Как получить карбид кальция – Как получить карбид кальция 🚩 получение карбида кальция из оксида кальция 🚩 Образование 🚩 Другое

alexxlab | 11.12.2019 | 0 | Разное

Как получить карбид кальция 🚩 получение карбида кальция из оксида кальция 🚩 Образование 🚩 Другое

Автор КакПросто!

Наверное, каждый человек помнит свои веселые школьные дни. А особенное веселье приходилось на момент проведения ремонтных работ в здании школы, когда рабочие, помимо всего прочего оборудования, приносили с собой генератор ацетилена и бочку карбида кальция. Такие дни были страшным сном для работников всех школ, начиная с директора и заканчивая уборщицей потому, что карбид кальция - это любимое развлечение школяров. Нет счету испорченным унитазам в школьных туалетах. Вот такой он карбид кальция.

Статьи по теме:

Вам понадобится

  • Тигель (желательно графитовый), графитовый электрод, оксид кальция (негашеная известь), кокс, источник тока.

Инструкция

Принцип получения этого вещества заключается в том, что атом кислорода в молекуле оксида кальция заменяется на два атома углерода. В промышленности это достигается прокаливанием смеси кокса и негашеной извести, при температуре примерно 2000 градусов по Цельсию. Но, немножко этого чудного вещества можно получить и кустарным способом. Смешаем негашеную известь и кокс, в пропорции один к одному по массе и выложим смесь в тигель. Далее, берем два провода от источника тока, один подцепляем к тиглю, а ко второму цепляем графитовый электрод и подаем питание.

После этого замыкаем цепь, т.е. погружаем электрод в смесь, и за счет того, что в смеси присутствует углерод, между электродом и смесью создается электрическая дуга, протекает ток, смесь разогревается и местами плавится.Постарайтесь проплавить ее по всей площади. После остывания смесь, то есть уже расплав местами должен содержать карбид кальция. Если при погружении этого расплава в воду выделяется горючий газ (ацетилен), то опыт удался.

Обратите внимание

Электрическая дуга – явление очень яркое, поэтому используйте темные очки, берегите глаза.

Полезный совет

При приготовлении смеси не обязательно считать молярную массу, просто старайтесь брать кокс в избытке, дело в том, что в процессе лишний углерод выгорит на воздухе. Чем больше ток, тем лучше, но без фанатизма.

www.kakprosto.ru

Способ получения карбида кальция

Изобретение относится к способам переработки углекарбонатного минерального сырья и может быть использовано при его глубокой переработке с получением карбида кальция.

Известен способ переработки углекарбонатного минерального сырья, включающий обжиг известняка в реакторе с подачей в него и сжиганием высокотемпературного энергоносителя (см. SU №1449553, кл. С04В 2/02, 1989).

Однако в этом техническом решении невелик спектр получаемых товарных продуктов (только известь), низка экологичность производственного процесса, кроме того, осложнен процесс обеспечения производства высокотемпературным энергоносителем.

Известен также способ получения карбида кальция, включающий термическую обработку дробленых известняка и угля с отводом газообразных продуктов и их использованием для производства углекислоты (RU №2256611, С01В 31/32, С04В 2/02, C01F 11/06, C07C 11/24, 2005).

Однако в этом техническом решении процесс обеспечения производства высокотемпературным энергоносителем осуществляется за счет использования части получаемого карбида кальция для производства ацетилена, который и сжигают для подвода тепла в процессы обжига извести и синтеза карбида кальция, что снижает выход целевого продукта. Кроме того, процессы обжига извести и синтеза карбида кальция осуществляют в двух последовательно размещенных реакторах, что приводит к непроизводительным потерям тепла в процессе передачи материалов из одного реактора в другой.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение выхода целевого продукта и снижение энергоемкости производства карбида кальция.

Технический результат, получаемый при решении поставленной задачи, выражается в исключение расхода карбида кальция на технологические нужды и исключении непроизводительных потерь тепла (из-за охлаждения сырьевых компонентов) за счет реализации способа в объеме одного реактора.

Поставленная задача решается тем, что способ получения карбида кальция, включающий термическую обработку дробленых известняка и угля с отводом газообразных продуктов, которые используют для производства углекислоты, отличается тем, что используют тонкодисперсную смесь сырьевых материалов, при этом ее термическую обработку ведут в одном реакторе, при этом на первом этапе в процессе ввода сырья в реактор его подвергают нагреву, предпочтительно до 1000°-1200°С для чего нагрев сырьевой массы осуществляют теплопередачей от конструктивных элементов загрузочного канала, по которому тонкодисперсное сырье перемещают самотеком, и воздействием на него плазменного луча, формируемого плазмотроном в зоне свободного перемещения частиц сырьевой массы, при этом термическую обработку сырья осуществляют в атмосфере диоксида углерода, который подают в загрузочный канал, причем, последующий синтез карбида кальция осуществляют при температуре, как минимум 1700-1800°, для чего осуществляют индукционный нагрев реакционной массы, кроме того, расплав карбида кальция отводят через выпускное отверстие, расположенное на дне реактора, при этом из верхней части полости реактора отводят газообразные продукты из которых выделяют окись углерода и диоксид углерода, причем как минимум часть отводимого диоксида углерода используют для заполнения загрузочного канала, кроме того, для производства углекислоты используют объем диоксида углерода оставшийся после заполнения загрузочного канала и весь объем окиси углерода.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию"новизна".

Признаки отличительной части формулы изобретения обеспечивают решение следующих функциональных задач:

Признак "используют тонкодисперсную смесь сырьевых материалов" обеспечивает возможность прогрева сырьевой массы до температуры диссоциации карбонатов, при сравнительно небольшой длине загрузочного канала.

Признак указывающий, что "термическую обработку (тонкодисперсной смеси сырьевых материалов) ведут в одном реакторе" исключает потерю тепла прогретой сырьевой массой при переходе из зоны контактного и плазменного нагрева в зону индукционного нагрева реактора.

Признаки "на первом этапе в процессе ввода сырья в реактор его подвергают нагреву, предпочтительно до 1000-1200°С для чего нагрев сырья осуществляют теплопередачей от конструктивных элементов загрузочного канала, по которому тонкодисперсное сырье перемещают самотеком, и воздействием на него плазменного луча, формируемого плазмотроном в зоне свободного перемещения частиц сырьевой массы" обеспечивают прогрев сырьевой массы до температуры диссоциации карбонатов, что снижает затраты энергии на индукционный прогрев реакционной массы.

Признак "термическую обработку сырья осуществляют в атмосфере диоксида углерода, который подают в загрузочный канал" обеспечивает наличие плазмообразующего газа в загрузочном канале, кроме того, тем самым исключается взрывное горение горючих газов, выделяющихся при газифицировании угольной массы.

Признак "последующий синтез карбида кальция осуществляют при температуре, как минимум 1700-1800°, для чего осуществляют индукционный нагрев реакционной массы" обеспечивает возможность получения карбида кальция при прогреве до заявленного температурного диапазона, предварительно подогретой реакционной массы.

Признак "расплав карбида кальция отводят через выпускное отверстие, расположенное на дне реактора» обеспечивает оптимальную схему перемещения материала реакционной массы, сверху-вниз, под действием силы тяжести, не требующее использования специальных средств.

Признак "из верхней части полости реактора отводят газообразные продукты из которых выделяют окись углерода и диоксид углерода» упрощают организацию отвода газовой массы из реактора, при котором не оказывается влияние на расплав реакционной массы, при этом обеспечивается возможность утилизации окислов углерода.

Признак "как минимум часть отводимого диоксида углерода используют для заполнения загрузочного канала» обеспечивают возможность получения диоксида углерода для обеспечения процесса синтеза карбида углерода, без использования внешнего источника этого газа.

Признак "кроме того, для производства углекислоты используют объем диоксида углерода оставшийся после заполнения загрузочного канала и весь объем окиси углерода» обеспечивает возможность полной утилизации газов-окислов углерода, образующихся при синтезе карбида углерода.

Изобретение поясняется чертежом, на котором показана схема реализации способа.

На чертеже показаны верхняя 1 и нижняя 2 части корпуса плазменного реактора, загрузочный канал 3, источник сырьевой смеси 4, верхняя крышка 5 загрузочного канала 3, источник плазмообразующего газа 6, наклонные пересыпные полки 7, каналы 8 и 9, соответственно для ввода сырьевой смеси и диоксида углерода, верхняя 10 и нижняя 11 электромагнитные катушки, выпускной патрубок 12, поворотная платформа 13, привод 14 поворота платформы, источники угля 15, известняка 16, воды 17, плазмотрон 18 с соплом 19, продольная ось 20 загрузочного канала 3, плазменный шнур 21, кромки 22 пересыпных полок 7, первый 23 и второй 24 газоотводящие каналы, газоразделительный блок 25, второй реактор 26, основание 27 поворотной платформы 13, ролики 28, дополнительный канал подачи угля 29.

Верхняя 1 и средняя часть корпуса плазменного реактора выполнена в виде цилиндрической камеры. Ее нижняя часть 2 выполнена конической и завершена выпускным патрубком 12. Корпус плазменного реактора и выступающая из него часть загрузочного канала 3 выполнены водоохлаждаемыми (снабжены рубашкой, выполненной известным образом с возможностью прокачки теплоотводящего агента (воды). Загрузочный канал 3 пропущен через верхнюю крышку корпуса плазме иного реактора, выполнен из тепло-стойкой стали. Он снабжен герметичной крышкой и сообщен каналом 8 с источником сырьевой смеси 4 (бункером-накопителем дисперсного сухого материала), размещенным выше корпуса 1, что обеспечивает самотечное перемещение смеси в реактор при открытых затворах (на чертежах не показаны), при этом источник сырьевой смеси 4 сообщен с источниками угля 15 и известняка 16. Кроме того, источник угля 15, посредством дополнительного канала подачи угля 29 (снабженного запорным клапаном известной конструкции - на чертеже не обозначен) сообщен напрямую с каналом 8.

Полость загрузочного канала 3 выполнена с возможностью сообщения известным образом с источником плазмообразующего газа 6 (в качестве которого используют диоксид углерода), кроме того, источник плазмообразующего газа 6 сообщен каналом 9, для ввода диоксида углерода с плазмотроном 18. Кроме того, в полости загрузочного канала 3 установлены наклонные пересыпные полки 7 выполненные из металла, наклоненные под углом близким к углу естественного откоса шихты, используемой для синтеза карбида кальция. На верхнем торце загрузочного канала 3(на его верхней крышке 5) зафиксирован по меньшей мере один плазмотрон известной конструкции, мощностью до 25-50 квт, обеспечивающий формирование плазменного шнура 21 ориентированного вниз, в зазор между кромками 22 пересыпных полок 7. Целесообразно, чтобы плазмотронов было бы хотя бы два, при этом формируемые ими плазменные шнуры 21 должны быть ориентированы под острым углом к продольной оси 20 загрузочного канала 3 в зазоре между кромками 22 пересыпных полок 7.

В качестве средств нагрева сырьевой смеси в реакторе используют верхнюю 10 и нижнюю 11 электромагнитные катушки, выполненные известным образом с возможностью индукционного нагрева сырьевого материала до температуры его плавления, размещенные на разной высоте относительно корпуса плазменного реактора.

При этом нижняя 11 электромагнитная катушка установлена стационарно или с возможностью возвратно-поступательного перемещения по высоте реактора (например, на платформе установленной на раздвижных силовых цилиндрах - на чертежах названные элементы не показаны и не обозначены) с возможностью ее опускания максимально близко к выпускному патрубку 12 - до начала нижнего (конического) участка корпуса реактора.

Верхняя катушка 10 установлена на поверхности поворотной платформы 13, выполненной с возможностью поворота вокруг корпуса реактора, которой придана переменная высота и которая снабжена приводом 14 обеспечивающим ее поворот, для этого, нижняя поверхность поворотной платформы 13 оперта на ряд роликов 28 опирающихся на кольцевой желоб (на чертеже не обозначен) основания 27, один из которых и выполнен приводным (например, закреплен на валу реверсивного электродвигателя).

Второй реактор 26 выполнен с возможностью синтеза углекислоты, в виде емкости связанной с газоразделительным блоком 25 газопроводами подачи CO2 и СО, кроме того, он сообщен с источником воды 17 выполненному в виде емкости с водой. Второй реактор 26 снабжен насосным, дозирующим и контрольно-измерительным оборудованием известной конструкции (на чертежах не показаны), обеспечивающим реализацию процесса синтеза Н2СО3. Выход второго реактора 26 связан с хранилищем углекислоты (на чертеже не показано), конструкция которого определяется формой поставки углекислоты потребителю, т.е. сжиженная или "сухой лед", и не отличается от известных конструкций, сходного назначения.

Заявленный способ реализуется следующим образом.

На этапе запуска плазменного реактора в плазмотрон 18 подают плазмо-образующий газ (диоксид углерода) и включают его в работу, что обеспечивает формирование плазменного шнура 21 в зазоре между кромками 22 пересыпных полок 7 загрузочного канала 3.

На этапе запуска плазменного реактора в него подают только дисперсный уголь, для чего уголь из источника угля 15 направляют по дополнительному каналу подачи угля 29 напрямую в канал 8 и далее в загрузочный канал 3.

Таким образом, на самую верхнюю из пересыпных полок 7 поступает дисперсный уголь, который пересыпаясь с одной полки на другую перемещается вниз по загрузочному каналу 3 и пересекая зазор между кромками 22 пересыпных полок 7 попадает под действие плазменного шнура 21 (или шнуров) действующих в названном зазоре. Это приводит к воспламенению объема дисперсного угля и прогрева загрузочного канала и полости реактора.

Генерируемые при этом газы-продукты сжигания дисперсного угля отбираются через первый 23 и второй 24 газоотводящие каналы, после чего попадают в газоразделительный блок 25, где из них выделяются оксид и диоксид углерода (остальные газы выбрасываются в атмосферу. При этом, оксид углерода подают во второй реактор 26, а диоксид углерода накапливают в источнике плазмообразующего газа 6.

После прогрева загрузочного канала до температуры 1000°-1200°С дополнительный канал подачи угля 29 перекрывают, полость реактора и загрузочного канала 3 заполняют диоксидом углерода, который известным образом подают от источника плазмообразующего газа 6, добиваясь вытеснения всех иных газов.

Далее, от источника сырьевой смеси 4, в загрузочный канал 3 по каналу 8 подают сухую сырьевую шихту, содержащую в расчетном количестве химические соединения (дисперсные уголь и известняк), обеспечивающие при их плавлении получение карбида кальция (коммуникации связывающие источник сырьевой смеси 4 и загрузочный канал 3 выполнены известным образом).

Таким образом, на самую верхнюю из пересыпных полок 7 (прогретую, как и остальные узлы загрузочного канала 3, до температуры 1000°-1200°С) поступает смесь дисперсных известняка и угля, которая пересыпаясь с одной полки на другую перемещается вниз по загрузочному каналу 3. При относительно медленном (по сравнению с вертикальным падением) перемещении частиц шихты происходит их контактный нагрев от деталей загрузочного канала 3. Это приводит к разогреву шихты до температуры диссоциации карбонатов и обеспечивает конверсию частиц известняка СаСО3 в частицы извести (СаО), в соответствии с формулой:

CaCO3=CaO+СО2.

Таким образом далее в процессе участвует шихта содержащая частицы извести и частицы угля.

При этом, воздействие на частицы этой шихты плазменных шнуров 21 (формируемых работой плазматронов 18), фактически полностью пересекающих поток частиц шихты обеспечивает расплавление материала и синтез карбида кальция (температура расплава достигает 1700-1900°С и выше). Синтез карбида кальция идет в соответствии с формулой:

Расплав попадает на дно реактора постепенно накапливаясь при этом процесс расплавления идет с большой скоростью, т.к. в этом случае происходят уже экзотермические реакции.

При подъеме уровня расплава выше уровня нижней катушки 11 подается напряжение на ее обмотку. Стенки камеры плазменного реактора выполняются из немагнитного материала, например стали, содержащей большое количество никеля, хрома и титана. Образующееся в результате прохождения тока через катушку электромагнитное поле воздействует на расплав, который в жидком состоянии становится токопроводным. Индуктивный ток поддерживает температуру на достигнутом (благодаря воздействию плазмы) уровне.

При подъеме расплава выше верхней электромагнитной катушки 10, подается напряжение на последнюю. Это обеспечивает индукционный прогрев остального объема расплава в камере плазменного реактора.

При этом включают привод 14 вращения приводного ролика 28, который, плотно контактируя с нижней поверхностью поворотной платформы 13, в свою очередь приводит последнюю во вращательное движение на остальных (неприводных) роликах 28 относительно ее основания 27 жестко закрепленного на корпусе реактора. Благодаря тому, что катушка 10 закреплена на поверхности поворотной платформы 13, при вращении последней происходит колебательное движение катушки 10 в плоскостях, пересекающих продольную (вертикальную) ось реактора.

При колебательных движениях катушки 10 меняет свое положение и магнитное поле, образующееся внутри токопроводящего расплава, который активно перемешивается и дополнительно нагревается. В результате перемешивания расплава за счет вращающегося магнитного поля, создаваемого трехфазной катушкой и колебательного движения самой катушки происходит гомогенизация расплава, что активно способствует увеличению производительности установки и повышению качества основной продукции, расплава карбида кальция. Скорость перемешивания задается скоростью изменения магнитного поля и зависит от частоты и мощности переменного тока и скорости механических колебаний катушки, которая в свою очередь зависит от скорости вращения поворотной платформы 13. Скорость перемешивания регулируется в зависимости от вязкости расплава, а последняя - от его температуры. Имея данные по температуре расплава, задают и скорость колебаний катушки 10 (скорость вращения поворотной платформы 13).

Диоксид и оксид углерода, выделяемые в результате декарбонизации карбонатных компонентов сырьевой смеси, выходят под действием разрежения, создаваемого в газоотводных каналах, расположенных в верхней части плазменного реактора (выше максимального уровня расплава), где может использоваться для получения сухого льда или снова вводится в реактор через электроды. Расплав карбида кальция периодически или непрерывно (при согласованном вводе в реактор) выливают через выпускной патрубок 12 в холодильник или гранулятор, в которых утилизируют тепло расплава (на чертежах не показаны).

Для снижения вязкости расплава карбида кальция во время периодического слива, нижняя катушка должна быть подвижной по высоте корпуса реактора, чтобы ее можно было перемещать в зону разгрузочного отверстия.

Остывший карбид кальция известным образом измельчают для получения кондиционного материала.

При выходе реактора на рабочий режим возникает избыток диоксида углерода по сравнению с его количеством необходимым для использования в технологическом процессе синтеза карбида кальция. При этом избыток диоксида и оксида углерода подают во второй реактор 26, где используют для синтеза углекислоты.

Способ получения карбида кальция, включающий термическую обработку дробленых известняка и угля с отводом газообразных продуктов, которые используют для производства углекислоты, отличающийся тем, что используют тонкодисперсную смесь сырьевых материалов, при этом термическую обработку смеси ведут в одном реакторе, причем на первом этапе в процессе ввода сырья в реактор его подвергают нагреву предпочтительно до 1000-1200°С путем нагрева сырьевой массы теплопередачей от конструктивных элементов загрузочного канала реактора, по которому тонкодисперсное сырье перемещают самотеком, и воздействием на него плазменного луча, формируемого плазмотроном в зоне свободного перемещения частиц сырьевой массы, при этом термическую обработку сырья осуществляют в атмосфере диоксида углерода, который подают в загрузочный канал с последующим синтезом карбида кальция, осуществляемого при температуре как минимум 1700-1800°С путем индукционного нагрева реакционной массы, и полученный расплав карбида кальция отводят через выпускное отверстие, расположенное на дне реактора, при этом из верхней части полости реактора отводят газообразные продукты, из которых выделяют окись углерода и диоксид углерода, причем как минимум часть отводимого диоксида углерода используют для заполнения загрузочного канала, а для производства углекислоты используют объем диоксида углерода, оставшийся после заполнения загрузочного канала, и весь объем выделенной окиси углерода.

edrid.ru

Карбид кальция — WiKi

История получения

Получение

В настоящее время получают прокаливанием в электрических печах (температура 1900—1950 °C) смеси оксида кальция с коксом.

CaO+3C→CaC2+CO{\displaystyle {\mathsf {CaO+3C\rightarrow CaC_{2}+CO}}} 

Полученный таким образом технический продукт имеет грязно-серый цвет вследствие загрязнения углём и другими красящими примесями. Он содержит также примеси фосфида и сульфида кальция, вследствие чего такой карбид кальция и полученный из него ацетилен имеют неприятный запах.

Физические свойства

  • Бесцветные тетрагональные кристаллы.
  • Плотность: 2,2 (+20 °C, г/см3).
  • Удельная теплоёмкость при постоянном давлении (в Дж/г·K): 0,92 (+20—325 °C).
  • Стандартная энтальпия образования ΔfH (298 К, кДж/моль): −62,8 (т).
  • Стандартная энергия Гиббса образования ΔfG (298 К, кДж/моль): −67,8 (т).
  • Стандартная энтропия образования S (298 К, Дж/моль·K): 70,3 (т).
  • Стандартная мольная теплоёмкость Cp (298 К, Дж/моль·K): 62,34 (т).
  • Энтальпия плавления ΔHпл (кДж/моль): 32,2[1].

Химические свойства

Внешний вид и характеристики технического карбида кальция

Карбид кальция получают сплавлением в электрических печах кокса и негашеной извести. Расплавленный карбид кальция выпускается из печи в специальные формы — изложницы, в которых он затвердевает. Застывший карбид кальция дробится и сортируется на куски определённых размеров.

Технический карбид кальция представляет собой твёрдое кристаллическое вещество. По внешнему виду карбид кальция представляет собой твёрдое вещество тёмно-серого или коричневого цвета. Он даёт кристаллический излом серого цвета с различными оттенками в зависимости от чистоты. Карбид кальция жадно поглощает воду. При взаимодействии с водой даже на холоде карбид кальция разлагается с бурным выделением ацетилена и большого количества тепла. Разложение карбида кальция происходит и под влиянием атмосферной влаги.

По ГОСТ 1460-56 установлены следующие размеры (грануляция) кусков карбида кальция: 2×8; 8×15; 15×25; 25×80. Технический карбид кальция содержит до 80 % химически чистого карбида кальция, остальное составляют примеси — негашеная известь, углерод, кремнекислота и другое[3].

Область применения карбида кальция

Карбид кальция используют при проведении автогенных работ и освещения, а также в производстве ацетиленовой сажи и продуктов органического синтеза, из которых главным является синтетический каучук.

Карбид кальция применяют в производстве цианамида кальция, из которого получают удобрения, цианистые соединения. Карбид кальция используют для получения карбидно-карбамидного регулятора роста растений, изготовления порошкового карбидного реагента.

Из 1 кг технического карбида получается от 235 до 285 л ацетилена в зависимости от его сорта и грануляции: чем чище и крупнее карбид кальция, тем большее количество ацетилена он даёт при разложении.

Для разложения 1 кг карбида кальция теоретически требуется 0,56 л воды. Практически берут от 5 до 20 л воды с целью лучшего охлаждения ацетилена и обеспечения безопасности при работе. Скорость разложения карбида кальция водой зависит от его чистоты, грануляции, температуры и чистоты воды. Чем чище карбид кальция, меньше размер его кусков, выше температура и чище вода, тем больше скорость[3].

См. также

Примечания

ru-wiki.org

Карбид кальция применение - Справочник химика 21

    В качестве очень энергично осушающего реагента был рекомендован гидрид кальция [50[. Его реакция с водой протекает необратимо в широком температурном интервале. Другим соединением кальция, которое рекомендовано в литературе для удаления влаги, является карбид кальция. Применение нитрида магния для осушения описано в обзоре Портера [38] .  [c.575]

    В местах хранения и вскрытия барабанов с карбидом кальция запрещается курение, пользование открытым огнем и применение инструмента, дающего при ударе искры. [c.207]


    Эти печи не получили широкого применения, так как карбид кальция должен отвечать более высоким требованиям к гранулометрическому составу. [c.98]

    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. [c.221]

    Продукты коксования и их использование. Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650—750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов, как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования. Кокс должен обладать достаточной механической прочностью, так как в противном случае ои будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, приведет к расстройству работы доменной печи, снижению ее производительности и т. п. Кокс должен иметь теплотворную способность 31 400—33 500 кДж/кг. Показателями качества кокса является горючесть и реакционная способность. Первый показатель характеризует скорость горения кокса, второй — скорость восстановления им диоксида углерода. Поскольку [c.38]

    Места установки ацетиленовых генераторов должны быть ограждены. Открывать барабаны с карбидом кальция следует латунными зубилом и молотком (применение медных инструментов для этой цели запрещено) или специальным ножом, смазанным толстым слоем солидола барабаны из-под карбида необходимо предохранить от воды. [c.571]

    К первой группе могут быть отнесены методы с применением карбида кальция [2], ацетилхлорида [3], нитрида магния [4], бензойного ангидрида и йодометрический [5]. Ко второй группе относятся методы, основанные на выделении водорода или ацетилена при взаимодействии с металлическим натрием и кальцием [6], а также гидридом кальция [7]. [c.17]

    При применении этих способов необходимо учитывать, что ацетилен и водород растворимы в нефтепродукте, а карбоновые кислоты нефти и прочие кислые соединения могут реагировать с гидридом и карбидом кальция, металлическим натрием и калием и другими Ьеществами, как вода, давая неточные определения ее количественного содержания. [c.18]

    Нефтяные малосернистые коксы и брикеты из нефтяного кокса можно использовать для получения карбидов (кальция, кремния, бора и др.) и ферросплавов, широко применяемых для получения ацетилена, в абразивной промышленности, при изготовлении полупроводников, раскислителей, для улучшения свойств сталей и др. Большее внимание в этой работе уделяется применению в качестве ВОС сернистых и высокосернистых нефтяных коксов и иефте-коксобрикетов. [c.104]

    Потребность в нефтяном коксе, как более дешевом и высококачественном материале, чем кокс, получаемый на основе угля (так называемый пековый), весьма значительна и непрерывно возрастает. Основной потребитель нефтяного кокса - алюминиевая промышленность кокс служит восстановителем (анодная масса) при выплавке алюминия из алюминиевых руд. Удельный расход кокса на производство алюминия весьма значителен и составляет 550-600 кг на 1 т алюминия. Из других областей применения нефтяного кокса следует назвать использование его в качестве сырья для изготовления графитированных электродов для сталеплавильных печей, для получения карбидов (кальция, кремния) и сероуглерода. Специальные сорта нефтяного кокса применяют как конструкционный материал для изготовления химической аппаратуры, работающей в условиях агрессивных сред. [c.43]

    Важнейшее направление использования электрической дуги — электротермия. Началом ее становления явилось открытие законов термического действия электрического тока (Д. Джоуль, Э. X. Ленц 1841-1844 гг.). С этого времени разрабатываются процессы и организуются производства карбида кальция, фосфора, ферросплавов, электростали. При создании этих производств ограничениями широкомасштабного выпуска перечисленных очень энергоемких видов продукции были отсутствие необходимого количества электроэнергии и малая потребность в ИХ применении. [c.12]

    При необходимости определения микропримеси паров воды в каком-либо газе, по выходе из колонки вещества поступают в реактор с литий-алюминий-гидридом, реагирующим с водой с образованием водорода, и на выходе из реактора проходят детектор (катарометр), в котором пик водорода соответствует содержанию воды. При необходимости применения пламенно-ионизационного детектора реактор заполняется карбидом кальция, реагируя с которым, вода превращается в ацетилен. Последний определяется по хроматограмме ПИД. В этом случае применяется схема 4. Возможно превращение воды в реакторе до колонки по схеме 3. [c.127]

    Перечислите области применения гидроксида кальция. 0 15-121. Можно ли приготовить раствор в воде а) оксида кальция б) гидроксида кальция в) карбида кальция г) карбоната кальция д) хлорида кальция е) гидрокарбоната кальция Ответы мотивируйте. [c.119]

    Особенно важно применение природных

www.chem21.info

Как получить карбид кальция (CaC2) с помощью CaCO3

CaCO3 = CaO+CO2 2CaO+4C= 2CaC2+ CO2

СаСО3=СаО+СО2 СаО+С=СаС2+СО я думаю так, а если еще к СаС2 добавить воду получиться ацетитлен и гидроксид кальция

Люди я в шоке ..появилась программа для получения золота бесплатно! Она очень проста! И совсем не сложная! Вообщем призы тоже хорошие :700 золота, 70000 серебра и 7000 энергии! Что бы всё это получить, вам нужно скопировать это и написать это в любые 5 комментарии! Потом зайди в игру и нажми на пробел 10 раз! пойди в салон и нажми на кресло! Потом вернись домой и нажми снова на пробел 10 раз! И та дам !! У тебя будут все призы ) Это не обман !! Проверено 20000людьми! Анна Переман : ух ты !!Класс вообще! Сама не поверила, а теперь сижу и трачу золото в своё удовольствие! Саша Абдулоав : скажу честно, что сначала я не поверил что это не спам а то обычно пишут и врут! а сейчас я сам в шоке! спасибо за такую отличную программу! советую всемМені подобаєтьсявчора о

touch.otvet.mail.ru

Карбид кальция - Справочник химика 21

    Ацетилен является исходным сырьем для синтеза ряда важных продуктов. Перспективными методами получения ацетилена являются термоокислительный пиролиз природного газа и плазменный метод (из углеводородного сырья). Значительное количество ацетилена получают из карбида кальция. [c.20]

    Ацетилен получают разложением карбида кальция водой в ацетиленовых генераторах. При методе вода на Карбид разложение проводят в генераторах, в которые воду подают на движущийся по полкам карбид, а из аппарата выводят известь-пушонку. При методе карбид в воду карбид подают в избыток воды, а известь выводят в виде шламовых вод. Ацетилен из карбида кальция получается высокой концентрации с незначительным кО личеством примесей (НгЗ, РНз, ННз), от которых ацетилен очищают раствором щелочи, серной кислотой или гипохлоритом натрия. Влажный или осушенный ацетилен (в зависимости от потребителя) направляют на дальнейшую переработку или в баллоны. [c.25]


    Если карбид кальция привести в соприкосновение с водой, молекулы воды присоединят к себе атом кальция, а вместо него к углероду присоединятся атомы водорода. В результате образуется ацетилен. В прежние времена, когда в большой моде были велосипеды, а электрические фонари с батарейками еще не получили широкого распространения, сосуды с карбидом кальция нередко использовали для вело-фонарей. В такой сосуд [c.49]

    Какой объем ацетилена образуется при переработке карбида кальция массой Юте массовой долей примесей 0,04 Определить массу уксусной кислоты, получаемой из ацетилена. [c.257]

    Единственный невзрывчатый ацетиленид — карбид кальция. Его молекула содержит два атома углерода, связанные между собой тройной связью, а остальные связи обоих углеродных атомов присоединены к одному и тому же атому кальция. (Кальций — это металл серебристого цвета его атомы входят в состав известняка и костей. Вещества, содержащие кальций, широко распространены в природе.) [c.49]

    Какая масса технического карбида кальция с м 1С-совой долей примесей 0,20 необходима для получения ледяной уксусной КИСЛОТЫ объемом 10 карбидным способом (р= 1,049 г/см )  [c.257]

    В настоящее время большая часть ацетилена еще получается из карбида кальция воздействием на него воды. Получение карбида кальция, требующее исключительно много энергии, более всего развито там, где имеется дешевая водяная энергия, как в Норвегии, Канаде и т. д. В Германии источником энергии для получения карбида является уголь. Получение карбида не нефтехимический процесс. Недавно карбид начали получать из нефтяного кокса. Этот весьма реакционноспособный и почти беззольный кокс является исключительно ценным сырьем для получения карбида. Только в этом смысле производство карбида можно рассматривать в качестве нефтехимического процесса. [c.93]

    Недавно процесс получения карбида кальция на базе кокса и извести значительно улучшен. В одном еще находящемся в опытной стадии методе, разработанном Баденскими содовыми и анилиновыми фабриками, известь и кокс обжигают в атмосфере кислорода в футерованной графитом шахтной печи (1). Образование СО по уравнению [c.93]

    Вычислить массу карбида кальция, необходимого для получения 0,1 м сухого ацетилена (при н. у.), если коэффициент превращения равен 0,91. [c.55]

    С учетом того, что а) топливо содержит 90% углерода, а известь 95% СаО и б) расход топлива на 20%, а извести на 198 больше, чем это требуется на реакцию образования СаСг расход шихты (топлива и извести) на 1 т технического карбида кальция определится [c.382]

    Таким образом, коэффициент использования электроэнергии на образование карбида кальция при практическом расходе ее 3200 квт-ч определится (берем Q среднее между Q и Q")  [c.384]

    Цианамид кальции получают азотированием карбида кальция СаСг + [c.41]

    Подсчитаем предварительно а) состав технического карбида кальция, б) количество загружаемой в печь шихты и в) количество окиси углерода СО, получаемой в промессе реакции между окисью кальция и углеродом. [c.382]

    Определить расходные коэффициенты в производстве карбида кальция (технического), имеющего следую-HUu i сос- ., (в массовых долях) СаСз 0,78 СаО 0,15  [c.48]

    Ма основе полученных данных подсчитаем расход тепловой энергии (Q) для образования 1 т технического карбида кальция. [c.383]

    Карбид кальция, идущий для получения ацетилс,-иа (технического), должен отвечать следующему требованию при действии воды на карбид массой 1 кг должно выделяться около 0,260 м ацетилена. Определить массовую долю СаСа в таком карбиде. [c.257]

    Производство ацетилена из карбида кальция. ........ [c.3]

    В присутствии газов-разбавителей, например окиси углерода, ацетилен может воспламеняться и при 250—300 °С. Некоторые твердые вещества также понижают температуру самовоспламенения ацетилена в 1,5—2 раза. Так, в присутствии карбида кальция температура самовоспламенения ацетилена при атмосферном давлении составляет 500 °С. Окислы меди, железа и других металлов, являясь весьма активными катализаторами, в значительной мере способствуют снижению температуры разложения ацетилена. Наименьшая температура, при которой возможен взрывной распад ацетилена, находящегося под избыточным давлением 400 кПа, составляет в присутствии меди 240 °С, а в присутствии окислов железа 280 °С. [c.21]

    Какой объем ацетилена можно получить из карбида кальция массой 400 кг с массовой долей нримесе/  [c.256]

    Безопасный режим работы достигается прежде всего строгой регулировкой соотношения подачи карбида кальция и воды в генераторы, обеспечивающей необходимые давления и температуру в аппарате, а также остаточное содержание карбида кальция (в пересчете на ацетилен) в извести-пушонке не более 0,4%. [c.28]

    По расходу энергии процесс Захсе является наилучшим, так как нри получении ацетилена из карбида кальция коэффициент использования энергии составляет примерно 50%, в дуговом процессе — 66%, а в способе Захсо эта величина достигает 75%. Для получения 1 ацетилена пз карбида требуется И квт.-ч электроэнергии, 2,6 кг кокса и 3,6 кг извести. Для получения того жо 1 ж ацетилена способом Захсе необходимы 6 метана и 3,5 ж кислорода. [c.95]

    Какой объем кислорода необходим для сжигания ацетилена, полученного из карбида кальция массой 21 кг с массовой долей СаСа 80,4%  [c.258]

    N2 = СаСЫг + С. Карбид кальция и свою очередь получают при взаимодействии углерода (угля) и извести при высокой температуре (СаО -f ЗС = = a 2-f 0). Известь — обжигом известняка (СаСОз = СаО + СО2) и азот путем физического разделения воздуха ма N3 и Ог. Определить производительность цианамидного завода и расходные коэффициенты по сырью, если 

www.chem21.info

Карбид кальция, получение - Справочник химика 21

    Процесс получения ацети.пена ведут в специальных генераторах, куда непрерывно подается карбид кальция. Полученный ацетилен подвергают очистке от примесей (НзЗ, РН3 и др.) промыванием каким-либо окислителем. Из карбида кальция получают ацетилен и в лабораториях. [c.295]

    Плавка и рафинирование цветных металлов и сплавов Выплавка качественной стали получение ферросплавов, электрокрекинг метана и других углеводородов Азотирование карбида кальция, получение карбида кремния и кварцевого стекла [c.153]


    Азотирование карбида кальция, получение карбида кремния и кварцевого стекла Получение искусственного графита, сероуглерода, цианидов Получение карбидов, возгонка фосфора, извлечение металлов из руд и концентратов, электролиз расплавов оксида алюминия, поваренной соли, едкого натра, карналлита, получение электрокорунда и плавленых огнеупоров Переплавка металлов и сплавов, варка кварцевого стекла [c.185]

    Определение общей серы можно также произвести разложением карбида щелочью. После длительного разложения карбида кальция полученная масса выпаривается досуха и остаток сплавляется с содой и селитрой. В фильтрате растворенного и подкисленного сплава определяется сера осаждением хлоридом бария после удаления оснований аммиаком. [c.12]

    Влияние температуры и продолжительности азотирования технического карбида кальция, полученного в лабораторных условиях, на связывание азота показано ниже  [c.46]

    Карбид кальция, полученный из шихты с большим содержанием углерода, обладает повышенной вязкостью, вследствие чего карбидный плав трудно выпускать из печи. [c.74]

    В зависимости от применяемого сорта карбида известь имела различную окраску. Нижние и средние слои, образованные в начальный период работы генератора, были окрашены в нормальный серый цвет, а верхние слои известкового остатка имели различные оттенки. Очевидно, имеется зависимость между степенью перегрева, возникающего при недостаточном отводе тепла, и сортом карбида кальция. Полученный газ содержал около 99% ацетилена и по степени чистоты соответствовал ацетилену в опытах без перегрева. [c.38]

    Структура химически чистого карбида кальция, полученного из особенно чистого сырья или термическим разложением цианамида [6] или из извести и угля в дуговой печи, отличается существенными особенностями. Такой карбид (именуемый карбидом III) имеет сложную структуру низкой симметрии, отличную от тетрагональной решетки технического карбида кальция (именуемого карбидом I). та сложная структура не поддается расшифровке методом рентгеноструктурного анализа, и переходит при добавке примесей в структуру карбида 1 (добавка Са, S) или карбида II (добавка азота). Впрочем, последние превращения могут быть получены и чисто физическим путем при растирании карбида III (выше 30 — карбид I, ниже 30 — карбид II). Выше 435 существует еще четвертая, кубическая, модификация СаСг [8]. Приписывавшиеся первоначально этим модификациям различия в реакционной способности по отношению к азоту последующими исследованиями не подтвердились и должны быть отнесены на счет примесей (см. далее, раздел Б, параграф 2, стр. 109). [c.84]

    Цвет технического карбида кальция, полученного в электрической печи, изменяется в зависимости от состава — от светлобурых до черных тонов образцы с высоким содержанием карбида (более 80%) имеют красноватый излом с перламутровым блеском. [c.84]

    Микулинский [19] показал, что карбид кальция, полученный в резу. ь-тате восстановления фосфата кальция, пригоден для изготовления цианамида кальция, так как содержащаяся в карбиде примесь фосфида кальция также подвергается азотированию  [c.261]

    Из 83%-ного карбида кальция получен металл, содержащий 94,8— 98,2% Са, 0,0085% Ре, 0,009% 81, 0,012% Mg свободный углерод, хлор, марганец и медь не обнаружены. В остатке после реакции остается графит с содержанием углерода 94 — 98,5%. [c.203]

    В предложенном Чумаченко и Пахомовой [10] методе одновременного определения углерода, водорода и азота с применением газовой хроматографии окисление вещества осуществляют окисью никеля при температуре 900—950° С в атмосфере гелия в герметично закрывающейся реакционной пробирке. Продолжительность сожжения 1—2 мин. Образовавшаяся вода превращается в ацетилен над карбидом кальция. Полученные азот, двуокись углерода и ацетилен разделяют на колонке, заполненной активированным углем при температуре 120° С, скорость газа-носителя 170 мл1мин. Точность определения 0,2%. [c.116]

    Три главные стадии цианамидного процесса заключаются в производстве карбида кальция, получении чистого азота и соединении этих двух веществ. Сырой продукт представляет серовато-черное твердое вещество, содержащее около 60% цианамида кальция, 20% свободной извести, 12% свофдного углерода (графита) и небольшие количества окислов железа, алюминия, кремния и др. [c.234]


www.chem21.info

Отправить ответ

avatar
  Подписаться  
Уведомление о