Диоды характеристики справочник: Справочник отечественных диодов

alexxlab | 11.08.2019 | 0 | Разное

Содержание

Выпрямительные диоды малой, средней и большой и мощности, справочник

Приведены электрические характеристики выпрямительных диодов отечественного производства. Рассмотрены выпрямительные диоды малой, средней и большой мощности. Справочник по отечественным полупроводниковым диодам.

Используемые в таблицах сокращения:

  • Uобр.макс. – максимально-допустимое постоянное обратное напряжение диода;
  • Uобр.и.макс. – максимально-допустимое импульсное обратное напряжение диода;
  • Iпр.макс. – максимальный средний прямой ток за период;
  • Iпр.и.макс. – максимальный импульсный прямой ток за период;
  • Iпрг. – ток перегрузки выпрямительного диода;
  • fмакс. – максимально-допустимая частота переключения диода;
  • fраб. – рабочая частота переключения диода;
  • Uпр при Iпр – постоянное прямое напряжения диода при токе Iпр;
  • Iобр. – постоянный обратный ток диода;
  • Тк.макс. – максимально-допустимая температура корпуса диода;
  • Тп.макс. – максимально-допустимая температура перехода диода.

Диоды малой мощности

Выпрямительные отечественные диоды малой мощности

Рис. 1. Выпрямительные отечественные диоды малой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам малой мощности.

Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С
Тк.мах
(Тп.)

С

Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
mA
Iпрг.

A

fраб.
(fмакс.)
мГц
Uпр.

B

при
Iпр.
mA
Iобр.

mkA

1 2 3 4 5 6 7 8 9
Д2Б 10 (30) 16 150 1,0 5,0 100 60
Д2В 30 (40) 25 150 1,0 9,0 250 60
Д2Г 50 (75) 16 150 1,0 2,0 250 60
Д2Д 50 (75) 16 150 1,0 4,5 250 60
Д2Е 100 (100) 16 150 1,0 4,5 250 60
Д2Ж 150 (150) 8 150 1,0 2,0 250 60
Д2И 100 (100) 16 150 1,0
2,0
250 60
МД3 15 12 (15) 1,0 5,0 100 70
Д7А (50) 300 1,0 0,5 300 100 70
Д7Б (100) 300 1,0 0,0024 0,5 300 100 70
Д7В (150) 300 1,0 0,0024 0,5 300 100 70
Д7Г (200) 300 1,0 0,0024 0,5 300 100 70
Д7Д (300) 300 1,0 0,0024 0,5 300 100 70
Д7Е (350) 300 1,0 0,0024 0,5 300 100 70
Д7Ж (400) 300 1,0 0,0024 0,5 300 100 70
Д9Б (10) 40 40 1,0 90 250 70
Д9В (30) 20 40 1,0 10 250 70
Д9Г (30) 30 40
1,0
30 250 70
Д9Д (30) 30 40 1,0 60 250 70
Д9Е (50) 20 40 1,0 30 250 70
Д9Ж (100) 15 40 1,0 10 250 70
Д9И (30) 30 40 1,0 30 120 70
Д9К (50) 30 40 1,0 60 60 70
Д9Л
(100)
15 40 1,0 30 250 70
Д10 10 (10) 16 150 100 70
Д10А 10 (10) 16 150 200 70
Д10Б 10 (10) 16 150 200 70
Д11 30 (40) 20 150 1,0 100 250 70
Д12 50 (75) 20 150 1,0 50 250 70
Д12А 50 (75) 20 150 1,0 100 250 70
Д13 75 (100) 20 150 1,0 100 250 70
Д14 100 (125) 20 150 1,0 50 250 70
Д14А 100 (125) 20 150 1,0 100 250 70
Д101 75 (75) 30 200 2,0 2,0 10 125
Д101А
75 (75)
30 200 1,0 1,0 10 125
Д102 50 (50) 30 200 2,0 2,0 10 125
Д102А 50 (50) 30 200 1,0 1,0 10 125
Д103 30 (30) 30 200 2,0 2,0 30 125
Д103А 30 (30) 30 200 1,0 1,0 30 125
Д104 100 (100) 30 600
2,0
2,0 5,0 125
Д104А 100 (100) 30 600 1,0 1,0 5,0 125
Д105 75 (75) 30 600 2,0 2,0 5,0 125
Д105А 75 (75) 30 600 1,0 1,0 5,0 125
Д106 30 (30) 30 600 2,0 2,0 30 125
Д106А 30 (30) 30 600 1,0 1,0 30 125
Д202 (100) 400

Справочник диодов выпрямительных отечественных.

Отечественные производители диодов





 
Наименование PDF Iмакс, АUмакс, ВF, кГц
Выпрямительные диоды
Д202, Д203, Д204, Д205-Д2110.4 60020
Д226(А,Е)  0.34001.0
Д231, Д232, Д233, Д234106001.1
Д242, Д243, Д245, Д246-Д248  106002.0
КД102, КД103  0.130020
КД104А  0.0130020
КД105  0.38001.0
КД106  0.310030
КД208, КД209  1.58001.0
КД212  1200100
КД213  10200100
КД221  0.760050
КД226  1.780036
КД2997, КД2999  30200100
Универсальные, импульсные и высокочастотные диоды
КД509, КД510  0.250 
КД519  0.0330 
КД520  0.0215 
КД521, КД522  0.175 
Высоковольтные столбы
Д1005 – Д1011  0.3100001.0
КЦ103  0.01200050
КЦ105  0.11000010
КЦ106  0.011000020
КЦ108, КЦ109  0.3600050
КЦ114, КЦ117  0.051200010
КЦ201  0.5150001.0
Е306  0.001300050

Справочник по полупроводниковым диодам

ОТ СОСТАВИТЕЛЯ

    Справочник предназначен для широкого круга пользователей от разработчиков радиоэлектронных устройств, до радиолюбителей. В справочнике представлены основные электрические параметры полупроводниковых диодов широкого применения. Для компактности и удобства использования настоящего справочника, в нем использована табличная форма представления информации. Кроме электрических параметров в справочнике приводятся габаритные и присоединительные размеры, цветовая маркировка, а также типовые области применения.
    В справочнике собраны параметры диодов, рассеянные по отечественной литературе. Поскольку главным принципом при составлении справочника являлась полнота охвата номенклатуры, то для некоторых приборов приведены всего несколько параметров (которые приводились в научной статье разработчиков прибора). По мере появления дополнительной информации, она включалась в справочник.
    Для некоторых приборов приводятся вместо предельных параметров типовые, когда информация о предельных параметрах отсутствует, а о типовых значениях есть.

    Как появился этот справочник?
    В середине 70-х годов, автор столкнулся в своей работе с отсутствием справочника, устраивающего его самого и его коллег. Существующие справочники обладали многими недостатками, наиболее очевидные из которых описываются ниже.
    1. Большая избыточность:
        а) Многие справочники имели массу графиков, которые либо достаточно хорошо описывались теоретическими кривыми, либо отражали малосущественные зависимости;
        б) Большинство разработчиков не интересуют такие параметры, как время хранения на складе и степень устойчивости полупроводниковых приборов против воздействия плесени и грибков;
        в) От 10% до 30% объема справочников занимали общеизвестные вещи- условные обозначения на электрических схемах, классификация приборов и тому подобные многократно описанные в разнообразной литературе понятия.
    2. Неполнота- долгий срок прохождения через издательства приводил к быстрому устареванию справочника. Большинство составителей имели тяготение к определенному кругу изготовителей полупроводниковых приборов и если изделия одного изготовителя были представлены достаточно полно, то изделия другого производителя не включали новых разработок. Для работы приходилось пользоваться одновременно несколькими справочниками одновременно (тем более что разные составители включали разное количество известных для данного прибора параметров) и рядом журнальных статей, в которых описывались новые полупроводниковые приборы.
    3. Неудобство в пользовании- большинство составителей вводили разбивку справочника на части по различным критериям. Кроме этого, очень часто внутри раздела материал дополнительно группировался. Все это существенно затрудняло поиск нужного прибора и особенно сравнение нескольких полупроводниковых приборов по ряду параметров.
    4. Недостоверность- в процессе издания в любом справочнике накапливались ошибки. Если ошибки в обычном тексте легко обнаруживаются при вычитке, то ошибки в числовой информации даже специалистом обнаруживаются с трудом.

    Все описанные причины побудили составить справочник более удобный для разработчика электронной аппаратуры. Благодаря компактной форме, справочник получился достаточно дешевым и удовлетворяющим большинство потребностей. Если же разработчику потребуются более подробные характеристики какого-либо изделия (это случается достаточно редко), он всегда может обратиться либо к специализированному изданию, либо к отраслевому стандарту. В повседневной же работе ему достаточно этой маленькой книжечки.
    Автор надеется что пользователи этого справочника не разочаруются в своем выборе.

    Справочник составлен в 1991 году, переведен в HTML в 2000 году, перепроектирован в 2001 году.  

Технические справочники

Что-то не так?
Пожалуйста, отключите Adblock.

Портал QRZ.RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Спасибо.

Как добавить наш сайт в исключения AdBlock QRZ.RU > Технические справочникиclass=”small”>

 

 

 

Радиолюбительский разговорник EW1MM (WinWord)
Полупроводниковая техника
  1. Справочник по полупроводниковым диодам
  2. Справочник по полупроводниковым светоизлучающим приборам
  3. Справочник по полевым транзисторам
  4. Справочник по биполярным транзисторам
  5. Маркировка диодов
  6. Цветовая и кодовая маркировка транзисторов
  7. Краткие справочные данные зарубежных транзисторов
  8. Характеристики динисторов и тиристоров
  9. Справочник по отечественным и зарубежным полупроводниковым приборам: транзисторам, тиристорам, диодам – 8.4М
Микросхемы

  1. Номенклатура и аналоги отечественных микросхем
  2. Справочник по микросхемам ТТЛ серий
  3. Справочник по низкочастотным цифровым КМОП микросхемам
  4. Справочник по цифровым КМОП микросхемам
  5. Справочник по полупроводниковым аналоговым коммутаторам
  6. Справочник по операционным усилителям
  7. Справочник по стабилизаторам напряжения
  8. Справочник по микросхемам памяти
  9. Замена импортных ТТЛ микросхем отечественными аналогами
  10. Замена импортных КМОП микросхем отечественными аналогами
  11. Замена импортных операционных усилителей отечественными аналогами
  12. Замена импортных компараторов отечественными аналогами
  13. Справочник по электронной технике для студентов ВУЗов
  14. Справочник по аналоговым микросхемам для аудиоаппаратуры – 11.6М
  15. Справочник по микросхемам для теле- и видеоаппаратуры – 46.9М
  16. Справочник по цифровым логическим микросхемам ч1 – 26.8М
  17. Справочник по цифровым логическим микросхемам ч2 – 39.8М
  18. Справочник по полупроводниковым приборам – 24.1М
Светоизлучающие и фоточувствительные приборы
  1. Характеристики светоизлучающих диодов импортного производства
  2. Характеристики светоизлучающих диодов отечественного производства :: (Вариант в XLS)
  3. Характеристики светоизлучающих диодов отечественного производства –
    Каталог по светодиодам, Нижний Новгород, PDF, 27 стр.
  4. Характеристики инфракрасных светоизлучающих диодов АЛ164…172
  5. Фотодиоды КДФ115 – фотоэлектрические параметры
  6. Фототранзисторы
Маркировка электронных компонентов
  1. Введение
  2. Корпуса компонентов для поверхностного монтажа (SMD)
  3. Сквозная нумерация наиболее популярных корпусов SMD
  4. Ряды (резисторы и конденсаторы)
  5. Резисторы. Цветовая маркировка
  6. Резисторы. Цветовая маркировка фирмы Philips
  7. Резисторы. Нестандартная цветовая маркировка
  8. Резисторы. кодовая маркировка
  9. Кодовая маркировка прецизионных высокостабильных резисторов фирмы Panasonic
  10. Перемычки и резисторы с “нулевым” сопротивлением
  11. Резисторы. Кодовая маркировка фирмы Philips
  12. Резисторы. Кодовая маркировка фирмы Bourns
  13. Конденсаторы. Допуски
  14. Конденсаторы. Температурный коэффициент емкости (ТКЕ)
  15. Конденсаторы. Цветовая маркировка
  16. Конденсаторы. Кодовая маркировка
  17. Конденсаторы. Кодовая маркировка электролитических конденсаторов для поверхностного монтажа (SMD)
  18. Индуктивности. Цветовая маркировка
  19. Индуктивности. Кодовая маркировка
  20. Транзисторы. Кодовая маркировка. Корпус КТ-26 (ТО-92)
  21. Транзисторы. Цветовая маркировка. Корпус КТ-26 (ТО-92)
  22. Транзисторы. Маркировка. Корпус КТ-27 (ТО-126)
Ламповая техника
  1. Термины и определения справочников по радиолампам
  2. Общие данные о лампах
  3. Рекомендации по применению
  4. Тренировка радиоламп
  5. Отечественные радиолампы
  6. Зарубежные радиолампы
  7. Приёмно-усилительные и генераторные лампы (список)
  8. Генераторные лампы
  9. Импульсные генераторные лампы
  10. Импульсные модульные лампы
  11. Ультрафиолетовые лампы серии ДРТ для стирания ПЗУ
  12. Импульсные лампы серии ИФК
  13. NEW! Приемные электронно-лучевые трубки. Справочник, Москва “Радио и связь”, Н.И. Вуколов, А.И. Гербин, Г.С. Котовщиков, 1993 г. – формат DjVU [что это такое], 289 стр (В этом справочнике представлены характеристики практически всех известных электронно-лучевых трубок)

Осциллографические трубки

Аудиотехника

  1. Справочник по динамическим громкоговорителям
ВЧ техника
  1. Справочник по коаксиальным кабелям
  2. Справочник по высокочастотным трансформаторным устройствам (в одном файле 6 мб | разными файлами)
  3. Электрические характеристики радиочастотных коаксиальных кабелей со сплошной ПЭ изоляцией
  4. Пересчет dBm в вольты и ватты на нагрузке 50 ОМ
  5. Катушки индуктивности – физическая природа
  6. hot! Соединители радиочастотные коаксиальные (ВЧ-разъемы)
Антенны
  1. hot! Радиопрозрачные канатики Мастрант
  2. Компьютерное моделирование антенн на программе MMANA

Книга предоставлена автором на исключительных правах публикации только на сервере QRZ.RU ! Все копии файлов с любых других сайтов кроме сайта автора или QRZ.RU – краденые!

Эта книжка посвящена описанию работы с одной из лучших на сегодняшний день и, что особенно следует подчеркнуть, бесплат.ной компьютерной программой моделирования антенн MMANA. Краткое описание программы было опубликовано в журнале «Радио» в 2001 г. (июнь.сентябрь). В этом издании приведено пол.ное ее описание. Особое внимание уделено тонкостям работы с MMANA, которые не освещенны в журнальном варианте, кроме того разобраны типичные ошибки, приведены ответы на часто встре.чающиеся вопросы. Наличие большой библиотеки файлов готовых антенн позволяет не только подобрать подходящую антенну, но и проверить на кон.кретных примерах уровень освоения программы. Также даны, хотя и не относящиеся непосредственно к MMANA, но желательные для уверенной работы и правильного понимания полученных результатов, основы компьютерного моделирования антенн.

  1. Характеристики основных типов военных антенн
Справочник по ферритам
  1. Ферритовые кольца в спортивной аппаратуре
  2. Ферромагнитные материалы
  3. Изделия завода “Ферроприбор”
Компьютерная техника
  1. Разводка контактов различных интерфейсов, разъемов, компьютерных шин и т.п.
  2. Компьютерные кабели – распиновка. Как сделать кабель последовательного интерфейса и много других
  3. Компьютерные адаптеры – схемы, описание, спецификации
  4. Различные схемы (активные фильтры и проч.)
  5. Справочные таблицы
Прочее
  1. Микрофоны электретные (формат XLS)
  2. Микрофоны электретные часть 2
  3. Определение номинала резистора по цветовой маркировке
  4. Схемы и параметры резисторных сборок М019НР1, М019НР2, М020НР1, М021НР1, М022НР1, М023НР1, М024НР1, М025НР1, М026НР1, М027НР1, М042НР1, М043НР1, М044НР1, М050НР1.
  5. Коммутационные переключатели 220В
  6. Изготовление сетевого предохранителя на любой ток
  7. Справочные данные трансформаторов ТА, ТН, ТАН, ТПП
  8. Батарейки и аккумуляторы
  9. Расчет трансформаторов – формулы, таблицы. Скан страниц из книги 50 х годов Гинзбурга. (DjVU)
  10. 10 лучших бесплатных онлайн симуляторов электроцепи
  11. hot! Телевизионные стандарты
  12. hot! Сокращения и условные обозначения
ГОСТ
  1. ГОСТ 23849-87 Аппаратура радиоэлектронная бытовая. Методы измерения электрических параметров усилителей сигналов звуковой частоты.
  2. ГОСТ 7845-92 – Системы вещательного телевидения. Основные параметры. Методы измерений.
Благодарим!
Информация для этого раздела предоставлена:
  • Виктором Козак kozak (at) inp.nsk.su
  • Дмитрием oldradio.ru webmaster (at) oldradio.al.ru
  • Дмитрием cityradio.narod.ru cityradio (at) narod.ru
  • Андреем Ковалевым anklab (at) pirit.sibtel.ru
  • Сергеем Владимировичем 24cerg24 (at) mtu-net.ru
  • Евгением evgen136 (at) online.sinor.ru
  • DeadMazay’ем deadmazay (at) mail.ru
  • Алексеем (РадиоСпутник) rsputnik (at) mail.ru
  • Михаилом UA9JMJ ua9jmj (at) kogalym.ru
  • Дмитрием RK9ABJ master (at) chebar.afps.chel.su
  • Василием Бобылевым bobwa (at) realmail.ru

Диоды Шотки отечественного производства – справочник, таблица

Справочная таблица по характеристикам диодов Шотки отечественного производства, где применяются.

В настоящее время очень популярны импульсные источники питания, так называемые DC-DC или AC-DCконверторы. В выпрямителе вторичного напряжения в них обычно используются диоды Шотки.

Особенности диодов Шотки

Диод Шотки отличается тем, что в нем переход образован контактом полупроводника и металла. Полупроводник – кремний или арсенид галия, а металлический электрод на эпитаксиальный слой полупроводника наносится методом вакуумного испарения.

Диоды Шотки названы в честь немецкого физика В. Шотки, исследовавшего такие структуры в 30-х годах прошлого века.

Преимущества диодов Шотки перед диодами с р-п переходом:

  1. Лучшее выпрямление высокочастотного напряжения.
  2. Значительно меньшее прямое напряжение падения, вследствие чего, меньшая мощность теряется на диоде.
  3. Конструкция позволяет лучше обеспечить отвод тепла от полупроводникового кристалла.
  4. Допускают значительно большую плотность прямого тока.
  5. Практически идеальная прямая ветвь ВАХ, что позволяет использовать диоды Шотки в качестве быстродействующих логарифмических элементов.

Еще одно важное качество диодов Шотки – у них нет эффекта накопления избыточного заряда, нет необходимости и в его рассасывании.

В результате быстродействие диода Шотки значительно выше быстродействия диода на р-п переходе, отсутствует инверсный ток рассасывания. Соответственно снижаются шумы и увеличивается КПД.

Свойство низкого прямого напряжения падения наиболее выражено у относительно низковольтных диодов Шотки, с допустимым обратным напряжением до 40V, при работе на частоте до 500 кГц.

У диодов с большим допустимым обратным напряжением данный эффект выражен хуже, и у диодов с допустимым обратным напряжением более 100V он практически исчезает.

Отрицательной чертой диода Шотки является относительно большой обратный ток, а так же, высокая чувствительность к превышению допустимого обратного напряжения.

Таблица параметров отечественных диодов Шотки

В таблице приведены основные параметры некоторых отечественных диодов Шотки.

  • Іпр – прямой ток,
  • Unp – прямое напряжение падения,
  • Іобр – обратный ток,
  • Uo6p – обратное напряжение.

Данные диоды могут быть исполнены в виде сборок по два диода в одном корпусе с общим катодом. В таком случае, после основной маркировки еще буква «С».

Тип Іпр. (А) Uo6p (V) Unp. (V) Іобр. (mA)
КД238А 7,5 25 0,65 1
КД238Б 7,5 35 0,65 1
КД238В 7,5 45 0,65 1
КД238Г 7,5 50 0,7 1
КД238Д 7,5 60 0,75 1
КД268А 3 25 0,65 1
КД268Б 3 50 0,75 1
КД268В 3 75 0,85 1
КД268Г 3 100 0,85 1
КД268Д 3 150 0,9 1
КД268Е 3 200 0,9 2
КД268Ж 3 250 0,95 2
КД268И 3 300 0,95 2
КД268К 3 350 1 2
КД268Л 3 400 1,1 3
КД269А 5 25 0,65 1
КД269Б 5 50 0,75 1
КД269В 5 75 0,85 1
КД269Г 5 100 0,85 1
КД269Д 5 150 0,9 1
КД269Е 5 200 0,9 2
КД269Ж 5 250 0,95 2
КД269И 5 300 0,95 2
КД269К 5 350 1 3
КД269Л 5 400 1,1 3
КД270А 7,5 25 0,65 1
КД270Б 7,5 50 0,75 1
КД270В 7,5 75 0,85 1
КД270Г 7,5 100 0,85 1
КД270Д 7,5 150 0,9 1
КД270Е 7,5 200 0,9 2
КД270Ж 7,5 250 0,95 2
КД270И 7,5 300 0,95 2
КД270К 7,5 350 1 3
КД270Л 7,5 400 1,1 3
КД271А 10 25 0,65 1
КД271Б 10 50 0,75 1
КД271В 10 75 0,85 1
КД271Г 10 100 0,85 1
КД271Д 10 150 0,9 1
КД271Е 10 200 0,9 2
КД271Ж 10 250 0,95 2
КД271И 10 300 0,95 2
КД271К 10 350 1 3
КД271Л 10 400 1 3
КД272А 15 25 0,65 1
КД272Б 15 50 0,75 1
КД272В 15 75 0,85 1
КД272Г 15 100 0,85 1
КД272Д 15 150 0,9 1
КД272Е 15 200 0,9 2
КД272Ж 15 250 0,95 2
КД272И 15 300 0,95 5
КД272К 15 350 1 5
КД272Л 15 400 1 5
КД 273А 20 25 0,65 1
КД273Б 20 50 0,75 1
КД273В 20 75 0,85 1
КД273Г 20 100 0,85 1
КД273Д 20 150 0,9 1
КД273Е 20 200 0,9 2
КД273Ж 20 250 0,95 2
КД273И 20 300 0,95 5
КД273К 20 350 1 5
КД273Л 20 400 1 5

 

ИМПУЛЬСНЫЕ ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ

Для импульсных источников питания наиболее подходят диоды с оптимизированными собственными ёмкостью и временем, требующимся на то, чтобы обратное сопротивление восстановилось. Достижение необходимого показателя по первому параметру происходит при уменьшении длины и ширины p-n — перехода, это соответственно сказывается и на уменьшении допустимых мощностей рассеивания.

ВАХ импульсного диода

Величина барьерной ёмкости у диода импульсного типа в большинстве случаев составляет меньше 1 пФ. Время жизни неосновных носителей не превышает 4 нс. Для диодов данного типа характерна способность к пропусканию импульсов продолжительностью не более микросекунды при токах с широкой амплитудой. Обычные диоды или вообще не работают с ИБП, или сильно перегреваются и резко ухудшают свои параметры, поэтому нужны специальные высокочастотные элементы – они же “фаст диоды”. Далее приводятся их основные типы, наименования и характеристики, достаточные для радиолюбительской практики.

Справочник импортным по импульсным диодам

Диоды Шоттки в импульсных БП

Диоды Шоттки в импульсных БП

Высокоэффективные выпрямительные диоды

Высокоэффективные выпрямительные диоды

Другие диоды Шоттки

Диоды Шоттки

Кремниевые импульсные диоды

Кремниевые импульсные диоды

Быстровосстанавливающиеся диоды

Быстровосстанавливающиеся диоды

Быстродействующие выпрямительные диоды

Быстродействующие выпрямительные диоды

Типы корпусов диодов

Типы корпусов диодов

Все эти диоды предназначены для частот в несколько десятков килогерц и используются в выпрямителях импульсных блоков питания. Естественно их можно ставить в обычные трансформаторные БП на 50 Гц.

   Форум и справочная информация

   Обсудить статью ИМПУЛЬСНЫЕ ВЫПРЯМИТЕЛЬНЫЕ ДИОДЫ


Общие сведения о спецификациях, параметрах и номинальных характеристиках диодов »Электроника

Диоды

могут показаться простыми, но они имеют множество технических характеристик, параметров и номиналов, которые необходимо учитывать при выборе одного из них в качестве замены или для новой конструкции электронной схемы.


Diode Tutorial:
Типы диодов Характеристики и рейтинг диодов PN переходный диод СВЕТОДИОД PIN-диод Диод с барьером Шоттки Варактор / варикап Стабилитрон


Понимание технических характеристик, параметров и номиналов диодов может быть ключом к выбору правильного электронного компонента для конкретной конструкции электронной схемы.На рынке доступно огромное количество диодов, поэтому выбор необходимого не всегда может показаться простым.

Большинство спецификаций, номинальных значений и параметров относительно просты для понимания, особенно с небольшими пояснениями, но некоторые из них могут потребовать немного большего объяснения, или они могут быть применимы к ограниченному количеству диодов.

Помимо технических характеристик, касающихся электрических характеристик, важна также физическая упаковка. Диоды поставляются в различных корпусах, включая корпуса с выводами на проводах, а также мощные диоды, которые крепятся болтами к радиаторам, а также с огромным количеством высокоавтоматизированных производств и сборок печатных плат, компонентов технологии поверхностного монтажа – диоды SMD используются в огромных количествах.

Технические характеристики диодов приведены в технических паспортах и ​​содержат описание характеристик диода. Проверка рабочих параметров позволит оценить диод на предмет того, обеспечивает ли он требуемые рабочие характеристики для предполагаемой функции.

Selection of PN junction diodes

Различные параметры спецификации более применимы для диодов, используемых в различных приложениях, различных конструкциях электронных схем и т. Д. Для силовых приложений будут важны такие аспекты, как допустимый ток, прямое падение напряжения, температура перехода и т.п., но для конструкций RF емкость и напряжение включения часто представляют большой интерес.

Приведенные ниже аспекты подробно описывают некоторые из наиболее широко используемых параметров или спецификаций, используемых в технических паспортах для большинства типов диодов.

Характеристики и параметры диода

В приведенном ниже списке приведены подробные сведения о различных характеристиках диодов и параметрах диодов, которые можно найти в технических паспортах и ​​спецификациях диодов.

  • Полупроводниковый материал: Полупроводниковый материал, используемый в диоде с PN переходом, имеет первостепенное значение, поскольку используемый материал влияет на многие из основных характеристик и свойств диодов.Кремний и германий – два широко используемых материала:
    • Кремний: Кремний – наиболее широко используемый материал, поскольку он обеспечивает высокий уровень производительности для большинства приложений и предлагает низкие производственные затраты. Технология производства кремния хорошо известна, и кремниевые диоды можно изготавливать дешево. Напряжение прямого включения составляет около 0,6 В, что является высоким показателем для некоторых приложений, хотя для диодов Шоттки оно меньше.
    • Германий: Германий менее широко используется, но обеспечивает низкое напряжение включения около 0.От 2 до 0,3 В.
    Другие материалы обычно предназначены для более специализированных диодов. Например, светодиоды используют составные материалы для обеспечения разных цветов.
  • Тип диода: Хотя в основе конструкции большинства диодов лежит PN переход, разные типы диодов созданы для обеспечения разных характеристик, и иногда они могут работать по-разному. Выбор правильного типа диода для любого конкретного применения является ключевым.

    стабилитроны используются для обеспечения опорного напряжения, в то время как варакторные диоды используются, чтобы обеспечить переменный уровень емкости в конструкции РФ в соответствии с обратным смещением при условии. Выпрямительные диоды могут использовать диод с прямым PN переходом или, в некоторых случаях, они могут использовать диод Шоттки для более низкого прямого напряжения. Каким бы ни было приложение, необходимо использовать диод правильного типа для получения требуемых функций и характеристик.


  • Прямое падение напряжения, Vf: Любое электронное устройство, пропускающее ток, будет развивать результирующее напряжение на нем, и эта характеристика диода имеет большое значение, особенно для выпрямления мощности, где потери мощности будут выше из-за высокого прямого падения напряжения.Кроме того, диодам для ВЧ-схем часто требуется небольшое прямое падение напряжения, поскольку сигналы могут быть небольшими, но их все же необходимо преодолеть.

    Напряжение на диоде с PN переходом возникает по двум причинам. Первый связан с характером полупроводникового PN перехода и является результатом упомянутого выше напряжения включения. Это напряжение позволяет преодолеть истощающий слой и протечь ток. Вторая причина возникает из-за обычных резистивных потерь в устройстве. В результате будет дана величина прямого падения напряжения при заданном уровне тока.Этот показатель особенно важен для выпрямительных диодов, через которые может проходить значительный ток.

    График прямого падения напряжения для различных уровней тока, в частности, для выпрямительных диодов, обычно приводится в технических данных. Он будет иметь диапазон типичных значений, и с его помощью можно определить диапазон падения напряжения для ожидаемых уровней переносимого тока. Затем можно определить мощность, которая будет рассеиваться в области электронного перехода диода.

  • Пиковое обратное напряжение, PIV: Эти характеристики диода представляют собой максимальное напряжение, которое диод может выдерживать в обратном направлении. Это напряжение нельзя превышать, иначе устройство может выйти из строя.

    Это напряжение – это не просто среднеквадратичное значение входящего сигнала. Каждую схему необходимо рассматривать по отдельности, но для простого однодидного полуволнового выпрямителя с некоторой формой сглаживающего конденсатора впоследствии следует помнить, что конденсатор будет удерживать напряжение, равное пику входящей формы волны напряжения.Тогда диод также будет видеть пик входящей формы волны в обратном направлении и, следовательно, в этих условиях он будет видеть пиковое обратное напряжение, равное размаху сигнала.

  • Напряжение обратного пробоя, В (BR) R : Это немного отличается от пикового обратного напряжения, поскольку это напряжение является точкой, в которой диод выйдет из строя.

    IV characteristic of a PN junction diode showing the reverse breakdown ВАХ PN диода, показывающая обратный пробой

    Диод выдерживает обратное напряжение до определенной точки, а потом выйдет из строя.В некоторых диодах и в некоторых схемах она нанесет непоправимый ущерб, хотя для Зинера / опорного напряжения диодов обратного пробоя сценария является то, что используется для опорного напряжения, хотя схема должна быть разработана, чтобы ограничить ток, протекающим, в противном случае диод может быть уничтожены.

  • Максимальный прямой ток: Для конструкции электронной схемы, пропускающей любые уровни тока, необходимо обеспечить, чтобы максимальные уровни тока для диода не превышались.По мере повышения уровня тока дополнительное тепло рассеивается, и его необходимо удалить.

  • Рабочая температура перехода: Как и все электронные компоненты, диоды имеют максимальную рабочую температуру. В техническом паспорте будет раздел с указанием максимальной температуры перехода. По мере повышения температуры перехода надежность в долгосрочной перспективе падает. Если превышена максимальная температура перехода, диод может выйти из строя и даже загореться.

    Следует помнить, что температура перехода относится к самому диодному переходу внутри корпуса, а не к температуре корпуса. Между температурой упаковки и температурой перехода должен быть допустимый запас. Часто кривые включаются в технические данные, чтобы можно было определить температуру перехода. Также можно рассчитать температуру перехода, зная ток, прямое падение напряжения и тепловое сопротивление: спецификации, которые упоминаются в технических характеристиках и также упоминаются здесь.

    Принимая во внимание аспекты долгосрочной надежности, всегда лучше всего эксплуатировать диод в пределах своих номиналов. Это дает хороший запас для обеспечения надежной долгосрочной работы и для диода, чтобы выдерживать любые кратковременные пики. То же самое для любого электронного компонента.

  • Переход к тепловому сопротивлению окружающей среды, Θ JA : Этот параметр спецификации диода измеряется в ° C на ватт и означает, что на каждый ватт, рассеиваемый в переходе, будет определенное повышение температуры выше температуры окружающей среды. ,Это означает, что для диода с тепловым сопротивлением перехода к окружающей среде 50 ° C / Вт температура перехода будет повышаться на 50 ° C на каждый ватт рассеиваемой мощности.

    Сопротивление перехода к температуре окружающей среды на самом деле является суммой ряда отдельных областей диода: тепловое сопротивление перехода к корпусу, тепловое сопротивление между корпусом и поверхностью и тепловое сопротивление поверхности к окружающей среде, как показано на рисунке. формула: θ JA = θ JC + θ CS + θ SA .

    Эта общая спецификация является ключом к возможности определить фактическую рабочую температуру перехода – ключевой параметр, который необходимо контролировать при проектировании схемы, в которой диоды пропускают значительный ток, так что пропускаемый ток приведет к рассеянию мощности.

    Температуру перехода можно рассчитать по формуле:

    T J знак равно T AMB + я ⋅ В F ⋅ θ JA

    Где:
    T J температура перехода
    T AMB = температура окружающей среды
    Θ JA = переход к тепловому сопротивлению окружающей среды.

  • Ток утечки: Если бы был идеальный диод, то при обратном смещении тока не было бы. Обнаружено, что для реального диода с PN-переходом очень малая величина тока течет в обратном направлении из-за наличия неосновных носителей заряда в полупроводнике. Уровень тока утечки зависит от трех основных факторов. Обратное напряжение очевидно. Он также зависит от температуры, заметно повышаясь с температурой.Также обнаружено, что это очень зависит от типа используемого полупроводникового материала – кремний намного лучше германия.

    IV characteristic of a PN junction diode showing the reverse leakage current parameter ВАХ PN диода, показывающая параметр тока утечки

    Характеристика тока утечки или спецификация для диода с PN переходом указывается при определенном обратном напряжении и определенной температуре. Спецификация обычно определяется в единицах микроампер, мкА или пикоампер, пА, так как уровни обычно очень низкие до того, как произойдет обратный пробой.

  • Емкость перехода: Все диоды с PN переходом обладают емкостью перехода. Область обеднения – это диэлектрический промежуток между двумя пластинами, которые эффективно формируются на краю области обеднения и области с основными носителями. Фактическое значение емкости зависит от обратного напряжения, которое вызывает изменение области обеднения (увеличение обратного напряжения увеличивает размер области истощения и, следовательно, уменьшает емкость).

    Этот факт хорошо используется в варакторах или варикапных диодах и широко используется в ВЧ-конструкциях генераторов переменной частоты и фильтров переменной частоты. Однако для многих других приложений, особенно для некоторых радиочастотных схем, где паразитная емкость диода может повлиять на производительность, это необходимо минимизировать. Поскольку емкость имеет важное значение, она указывается. Параметр обычно описывается как заданная емкость (обычно в пФ, поскольку уровни емкости относительно низкие) при заданном напряжении или напряжениях.Также для многих ВЧ приложений доступны специальные диоды с низкой емкостью.

    Для многих применений с выпрямителями мощности емкость достаточно мала, чтобы не создавать проблем. Например, емкость перехода 1N4001 и 1N4004 составляет всего 15 пФ для обратного напряжения 4 вольта и меньше при повышении напряжения. Диоды с более высоким напряжением могут быть меньше – 1N4007 имеет емкость перехода 8 пФ для обратного напряжения 4 вольт. Соответственно, влияние емкости замечается только при повышении частоты.Поскольку уровни емкости низкие, на частоты до 100 кГц она часто не влияет, и в большинстве случаев ее можно игнорировать, вплоть до даже более высоких частот.

  • Тип корпуса: Диоды могут быть установлены в различных корпусах в зависимости от их применения, и в некоторых обстоятельствах, особенно в ВЧ приложениях, корпус является ключевым элементом при определении общих характеристик ВЧ диодов.

    Также для силовых приложений, где важен отвод тепла, корпус может определять многие общие параметры диодов, потому что для мощных диодов могут потребоваться корпуса, которые можно прикрепить к радиаторам, тогда как малосигнальные диоды могут быть доступны с выводами или в качестве устройств для поверхностного монтажа. ,Также мощные диоды могут быть доступны в виде мостовых выпрямителей, содержащих четыре диода в мосте, подходящих для выпрямления волн.

    Диоды для поверхностного монтажа и SMD-диоды используются в огромных количествах, потому что большая часть производства электроники и сборки печатных плат осуществляется с использованием автоматизированных методов, а технология поверхностного монтажа позволяет это делать.

    Diode bridge rectifier circuit and markings Схема мостового выпрямителя и маркировка

    В дополнение к этому, диоды доступны как с выводами, так и с корпусами для поверхностного монтажа, в зависимости от диода.Большинство ВЧ диодов и диодов малой мощности доступны в корпусах для поверхностного монтажа, что делает их более подходящими для крупномасштабного производства.

  • Схемы кодирования и маркировки диодов: Большинство используемых диодов имеют номера деталей, соответствующие схемам JEDEC или Pro-Electron. Такие числа, как 1N4001, 1N916, BZY88 и многие другие, хорошо знакомы всем, кто занимается проектированием и производством электроники.

    Однако при использовании методов автоматизированной сборки печатных плат и технологии поверхностного монтажа обнаруживается, что многие устройства слишком малы, чтобы нести полное число, которое может быть использовано в паспорте.В результате была разработана довольно произвольная система кодирования, согласно которой на упаковке устройства содержится простой двух- или трехзначный идентификационный код.

    Обычно его можно разместить на небольших корпусах диодов для поверхностного монтажа. Однако определить типовой номер SMD-диода производителя по коду корпуса на первый взгляд может быть непросто. Есть несколько полезных кодовых книг SMD, которые предоставляют данные для этих устройств. Например, код «13s» обозначает диод для поверхностного монтажа BAS125 в корпусе SOT23 или SOT323.

Пример типовых характеристик диода

Несмотря на то, что существует множество различных диодов с большим количеством различных спецификаций, иногда помогает увидеть, каковы различные характеристики и параметры и как они выражаются в формате, аналогичном тем, которые представлены в таблицах данных.

Типовой 1N5711 Характеристики / Технические характеристики
Характеристика Типичное значение Блок Детали
Макс.напряжение блокировки постоянного тока, В 70 В
Максимальный постоянный ток в прямом направлении, Ifm 15 мА
Напряжение обратного пробоя, В (ВР) R 70 В при обратном токе 10 мкА
Обратный ток утечки, IR 200 мкА При VR = 50 В
Прямое падение напряжения, VF 0.41

1,00

В при IF = 1,0 мА

IF = 15 мА

Емкость перехода, Кдж 2,0 пФ VR = 0 В, f = 1 МГц
Время обратного восстановления, трр 1 нС

Огромное количество диодов имеет огромное количество различных характеристик. Некоторые диоды могут быть предназначены исключительно для выпрямления, тогда как другие могут быть разработаны, чтобы излучать свет, обнаруживать свет, действовать в качестве опорного напряжения, обеспечивают переменную емкость и тому подобные.Диоды также поставляются в различных упаковках, подавляющее большинство из которых в настоящее время продается как диоды для поверхностного монтажа для автоматизированной сборки печатных плат.

Независимо от типа диода, многие из основных технических характеристик, параметров и номиналов, упомянутых выше, будут важны. Понимание основных параметров и характеристик этих электронных компонентов при просмотре спецификаций в технических паспортах является ключом к выбору правильного диода. Понимание спецификаций позволяет принимать мудрые решения в процессе проектирования электронной схемы для любого проекта с использованием диодов.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители Разъемы RF Клапаны / трубки батареи Выключатели Реле
Вернуться в меню «Компоненты». , ,

.

Общие сведения о технических характеристиках стабилитронов »Примечания по электронике

Как и любой другой компонент, стабилитрон опорный диод / напряжение диода имеет свои характеристики, указанные для того, чтобы правильное устройство должны быть выбраны для любой данной конструкции.


Учебное пособие по стабилитрону / эталонному диоду Включает: Стабилитрон
Теория работы стабилитрона Технические характеристики стабилитрона Схемы на стабилитронах

Другие диоды: Типы диодов


В технических паспортах

указывается множество различных параметров или спецификаций для стабилитронов – эти параметры определяют характеристики диода в определенных пределах, и их изучение является неотъемлемой частью любого процесса проектирования.

При выборе подходящего стабилитрона опорного напряжения диода для любого заданного положения в цепи, то необходимо, чтобы гарантировать, что она будет выполнять свои требования. Понимание технических характеристик таблицы является ключом к выбору подходящего устройства.

В технических характеристиках стабилитронов, приведенных в технических описаниях, можно увидеть множество различных параметров. Некоторые из наиболее важных из них приведены ниже.

Характеристики стабилитрона IV

ВАХ стабилитрона / напряжения опорного диода является ключом к его эксплуатации.В прямом направлении диод работает так же, как и любой другой, но в обратном направлении могут быть использованы его конкретные рабочие параметры.

Zener diode voltage-current characteristic Вольт-амперная характеристика стабилитрона

Стабилитрон имеет нормальную прямую характеристику, при которой ток возрастает после достижения начального напряжения включения. Обычно это 0,6 В для кремниевых диодов – практически все стабилитроны являются кремниевыми диодами.

При повышении напряжения в обратном направлении сначала протекает очень небольшой ток.Только после достижения напряжения обратного пробоя протекает ток, как показано на диаграмме. При достижении напряжения обратного пробоя напряжение остается относительно постоянным независимо от тока, протекающего через диод.

Технические характеристики стабилитрона

При просмотре спецификации стабилитрона можно указать несколько параметров. Каждый деталь другого аспекта стабилитрон напряжение производительности опорного диод. Глядя на каждую характеристику, можно понять работу диода и убедиться, что он будет правильно работать в любой данной цепи.

  • Напряжение Vz: Напряжение стабилитрона или обратное напряжение диода часто обозначается буквами Vz. Напряжения доступны в широком диапазоне значений, обычно следующих за диапазонами E12 и E24, хотя не все диоды подчиняются этому соглашению. В некоторых случаях значения E12 могут быть немного дешевле и могут быть более широко доступны.

    Значения обычно начинаются примерно с 2,4 В, хотя не все диапазоны достигают таких низких значений.Значения ниже этого недоступны. Диапазоны могут простираться где угодно в диапазоне от 47 В до 200 В, в зависимости от фактического диапазона стабилитрона. Максимальное напряжение для вариантов SMD часто составляет около 47 В.

    Значения напряжения стабилитрона в диапазоне E12
    1,0 1,2 1,5
    1,8 2,2 2,7
    3,3 3.9 4,7
    5,6 6,8 8,2

    В диапазоне E24 доступно в два раза больше значений, чем в E12, что дает гораздо больший выбор значений. В некоторых случаях это может быть полезным, поскольку можно выбрать более точные значения, что снижает потребность в настройке там, где точное значение не достигается.


    Значения напряжения на стабилитроне в диапазоне E24
    1.0 1,1 1,2
    1,3 1,5 1,6
    1,8 2,0 2,2
    2,4 2,7 3,0
    3,3 3,6 3,9
    4,3 4,7 5,1
    5,6 6,2 6.8
    7,5 8,2 9,1
  • Ток: Ток IZM стабилитрона – это максимальный ток, который может протекать через стабилитрон при его номинальном напряжении VZ.

    Обычно для работы диода требуется минимальный ток. Как правило, это может составлять от 5 до 10 мА для типичного устройства с выводами на 400 мВт.Ниже этого уровня тока диод не выходит из строя, чтобы поддерживать заявленное напряжение.

    Лучше всего, чтобы стабилитрон работал выше этого минимального значения с некоторым запасом, но без вероятности того, что он будет рассеивать слишком большую мощность, когда стабилитрон должен пропускать больший ток.

  • Номинальная мощность: Все стабилитроны имеют номинальную мощность, которую нельзя превышать. Это определяет максимальную мощность, которая может рассеиваться корпусом, и представляет собой произведение напряжения на диоде, умноженного на ток, протекающий через него.

    Например, многие устройства с небольшими выводами имеют рассеиваемую мощность 400 мВт или 500 мВт при 20 ° C, но доступны более крупные варианты с гораздо более высоким уровнем рассеяния.

    Также доступны варианты для поверхностного монтажа, но, как правило, они имеют более низкие уровни рассеяния, учитывая размер корпуса и их способность отводить тепло.

    Общие номинальные мощности для выводных устройств включают 400 мВт (наиболее распространенные), 500 мВт, 1 Вт, 3 Вт, 5 Вт и даже 10 Вт. Доступны даже версии мощностью 50 Вт, но они часто устанавливаются на шпильки, чтобы гарантировать, что диод может быть установлен на радиатор для отвода рассеиваемого тепла.Значения для устройств поверхностного монтажа могут составлять около 200, 350, 500 мВт, а иногда и до 1 Вт.

    Использование мощных стабилитронов увеличит затраты в результате более крупных устройств, которые будут дороже, а также дополнительных оборудование, необходимое для крепления устройств и отвода тепла. Это плюс повышенного энергопотребления. Иногда можно использовать альтернативные методы, чтобы использовать стабилитроны с меньшей мощностью и повысить эффективность, хотя может быть необходимо сбалансировать это с увеличением сложности.

  • Сопротивление стабилитрона Rz: ВАХ стабилитрона не полностью вертикальна в области пробоя. Это означает, что при незначительных изменениях тока будет небольшое изменение напряжения на диоде. Изменение напряжения для данного изменения тока – это сопротивление диода. Это значение сопротивления, часто называемое сопротивлением, обозначается Rz.  Zener diode resistance shown as slope of breakdown area Сопротивление стабилитрона Показанный обратный наклон называется динамическим сопротивлением диода, и этот параметр часто отмечается в технических описаниях производителей.Обычно наклон не сильно меняется для разных уровней тока, при условии, что они примерно в 0,1–1 раз больше номинального тока Izt.
  • Допуск по напряжению: Если диоды маркированы и отсортированы для соответствия диапазонам значений E12 или E24, типичные характеристики допусков для диодов составляют ± 5%. В некоторых таблицах данных напряжение может быть указано как типичное, а затем указаны максимальное и минимальное значения.
  • Температурная стабильность: Для многих приложений важна температурная стабильность стабилитрона.Хорошо известно, что напряжение на диоде зависит от температуры. Фактически, два механизма, которые используются для обеспечения пробоя в этих диодах, имеют противоположные температурные коэффициенты, и один эффект преобладает при напряжении ниже 5 В, а другой – выше. Соответственно, диоды с напряжением около 5 В обычно обеспечивают лучшую температурную стабильность.

     Zener diode temperature characteristic Температурная характеристика стабилитрона
    Из приведенного примера видно, что существует заметная разница между спецификациями для обратного напряжения стабилитрона при 0 ° C и 50 ° C.Это необходимо учитывать, если схема и оборудование, в которых будет использоваться стабилитрон, подвержены изменению температуры.


  • Спецификация температуры перехода: Для обеспечения надежности диода температура диодного перехода является ключевой. Несмотря на то, что корпус может быть достаточно холодным, активная область может быть намного горячее. В результате некоторые производители указывают рабочий диапазон для самого разветвления.Для нормальной конструкции обычно сохраняется подходящий запас между максимальной ожидаемой температурой внутри оборудования и места соединения. Внутренняя температура оборудования снова будет выше, чем температура снаружи оборудования. Необходимо следить за тем, чтобы отдельные предметы не становились слишком горячими, несмотря на приемлемую температуру окружающей среды за пределами оборудования.
  • Упаковка: Стабилитроны поставляются в различных корпусах.Главный выбор – между поверхностным монтажом и традиционными выводами. Однако выбранный пакет часто определяет уровень рассеивания тепла. Доступные варианты будут подробно описаны в спецификации стабилитронов.

Пример технических характеристик стабилитрона

Чтобы дать некоторое представление о характеристиках, ожидаемых от стабилитрона, приведен реальный пример ниже. Приведены основные параметры, которые потребуются в схемотехнике.

  • Стабилитрон с выводами BZY88 Этот диод описывается как миниатюрный стабилитрон для регулируемых цепей питания, защиты от перенапряжения, подавления дуги и других функций в различных областях. Версия 5V1 (5,1 В) была взята в качестве примера.
Типичные характеристики / технические характеристики стабилитрона BZY88
Характеристика Типичное значение Блок Детали
Рассеиваемая мощность постоянного тока 400 мВт @ Tl = 50 ° C: снижение выше 50 ° C 3.2 мВт / ° C
Температура перехода -65 до +175 ° С
Напряжение Vz при 5 мА 4,8 мин.
5,1 тип.
5,4 макс.
В
Zzt @ 5 мА 76 Ом
ИК @ VR 1 @ 2,0 мкА

Параметры, приведенные в таблице данных для этого обычного стабилитрона, дают полезную информацию о технических характеристиках стабилитрона.Хотя они предназначены только для небольшого диода, такие же данные приведены и для других стабилитронов.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители Разъемы RF Клапаны / трубки батареи Выключатели Реле
Вернуться в меню «Компоненты»., ,

.

Общие сведения о характеристиках диода Шоттки Технические характеристики »Электроника

Хотя диоды Шоттки имеют много общих параметров с другими формами диодов, их характеристики отличаются, как и некоторые технические характеристики и параметры.


Учебное пособие по диодам с барьером Шоттки Включает:
Диод с барьером Шоттки Технология диодов Шоттки Характеристики диода Шоттки Выпрямитель мощности на диоде Шоттки

Другие диоды: Типы диодов


Хотя диод Шоттки имеет много общих характеристик с более традиционными формами диодов, он все же имеет некоторые существенные отличия.

Понимание спецификаций и параметров диодов Шоттки помогает использовать их наиболее эффективно в любых схемах, в которых они могут использоваться.

Schottky barrier diode circuit symbol Обозначение схемы диода с барьером Шоттки

Основные характеристики диода Шоттки

Диод Шоттки является основным носителем, т.е. электронами в материале N-типа.

Это дает ему значительное преимущество с точки зрения скорости, поскольку он не зависит от рекомбинации дырок или электронов, когда они попадают в область противоположного типа, как в случае обычного диода.

Кроме того, уменьшив размеры устройств, можно уменьшить постоянную времени обычного RC-типа, что сделает эти диоды на порядок быстрее, чем обычные PN-диоды. Этот фактор является основной причиной того, почему они так популярны в радиочастотных приложениях, а также во многих других энергетических приложениях, где важна скорость переключения, например в импульсных источниках питания.

Диод Шоттки также имеет гораздо более высокую плотность тока, чем обычный PN переход. Это означает, что прямое падение напряжения намного меньше.Это делает диод идеальным для использования в системах выпрямления мощности.

Основным недостатком диода Шоттки является уровень его обратного пробоя, который намного ниже, чем у диода PN.

Еще один недостаток – относительно высокий уровень обратного тока. Для многих случаев использования это может не быть проблемой, но это фактор, на который стоит обратить внимание при использовании в более требовательных приложениях.

Общая ВАХ показана ниже. Видно, что диод Шоттки имеет типичную характеристику прямого полупроводникового диода, но с гораздо более низким напряжением включения.При высоких уровнях тока он выравнивается и ограничивается последовательным сопротивлением или максимальным уровнем подачи тока. В обратном направлении происходит пробой выше определенного уровня. Механизм аналогичен ударно-ионизационному пробою в PN-переходе.

Диод Шоттки ВАХ

ВАХ обычно такая, как показано ниже. В прямом направлении ток растет экспоненциально, имея излом или напряжение включения около 0,2 В. В обратном направлении наблюдается больший уровень обратного тока, чем при использовании более обычного диода с PN переходом.

Кроме того, напряжение обратного пробоя также обычно ниже, чем у эквивалентного кремниевого диода с PN переходом.

I-V characteristic of a Schottky diode ВАХ диода Шоттки

Использование защитного кольца, включенного в структуру некоторых диодов Шоттки, улучшает их характеристики как в прямом, так и в обратном направлении.

Основным преимуществом включения в конструкцию защитного кольца является улучшение характеристики обратного пробоя. Разница в напряжении пробоя между ними составляет около 4: 1.Некоторые малосигнальные диоды без защитного кольца могут иметь обратный пробой всего от 5 до 10 В. Хотя это может быть приемлемо для некоторых приложений с низким уровнем сигнала, это не идеально для большинства ситуаций.

Основные характеристики и параметры диода Шоттки

Есть несколько ключевых характеристик диодов Шоттки, которые необходимо понимать при использовании этих диодов – они сильно отличаются от характеристик обычного диода с PN переходом.

  • Прямое падение напряжения: Ввиду низкого прямого падения напряжения на диоде этот параметр вызывает особую озабоченность.Как видно из ВАХ диода Шоттки, напряжение на диоде изменяется в зависимости от протекающего тока. Соответственно, любая приведенная спецификация обеспечивает прямое падение напряжения для заданного тока. Обычно предполагается, что напряжение включения составляет около 0,2 В.
  • Обратный пробой: Диоды Шоттки не имеют высокого напряжения пробоя. Цифры, относящиеся к этому, включают максимальное пиковое обратное напряжение, максимальное постоянное напряжение блокировки и другие аналогичные названия параметров.Если эти цифры превышены, существует вероятность обратного пробоя диода. Следует отметить, что среднеквадратичное значение для любого напряжения будет в 1 / √2 раза больше постоянного значения. Верхний предел обратного пробоя невысок по сравнению с обычными диодами с PN переходом. Максимальные значения, даже для выпрямительных диодов, достигают только около 100 В. Выпрямители на диодах Шоттки редко превышают это значение, потому что устройства, которые будут работать выше этого значения даже в умеренных количествах, будут иметь прямое напряжение, равное или превышающее эквивалентные выпрямители с PN переходом.
  • Емкость: Параметр емкости имеет большое значение для ВЧ приложений с малым сигналом. Обычно площади переходов диодов Шоттки невелики, и поэтому емкость мала. Типичные значения в несколько пикофарад являются нормальными. Поскольку емкость зависит от областей истощения и т. Д., Емкость должна быть указана при заданном напряжении.
  • Время обратного восстановления: Этот параметр важен, когда диод используется в приложении переключения.Это время, необходимое для переключения диода из его прямого проводящего состояния или состояния «ВКЛ» в обратное состояние «ВЫКЛ». Заряд, который течет в течение этого времени, называется «зарядом обратного восстановления». Время для этого параметра для диода Шоттки обычно измеряется в наносекундах, нс. Некоторые выставляют времена 100 пс. Фактически, то небольшое время восстановления, которое требуется, в основном связано с емкостью, а не с рекомбинацией основных носителей. В результате наблюдается очень небольшой выброс обратного тока при переключении из состояния прямой проводимости в состояние блокировки обратного хода.
  • Обратный ток утечки: Параметр обратной утечки может быть проблемой для диодов Шоттки. Обнаружено, что повышение температуры значительно увеличивает параметр тока обратной утечки. Обычно на каждые 25 ° C повышения температуры диодного перехода происходит увеличение обратного тока на порядок величины при том же уровне обратного смещения.
  • Рабочая температура: Максимальная рабочая температура соединения Tj обычно ограничивается диапазоном от 125 до 175 ° C.Это меньше, чем то, что можно использовать с обычными кремниевыми диодами. Следует позаботиться о том, чтобы теплоотвод силовых диодов не допускал превышения этого значения.

Обзор характеристик диода Шоттки

Диод Шоттки используется во многих приложениях из-за его характеристик, которые заметно отличаются от некоторых характеристик более широко используемых стандартных диодов с PN переходом.

Диод Шоттки / Сравнение диодов PN
Характеристика Диод Шоттки PN Соединительный диод
Механизм прямого тока Основной транспортный транспорт. Из-за диффузионных токов, т.е. переноса неосновных носителей заряда.
Обратный ток Результат от большинства перевозчиков, преодолевших барьер. Это меньше зависит от температуры, чем для стандартного PN-перехода. Результат диффузии неосновных носителей заряда через обедненный слой. Имеет сильную температурную зависимость.
Включить напряжение Малый – около 0,2 В. Сравнительно большой – около 0.7 В.
Скорость переключения Fast – в результате использования основных носителей, поскольку рекомбинация не требуется. Ограничено временем рекомбинации введенных неосновных носителей.

Пример технических характеристик диода Шоттки

Чтобы дать некоторое представление о характеристиках, которые можно ожидать от диодов Шоттки, ниже приводится пара реальных примеров. В них кратко излагаются основные технические характеристики, чтобы дать представление об их производительности.

1N5828 Силовой выпрямительный диод с барьером Шоттки

Этот диод описывается как диод Шоттки стержневого типа, то есть для выпрямления мощности. Он показывает, как работает силовой диод Шоттки.

Типичные характеристики / технические характеристики диода Шоттки 1N5258
Характеристика Типичное значение Блок Детали
Максимальное рекуррентное пиковое обратное напряжение 40 В
Максимальное напряжение блокировки постоянного тока 40 В
Средний прямой ток, IF (AV) 15 A Т = 100 ° С
Пиковый прямой импульсный ток, IFSM 500 A
Максимальное мгновенное прямое напряжение, VF 0.5 В При IFM = 15 A и Tj = 25 ° C
Максимальный мгновенный обратный ток при номинальном напряжении блокировки, IR 10

250

мА Tj = 25 ° C

Tj = 125 ° C

1N5711 Диод переключения барьера Шоттки

Этот диод описывается как сверхбыстрый переключающийся диод с высоким обратным пробоем, низким прямым падением напряжения и защитным кольцом для защиты перехода.

Типовой 1N5711 Характеристики / Технические характеристики
Характеристика Типичное значение Блок Детали
Макс.напряжение блокировки постоянного тока, В 70 В
Макс.длительный ток в прямом направлении, Ifm 15 мА
Напряжение обратного пробоя, В (БР) R 70 В при обратном токе 10 мкА
Обратный ток утечки, IR 200 мкА При VR = 50 В
Прямое падение напряжения, VF 0.41

1,00

В при IF = 1,0 мА

IF = 15 мА

Емкость перехода, Кдж 2,0 пФ VR = 0 В, f = 1 МГц
Время обратного восстановления, трр 1 нС

Несмотря на то, что приведенные здесь примеры дают характеристику обратного напряжения 40 В, что довольно типично, обычно можно получить максимум около 100 В.

Следует отметить, что даже несмотря на то, что эти цифры приведены в качестве примеров цифр, которые можно ожидать для типичных диодов Шоттки, цифры даже для данного номера устройства также будут незначительно отличаться у разных производителей.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды транзистор Фототранзистор FET Типы памяти тиристор Соединители Разъемы RF Клапаны / трубки батареи Выключатели Реле
Вернуться в меню «Компоненты»., ,

.

Основы, типы, символы, характеристики, применения и комплектации

Хотя резисторы, конденсаторы и индукторы образуют основные элементы схемы, именно полупроводниковое устройство фактически хранит магию внутри. В каждой электронной схеме есть десятки полупроводниковых устройств, таких как диоды, транзисторы, регуляторы, операционные усилители, переключатели питания и т. Д. Внутри них. У каждого из них есть свои свойства и применение. В этой статье давайте рассмотрим самый простой полупроводниковый прибор – диоды .

Возможно, вы уже слышали болтовню о том, что «Диоды – это полупроводниковые устройства с двумя выводами, которые проводят только в одном определенном направлении, позволяя току проходить через них…», но почему это так? И какое это имеет отношение к нам при разработке схемы? Какие существуют различных типов диодов и в каком приложении мы должны их использовать? Держитесь крепче, потому что вам ответят на все эти вопросы, когда вы прочитаете эту статью.

Что такое диод?

Начнем с ответа на самый простой вопрос. Что такое диод ?

А Диод, как я уже говорил ранее, представляет собой полупроводниковый цилиндрический компонент с двумя выводами. Существует много типов диодов , но наиболее часто используемый из них показан ниже.

What is a diode?

Эти две клеммы называются Анод и Катод , мы рассмотрим символ и то, как идентифицировать клеммы позже, но пока просто помните, что любой диод будет иметь только два контакта (по крайней мере, большинство из них) и они анод и катод.Еще одно золотое правило диодов заключается в том, что они позволяют току проходить через них только в одном направлении, а именно от анода к катоду. Это свойство диода делает его полезным во многих приложениях.

Чтобы понять, почему они ведут себя только в одном направлении, мы должны посмотреть, как они устроены. Диод изготавливается путем соединения двух одинаково легированных полупроводников P-типа и полупроводникового материала N-типа. Когда эти два материала соединяются вместе, происходит что-то интересное, они образуют еще один небольшой промежуточный слой, называемый слоем истощения.Это связано с тем, что слой P-типа имеет избыточное отверстие, а слой N-типа имеет избыточные электроны, и оба они пытаются диффундировать друг в друга, образуя блокировку с высоким сопротивлением между обоими материалами, как на изображении, показанном ниже. Этот слой блокировки называется слоем истощения.

Diode Structure

Этот слой истощения (блокировка) должен быть разрушен, если ток должен протекать через диод. Когда на анод подается положительное напряжение, а на катод – отрицательное напряжение, говорят, что диод находится в прямом смещенном состоянии.Во время этого состояния положительное напряжение закачивает больше дырок в область P-типа, а отрицательное напряжение накачивает больше электронов в область N-типа, что вызывает пробой обедненного слоя, заставляя ток течь от анода к катоду. Это минимальное напряжение, необходимое для того, чтобы диод проводил в прямом направлении, называется напряжением прямого пробоя.

В качестве альтернативы, если отрицательное напряжение приложено к аноду, а положительное напряжение приложено к катоду, диод считается находящимся в обратном смещенном состоянии.Во время этого состояния отрицательное напряжение будет накачивать больше электронов в материал P-типа, а материал N-типа получит больше дырок от положительного напряжения, что сделает слой обеднения еще более прочным и, таким образом, не позволит току течь через него. Имейте в виду, что эти характеристики применимы только к идеальному диоду (теоретическому), практически, даже в режиме обратного смещения будет течь небольшой ток. Мы обсудим это позже.

Diode working

Приведенная выше анимация иллюстрирует работу диода в схеме , есть две схемы, в каждой из которых мы пытаемся зажечь светодиод от батареи.В одной схеме диод смещен в прямом направлении, а в другой – в обратном. Когда симуляция выполняется, вы можете заметить, что только диод с прямым смещением позволяет току течь, хотя он, таким образом, светит светодиод, диод с обратным смещением не позволяет току проходить через него.

Типы диодов, расположение выводов и символы

Теперь, когда мы поняли основы диодов, важно знать, что существуют разные типы диодов, каждый из которых имеет свои особые свойства и применение.В этой статье мы рассмотрим только три основных типа диодов: выпрямительный диод, стабилитрон и диод Шоттки. Изображение, клеммы и символы всех диодов приведены в таблице ниже

.

Тип диода

Распиновка

Символ

Выпрямительный диод

rectifier diode symbol

Стабилитрон

Zener diode symbol

Диод Шоттки

Schottky diode symbol

Как показано в таблице, выпрямительный диод и диод Шоттки похож по внешнему виду, но диод Шоттки обычно больше по размеру, чем обычные диоды.С другой стороны, стабилитрон можно легко идентифицировать по его характерному оранжевому цвету и серой линии на нем, как показано в таблице выше.

Выводы анода и катода можно идентифицировать по серой линии на диоде, контакт рядом с серой линией будет катодом. Аналогичным образом с символами нижняя часть треугольника всегда будет анодом, а другая – катодом. Это очень важно помнить, поскольку при интерпретации схемы подключения диода всегда считалось самооценкой.

Терминология и характеристики диодов

Когда вы выбираете диод для своей схемы или пытаетесь понять работу диода в цепи, вы должны учитывать спецификации диода, которые можно найти в его техническом описании. Чтобы понять, что на самом деле означают значения, давайте рассмотрим несколько часто используемых терминов.

Падение напряжения в прямом направлении (Vf): Когда диод работает в режиме прямого смещения, он позволяет току проходить через них.В этом состоянии на диоде будет некоторое падение напряжения, это падение напряжения называется прямым падением напряжения. Для идеального диода он должен быть как можно ниже.

Максимальный прямой ток (если): мы уже знаем, что диод будет пропускать ток через него, когда он находится в прямом смещении, на какой максимальный ток, который может быть разрешен, отвечает Максимальный прямой ток. Обычно необходимо убедиться, что этот ток больше, чем ток нагрузки вашей цепи.

Обратный ток пробоя (Vr): Хорошо, вот уловка, о которой я вам говорил: диод не пропускает ток через себя, когда он смещен в обратном направлении. Это верно, но не для всех значений напряжения. Таким образом, максимальное напряжение, до которого диод может выдержать пробой, называется обратным напряжением пробоя. Обычно значения такого напряжения будут очень высокими, например, если обратное напряжение пробоя составляет 500 В, диод не позволит току проходить через него в обратном смещенном состоянии, пока напряжение не превысит эти 500 В.

Обратный ток смещения (Ir): Хотя это правда, что диод не позволяет току течь, хотя в режиме обратного смещения значение тока не будет в идеале равным нулю. Через диод все еще будет протекать очень небольшой и незначительный (в зависимости от схемы) ток. Этот ток называется током с обратным смещением. Значение этого тока будет в диапазоне мА или даже в мкА. Для идеального диода значение этого тока должно быть как можно меньше.Ток называется током обратной утечки.

Время обратного восстановления: предположим, что вы работаете с диодом в режиме прямого смещения, а затем переключаете его в режим с обратным смещением, изменяя полярность напряжения. Теперь диод не будет внезапно останавливаться, ему потребуется некоторое время, чтобы перекрыть ток через него. Это время называется временем обратного восстановления.

Характеристики клемм (I-V) переходного диода: есть еще другие параметры, такие как рассеиваемая мощность, тепловое сопротивление и т. Д.связанный с диодом. Эти значения также можно найти в паспорте диода. Чтобы узнать больше о диоде, давайте посмотрим на важный график диода, который представляет собой кривую зависимости тока от напряжения. Кривая I-V идеального диода будет выглядеть примерно так.

Diode I-V curve

Здесь в первом квадранте вы можете видеть диод, работающий в режиме прямого смещения, а в третьем квадранте диод работает в области обратного смещения и пробоя. Ось X графика показывает напряжение на диоде, а ось Y показывает ток через диод.Во время режима прямого смещения вы можете заметить, что диод начинает проводить (разрешать ток) только тогда, когда напряжение на диоде (V D ) больше 0,5 В, это значение прямого напряжения диода для кремния. На диоде это прямое напряжение может достигать 0,7 В, как показано на графике выше.

Во время обратного смещения напряжение на диоде имеет отрицательный потенциал, поэтому ток также отображается в отрицательном направлении. Здесь, как вы можете видеть, диод не пропускает ток (за исключением небольшого значения), пока не будет достигнуто напряжение пробоя (V BD ).

Цепи приложений

Диоды

имеют широкий спектр применения в зависимости от их свойств и типа. Давайте попробуем охватить наиболее важные применения выпрямителя, стабилитрона и диода Шоттки с их принципиальными схемами.

Выпрямительный диод

Выпрямительный диод, известный как общий диод, является наиболее часто встречающимся диодом в любой цепи питания, будь то простой линейный источник питания или цепь SMPS. Как следует из названия, эти диоды используются для выпрямления в таких схемах, как двухполупериодный и полуволновой выпрямитель.Кроме того, они также используются в качестве диодов свободного хода в коммутационных устройствах и схемах преобразователей.

Схема выпрямителя

Выпрямительные диоды используются как в полуволновых, так и в полнополупериодных выпрямительных диодах. Давайте посмотрим на схему полуволнового выпрямителя для простоты. Принципиальная схема и график для однополупериодного выпрямителя показаны ниже

.

diode rectifier circuit

Источник входного напряжения Vs представляет собой синусоидальную волну переменного тока со среднеквадратичным напряжением 220 В.Эта волна переменного тока может быть выпрямлена с помощью одного диода. Как показано на графике, во время положительного полупериода диод смещен в прямом направлении и, следовательно, выходное напряжение присутствует на нагрузке, а ток течет в положительном направлении. Но во время отрицательного полупериода диод имеет обратное смещение, и, следовательно, ток не достигает нагрузки, а выходное напряжение остается на уровне 0 В, как показано на графике выше. Таким образом, ток всегда может течь только в одном направлении и, таким образом, преобразовывать переменный ток в постоянный.

Конечно, у этой схемы много недостатков, например, выходное напряжение неравномерно и практически не используется. Но теперь, когда у вас есть идея, вы можете изучить полные мостовые выпрямители с четырьмя диодами, которые обычно используются в схемах линейных регуляторов. Также схема выпрямителя будет иметь конденсатор на конце для фильтрации пульсаций, если вы хотите узнать больше о конденсаторах, прочитайте введение в статью о конденсаторах.

Стабилитрон

Стабилитрон широко используется в двух схемах: одна представляет собой грубый стабилизатор напряжения, а другая – схему защиты от перенапряжения.У стабилитрона есть два важных параметра, на которые следует обратить внимание: напряжение стабилитрона и мощность. Обычно доступные значения диодов: 3,9 В, 4,7 В, 5,1 В, 6,8 В, 7,5 В и 15 В

В приведенной ниже схеме входное напряжение может варьироваться от 0 В до 12 В, но выходное напряжение никогда не будет превышать 5,1 В, поскольку обратное напряжение пробоя (напряжение стабилитрона) стабилитрона составляет 5,1 В. Когда входное напряжение меньше 5,1 В, выходное напряжение будет равно входному напряжению, но когда оно превышает 5.1 В выходное напряжение будет регулироваться до 5,1 В.

Zener Diode Circuit

Это свойство схемы может использоваться для защиты выводов АЦП (схема защиты от перенапряжения), которые имеют напряжение 5 В, поскольку вывод может считывать напряжение от 0 до 5 В, но если оно превышает 5 В, стабилитрон не допускает превышения напряжения. Точно так же ту же схему можно использовать для регулирования 5,1 В для нагрузки при высоком входном напряжении. Но ограничение по току для такой схемы намного меньше.

При разработке схемы с использованием стабилитрона следует учитывать одну важную вещь – стабилитрон.Этот резистор используется для ограничения тока через стабилитрон, защищая его от нагрева и повреждения. Величина резистора Зенера зависит от напряжения Зенера и номинальной мощности стабилитрона. Формула для расчета последовательного резистора Зенера Rs показана ниже

.

zener resistor formula

Для стабилитрона 1N4734A значение Vz составляет 5,9 В, а Pz – 500 мВт, теперь при напряжении питания (Vs) 12 В значение Rs будет

.

Rs = (12-5.9) / Iz

Iz = Pz / Vz = 500 мВт / 5.9 В = ~ 85 мА

Следовательно, Rs = (12-5,9) / 85 = 71 Ом

Rs = 71 Ом (приблизительно)

Диод Шоттки

Диод Шоттки также используется в схемах защиты, таких как схема защиты от обратной полярности, из-за низкого падения напряжения в прямом направлении. Давайте посмотрим на общую схему защиты от обратной полярности

Когда Vcc и земля подключены с правильной полярностью, диод проводит в прямом направлении, и НАГРУЗКА получает питание.Преимущество здесь в том, что прямое падение напряжения на диоде очень меньше, например, около 0,04 В по сравнению с 0,7 В на выпрямительном диоде. Таким образом, на диоде не будет больших потерь мощности, также диод Шоттки может пропускать больший ток через него, чем через обычный диод, и он также имеет более высокую скорость переключения, поэтому может использоваться в высокочастотной цепи. Теперь, когда я это сказал, у вас может возникнуть вопрос.

В чем разница между диодом Шоттки и общим диодом?

Ну да, диод Шоттки имеет более высокую скорость переключения, низкие потери проводимости и более высокий прямой ток, чем обычный диод.Звучит лучше, чем обычный диод, но у него есть один существенный недостаток. То есть он имеет низкое обратное напряжение пробоя, из-за этой особенности он не может использоваться в схемах выпрямителя, поскольку схемы выпрямителя всегда будут иметь высокое обратное напряжение, появляющееся на нем во время переключения.

Специальные диоды

Помимо широко используемых диодов типа Rectifier, Zener и Schottky существуют и другие специальные диоды, которые имеют специальное применение, позволяющее быстро пробегать их.

LED: Да, светодиод (LED), как следует из названия, является диодом. Вы должны быть уже знакомы с этими вещами, поскольку они обычно встречаются и используются. Опять же, существует много типов светодиодов, но круглый светодиод диаметром 5 мм является наиболее часто встречающимся.

Мостовой выпрямитель: как мы знаем, выпрямительный диод используется в схеме выпрямителя, а для полной мостовой схемы выпрямителя нам потребуются четыре диода, подключенные упорядоченным образом. Сама эта установка доступна в пакете, называемом выпрямительным диодом.RB156 – один из таких примеров.

Фотодиод: Фотодиод – это диод, который позволяет току проходить через него в зависимости от падающего на него света. Он используется в качестве датчика для обнаружения света, его обычно можно найти в следящих за линией, роботах, избегающих препятствий, и даже в качестве счетчика объектов или устройства датчика скорости. Вы можете узнать больше о фотодиоде по этой ссылке.

Лазерный диод: Лазерный свет также является разновидностью диода, аналогичного светодиоду. Они имеют те же свойства, что и диоды, но в режиме прямого смещения они излучают свет с падением напряжения на них, действуя как нагрузка.Лазерный диод 650 нм – это наиболее распространенный лазерный диод.

TVS-диод: Еще одним важным специальным типом диодов является TVS-диод, который означает подавитель переходного напряжения. Это особый тип диода, который обычно используется в цепях питания для борьбы с скачками напряжения и защиты цепи. Эти диоды также называются переходными диодами или тиректорами.

Варакторные диоды: Варакторные диоды используются как переменные конденсаторы.Когда этот диод работает в режиме обратного смещения, шириной обедненной области можно управлять, что заставляет его действовать как конденсатор. Эти диоды также называются варикаповыми диодами и обычно используются в радиочастотных схемах.

Различные типы комплектов диодов

Теперь, когда мы изучили все основы работы с диодами, я считаю, что теперь вы можете выбрать диод, который требуется для вашей схемы. Но на самом деле мы видели один диод со сквозным отверстием, который обычно доступен и хорош для прототипов, но в большинстве продуктов вы не найдете их в корпусах с отверстиями.Сейчас мы обсудим множество различных типов диодных пакетов.

Комплект для сквозных отверстий

Это обычно используемые макетные и перфорированные платы. Эти пакеты называются DO-7, DO-35, DO-41, DO-204 и т.д., из которых DO-41 является наиболее распространенным. Эти пакеты также называются осевыми свинцовыми диодами .

Through Hole Package

Стили поверхностного монтажа

В большинстве готовых к производству конечных продуктов используются компоненты SMD .Они дешевле, чем сквозные, и имеют небольшой форм-фактор. SOD-323, SOD-523, SOD-123 SOD-80C – одни из самых популярных диодных SMD-корпусов. В большинстве конструкторов силовых цепей по-прежнему используются сквозные отверстия, поскольку они имеют высокую допустимую нагрузку по току и меньше проблем с электромагнитными помехами, поэтому в цифровых схемах обычно предпочитают SMD.

3-контактный болт крепления

Также существует несколько специальных диодов с тремя выводами, которые используются в сложных приложениях, таких как космическая промышленность.Они имеют высокий ток и коммутационную способность. Их можно найти в пакетах TO-64, TO-208, TO-254. Между банками имеется паз, позволяющий прикрепить их к корпусу раковины, их также называют диодами с болтовым креплением.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *