды, сульфаты и оксид цинка могут образовываться при хранении пищевых продуктов в цинковой и оцинкованной посуде.

Отравление ZnSO4 приводит к малокровию, задержке роста, бесплодию.

Отравление оксидом цинка происходит при вдыхании его паров. Оно проявляется в появлении сладковатого вкуса во рту, снижении или полной потере аппетита, сильной жажде. Появляется усталость, чувство разбитости, стеснение и давящая боль в груди, сонливость, сухой кашель.

См. также

Ссылки

Примечания

  1. Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Большая Российская энциклопедия, 1999. — Т. 5. — С. 378.
  2. Hoover, Herbert Clark (2003), «Georgius Agricola de Re Metallica», Kessinger Publishing, с. 409, ISBN 0766131971 
  3. Gerhartz, Wolfgang (1996), «Ullmann’s Encyclopedia of Industrial Chemistry» (5th ed.), VHC, с. 509, ISBN 3527201009 
  4. Крупнейшие мономинеральные месторождения (рудные районы, бассейны)
  5. Дальполиметалл — Wiki – Dalas
  6. Мир сократил производство и потребление цинка, а Китай — увеличил
  7. Minerals Yearbook 2006
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Ориентировочные данные
  9. 1 2 3 А. В. Скальный. Цинк и здоровье человека. — РИК ГОУ ОГУ, 2003.
  10. Сайт «Центра биотической медицины»
  Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Центр лабораторных технологий АБВ – Цинк

Метод неинвазивной оценки элементного гомеостаза, выявление дисбаланса минерального обмена организма. Исследование позволяет выявить группы риска по развитию интоксикаций тяжелыми металлами и своевременно выявить причину патологических процессов, обусловленных как дефицитом так и избытком эссенциальных (жизненно необходимых для организма) микроэлементов (МЭ). В настоящее время в связи с изменением характера питания человека и усиливающимся загрязнением окружающей среды возрастает значение определения количества МЭ в организме человека для проведения своевременной коррекционной терапии. Для диагностики отклонений в функциональном состоянии отдельных органов, тканей, систем и всего организма в целом, связанных с недостатком или избытком, проводят определение концентраций отдельных МЭ и их комплексов. Определение МЭ также позволяет выявить воздействие на организм неблагоприятных факторов внешней среды, чтобы на ранней стадии провести профилактическую коррекцию. Согласно современным представлениям, элементный состав волос лучше других биоиндикаторных сред отражает воздействие на человека как повышенных концентраций комплекса химических элементов, так и обеспечение физиологических потребностей в них.

Рекомендуется прекратить использование лечебных шампуней (против перхоти, содержащих селен или цинк) за 1-2 недели до сдачи волос на исследование. Волосы должны быть чистыми, без лака, геля, жидкости для укладки и пр. Химическая завивка, окраска и обесцвечивание не являются противопоказанием для проведения исследования. Прядь волос длиной до 3-5 см (непосредственно от корня волос) состригают в 4-5 местах на затылке, ближе к шее и далее объединяют в пучок толщиной 2-3 мм. Коротких волос необходимо количество, способное заполнить чайную ложку. При необходимости возможен отбор волос с других частей тела. Если при взятии биоматериала используют перчатки, то они должны быть не опудренные и не содержать латекса (напр., нитриловые). Волосы вложить в бумажный конверт, отметив корневой конец пряди (подписать на конверте «корень»). Конверт запечатать.

анализ и оценка обеспечения организма микроэлементами; проживание и работа в неблагоприятных условиях; частые простудные заболевания; аллергические заболевания; постоянная усталость и раздражительность; косметические дефекты – быстро стареющая кожа, тусклые выпадающие волосы, ломкие ногти.

водорода, кислорода, галогенов, серы, азота, фосфора, углерода, кремния – HIMI4KA

Водород

Химический элемент водород занимает особое положение в периодической системе Д.И. Менделеева. По числу валентных электронов, способности образовывать в растворах гидратный ион H+ он сходен с щелочными металлами, и его следует поместить в I группу. По числу электронов, необходимых для завершения внешней электронной оболочки, значению энергии ионизации, способности проявлять отрицательную степень окисления, малому атомному радиусу водород следует поместить в VII группу периодической системы. Таким образом, размещение водорода в той или иной группе периодической системы в значительной мере условно, но в большинстве случаев его помещают в VII группу.

Электронная формула водорода 1s1. Единственный валентный электрон находится непосредственно в сфере действия атомного ядра. Простота электронной конфигурации водорода отнюдь не означает, что химические свойства этого элемента просты. Напротив, химия водорода во многом отличается от химии других элементов. Водород в своих соединениях способен проявлять степени окисления +1 и –1.

Существует большое количество методов получения водорода. В лаборатории его получают взаимодействием некоторых металлов с кислотами, например:

Водород можно получить электролизом водных растворов серной кислоты или щелочей. При этом происходит процесс выделения водорода на катоде и кислорода на аноде.

В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива и коксового газа.

Простое вещество водород, H2, представляет собой горючий газ без цвета и запаха. Температура кипения –252,8 °C. Водород в 14,5 раза легче воздуха, мало растворим в воде.

Молекула водорода устойчива, обладает большой прочностью. Из-за высокой энергии диссоциации распад молекул H2 на атомы происходит в заметной степени лишь при температуре выше 2000 °C.

Для водорода возможны положительная и отрицательная степени окисления, поэтому в химических реакциях водород может проявлять как окислительные, так и восстановительные свойства. В тех случаях, когда водород выступает в качестве окислителя, он ведёт себя подобно галогенам, образуя аналогичные галогенидам гидриды (гидридами называют группу химических соединений водорода с металлами и менее электроотрицательными, чем он, элементами):

По окислительной активности водород существенно уступает галогенам. Поэтому ионный характер проявляют лишь гидриды щелочных и щёлочноземельных металлов. Ионные, а также комплексные гидриды, например, являются сильными восстановителями. Их широко используют в химических синтезах.

В большинстве реакций водород ведёт себя как восстановитель. При нормальных условиях водород не взаимодействует с кислородом, однако при поджигании реакция протекает со взрывом:

Смесь двух объёмов водорода с одним объёмом кислорода называют гремучим газом. При контролируемом горении происходит выделение большого количества тепла, и температура водородно-кислородного пламени достигает 3000 °С.

Реакция с галогенами протекает в зависимости от природы галогена по-разному:

С фтором такая реакция идёт со взрывом даже при низких температурах. С хлором на свету реакция также протекает со взрывом. С бромом реакция идёт значительно медленнее, а с йодом не доходит до конца даже при высокой температуре. Механизм этих реакций радикальный.

При повышенной температуре водород взаимодействует с элементами VI группы — серой, селеном, теллуром, например:

Очень важной является реакция водорода с азотом. Эта реакция обратима. Для смещения равновесия в сторону образования аммиака используют повышенное давление. В промышленности данный процесс осуществляют при температуре 450—500 °С, давлении 30 МПа, в присутствии различных катализаторов:

Водород восстанавливает многие металлы из оксидов, например:

Данную реакцию используют для получения некоторых чистых металлов.

Огромную роль играют реакции гидрирования органических соединений, которые широко используют как в лабораторной практике, так и в промышленном органическом синтезе.

Сокращение природных источников углеводородного сырья, загрязнение окружающей среды продуктами сгорания топлива повышают интерес к водороду как к экологически чистому топливу. Вероятно, водород будет играть важную роль в энергетике будущего.

В настоящее время водород широко применяют в промышленности для синтеза аммиака, метанола, гидрогенизации твёрдого и жидкого топлива, в органическом синтезе, для сварки и резки металлов и т. д.

Вода H2O, оксид водорода, является важнейшим химическим соединением. При нормальных условиях вода — бесцветная жидкость, без запаха и вкуса. Вода — самое распространённое вещество на поверхности Земли. В человеческом организме содержится 63—68 % воды.

Вода является стабильным соединением, её разложение на кислород и водород происходит лишь под действием постоянного электрического тока или при температуре около 2000 °C:

Вода непосредственно взаимодействует с металлами, стоящими в ряду стандартных электронных потенциалов до водорода. Продуктами реакции в зависимости от природы металла могут быть соответствующие гидроксиды и оксиды. Скорость реакции в зависимости от природы металла также изменяется в широких пределах. Так, натрий вступает в реакцию с водой уже при комнатной температуре, реакция сопровождается выделением большого количества тепла; железо реагирует с водой при температуре 800 °С.

Вода может вступать в реакцию со многими неметаллами, так, при обычных условиях вода обратимо взаимодействует с хлором:

При повышенной температуре вода взаимодействует с углем с образованием так называемого синтез-газа — смеси оксида углерода (II) и водорода:

При обычных условиях вода реагирует со многими основными и кислотными оксидами с образованием оснований и кислот соответственно:

Реакция идёт до конца, если соответствующее основание или кислота растворимы в воде.

Кислород

Химический элемент кислород расположен во 2-м периоде VIA подгруппе. Его электронная формула 1s22s22p4. Простое вещество кислород — газ без цвета и запаха, мало растворим в воде. Сильный окислитель. Его характерные химические свойства:

Реакции простых и сложных веществ с кислородом часто сопровождаются выделением тепла и света. Такие реакции называют реакциями горения.

Кислород широко используется практически во всех областях химической промышленности: для производства чугуна и стали, производства азотной и серной кислоты. Огромное количество кислорода потребляется в процессах тепловой энергетики.

В последние годы обострилась проблема сохранения запасов кислорода в атмосфере. До настоящего времени единственным источником, пополняющим запасы атмосферного кислорода, является жизнедеятельность зелёных растений.

Галогены

В VIIА группе находятся фтор, хлор, бром, йод и астат. Эти элементы называют также галогенами (в переводе — рождающие соли).

На внешнем энергетическом уровне всех этих элементов находятся 7 электронов (конфигурации ns2np5), наиболее характерные степени окисления –1, +1, +5 и +7 (кроме фтора).

Атомы всех галогенов образуют простые вещества состава Hal2.

Галогены являются типичными неметаллами. При переходе от фтора к астату происходит увеличение радиуса атома, неметаллические свойства падают, происходит уменьшение окислительных и увеличение восстановительных свойств.

Физические свойства галогенов приведены в таблице 8.

В химическом отношении галогены весьма активны. Их реакционная способность убывает с увеличением порядкового номера. Некоторые характерные для них реакции приведены ниже на примере хлора:

Водородные соединения галогенов — галогеноводороды имеют общую формулу HHal. Их водные растворы являются кислотами, сила которых возрастает от HF к HI.

Галогенводородные кислоты (за исключением HF) способны реагировать с такими сильными окислителями, как KMnO4, MnO2, K2Cr2O7, CrO3 и другими, с образованием галогенов:

Галогены образуют ряд оксидов, например, для хлора известны кислотные оксиды состава Cl2O, ClO2, ClO3, Cl2O7. Все эти соединения получают косвенными методами. Они являются сильными окислителями и взрывоопасными веществами.

Наиболее устойчивым из оксидов хлора является Cl2O7. Оксиды хлора легко реагируют с водой, образуя кислородсодержащие кислоты: хлорноватистую HClO, хлористую HClO2, хлорноватую HClO3 и хлорную HClO4, например:

В промышленности бром получают при вытеснении хлором из бромидов, а в лабораторной практике — окислением бромидов:

Простое вещество бром является сильным окислителем, легко вступает в реакции со многими простыми веществами, образуя бромиды; вытесняет йод из йодидов.

Простое вещество йод, I2, представляет собой чёрные с металлическим блеском кристаллы, которые возгоняются, т. е. переходят в пар, минуя жидкое состояние. Йод мало растворим в воде, но довольно хорошо растворяется в некоторых органических растворителях (спирт, бензол и т. д.).

Йод является довольно сильным окислителем, способным к окислению ряда металлов и некоторых неметаллов.

Сера

Химический элемент сера расположен в 3-м периоде VIA подгруппе. Его электронная формула 1s22s22p63s23p4. Простое вещество сера — неметалл жёлтого цвета. Существует в двух аллотропных модификациях: ромбическая и моноклинная и в аморфной форме (пластическая сера). Проявляет как окислительные, так и восстановительные свойства. Возможны реакции диспропорционирования. Её характерные химические свойства:

Сера образует летучее водородное соединение — сероводород. Его водный раствор представляет собой слабую двухосновную кислоту. Для сероводорода характерны также восстановительные свойства:

Сера образует два кислотных оксида: оксид серы (IV) SO2 и оксид серы (VI) SO3. Первому соответствует слабая, существующая только в растворе сернистая кислота H2SO3; второму — сильная двухосновная серная кислота H2SO4. Концентрированная серная кислота проявляет сильные окислительные свойства. Ниже приведены характерные для этих соединений реакции:

Серная кислота в больших количествах производится в промышленности. Все промышленные методы производства серной кислоты основаны на первоначальном получении оксида серы (IV), его окислении в оксид серы (VI) и взаимодействии последнего с водой.

Азот

Химический элемент азот — находится во 2-м периоде, V группе, главной подгруппе периодической системы Д.И. Менделеева. Его электронная формула 1s22s22p3. В своих соединениях азот проявляет степени окисления –3, –2, +1,+2, +3, +4, +5.

Простое вещество азот — газ без цвета и запаха, малорастворимый в воде. Типичный неметалл. В обычных условиях химически мало активен. При нагревании вступает в окислительно-восстановительные реакции.

Азот образует оксиды состава N2O, NO, N2O3, NO2, N2O4, N2O5. При этом N2O, NO, являются несолеобразующими оксидами, для которых характерны окислительно-восстановительные реакции; N2O3, NO2, N2O4, N2O5 — солеобразующие кислотные оксиды, для которых также характерны окислительно-восстановительные реакции, в том числе реакции диспропорционирования.

Химические свойства оксидов азота:

Азот образует летучее водородное соединение состава NH3, аммиак. При обычных условиях это бесцветный газ с характерным резким запахом; температура кипения –33,7 °C, температура плавления –77,8 °C. Аммиак хорошо растворим в воде (700 объёмов NH3 на 1 объём воды при 20 °C) и ряде органических растворителей (спирт, ацетон, хлороформ, бензол).

Химические свойства аммиака:

Азот образует азотистую кислоту HNO2 (в свободном виде известна только в газовой фазе или растворах). Это слабая кислота, её соли называют нитритами.

Кроме того, азот образует очень сильную азотную кислоту HNO3. Особенностью азотной кислоты является то, что при её окислительно-восстановительных реакциях с металлами не выделяется водород, а образуются различные оксиды азота или соли аммония, например:

В реакциях с неметаллами концентрированная азотная кислота ведёт себя как сильный окислитель:

Также азотная кислота способна окислять сульфиды, йодиды и т. д.:

Подчеркнём ещё раз. Запись уравнений окислительно-восстановительных реакций с участием HNO3 обычно условна. Как правило, в них указывают лишь продукт, образующийся в большем количестве. В некоторых из таких реакций в качестве продукта восстановления обнаружен водород (реакция разбавленной HNO3 с Mg и Mn).

Соли азотной кислоты называют нитратами. Все нитраты хорошо растворимы в воде. Нитраты термически нестабильны и при нагревании легко разлагаются.

Особые случаи разложения нитрата аммония:

Общие закономерности термического разложения нитратов:

Фосфор

Химический элемент фосфор расположен в 3-м периоде, V группе, главной подгруппе периодической системы Д.И. Менделеева. Его электронная формула 1s22s22p63s23p3.

Простое вещество фосфор существует в виде нескольких аллотропных модификаций (аллотропия состава). Белый фосфор Р4, при комнатной температуре мягкий, плавится, кипит без разложения. Красный фосфор Pn, состоит из полимерных молекул разной длины. При нагревании возгоняется. Чёрный фосфор состоит из непрерывных цепей Pn, имеет слоистую структуру, по внешнему виду похож на графит. Наиболее реакционноспособным является белый фосфор.

В промышленности фосфор получают прокаливанием фосфата кальция с углём и песком при 1500 °C:

В приведённые ниже реакции вступают любые модификации фосфора, если нет особых оговорок:

Фосфор образует летучее водородное соединение — фосфин, PH3. Это газообразное соединение с крайне неприятным резким запахом. Его соли в отличие от солей аммиака существуют только при низких температурах. Фосфин легко вступает в окислительно-восстановительные реакции:

Фосфор образует два кислотных оксида: P2O3 и P2O5. Последнему соответствует фосфорная (ортофосфорная) кислота H3PO4. Это трёхосновная кислота средней силы, которая образует три ряда солей: средние (фосфаты) и кислые (гидро- и дигидрофосфаты). Ниже приведены уравнения химических реакций, характерные для данных соединений:

Углерод

Химический элемент углерод расположен во 2-м периоде, главной подгруппе IV группы периодической системы Д.И. Менделеева, его электронная формула 1s22s22p2, наиболее характерные степени окисления –4, +2, +4.

Для углерода известны стабильные аллотропные модификации (графит, алмаз, аллотропия строения), в виде которых он встречается в природе, а также полученные лабораторным путём карбин и фуллерены.

Алмаз — кристаллическое вещество с атомной координационной кубической решёткой. Каждый атом углерода в алмазе находится в состоянии sp3-гибридизации и образует равноценные прочные связи с четырьмя соседними атомами углерода. Это обуславливает исключительную твёрдость алмаза и отсутствие в обычных условиях электропроводности.

В графите атомы углерода находятся в состоянии sp2-гибридизации. Атомы углерода объединены в бесконечные слои из шестичленных колец, стабилизированные ω-связью, делокализованные в пределах всего слоя. Этим объясняется металлический блеск и электрическая проводимость графита. Углеродные слои объединены в кристаллическую решётку в основном за счёт межмолекулярных сил. Прочность химических связей в плоскости макромолекулы значительно больше, чем между слоями, поэтому графит довольно мягок, легко расслаивается и химически несколько активнее алмаза.

В состав древесного угля, сажи и кокса входят очень мелкие кристаллы графита с очень большой поверхностью, которые называют аморфным углеродом.

В карбине атом углерода находится в состоянии sp-гибридизации. Его кристаллическая решётка построена из прямолинейных цепочек двух видов:

Карбин представляет собой порошок чёрного цвета с плотностью 1,9—2,0 г/см3, является полупроводником.

Аллотропные модификации углерода могут переходить друг в друга при определённых условиях. Так, при нагревании без доступа воздуха при температуре 1750 °С алмаз переходит в графит.

В нормальных условиях углерод весьма инертен, однако при высоких температурах он вступает в реакции с различными веществами, причём самой реакционноспособной формой является аморфный углерод, менее активен графит, а самый инертный — алмаз.

Реакции, характерные для углерода:

Углерод устойчив к действию кислот и щелочей. Только горячие концентрированные азотная и серная кислоты могут окислить его до оксида углерода (IV):

Углерод восстанавливает многие металлы из их оксидов. При этом в зависимости от природы металла образуются либо чистые металлы (оксиды железа, кадмия, меди, свинца), либо соответствующие карбиды (оксиды кальция, ванадия, тантала), например:

Углерод образует два оксида: CO и CO2.

Оксид углерода (II) CO (угарный газ) представляет собой бесцветный газ без запаха, плохо растворимый в воде. Это соединение является сильным восстановителем. Он горит на воздухе с выделением большого количества теплоты, благодаря чему CO является хорошим газообразным топливом.

Оксид углерода (II) восстанавливает многие металлы из их оксидов:

Оксид углерода (II) является несолеобразующим оксидом, с водой и щелочами он не реагирует.

Оксид углерода (IV) CO2 (углекислый газ) представляет собой бесцветный, без запаха, негорючий газ, малорастворимый в воде. В технике его обычно получают термическим разложением CaCO3, а в лабораторной практике — действием на CaCO3 соляной кислоты:

Оксид углерода (IV) является кислотным оксидом. Его характерные химические свойства:

Оксиду углерода (IV) соответствует очень слабая двухосновная угольная кислота H2CO3, которая не существует в чистом виде. Она образует два ряда солей: средние — карбонаты, например карбонат кальция CaCO3, и кислые — гидрокарбонаты, например Ca(HCO3)2 — гидрокарбонат кальция.

Карбонаты переходят в гидрокарбонаты под действием избытка углекислого газа в водной среде:

Гидрокарбонат кальция превращается в карбонат под действием гидроксида кальция:

Гидрокарбонаты и карбонаты разлагаются при нагревании:

Кремний

Химический элемент кремний находится в 3-м периоде IVА группе периодической системы Д.И. Менделеева. Его электронная формула 1s22s22p63s23p2, наиболее характерные степени окисления –4, +4.

Кремний получают восстановлением его оксида магнием или углеродом в электрических печах, а кремний высокой чистоты — восстановлением SiCl4 цинком или водородом, например:

Кремний может существовать в кристаллической или аморфной форме. В обычных условиях кремний довольно устойчив, причём аморфный кремний более реакционноспособен, чем кристаллический. Для кремния наиболее устойчива степень окисления +4.

Реакции, характерные для кремния:

Кремний не реагирует с кислотами (за исключением HF), пассивируется кислотами-окислителями, но хорошо растворяется в смеси плавиковой и азотной кислот, что можно описать уравнением:

Оксид кремния (IV), SiO2 (кремнезём), в природе встречается в основном в виде минерала кварца. В химическом отношении довольно устойчив, проявляет свойства кислотного оксида.

Свойства оксида кремния (IV):

Кремний образует кислоты переменного содержания SiO2 и H2O. Соединение состава H2SiO3 в чистом виде не выделено, но для упрощения допускается его запись в уравнениях реакций:

Тренировочные задания

1. Водород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом
2) серой и хромом
3) оксидом углерода (II) и соляной кислотой
4) азотом и натрием

2. Верны ли следующие утверждения о водороде?

А. Перекись водорода можно получить сжиганием водорода в избытке кислорода.
Б. Реакция между водородом и серой идёт без катализатора.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

3. Кислород при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом
2) фосфором и цинком
3) оксидом кремния (IV) и хлором
4) хлоридом калия и серой

4. Верны ли следующие утверждения о кислороде?

А. Кислород не реагирует с хлором.
Б. Реакция кислорода с серой даёт SO2.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

5. Фтор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом
2) аргоном и азотной кислотой
3) оксидом углерода (IV) и неоном
4) водой и натрием

6. Верны ли следующие утверждения о фторе?

А. Реакция избытка фтора с фосфором приводит к PF5.
Б. Фтор реагирует с водой.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

7. Хлор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и железом
2) фосфором и серной кислотой
3) оксидом кремния (IV) и неоном
4) бромидом калия и серой

8. Верны ли следующие утверждения о хлоре?

А. Пары хлора легче воздуха.
Б. В заимодействие хлора с кислородом приводит к оксиду хлора (V).

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

9. Бром при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) фосфором и железом
2) фосфором и серной кислотой
3) оксидом кремния (IV) и хлором
4) бромидом калия и серой

10. Верны ли следующие утверждения о броме?

А. Бром не вступает в реакцию с водородом.
Б. Бром вытесняет хлор из хлоридов.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

11. Йод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) гелием и железом
2) фосфором и кальцием
3) оксидом кремния (IV) и хлором
4) хлоридом калия и серой

12. Верны ли следующие утверждения о йоде?

А. Раствор йода обладает бактерицидными свойствами.
Б. Йод реагирует с хлоридом кальция.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

13. Сера при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и железом
2) фосфором и оксидом цинком
3) оксидом кремния (IV) и хлором
4) хлоридом калия и бромидом натрия

14. Верны ли следующие утверждения о сере?

А. При сплавлении серы и кальция образуется CaS.
Б. При реакции серы с кислородом образуется SO2.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

15. Азот при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) литием и хлоридом кальция
2) хлором и оксидом кальция
3) оксидом кремния (IV) и хлором
4) литием и кальцием

16. Верны ли следующие утверждения об азоте?

А. В промышленности реакцию азота и водорода осуществляют под высоким давлением в присутствии катализатора.
Б. При взаимодействии азота и натрия образуется Na3N.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

17. Фосфор при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) натрием и сульфидом кальция
2) хлором и кислородом
3) оксидом углерода (IV) и серой
4) серой и оксидом цинка

18. Верны ли следующие утверждения о фосфоре?

А. Реакция фосфора с хлором идёт только в присутствии катализатора.
Б. При реакции фосфора с избытком серы образуются только P2S3.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

19. Углерод при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кальцием и сульфатом бария
2) хлором и неоном
3) оксидом фосфора (V) и серой
4) серой и гидроксидом цинка

20. Верны ли следующие утверждения об углероде?

А. При взаимодействии углерода с натрием образуется карбид состава Na2C2.
Б. Углерод реагирует с оксидом кальция с образованием CaC2.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

21. Кремний при соответствующих условиях вступает в реакцию с каждым из двух веществ:

1) кислородом и гидроксидом натрия
2) хлором и неоном
3) оксидом фосфора (V) и серой
4) серой и гидроксидом цинка

22. Верны ли следующие утверждения о кремнии?

А. При взаимодействии кремния с углеродом образуется карбид состава SiC.
Б. Кремний реагирует с магнием с образованием Mg2Si.

1) верно только А
2) верно только Б
3) верны оба суждения
4) оба суждения неверны

23. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) H2 + Ca →
Б) H2 + Na2SO4
В) H2 + CuO →

ПРОДУКТЫ РЕАКЦИИ
1) Na2SO3 + H2O
2) Cu(OH)2
3) Cu + H2O
4) CaH2
5) Na2S + H2O

24. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) H2 + Fe3O4
Б) H2 + N2
В) H2 + Na →

ПРОДУКТЫ РЕАКЦИИ
1) Fe(OH)2
2) NH3
3) N2H4
4) Fe + H2O 5) NaH

25. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) O2 + Li →
Б) O2 + Fe(OH)2 + H2O →
В) O2 (изб.) + P →

ПРОДУКТЫ РЕАКЦИИ
1) Li2O
2) Li2O2
3) P2O5
4) Fe(OH)3
5) P2O3

26. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) O2 + S →
Б) O2 + Cr(OH)2 + H2O →
В) O2 (изб.) + C →

ПРОДУКТЫ РЕАКЦИИ
1) CO
2) CO2
3) SO3
4) SO2
5) Cr(OH)3

27. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Cl2 + Fe →
Б) Cl2 + Cr →
В) Cl2 (изб.) + P →

ПРОДУКТЫ РЕАКЦИИ
1) PCl3
2) FeCl2
3) FeCl3
4) CrCl3
5) PCl5

28. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Cl2 + NaOH (охл.)
Б) Cl2 + NaOH (нагр.)
В) Cl2 + NaBr →

ПРОДУКТЫ РЕАКЦИИ
1) NaClO3 + NaCl + H2O
2) NaCl + NaClO + H2O
3) NaClO3 + NaCl
4) NaCl + Br2
5) NaClBr

29. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Br2 + NaI →
Б) Br2 + NaOH (нагр.)
В) Br2 + NaOH (охл.) →

ПРОДУКТЫ РЕАКЦИИ
1) NaClI
2) NaBrO + NaBr
3) NaBrO3 + NaBr + H2O
4) NaBrO + NaBr + H2O
5) NaBr + I2

30. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Br2 + NaOH (нагр.)
Б) Br2 + I2
В) Br2 + SO2 + H2O →

ПРОДУКТЫ РЕАКЦИИ
1) NaBr + NaBrO3 + H2O
2) NaBr + NaBrO + H2O
3) I Br
4) H2SO4 + HBr
5) HBr + SO3

31. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) I2 + SO2 + H2O →
Б) I2 + H2S →
В) I2 + HNO3 (конц.)

ПРОДУКТЫ РЕАКЦИИ
1) HIO3 + NO2 + H2O
2) HI + S
3) HIO + NO + H2O
4) HIO + NO2
5) HI + H2SO4

32. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) I2 + HNO3 (конц.) →
Б) I2 + NaOH (нагрев.) →
В) I2 + Br2

ПРОДУКТЫ РЕАКЦИИ
1) NaI + NaIO + H2O
2) HIO3 + NO2 + H2O
3) IBr
4) HIO + NO + H2O
5) NaI + NaIO3 + H2O

33. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) S + Na →
Б) S + HI →
В) S + NaOH →

ПРОДУКТЫ РЕАКЦИИ
1) Na2SO3 + H2O
2) Na2S
3) H2S + I2
4) Na2S + Na2SO3 + H2O
5) Na2S + H2O

34. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) S + Cl2 (недост.) →
Б) S + HNO3 (конц.) →
В) S + O2 →+

ПРОДУКТЫ РЕАКЦИИ
1) H2SO4 + NO2 + H2O
2) SCl6
3) SO3
4) SO2
5) SCl2

35. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) N2 + O2
Б) N2 + Na →
В) N2 + Ca →

ПРОДУКТЫ РЕАКЦИИ
1) Ca3N2
2) NO2
3) N2O5
4) NO
5) Na3N

36. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) N2 + Li →
Б) N2 + Al →
В) N2 + H2

ПРОДУКТЫ РЕАКЦИИ
1) NH3
2) Li3N
3) N2H2
4) LiN3
5) AlN

37. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P + H2
Б) P + Cl2 (изб.) →
В) P + H2SO4 (конц.) →

ПРОДУКТЫ РЕАКЦИИ
1) PCl3
2) H3PO4 + SO2 + H2O
3) H2S + PH3 + H2O
4) PH3
5) PCl5

38. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) P + Br2 (недост.) →
Б) P + Li
В) P + HNO3 (конц.) →

ПРОДУКТЫ РЕАКЦИИ
1) H3PO4 + NO2 + H2O
2) Li3P
3) H3PO4 + NH4NO3
4) PBr5
5) PBr3

39. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) C + H2SO4 (конц.) →
Б) C + Ca →
В) C + Na2SO4

ПРОДУКТЫ РЕАКЦИИ
1) CO2 + SO2 + H2O
2) Na2SO3 + CO
3) CaC2
4) CaC
5) Na2S + CO2

40. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) C + H2O →
Б) C + HNO3
В) C + S →

ПРОДУКТЫ РЕАКЦИИ
1) CO2 + NO2 + H2O
2) CO2 + NH4NO3
3) CO + H2
4) CO2 + H2
5) CS2

41. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Si + O2
Б) Si + S →
В) S i + Mg →

ПРОДУКТЫ РЕАКЦИИ
1) SiS2
2) Mg2S
3) MgS
4) SiO2
5) SiS

42. Установите соответствие между реагирующими веществами и продуктами реакций.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА
А) Si + Cl2
Б) Si + C →
В) Si + NaOH →

ПРОДУКТЫ РЕАКЦИИ
1) SiC
2) SiCl2
3) Na2SiO3 + H2
4) Na2SiO3 + H2O
5) SiCl4

43. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

44. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

45. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

46. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

47. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

48. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

49. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для второго превращения составьте сокращённое ионное уравнение реакции.

50. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

51. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

52. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

53. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

54. Дана схема превращений:

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения. Для третьего превращения составьте сокращённое ионное уравнение реакции.

Ответы

Медь и цинк – d- элементы

Цель: обобщить и конкретизировать знания учащихся о строении металлов  и зависимости  строения  и свойств

Развивать умения записывать уравнения реакций, характеризующих свойства простых веществ и соединений ими образованных.

Развивать навыки экспериментальных работ, знание правил по ТБ

Развивать логическое мышление.

Воспитывать само-взаимоконтроль, прививать навыки ЗОЖ.

Продолжительность урока  90 минут

Ход урока

I.Организация класса

Проверка готовности к уроку

II. Сообщение темы и определение цели урока

1)Вопросы по периодической системе

Где в п.с. расположены d- элементы?

Что общего в строении d- элементов?

Вывод: у d- элементов плавное изменение свойств, они носят название переходные элементы.

2) Составление электронных формул        (на основании ответов учащихся)                              

Химический  элемент

29Cu

30Zn

Электронная формула

1s22s22p63s23p63d104s1

1s22s22p63s23p63d104s2

Возможные степени окисления

+1      +2          +3

+2         

Вопрос: Почему у меди переменная степень окисления, а у цинка всегда +2?

3) Посмотрим на ряд активности: цинк металл средней активности, медь -малоактивный.

Как эти элементы встречаются в природе?(в виде соединений- например, сульфиды)

В Казахстане месторождения находятся на Рудном Алтае, Жезказгане, Павлодаре -медь; на Рудном Алтае, Жезказгане, Шымкенте -цинк.

4) Каким способом можно получить чистый металл из соединения?

Физические свойства цинка и меди

Цинк — синевато-белый металл с плотностью при нормальных условиях 7,13 г/см3. Температура плавления у него довольно низкая — всего 419,5 °С. Нагретый до 100—150° цинк становится очень ковким и тягучим, а при 200° настолько хрупким, что его можно истолочь в порошок.[2]

Медь – металл красного, в изломе розового цвета, мягкий, ковкий, tпл.=1083 °С, обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра). .[3]

Сравнительная характеристика химических  свойств

 

1.Взаимодействуют с неметаллами (кроме азота и водорода)

2Cu+O2=2CuO

Cu+S=CuS

восстановитель

2Zn+O2=2ZnO

Zn+S=ZnS

восстановитель

2.Взаимодействует с водой

Медь не взаимодействует

Zn+H2O=ZnO+H2­

Zn при нагревании (восстановитель)

3.Скислотами

Cu+ HCI не взаимодействует

Cu+2H2SO4(конц)=CuSO4+

SO2­+2H2O (восстановитель)

Zn+2HCI=ZnCI2+H2­

4Zn+5H2SO4(конц)=4ZnSO4+H2S­+

4H2O цинк (восстановитель)

4. Со щелочами только амфотерный металл

Не взаимодествует

Zn+2NaOH+2H2O=Na2[Zn(OH)4]+H2­

(восстановитель)

 

5. С солями, образованными менее активным металлом

Cu+2AgNO3=2Ag+Cu(NO3)2

(восстановитель)

Zn+2AgNO3=2Ag+Zn(NO3)2

(восстановитель)

Вывод (формулируют учащиеся) ……………………………………………..

Соединения оксиды и гидроксиды

Cu+1                                                                           Cu+2
и восстановитель, и окислитель                            только окислитель
основные свойства                                                  основные свойства
Cu2О – красно-оранжевого цвета                            CuО – черного цвета
CuOH- желтый                                                         Cu(OH)2 – голубой гидроксид
CuCl – белый                                                            CuCl2 – голубой

 (лабораторный опыт) (повторить ТБ)

Получение гидроксидов

CuCI2+2NaOH=Cu(OH)2|+2NaCI

Выпадает голубой осадок

ZnCI2+2NaOH=Zn(OH)2|+2NaCI

Выпадает белый осадок

Химические свойства взаимодействует с кислотами,

Cu(OH)2|+2HNO3 = Cu(NO3)2 +2H2O

Осадок растворяется

Zn(OH)2|+2HNO3 = Zn(NO3)2 +2H2O Осадок растворяется

Химические свойства взаимодействует с щелочами

Осадок не  растворяется

Zn(OH)2|+2NaOH=Na2ZnO2+2H2O

Осадок растворяется

вывод

Обладает основными свойствами

Обладает амфотерными

 свойствами

         

Вопросы к учащимся:

В какие еще реакции вступают  гидроксиды меди (II)и цинка? (оба разлагаются при нагревании)

В какие реакции вступают оксиды меди и цинка?

Дома записать уравнения возможных реакций взаимодействия оксидов с различными веществами.

III.Самостоятельная работа с учебником (по группам) стр 189-190

Стр 183-184 Конкурс на самый интересный вопрос (например)

  • Отчего у улитки кровь голубая?
  • Почему медь используют в радиотехнике?
  • Какая бронза похожа на золото?
  • Куда расходуется большая  часть полученного цинка? (оцинкование)
  • Почему соли меди используют для борьбы с вредителями растений?

IV .Закрепление

Тест d-Элементы

1. d-элементы могут быть в химических реакциях:

а) восстановителем б) окислителем в) восстановителем и окислителем

2. В атомах d–элементов валентные электроны находятся на:

а) s– орбиталях б) p-орбиталях в) d- орбиталях г) s-орбиталях внешнего и d–орбиталях предвнешнего уровня

3. Электронная формула внешнего энергетического уровня атома цинка

а)….3d10 4s2       б)…..3d10 4s1       в)…3d8 4s2

4. Для меди  в соединениях характерны степени окисления:

а)  +8  б)+3  в) +1 г) +2

5.  С водными растворами  каких солей реагирует цинк:

а) ZnCI2    б) CuSO4       в) AgNO3        г) K2SO4

V. Итоги урока

VI .Домашнее задание   пп 7.1;  7.2;  7.3;  7.4; Записать  уравнения возможных реакций взаимодействия оксидов меди и цинка с различными веществами; упр 5,6 стр 115

Упр 5,6 стр 190

 Список литературы

  1. Нурахметов НН; Бекишев КБ Химия учебник для 10 класса ЕМН
  2. Цинковая промышленность мира  Д.В. Черашев аспирант кафедры географии мирового хозяйства географического факультета Московского государственного университета им. М.В. Ломоносова
  3. Медная промышленность мира  Д.В. Черашев аспирант кафедры географии мирового хозяйства географического факультета Московского государственного университета им. М.В. Ломоносова

Формула оксида цинка – свойства и производство

 

Формула оксида цинка – оксид цинка представляет собой неорганическое соединение с большим количеством применений. Оксид цинка имеет химическую формулу, известную как ZnO. Его молярная масса составляет 81,379 г моль-1. Молекула образована катионом Zn+2 и анионом О-2.

 

Оксид цинка имеет две основные структуры: гексагональную и кубическую, но обычно встречаются гексагональные кристаллы. Химическую структуру можно увидеть ниже в общепринятых представлениях, используемых для органических молекул.

 

 

Представляет собой порошок или гранулированное твердое вещество без запаха от серого до белого цвета, нерастворимый в воде и растворимый в разбавленных кислотах и ​​основаниях. Оксид цинка можно найти в земной коре в виде минерального цинкита. При этом большая часть коммерческого продукта производится путем высокотемпературного окисления металлического цинка или цинковых руд.

 

Оксид цинка классифицируется как многофункциональный материал. Обладает уникальными физическими и химическими свойствами, в том числе:

  • Высокая химическая стабильность
  • Высокий коэффициент электрохимической связи
  • Широкий диапазон поглощения излучения
  • Высокая фотостабильность

 

Оксид цинка обычно содержится в медицинских мазях, где он используется для лечения раздражений кожи.В последнее время оксид цинка стал использоваться в различных областях:

  • Полупроводники
  • Использование бетона
  • Керамика
  • Стеклянные композиции
  • Фильтры для сигарет

 

Подробнее: Мазь с оксидом цинка для облегчения кожных заболеваний

 

Более 50% оксида цинка используется в резиновой промышленности. ZnO вместе со стеариновой кислотой используется при вулканизации каучука для производства шин, подошв для обуви и даже хоккейных шайб.Другое основное применение оксида цинка — производство бетона. Добавление оксида цинка облегчает производственный процесс и улучшает водостойкость.

 

Подробнее: Оксид цинка в солнцезащитных кремах — лучшая защита от солнца по мнению дерматолога

 

Высококачественный оксид цинка, безусловно, будет расширяться во многих отраслях промышленности. Потенциальные достижения для немедицинских применений даже превосходят текущие медицинские применения. Появляется много перспективных областей, и использование оксида цинка, несомненно, растет.

 

Лучшая формула оксида цинка определенно будет пользоваться большим спросом в будущем, и в Citra CakraLogam мы рады предоставить только лучший продукт для различных целей. Позвоните нам по телефону +62343657777 или отправьте электронное письмо по адресу [email protected] Наша команда проведет вас через весь процесс.

 

Формула сульфата цинка – определение, применение, токсичность и часто задаваемые вопросы

Формула сульфата цинка также известна как формула белого купороса.Химическое название ZnSo4 сульфата цинка. Белый купорос представляет собой бесцветное кристаллическое твердое вещество или белый порошок. Сульфат цинка может растворяться как в воде, так и в спирте. Кроме того, безводный цинкат представляет собой бесцветное кристаллическое твердое вещество. Сульфат цинка является негорючим соединением, что означает, что он не может загореться. Название соединения ZnSo4 широко используется для производства искусственного шелка, в качестве пищевой добавки для лечения дефицита цинка и в качестве ингредиента удобрения. Они также широко используются в качестве вяжущего средства в глазных каплях и лосьонах.

Химическая формула сульфата цинка

Химическая формула сульфата цинка ZnSo4  представляет собой неорганическое соединение и представляет собой компонент сульфата металла, который содержит ионы Zn2+ .

[Изображение будет загружено в ближайшее время]

Молекулярная формула сульфата цинка

Молекулярная масса сульфата цинка ZnSo4 зависит от его формы. Молекулярная масса сульфата цинка в безводной форме составляет 161,47 г/моль, сульфата цинка в форме моногидрата составляет 179,47 г/моль и сульфата цинка в форме гептагидрата составляет 287.53 г/моль. Кроме того, плотность сульфата цинка составляет около 3,54 г/см3. Температура кипения сульфата цинка остается на уровне 740 ° C, а температура плавления химической формулы сульфата цинка составляет 680 ° C.

[Изображение будет загружено в ближайшее время]

Использование сульфата цинка (ZnSO4)

  1. Сульфаты цинка широко используются в медицине для пероральной регидратации.

  2. Сульфаты цинка также можно использовать в качестве консерванта для кожи.

  3. Сульфат цинка действует как превосходный коагулянт при производстве вискозы.

  4. Компоненты из цинка также используются для гальванического цинкования в электролите.

  5. Соединения сульфата цинка используются в качестве протравы в красильных производствах.

  6. Они также используются в процессе пивоварения в качестве добавок цинка.

  7. Сульфат цинка также используется в качестве вяжущего средства в глазных каплях и лосьонах.

  8. Они широко используются для лечения акне.

  9. Людям, страдающим расстройством желудка, рекомендуется принимать сульфат цинка с пищей.

Токсичность сульфата цинка

  1. Порошкообразная форма сульфата цинка может вызывать раздражение глаз.

  2. Прием сульфата цинка в количестве, превышающем предпочтительное, может вызвать расстройство желудка и стресс.

  3. Вдыхание сульфата цинка может вызвать раздражение дыхательных путей и вызвать тошноту, рвоту, головокружение, боль в животе.

  4. Непосредственное исследование кожи на сульфат цинка может вызвать язвы, волдыри и рубцы.

Элементы и соединения Вводный курс по химии

Ключевые понятия

⚛ Чистое вещество может быть классифицировано как:

(i) элемент

(ii) соединение

⚛ Элемент – это чистое вещество, которое не может быть разложено на более простые вещества.

· Элементы перечислены в Периодической таблице элементов.

· Каждый элемент имеет 1- или 2-буквенный символ.

⚛ Соединение – это чистое вещество, которое может быть разложено на более простые вещества.

· Соединения состоят из двух или более элементов.

· Соединения представлены химической формулой с использованием символов элементов, входящих в состав соединения.

Пожалуйста, не блокируйте рекламу на этом сайте.
Нет рекламы = нет денег для нас = нет бесплатных вещей для вас!

Элементы

Элемент определяется как чистое вещество, которое не может быть разложено (разложено) на более простые вещества.
Например, если вы нагреете газообразный азот, он станет горячее, но не распадется (разложится) на что-то более простое, чем азот.

В природе встречается 92 элемента.
Кроме того, существует более 20 искусственных элементов (синтетических элементов или искусственных элементов).
Все известные элементы, как природные, так и синтетические, перечислены в Периодической таблице элементов.

Каждому элементу присвоено уникальное имя и уникальный химический символ.
Этот химический символ элемента чаще всего основан на текущем названии элемента или, в некоторых случаях, на более старом названии элемента. (1)
Химический символ элемента может состоять из 1 или 2 букв:

⚛ первая буква химического символа элемента всегда заглавная буква (заглавная буква)

Например:

h водород — элемент с химическим символом H

c арбон — элемент с химическим символом C

n атроген — элемент с химическим символом N

⚛ если в химическом символе элемента есть вторая буква, это всегда строчная буква

Например:

he lium — элемент с химическим символом He

ca lcium — элемент с химическим символом Ca

ne on имеет элемент с химическим символом Ne

Учителя химии часто просят своих учеников запомнить названия и химические символы первых 20 элементов периодической таблицы элементов, вот они: (2)

H
водород
  He
гелий
Литий
Литий
Be
бериллий
В
бор
C
углерод
N
азот
O
кислород
F
фтор
Ne
неон
Na
натрий
мг
магний
Ал
алюминий
кремний
кремний
P
фосфор
S
сера
Cl
хлор
аргон
аргон
К
калий
Ca
кальций

Вас также могут попросить запомнить названия и химические символы некоторых распространенных полезных элементов, таких как:

Fe
железо
Ni
никель
Cu
медь
цинк
цинк
Ag
серебро
Sn
олово
Pt
платина
Au
золото
ртути
ртути
Pb
свинец

При комнатной температуре и давлении элементы могут находиться в виде твердых тел, жидкостей или газов.
Из 92 встречающихся в природе элементов:

  • 2 элемента – жидкости
  • 11 элементов – газы
  • все остальные элементы твердые

Названия и химические символы элементов, которые встречаются при комнатной температуре и давлении в виде твердых тел, жидкостей и газов, приведены в таблице ниже:

Состояние элементов
(при комнатной температуре и давлении)
Жидкости Газы Твердые вещества
(некоторые примеры)
  1. ртуть (Hg)
  2. бром (Br)
  1. водород (Н)
  2. гелий (Не)
  3. азот (N)
  4. кислород (О)
  5. фтор (F)
  6. неон (Ne)
  7. хлор (Cl)
  8. аргон (Ar)
  9. криптон (Кр)
  10. ксенон (Хе)
  11. радон (Рн)
  • литий (Li)
  • углерод (С)
  • натрий (Na)
  • магний (мг)
  • алюминий (Al)
  • кремний (Si)
  • фосфор (P)
  • сера (S)
  • калий (К)
  • кальций (Ca)
  • цинк (Zn)

Наиболее распространенные элементы во Вселенной:

  • водород (Н)
  • гелий (Не)
  • кислород (О)
  • углерод (С)

Атмосфера Земли состоит из смеси различных газов, но в основном состоит из двух элементов:

  • азот (составляет около 78% атмосферы)
  • кислород (который составляет около 21% атмосферы)

Общие элементы, встречающиеся в земной коре:

  • кислород (О)
  • кремний (Si)
  • алюминий (Al)
  • железо (Fe)
  • кальций (Ca)
  • натрий (Na)
  • калий (К)
  • магний (мг)
  • водород (Н)

Наиболее распространенные элементы, встречающиеся в живых существах:

  • углерод (С)
  • водород (Н)
  • кислород (О)
  • азот (N)
  • фосфор (P)
  • сера (S)

Наверх

Соединения

Соединение — это чистое вещество, которое можно разложить на более простые вещества, поскольку оно состоит из 2 или более элементов.

Например, вода состоит из двух разных элементов; водород (H) и кислород (O)
Через воду можно пропустить электрический ток, чтобы разложить (расщепить) воду на элементы водород и кислород.

Каждое соединение представлено химической формулой (3) , показывающей, какие элементы присутствуют в соединении.

Например, вода состоит из двух разных элементов; водород (H) и кислород (O)
Химическая формула воды должна включать символы обоих этих элементов, Н и О.
Химическая формула воды на самом деле H 2 O

Примеры некоторых распространенных соединений, которые вы должны знать, показаны в таблице ниже:

Элементы, встречающиеся в обычных соединениях
название соединения формула соединения элементов присутствует
вода Н 2 О водород (H) и кислород (O)
аммиак НХ 3 азот (N) и водород (H)
монооксид углерода СО углерод (C) и кислород (O)
двуокись углерода СО 2 углерод (C) и кислород (O)
хлорид натрия NaCl натрий (Na) и хлор (Cl)
гидроксид натрия NaOH натрий (Na), кислород (O) и водород (H)
хлорид кальция CaCl 2 кальций (Ca) и хлор (Cl)
карбонат кальция CaCO 3 кальций (Ca), углерод (C) и кислород (O)
нитрат кальция Са(НО 3 ) 2 кальций (Ca), азот (N) и кислород (O)
фосфат кальция Ca 3 (ПО 4 ) 2 кальций (Ca), фосфор (P) и кислород (O)
сульфат кальция CaSO 4 кальций (Ca), сера (S) и кислород (O)
метан СН 4 углерод (C) и водород (H)
этанол С 2 Н 5 ОХ углерод (C), водород (H) и кислород (O)

Наверх

Рабочие примеры: элементы и соединения

(Использование модели StoPGoPS для решения проблем.)

Вопрос 1

Газообразный кислород (химическая формула O 2 ) составляет около 21% атмосферы Земли.

Является ли газообразный кислород элементом или соединением?

Какой вопрос просит вас сделать?

Определите, является ли газообразный кислород элементом или соединением.

Какую информацию вы дали в вопросе?

Название: кислородный газ
Химическая формула: O 2

Какая связь между тем, что вы знаете, и тем, что вам нужно узнать?

(i) Элементы не могут быть разложены на более простые вещества, поскольку они состоят только из одного элемента.

(ii) Соединения можно разложить на более простые вещества, поскольку они состоят из 2 или более элементов.

Ответьте на вопрос.

Газообразный кислород (химическая формула O 2 ) состоит ТОЛЬКО из элемента кислорода (химический символ O)

Газообразный кислород должен быть элементом.

Ваш ответ правдоподобен?

Если вы посмотрите в периодическую таблицу элементов, вы найдете кислород (O), указанный как элемент.

Следовательно, кислород является элементом. Неважно, называете ли вы его газообразным кислородом, жидким кислородом или твердым кислородом, все это относится к элементу кислороду.

Укажите свой ответ.

Газообразный кислород является элементом.

Вопрос 2

Карбонат кальция (химическая формула CaCO 3 ) содержится в известняке.

Назовите элементы, входящие в состав соединения карбоната кальция.

Какой вопрос просит вас сделать?

Назовите элементы, содержащиеся в карбонате кальция, CaCO 3

Какую информацию вы дали в вопросе?

Название соединения: карбонат кальция

Химическая формула соединения: CaCO 3

Какая связь между тем, что вы знаете, и тем, что вам нужно узнать?

(i) Соединения состоят из 2 или более элементов.

(ii) Химическая формула соединения включает символ каждого элемента, входящего в состав соединения.

Ответьте на вопрос.

(i) Разбейте химическую формулу на символы элементов:

Химическая формула: CaCO 3
Символ каждого элемента Са С О

(ii) Используйте периодическую таблицу элементов, чтобы найти название элемента, соответствующее каждому химическому символу:

Химическая формула: CaCO 3
Символ каждого элемента Са С О
Наименование каждого элемента кальций углерод кислород

Ваш ответ правдоподобен?

Работа в обратном направлении.

Используйте периодическую таблицу, чтобы найти символ каждого элемента, который вы назвали:
кальций, Ca
углерод, С
кислород, О

Посмотрите, сможете ли вы расположить эти химические символы так, как они отображаются в химической формуле:
СаСО

Поскольку это соответствует тому же порядку, который мы находим в химической формуле (CaCO 3 : CaCO) без добавления или отсутствия символов, мы достаточно уверены, что наш ответ правдоподобен.

Добавить комментарий

Ваш адрес email не будет опубликован.