Как померить радиус скругления: Радиусы скруглений. Размеры и предельные отклонения

alexxlab | 22.12.1998 | 0 | Разное

Содержание

Радиусы скруглений. Размеры и предельные отклонения

Источник: ОСТ 92-0093-69

Рис 1. Размеры и предельные отклонения радиусов скруглений и фасок для сопряжений типа “вал – отверстие”

 

 

Таблица 1. Рекомендуемый подбор сопряжений радиуса с радиусом и радиуса с фаской, мм

Диаметр вала d

Радиус вогнутой поверхности

Радиус выпуклой поверхности и фаска

r

Предельное отклонение

r1=C

Предельное отклонение

До 0,5

0,05

-0,03

0,1

0,05

От 0,5 до 1

0,1

-0,05

0,2

0,1

Св.1 – 3

0,2

-0,1

0,3

0,2

3 – 6

0,3

-0,2

0,5

0,3

6 – 10

0,5

-0,3

0,8

10 – 14

0,8

1,0

14 – 18

1,0

1,6

0,5

18 – 30

1,6

-0,5

2,0

30 – 50

2,0

2,5

50 – 80

2,5

3,0

80 – 120

3,0

4,0

1,0

120 – 180

4,0

-1,0

5,0

180 – 220

5,0

6,0

220 – 260

6,0

8,0

2,0

260 – 360

8,0

-2,0

10,0

360 – 500

10,0

12,0

 

Таблица 2. Размеры и предельные отклонения радиусов скруглений или фасок для сопрягаемых поверхностей валов и втулок, мм

Номинальный диаметр

r или С

Предельное отклонение

Номинальный диаметр

r или С

Предельное отклонение

До 0,5

0,05

± 0,03

Св. 30 до 50

2,0

± 0,5

От 0,5 до 1

0,1

± 0,05

50 – 80

2,5

Св. 1 – 3

0,2

± 0,1

80 – 120

3,0

3 – 6

0,3

± 0,2

120 – 180

4,0

± 1

6 – 10

0,5

± 0,3

180 – 260

5,0

10 – 18

1,0

± 0,5

260 – 360

6,0

18 – 30

1,6

 

 При применении радиусов скруглений или фасок размером св. 6 до 10 мм предельное отклонение ±1,5 мм; св. 10 до 20 – ±2 мм; св. 20 до 32 – ±2,5 мм и свыше 32 – ±3 мм.


Таб 3. и Рис.2 Размеры и предельные отклонения радиусов скруглений валов и корпусов, сопрягаемых с шарико- и роликоподшипниками, мм

Радиус подшипника

r

0,2

0,3

0,4

0,5

0,8

1,0

1,2

1,5

2,0

2,5

Радиус вала или корпуса

r1

0,1

0,2

0,3

0,5

0,6

0,8

1,0

1,6

Пред. откл.

-0,05

-0,1

-0,2

-0,3

-0,5

Радиус подшипника

r

3,0

3,5

4,0

5,0

6,0

8,0

10

12

15

18

Радиус вала или корпуса

r1

2,0

2,5

3,0

4,0

5,0

6

8

10

12

Пред. откл.

-0,5

-1,0

-2,0

 

Рис 3. и Таб 4. Размеры фасок и радиусов и предельные отклонения на механически обрабатываемые плоские детали

С=r

0,2

0,5

0,8

1,0

1,6

2,0

2,5

3,0

4,0

5,0

6,0

8,0

Предельное отклонение

± 0,1

± 0,2

± 0,5

± 1,0

± 2,0

 

Рис. 4 и Таб. 5. Размеры и предельные отклонения фасок на валах под запрессовку

d1

0,6

0,8

1

1,2

1,6

2,0

2,5

3

4

5

6

8

10

c1

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1,0

1,2

1,6

предельное отклонение

± 0,05

± 0,1

± 0,2

± 0,4

d1

от 10 до 20

от 20 до 30

от 30 до 50

свыше 50

c1

2

3

4

5

предельное отклонение

± 0,4

± 0,6

 

Таб. 6

с1

0,1

от 0,2 до 0,3

от 0,4 до 1,0

свыше 1

r

0,1

0,2

0,3

0,8

предельное отклонение

± 0,05

± 0,1

± 0,1

± 0,5

 

Рис. 5 и Таб.7. Размеры и предельные отклонения фасок на втулках под запрессовку

S

от 1 до 1,5

от 1,5 до 2

от 2 до 3

от 3 до 4

от 4 до 5

от 5 до 8

свыше 8

C2

0,3

0,5

0,8

1,0

2,0

3,0

4,0

предельное отклонение

± 0,1

± 0,2

± 0,4

± 06

C3

0,4

0,5

0,5

0,5

1,0

1,0

1,6

предельное отклонение

± 0,2

± 0,4

Примечание: величину радиуса скругления и предельные отклонения на него выбирать по таблице 5.

Размеры радиусов и фасок сопрягаемых поверхностей типа “вал – отверстие”, валов и корпусов с шарико- и роликоподшипниками, а также валов и втулок под запрессовки, должны быть указаны в чертежах с числовыми значениями предельных отклонений.

Размеры радиусов скруглений и фасок несопрягаемых поверхностей валов и втулок и размеры фасок и радиусов на плоских деталях должны быть указаны в чертежах. Предельные отклонения этих размеров на изображении не наносятся, а в технических требованиях чертежа пишется: “Неуказанные предельные отклонения размеров радиусов и фасок по ОСТ 92-0093-69”.

Предельные отклонения на угловые размеры фасок ± 3°.

 

К оглавлению

 

Радиусы закруглений поковки

Радиусы закругления наружного контура поковки, штампуемой на горизонтально-ковочных машинах, определяются по ГОСТу 7505-55.

Если по наружному контуру поковки есть припуски на механическую обработку, то радиусы закругления r в мм следует определять по формуле

 

  (3)

где n и n1 — размеры припусков в мм (рис. 16).

Рис.16.  Наружный радиус закругления

Если на углах выполняются фаски с х45° (рис. 17), то размер r1 в мм следует увеличить на величину с:

 

        (4)

 

Рис. 17. Наружный радиус закругления на угле с фаской

 

При угле фаски, не равном 45°, r1 следует определять графически так, чтобы по углу был нормальный припуск на обработку (рис. 18).

Рис. 18. Наружный радиус закруглении на угле с фаской, выполненной не под

Радиус закругления r2 в мм (рис. 19), в зависимости от высоты бурта h в мм, следует подсчитывать по формуле

 

r2=0,2h+1   (5)

 

Рис. 19. Внутренние радиусы закругления

Если r + r2 > h или r1 + r2 >h, то при определении размера r2, следует исходить из условия получения плавного сопряжения. Радиус закругления r3 в мм элементов поковки, получаемых выдавливанием Lu (рис. 20), следует определять по формуле

 

r3=0,1Lu+ 1.          (6)

но не более

При r3, большем нормального среднего припуска n+n1/2, припуск по торцу следует увеличить до размера n1, чтобы получить нормальный припуск по углу (рис. 20).

Рис. 20. Наружный радиус  закругления на элементе, получаемом выдавливанием

Размеры радиусов закругления, рассчитанные по формулам (3-6), следует округлить до ближайшего большего значения ряда радиусов, указанных в ГОСТе 7505-55, или взять из следующего ряда: 0,8; 1,0; 1,5; 2; 2,5; 3; 3.5; 4; 4,5; 5; 6; 8; 10: 12; 15; 20; 25 мм.  

Допуски на радиусы закругления устанавливают по соглашению сторон, обычно не более ±0,5r.

В полостях на выпуклых углах (рис. 21) r следует определять по формулам (3) и (4), а на вогнутых углах (рис. 21) радиусы r4 — по формуле

 

r4= 0.07 (d + l) или (d2 + l1),            (7)

но не менее r4 = 1,5 мм, где d — диаметр полости и l—ее глубина в мм.

Рис. 21. Радиусы закруглении на внутреннем контуре поковки

Как меряется радиус. Как измерить радиус колесного диска. Модификации штангенциркулей, как правильно измерять

Штангенциркуль является не только графическим символом инженерных профессий.

Это удобный и достаточно точный измерительный прибор . Когда вы извлекаете из коробки потрепанное и заслуженное сверло со стертой маркировкой – измерить его диаметр можно лишь с использованием данного приспособления.

Мы расскажем начинающим мастерам, как правильно пользоваться штангенциркулем, как измерить внутренний, наружный размеры или глубину.

Что такое штангенциркуль, из чего он состоит?

Устройство штангенциркуля типично для любой его модификации.

  1. Штанга. Является корпусом инструмента. На лицевой боковине нанесена разметка (3) с шагом 1 мм. Стандартная длина линейки 150 мм, однако встречаются модели с более длинной шкалой. Как правило, изготавливается из легированных сталей с высокой коррозийной устойчивостью.
  2. Подвижная измерительная рамка. Представляет собой сложную конструкцию, состоящую из нескольких функциональных частей. Внутри корпуса расположена плоская пружина, для уменьшения люфта. Плавность хода регулируется винтом (8). Основным элементом рамки является нониус (7), или вспомогательная шкала.

На ней прецизионным способом нанесена разметка из десяти тонких рисок. Цена деления шкалы у большинства моделей 1,9 мм, однако эта линейка не применяется для прямых измерений.

Как пользоваться нониусом штангенциркуля

Шкала может быть закреплена на винтах. В этом случае точность измерения можно регулировать с помощью поверочного оборудования.

Измерительные губки

Поверхность измерительных губок, непосредственно контактирует с измеряемым предметом на рисунке поз. 5.

Губки с разводом наружу (4) служат для измерения внутренних канавок, диаметров, ширины пазов и других размеров изнутри детали.

Наружные губки (5) с рабочей поверхностью внутри – более универсальны. Помимо снятия размеров, с их помощью можно производить разметку, например – прокладывать параллельные линии.

Некоторые штангенциркули не имеют задних губок, обычно это инструменты размером более 250 мм.

Для снятия таким штангенциркулем внутреннего размера измерительными губками, нужно учитывая конструктивную особенность (имеется собственная ширина), при снятии показаний шкалы необходимо отнимать 10 мм (этот момент должен быть указан в инструкции, и относится лишь к механическим приборам).

Глубиномер

Представляет собой выдвижную штангу, непосредственно соединенную с подвижной рамкой. Кончик глубиномера поверяется в заводских условиях. Также, как и поверхность губок – его нельзя обрабатывать абразивами.

Глубиномер (поз.6), предназначен для измерения глубины полостей, а также выступов, на которых невозможно зафиксировать измерительные губки (например, зубья шестерен).

Модификации штангенциркулей, как правильно измерять

По способу снятия показаний, существуют следующие разновидности инструмента:

Штангенциркуль с нониусом

Нониусом называется дополнительная шкала, перемещение которой вдоль основной, увеличивает точность измерения до 0,05 мм (поз. 7).

Все измерения происходят механическим способом. Оператор согласно инструкции и класса точности, вычисляет показания, совмещая основную шкалу и разметку нониуса.
Пример для снятия показаний штангенциркулем с классом точности 0,1 мм.

Единицы миллиметров определяем до нулевой отметки шкалы нониуса. Затем находим совмещение ближайшей к началу шкалы миллиметровой отметки и риски на вспомогательной шкале.

Совмещенная отметка соответствует десятой доле миллиметра после запятой. Если идеального совмещения не достичь – за него принимается ближайшие две риски.

Пример для снятия показаний прибора с классом точности 0,05 мм.

Единицы миллиметров считываются так же, как в предыдущем примере. После запятой в расстоянии будет двузначное число (сотые доли миллиметра с точностью 0,05).

Изготавливать штангенциркули с более точной шкалой нет смысла. Как работать с таким прибором при помощи глаз – непонятно. А стоимость растет с увеличением точности.

Для более точного позиционирования, подвижную измерительную рамку часто оснащают подстроечным винтом. Это позволяет плавно подводить губки к измеряемой детали. Особенно актуально такое дополнение при измерении мягких предметов.

Штангенциркуль с круговой шкалой

Так же, как и нонинус – относится к механическим измерительным инструментам.

Такой инструмент облегчает считывание значений, что существенно экономит время. Нет необходимости совмещения рисок и вычисления истинного значения. Измерение штангенциркулем с круговой шкалой, доступно для работы с точными инструментами людям со слабым зрением.

Значение целых миллиметров, по прежнему считываются с основной линейной шкалы. А вот десятые (или сотые доли) – отображаются на стрелочном приборе.

Технически инструмент не очень сложный, что благоприятно сказывается на его стоимости. По штанге перемещается ролик, связанный со стрелкой. Механизм имеет возможность фиксации стрелки, для сохранения значения после проведения измерения.

Цифровая индикация

Измерение производится механическим путем, а вот считывание информации – представлено в цифровом виде.

Вместо подвижной измерительной рамки, по штанге перемещается корпус с электронным модулем. Все перемещения, с точностью, указанной в спецификации – отображаются на жидкокристаллическом дисплее.

Одна деталь принимается за эталон, затем производится обнуление штангенциркуля. Вторая деталь измеряется относительно эталона.

Считывание показаний в реальном времени, моментальное восприятие. Пожалуй, самый удобный вариант исполнения. Более продвинутые (и соответственно дорогие) модели, оснащены памятью последнего результата измерения.

Приборная погрешность не зависит от способа представления информации. Если пара «колесико-штанга» имеют точное сочленение, и качественно изготовлены – можно не беспокоится за точность. Высокая погрешность может быть у дешевых китайских подделок . Если изделие произведено на профильном заводе – смело пользуйтесь.

Как пользоваться штангенциркулем – общие правила

Прежде всего, необходимо помнить, что этот прибор относится к классу высокоточных. Следовательно, все подвижные части должны быть чистыми и смазанными.

Измерительные плоскости влияют на точность измерения, поэтому недопустимо жесткое механическое воздействие. Коррозия или прилипшая грязь (краска) увеличивают погрешность в десятки раз.

Инструкция как пользоваться штангенциркулем

Как измерять различные заготовки, пошагово указано на иллюстрации.

  1. Наружные измерения , особенно хорошо используются свойства прибора при работе с круглыми заготовками;
  2. Внутренние измерения . Такой точности, как у штангенциркуля – не добиться никаким механическим приспособлением;
  3. Измерения глубины . Просто выдвигаете глубиномер, и снимаете показания со шкалы или прибора;
  4. Измерение уступов . Подобный вид работ вообще недоступен остальным измерительным приборам, тем более с такой точностью.

Мы разобрали основные и универсальные виды штангенциркулей. Кроме того, существует целый ряд узкопрофильных приборов. Большинство этих операций выполняются и универсальным прибором, однако специализированное устройство всегда более точное.

Универсальный штангенциркуль с уровнем погрешности 0,1 мм. Оснащен глубиномером. Колумбик или колумбус – обычно так называют его мастера в народе, получил свое прозвище от фирмы изготовителя «Columbus».

Наличие устройства тонкой настройки при снятии точных размеров важное дополнение к этому измерительному прибору.

Более высокий класс точности прибора. Поэтому в конструктив добавлен подстроечный винт.

Глубиномер. Имеет широкие опорные губы и выдвижную линейку. Более длинная шкала, а также иной вид внутренних губок.

Штангенрейсмас. Разметочный прибор, использующий «побочные эффекты» штангенциркуля.

А для домашнего использования – применяйте универсал!

Для закрепления материала, посмотрите видео, как пользоваться штангенциркулем, подробная инструкция.

Штангенциркуль используется для определения наружных и внутренних диаметров, линейных размеров, глубин канавок и отверстий, а также расстояний между уступами. Некоторые модификации позволяют наносить разметку на поверхности заготовок. Инструмент применяется для измерения обрабатываемых деталей на механических и слесарных производственных участках, контроля выработки изнашиваемых поверхностей при проведении ремонта оборудования, благодаря простоте в освоении используется в домашних мастерских.

Конструкция штангенциркуля

Представленный на рис. 1 штангенциркуль типа ШЦ-1 состоит из:

  1. Штанги.
  2. Рамки.
  3. Измерительной шкалы.
  4. Верхних губок.
  5. Нижних губок.
  6. Глубиномера.
  7. Шкалы нониуса.
  8. Зажимного винта.

Выбор штангенциркуля для конкретной задачи определяется габаритами, конструктивными особенностями детали и требованиями к точности размеров. Инструменты различаются следующими параметрами:

  • Диапазоном измерений . Длина шкалы на штанге составляет от 125 до 4000 мм.
  • Точностью . Распространенные модификации имеют погрешность 0.1, 0.05, 0.02 и 0.01 мм.
  • Функционалом . Существуют штангенциркули с глубиномером и без него.
  • Количеством и формой мерительных поверхностей. Губки односторонних и двухсторонних инструментов бывают плоскими, заостренными или закругленными.
  • Конструкцией отсчетного устройства . Оно бывает нониусным, механическим часового типа или электронным.

Штангенциркули изготавливаются из износостойких инструментальных сталей, а их мерительные поверхности могут быть усилены твердосплавными напайками. Для разметки деталей на незаостренные губки устанавливают резцы (рис. 2), комплектующиеся державками и зажимными винтами.

Порядок измерений

Инструмент и деталь нужно подготовить к работе: удалить загрязнения, свести губки вплотную и убедиться в том, что показания соответствуют «0». Для измерения наружного диаметра или линейного размера необходимо:

  • развести губки путем передвижения рамки;
  • сдвинуть до плотного прилегания к контрповерхостям;
  • зафиксировать положение рамки стопорным винтом;
  • вывести штангенциркуль для оценки полученных результатов.

Чтобы измерить внутренний размер, губки сводят в «0», а затем раздвигают до соприкосновения с контрповерхностями. Если конструктивные особенности детали позволяют увидеть шкалу, то показания считывают без фиксации и выведения.

Для измерения глубины отверстия:

  • перемещением рамки выдвигают глубиномер;
  • опускают его в отверстие до дна и прижимают к стенке;
  • перемещают штангу до упора в торец;
  • фиксируют стопорным винтом и выводят.

Точность результатов зависит от правильности позиционирования губок относительно детали. Например, при определении диаметра цилиндра штанга должна пересекаться или скрещиваться с его продольной осью под прямым углом, а при измерении длины – располагаться параллельно. В штангенциркулях типа ШЦ-2 и ШЦ-3 есть дополнительная рамка, которая подвижно соединяется с основной микрометрическим регулировочным винтом (рис.3). Такая конструкция упрощает позиционирование инструмента. При проведении замеров дополнительную рамку фиксируют на штанге, а положение основной регулируют вращением микрометрического винта.

Считывание результатов

По нониусной шкале

Количество целых миллиметров отсчитывается от нулевого деления на рейке до нулевого деления нониуса. Если они не совпадают, то размер содержит доли миллиметра, соответствующие точности инструмента. Чтобы определить их, необходимо на нониусе отсчитать от нуля до штриха, совпадающего с риской на штанге, а затем умножить их количество на цену деления.

На рисунке 4 показаны размеры: а – 0.4 мм, б – 6.9 мм, в – 34.3 мм. Цена деления нониуса 0.1 мм

По часовому индикатору

Количество целых миллиметров отсчитывают на штанге от нуля до последней риски, не скрытой под рамкой. Доли определяют по индикатору: номер деления, на котором остановилась стрелка, умножают на его цену.

На рисунке 5 показан размер 30.25 мм. Цена деления индикатора 0.01 мм.

По цифровому табло

Для определения внутреннего размера, снятого инструментом с радиусными мерительными поверхностями (нижние губки на рис. 3), к показаниям на шкале добавляют их толщину, которая указана на неподвижной губке. Чтобы посчитать наружный размер, снятый штангенциркулем с резцами (рис. 2), их толщину отнимают от показаний на шкале.

Разметка

Обычный штангенциркуль с заостренными мерительными поверхностями справляется с базовыми разметочными операциями. Упирая одну губку в боковину детали, кончиком второй можно нанести черту на перпендикулярную ей поверхность. Линия получается равноудаленной от торца и копирует его форму. Чтобы начертить отверстие, нужно накернить его центр: углубление служит для фиксации одной из губок. Подобным образом можно использовать любой прием начертательной геометрии.

Твердосплавные напайки и резцы оставляют заметные царапины на деталях из сталей твердостью выше 60 HRC. Существуют также узкопрофильные штангенциркули, разработанные исключительно для разметки.

Почему возникают ошибки при измерениях

Наиболее распространенные ошибки, снижающие точность результатов измерений исправным инструментом:

  • Чрезмерное давление на рамку вызывает перекос относительно штанги. Такой же эффект получается, если при измерении нижними губками сводить штангенциркуль за верхние.
  • Установка губок на галтели, фаски и скругления.
  • Перекосы при позиционировании.
  • Нарушение калибровки инструмента.

Первые три ошибки чаще всего возникают от недостатка опыта, и уходят с практикой. Последнюю нужно предотвратить на этапе подготовки к измерениям. Проще всего выставить «0» на электронном штангенциркуле: для этого там предусмотрена кнопка (на рис. 6 кнопка «ZERO»). Часовой индикатор обнуляется вращением винта, расположенного в его нижней части. Чтобы откалибровать нониус, отпускают винты крепления к рамке, передвигают его в нужное положение и снова фиксируют.

Деформации элементов штангенциркуля и износ мерительных поверхностей делают инструмент непригодным к использованию. Для снижения количества брака на производстве штангенциркули проходят периодическую поверку в метрологических службах. Для проверки точности инструмента и приобретения навыков в бытовых условиях можно измерять детали, размеры которых заранее известны: например, хвостовики сверл или кольца подшипников.

С измерением длины, ширины и высоты домашнему мастеру приходится сталкиваться постоянно. Угол в 90° или 45° тоже не редко приходится выдерживать. Иначе качественно ремонт квартиры или изготовление самоделок не выполнить. Точности при выполнении линейных измерений 1 мм в подавляющем большинстве случаев достаточно, и для них подойдет рулетка или простая линейка.

Зачастую рулетки имеют дополнительно пузырьковый уровень, который позволяет выставить горизонтально мебель, холодильник и другие предметы. Но точность такого уровня не высокая из-за маленькой длины опорной плоскости рулетки. В дополнение колбочка с пузырьком воздуха в рулетках часто установлена не точно, что не обеспечивает горизонтальность и выполненной работы.

В продаже, для измерения линейных размеров представлен широкий ряд лазерных измерительных приборов, но, к сожалению, из-за высокой цены они не доступны для непрофессионалов.

Инструкция


по применению штангенциркуля (колумбуса)

Штангенциркуль – это линейный измерительный инструмент служащий для измерения наружных и внутренних размеров деталей включая глубину, с точностью 0,1 мм.

Измерить диаметр сверла, самореза и размеры других небольших деталей с достаточной точностью линейкой не получится. В таких случаях нужно использовать штангенциркуль, который позволяет измерять линейные размеры с точностью до 0,1 мм. С помощью штангенциркуля можно выполнить измерение толщины листового материала, внутреннего и внешнего диаметров трубы, диаметр высверленного отверстия, его глубину и другие измерения.

Штангенциркули бывают с отсчетом измеряемой величины по линейке и нониусу, циферблату часового типа и цифровому индикатору. Разновидность штангенциркуля с линейкой для измерения глубины отверстий профессионалы еще называют «Колумбус».

Доступным по цене, высоконадежным является штангенциркуль с нониусом типа ШЦ-1 с диапазоном измерений от 0 до 125 мм, что для большинства случаев вполне достаточно. Штангенциркуль ШЦ-1 дополнительно позволяет измерять диаметр отверстий и глубину.

В настоящее время в продаже появился цифровой пластиковый штангенциркуль китайского производства ценой менее $4, фотография которого представлена ниже.

Штангенциркуль из пластмассы, хотя его губки сделаны из карбона, назвать измерительным инструментом сложно, так как он не сертифицирован и поэтому точность показаний 0,1 мм заявленная производителем не гарантирована. В дополнение при частом использовании пластик быстро износится, и погрешность показаний увеличится.

Штангенциркуль из пластмассы, если его показания точны для домашних редких измерений вполне подойдет. Для проверки штангенциркуля можно измерять хвостовик сверла, на котором выбит размер или диаметр штыря электрической вилки.

Устройство и принцип работы нониуса штангенциркуля

Устроен классический штангенциркуль следующим образом. На измерительной штанге с помощью пазов установлена подвижная рамка. Для того, чтобы рамка плотно сидела, внутри установлена плоская пружина и предусмотрен винт, для жесткой ее фиксации. Фиксация необходима при проведении разметочных работ.

На штанге нанесена метрическая шкала с шагом 1 мм и цифрами обозначены сантиметровые деления. На рамке нанесена дополнительная шкала с 10 делениями, но с шагом 1,9 мм. Шкала на рамке называется нониусом в честь ее изобретателя португальского математика П.Нуниша. Штанга и рамка имеют измерительные губки для наружных и внутренних измерений. К рамке дополнительно закреплена линейка глубиномера.

Измерения выполняются зажимом между губками детали. После зажима рамка фиксируется винтом для того, чтобы она не сместилась. Количество миллиметров отсчитывается по шкале на штанге до первой риски нониуса. Десятые доли миллиметров отсчитываются по нониусу. Какой штрих по счету слева на право на нониусе совпадет с любой из рисок шкалы на штанге, столько и будет десятых долей миллиметра.

Как видно на фото, измеренный размер составляет 3,5 мм, так как от нулевой отметки шкалы на штанге до первой риски нониуса получилось 3 полных деления (3 мм) и на нониусе совпала с риской шкалы штанги риска пятого деления нониуса (одно деление на нониусе соответствует 0,1 мм измерений).

Примеры измерения штангенциркулем

Для измерения толщины или диаметра детали нужно развести губки штангенциркуля, вставить в них деталь и свести губки до соприкосновения с поверхностью детали. Надо проследить, чтобы плоскости губок при смыкании были параллельны плоскости измеряемой детали. Внешний диаметр трубы измеряется точно так же, как и размер плоской детали, только нужно, чтобы губки прикасались к диаметрально противоположным сторонам трубы.

Для того, чтобы измерять внутренний размер в детали или внутренний диаметр трубы, у штангенциркуля есть дополнительные губки для внутренних измерений. Их заводят в отверстие и раздвигают до упора в стенки детали. При измерении внутренних диаметров отверстий добиваются максимального показания, а при измерении в отверстии параллельных сторон, добиваются минимальных показаний.

В некоторых типах штангенциркулей губки не смыкаются до нуля и имеют собственную толщину, которая обычно на них выбита, например, число «10», хотя первая риска нониуса стоит на нулевой отметке. В случае измерения внутренних отверстий таким штангенциркулем к считанным показаниям по шкале нониуса добавляется 10 мм.

С помощью штангенциркуля типа колумбус, имеющего подвижную линейку глубиномера можно измерять глубину отверстий в деталях.

Для этого нужно полностью выдвинуть линейку глубиномера из штанги, вставить ее до упора в отверстие. Подвести до упора в поверхность детали торца штанги штангенциркуля, при этом не допуская выхода линейки глубиномера из отверстия.

На фотографии, для наглядности, я продемонстрировал измерение глубины отверстия, приложив линейку глубиномера штангенциркуля с внешней стороны отрезка трубы.

Примеры выполнения разметки деталей штангенциркулем

Штангенциркуль не предназначен для нанесения разметочных линий на материалах и деталях. Но если губки штангенциркуля для наружных измерений заточить на мелкозернистом наждачном круге, придав им острую форму, как показано на фотографии, то разметку штангенциркулем производить будет довольно удобно.

Снимать лишний металл с губок нужно очень аккуратно и медленно, не допуская цветов побежалости металла губок от сильного разогрева, иначе можно их испортить. Чтобы ускорить работу, для охлаждения губок, можно периодически окунать их на непродолжительное время в емкость с холодной водой.

Для того, чтобы отмерять полоску листового материала с параллельными сторонами, нужно раздвинуть губки штангенциркуля ориентируясь по шкале на заданный размер, одной губкой вести по торцу листа, а второй процарапать линию. Так как губки штангенциркуля закалены, они не истираются. Можно размечать как мягкие материалы, так и твердые (медь, латунь, сталь). Остаются хорошо видные риски.

С помощью заточенных остро губок штангенциркуля можно легко наметить линию окружности. Для этого в центре делается неглубокое отверстие диаметром около 1 мм, в него упираясь одной из губок, второй прочерчивают линию окружности.

Благодаря доработке формы губок штангенциркуля для наружных измерений, появилась возможность точно, удобно и быстро выполнять разметку деталей для их последующей механической обработки.

Как измерять микрометром на практике

Получить размер изделий с точностью 0,01 мм можно выполнив измерения микрометром. Их много модификаций, но самый распространенный это гладкий микрометр типа МК-25, обеспечивающий диапазон измерений от 0 до 25 мм с точностью 0,01 мм. Микрометром удобно измерять диаметр сверла, толщину листового материала, диаметр провода.

Микрометр представляет собой скобу, с одной стороны которой находится опорная пятка, а с другой имеется стебель и высокоточная резьба, в которую закручивается микровинт. На стебле нанесена метрическая шкала, по которой выполняется отсчет миллиметров. На микровинте имеется вторая шкала с 50 делениями, по которой отсчитываются сотые доли мм. Сумма этих двух величин является измеренным размером.

Для того, чтобы выполнить измерение микрометром, деталь размещают между пяткой и торцом микрометрического винта и вращают по часовой стрелке за ручку трещотки (находится на торце барабана микрометрического винта) до тех пор, пока трещотка не издаст три щелчка.

На стебле нанесено две шкалы с шагом 1 мм – основная оцифрованная через каждых 5 мм и дополнительная, сдвинутая относительно основной на 0,5 мм. Наличие двух шкал позволяет повысить тонность измерений.

Отсчет показаний выполняется следующим образом. Сначала считывают, сколько целых, не закрытых барабаном, миллиметров получилось по оцифрованной, нижней шкале на стебле. Далее проверяют по верхней шкале наличие риски, расположенной правее от риски нижней шкалы. Если риски не видно, то переходят к снятию показаний со шкалы на барабане. Если риска просматривается, значит, к целому числу полученных миллиметров добавляется еще 0,5 мм. Показания на барабане отсчитывают относительно прямой линии, нанесенной вдоль стебля между шкалами.

Например, размер измеренной детали составляет: 13 мм по нижней шкале, на верхней шкале открытой метки, правее открытой на нижней шкале нет, значить 0,5 мм добавлять не нужно, плюс 0,23 мм по шкале барабана, в результате сложения получаем: 13 мм+0 мм+0,23 мм=13,23 мм.

Микрометр с цифровым отсчетом результатов измерений применять удобнее и позволяет измерять с точностью до 0,001 мм.

Если, например, села батарейка, то цифровым микрометром можно выполнять измерения точно так же, как и гладким МК-25, так как имеется и система отсчета по делениям с точностью 0,01 мм. Цена микрометров с цифровым отсчетом результатов измерений высока и для домашнего мастера неподъемна.

Как измерять трубу большого диаметра

Губки штангенциркуля с диапазоном измерений от 0 до 125 мм имеют длину 40 мм и поэтому позволяют измерять трубы с внешним диаметром до 80 мм. В случае необходимости измерять трубу большего диаметра или при отсутствии под рукой штангенциркуля можно воспользоваться народным способом. Обвить трубу по окружности одним витком не растягивающейся нитки или проволоки, измерять длину этого витка с помощью простой линейки, а затем разделить полученный результат на число Π=3,14.

Не смотря на простоту, такой способ измерения диаметра трубы позволяет обеспечить точность 0,5 мм, что для домашнего мастера вполне достаточно. Для более точного измерения нужно намотать больше витков.

Как измерять угол

Для получения заданного угла при разметке можно воспользоваться транспортиром, с которым все познакомились еще в школе на уроках геометрии. Для измерения в быту точности его вполне достаточно.

На фотографии представлена пластмассовая линейка в виде треугольника, имеющего углы 45º и 90º, с встроенным транспортиром. С помощью него можно выполнить разметку и проверить точность полученного угла.

При выполнении разметки металлических деталей используют слесарный металлический угольник, обеспечивающие более высокую точность измерений.

Как пользоваться стуслом

Для получения прямого или угла 45º без разметки, удобно использовать приспособление, которое называется стусло. С помощью стусла удобно пилить в размер под углом наличники для дверей, багет, плинтуса и многое другое. Распил получается с требуемым углом автоматически.

Достаточно отмерять длину, вложить полоску материала между вертикальными стенками стусла и удерживая рукой выполнить распил. Для получения качественного торца доски следует использовать пилу с мелкими зубцами. Хорошо подходит ножовка по металлу. Удается распиливать даже лакированные доски без сколов лака.

Угол 45 0 при пилении с использования стусла, получается также легко, как и прямой. Благодаря высоким направляющим стенок стусла можно распиливать доски разной толщины.

Стусло можно купить готовое, но его не сложно сделать самостоятельно из подручного материала. Достаточно взять три доски из дерева или фанеры подходящего размера, и к боковым торцам одной из них саморезами прикрутить две другие. Сделать направляющие пропилы под требуемыми углами и приспособление стусло готово.

Изначально это выглядит так:

Рисунок 463.1 . а) имеющаяся дуга, б) определение длины хорды сегмента и высоты.

Таким образом, когда имеется дуга, мы можем соединить ее концы и получим хорду длиной L. Посредине хорды мы можем провести линию, перпендикулярную хорде и таким образом получим высоту сегмента H. Теперь, зная длину хорды и высоту сегмента, мы можем сначала определить центральный угол α, т.е. угол между радиусами, проведенными из начала и конца сегмента (на рисунке 463.1 не показаны), а затем и радиус окружности.

Решение подобной задачи достаточно подробно рассматривалось в статье “Расчет арочной перемычки “, поэтому здесь лишь приведу основные формулы:

tg(a /4) = 2Н/L (278.1.2)

а /4 = arctg(2H/L )

R = H /(1 – cos(a /2)) (278.1.3)

Как видим, с точки зрения математики никаких проблем с определением радиуса окружности нет. Данный метод позволяет определить значение радиуса дуги с любой возможной точностью. Это главное достоинство данного метода.

А теперь поговорим о недостатках.

Проблема данного метода даже не в том, что требуется помнить формулы из школьного курса геометрии, успешно забытые много лет назад – для того, чтобы напомнить формулы – есть интернет. А вот калькулятор с функцией arctg, arcsin и проч. есть далеко не у каждого пользователя. И хотя эту проблему также успешно позволяет решить интернет, но при этом не следует забывать, что мы решаем достаточно прикладную задачу. Т.е. далеко не всегда нужно определить радиус окружности с точностью до 0.0001 мм, точность 1 мм может быть вполне приемлема.

Кроме того, для того, чтобы найти центр окружности, нужно продлить высоту сегмента и отложить на этой прямой расстояние, равное радиусу. Так как на практике мы имеем дело с не идеальными измерительными приборами, к этому следует прибавить возможную погрешность при разметке, то получается, что чем меньше высота сегмента по отношению к длине хорды, тем больше может набежать погрешность при определении центра дуги.

Опять же не следует забывать о том, что мы рассматриваем не идеальный случай, т.е. это мы так сходу назвали кривую дугой. В действительности это может быть кривая, описываемая достаточно сложной математической зависимостью. А потому найденный таким образом радиус и центр окружности могут и не совпадать с фактическим центром.

В связи с этим я хочу предложить еще один способ определения радиуса окружности, которым сам часто пользуюсь, потому что этим способом определить радиус окружности намного быстрее и проще, хотя точность при этом значительно меньше.

Второй метод определения радиуса дуги (метод последовательных приближений)

Итак продолжим рассмотрение имеющейся ситуации.

Так как нам все равно необходимо найти центр окружности, то для начала мы из точек, соответствующих началу и концу дуги, проведем как минимум две дуги произвольного радиуса. Через пересечение этих дуг будет проходить прямая, на которой и находится центр искомой окружности.

Теперь нужно соединить пересечение дуг с серединой хорды. Впрочем, если мы из указанных точек проведем не по одной дуге, а по две, то данная прямая будет проходить через пересечение этих дуг и тогда искать середину хорды вовсе не обязательно.

Если расстояние от пересечения дуг до начала или конца рассматриваемой дуги больше, чем расстояние от пересечения дуг до точки, соответствующей высоте сегмента, то значит центр рассматриваемой дуги находится ниже на прямой, проведенной через пересечение дуг и середину хорды. Если меньше – то искомый центр дуги выше на прямой.

Исходя из этого на прямой принимается следующая точка, предположительно соответствующая центру дуги, и от нее производятся те же измерения. Затем принимается следующая точка и измерения повторяются. С каждой новой точкой разница измерений будет все меньше.

Вот собственно и все. Не смотря на столь пространное и мудреное описание, для определения радиуса дуги таким способом с точностью до 1 мм достаточно 1-2 минут.

Теоретически это выглядит примерно так:

Рисунок 463.2 . Определение центра дуги методом последовательных приближений.

А на практике примерно так:

Фотография 463.1 . Разметка заготовки сложной формы с разными радиусами.

Тут только добавлю, что иногда приходится находить и чертить несколько радиусов, потому на фотографии так много всего и намешано.

Когда мы выбираем для себя автомобиль, то оцениваем в основной ключевые характеристики, такие как габариты машины, отдачу и объём двигателя, тип коробки передач и прочее. Но для повседневной эксплуатации важны и другие показатели, например, радиус разворота. Как влияет этот параметр на вождение, как он измеряется, и что это вообще такое?

Из названия параметра уже понятно, что он означает радиус (минимальный) полуокружности, описываемый машиной при манёвре разворота, выполняемого с места. Рулевое колесо при этом должно быть повёрнуто до конца. Вроде всё понятно, однако в этом параметре имеются свои нюансы.

Насколько важен параметр

Радиус разворота, это одна из составляющих манёвренности машины, чем больше его значение, тем для разворота автомобиля требуется больше пространства. Это влияет на возможность машины развернуться на ограниченной ширине дороги за один приём. С небольшим радиусом автомобилем легче управлять в городских условиях, а также проще парковаться. Автопроизводители в желании показать свои машины более маневренными вносят в документацию значение минимальное, то есть по колёсам, от поребрика до поребрика, ведь он получается существенно меньше реального от стенки до стенки. Так что, при выборе машины по этому параметру, учитываем и размер переднего свеса.

Насколько важен Радиус разворота

Как измеряем

Измерить радиус можно просто: отмечаем стартовое положение одного колеса (наружного), выворачиваем до конца рулевое колесо, разворачиваемся на полные 180 градусов, отмечаем конечное положение того же колеса. Между отметками замеряем расстояние, половина его и будет радиусом разворота. Этот размер является минимальной шириной дороги (именно гладкой части), которая позволит развернуться в один заход.

Это в теории, на практике же придётся учитывать и размер переднего свеса автомобиля, это расстояние от передней оси до кончика бампера. Дело в том, что ширина дороги не всегда ограничена низким бордюром, частенько бывают отбойники, а также сами бордюры могут быть до метра высотой. И если радиус разворота хорошо вписывается в идеальную дорогу, то с высокими ограничителями можно не вписаться. Так вот реальный радиус измеряется чуть сложнее – необходимо на наружной стороне бампера установить свес с мелом (можно на стержне), после разворота мел оставит отметки о реальном радиусе.

Радиус разворота на парковке

Нюансы

Главный нюанс или проблема – в терминологии, радиус разворота, это, скорее, термин разговорный, на самом деле, правильно будет диаметр. И разные производители могут указывать разные показатели, кто радиус, а кто диаметр, это следует учитывать и уточнять. К примеру, для Prado от Toyota в рекламе указано, что машина имеет диаметр разворота менее шести метров, тогда как сама машина в длину почти пять метров. Такой диаметр просто невозможен. В гайде же на автомобиль говориться о радиусе, измеренном по колёсам, то есть значение, которое можно считать верным. На некоторых сайтах в других странах указан сам диаметр, который составляет более 11 метров, что очень похоже на правду.

Изменяем ли параметр

Отчего зависит радиус разворота? Во-первых, от габаритов авто, их поменять, разумеется, не получится. Во-вторых, от того, какой угол поворота у передних колёс. В общем, поменять радиус без серьёзного вмешательства в основную конструкцию не получится. А это потеря гарантии, а также возможные проблемы со стабильной работой. Обычно такие переделки можно встретить на машинах для дрифта, где выворот делают максимальным. Правда, это делается не для уменьшения радиуса разворота, а для увеличения угла заноса, который может держать машина. Обычные гражданские машины лучше не переделывать.

Радиус разворота при дрифте

КАк измерить радиус окружности! ? Забыл как измерять надо напомните кто нибудь! и получил лучший ответ

Ответ от Лох Серебристый[гуру]
линейкой, меряй самое большое расстояние окружности, это будут диаметр, дели пополам_это будет радиус
Лох Серебристый
Мыслитель
(9085)
я написал-меряй линейкой самое большое расстояние между двумя краями окружности

Ответ от фреди мешков [новичек]
спасибо

Ответ от ЂаисияКоновалова [гуру]
Чтобы определить радиус окружности надо, сначала, найти ее центр.
Чтобы найти центр проводим хорду (прямая линия, соединяющая две точки, расположенные, непосредственно, на самой окружности) . Определяем середину хорды (отрезок делим пополам с помощью линейки) . Через середину проводим прямую линию, перпендикулярно хорде, то есть, чтобы угол составлял 90 градусов. Затем проводим еще одну хорду и повторяем с ней все то же самое, что и с первой.
Определяем точку пересечения перпендикуляров. Эта точка является центром.
. Продлим любой из перпендикуляров до пересечения с линией окружности. Измерим линейкой расстояние от полученной точки пересечения до центра окружности.
Данное расстояние и будет являться радиусом данной окружности.

Ответ от 2 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: КАк измерить радиус окружности! ? Забыл как измерять надо напомните кто нибудь!

Онлайн калькулятор для расчета диаметра трубы по ее окружности
Суммарная длина намотки, мм:
Количество витков:

Большая Энциклопедия Нефти и Газа, статья, страница 1

Радиусомер

Cтраница 1

Радиусомер ( фи 53) применяется дл измерения радиус кривизны на выст пах и впадинах из; лий.  [1]

Радиусомер имеет набор пластинок с закруглениями различного радиуса с одного конца – для измерения выступов, а с другого – впадин.  [2]

Радиусомерами измеряют внешние и внутренние скругления деталей. Определение размеров резьбы деталей производится предельными резьбовыми кольцами и скобами для наружной резьбы и предельными резьбовыми пробками для внутренней резьбы.  [3]

Радиусомерами ( рис. 19.8) измеряют дугообразные поверхности изделий.  [4]

Резьбовые шаблоны, радиусомеры и щупы занимают промежуточное место между универсальными и контрольно-измерительными инструментами.  [5]

Предусмотрены три набора радиусомеров с радиусами 1 – 6 5, 7 – 14 5 и 15 – 25 мм. Проверку такими шаблонами ведут на просвет.  [7]

Измерение предварительно производится радиусомером и окончательно на микроскопе.  [8]

Схема установки трубы, радиусомера и индук – topa – спрейера по отношению к роликам приведена на фиг.  [9]

Шаблоны шарнирно соединены с обоймой радиусомера.  [10]

Радиусы галтелей валов и корпусов проверяют радиусомерами или специальными шаблонами.  [12]

Шаблоны для проверки радиусов закруглений обычно называют радиусомерами.  [13]

Окончательно обточить фасонную поверхность 3 с проверкой радиусомером.  [14]

Измерение радиусов закруглений и галтелей производят при помощи радиусомера, представляющего собой набор пластинчатых шаблонов с различными радиусами закруглений для измерения внутренних и наружных радиусов.  [15]

Страницы:      1    2    3

Как измерить радиус углов

Столешница из дуба с углом радиусом 85 мм

Мы предлагаем ряд вариантов, которые помогут вам заказать идеальную столешницу из цельного дерева, но иногда нам нужна помощь наших клиентов, чтобы добиться идеального результата!

Если вы выберете модный вариант углового радиуса в рамках нашей индивидуальной услуги, вам может потребоваться предоставить некоторые размеры (хотя мы также используем стандартные радиусы, предоставленные производителем). Однако, если вы пытаетесь подобрать кухонную столешницу к изогнутому углу, уже имеющемуся в вашем пространстве, например, к двери или шкафу, сообщите нам номер модели, и мы сделаем все возможное, чтобы определить размеры самостоятельно.

Если выяснится, что вам нужно указать размеры радиуса угла, мы рекомендуем использовать измерительный угольник. Если у вас нет доступа к такому оборудованию, не паникуйте — мы понимаем, что задача может показаться немного сложной! Не бойтесь: есть и другие способы получить эти измерения. Какой бы ни была столешница — будь то столешница из массива дуба или столешница из бука — для вашего удобства Worktop Express ® составлены несколько простых инструкций.

Хотите узнать, как легко подобрать новые индивидуальные столешницы? Узнайте здесь:

Проведение измерений

  1. Сначала определите точки касания радиуса. В математике касательная — это прямая линия, которая касается кривой только в одной точке; в случае круга касательная образует прямой угол с радиусом. Проще говоря, и для наших целей точки касания — это места, в которых встречаются прямая линия прямоугольника и кривизна (см. Диаграмму 1).Вы должны определить это визуально. Было бы полезно сделать маркер этой точки на поверхности.
  2. Найдите точку касания радиуса на краю материала.
  3. Положите плоскую металлическую полосу (в идеале металлическую линейку) под прямым углом к ​​этому краю, напротив соседнего края (т.е. в положении вертикальной красной линии на Диаграмме 2 [ниже]). Позвольте ему выходить за край поверхности.
  4. Используя плоский материал в качестве маркера, измерьте расстояние от этого маркера до точки касания.Это измерение является внешним радиусом (см. Диаграмму 2 — отмеченный сегмент горизонтальной красной линии указывает измерение радиуса, которое вы будете измерять).
  5. Проверьте это измерение, выполнив процедуру в обратном порядке (см. Диаграмму 2 — теперь приложите линейку к горизонтальному краю, параллельно горизонтальной красной линии), выполнив альтернативное измерение радиуса (радиус под прямым углом к ​​тому, который вы только что определили). ).
  6. Повторите несколько раз, чтобы убедиться, что ваши измерения точны (если ваша текущая поверхность прямоугольная или квадратная, вы можете проверить это на всех других углах).

Небольшое замечание о выступе…

Если ваша столешница имеет выступ, размер радиуса необходимо соответственно увеличить, так что не забудьте учесть это в своих цифрах! Все, что вам нужно сделать, это добавить желаемый свес к радиусу.

Например: если у вас есть столешница размером 3M X 620 мм X 40 мм с изогнутым корпусом на одном углу с радиусом 250 мм, а также столешница с выступом 20 мм, вам потребуется увеличить размер радиуса на 20 мм. Таким образом, размер радиуса вашей столешницы должен быть 270 мм.

Для получения дополнительной информации о заказе столешниц на заказ в Worktop Express обратитесь к нашему руководству:

Если вы хотите заказать столешницу с закругленными углами, мы рекомендуем использовать наш онлайн-инструмент Bespoke Worktop Tool. Этот инструмент позволяет невероятно легко проектировать, оценивать и заказывать индивидуальные столешницы из любой из наших пород дерева, а также помогает ускорить весь процесс заказа. На любые услуги по изготовлению столешниц, заказанные с помощью этого инструмента, также распространяется скидка 10%, что делает наши индивидуальные столешницы отличным соотношением цены и качества.

Для получения более подробной информации об услугах изготовления столешниц на заказ, которые мы предлагаем, посетите нашу страницу Кухонные столешницы на заказ.

Обратите внимание: Это руководство было первоначально опубликовано 26 th апреля 2012 г. и было обновлено, чтобы включить дополнительную информацию. Последнее обновление было 14 марта 2018 года.

Радиус (R) / Внутренний диаметр | прикладные решения | Библиотека измерений

При поиске наилучшего способа измерения радиуса (R)/внутреннего диаметра необходимо учитывать ряд важных факторов, включая тип измерительной системы и условия установки.Выбор оборудования, которое не соответствует вашим потребностям, может привести к недостаточной точности и увеличению трудозатрат во время производства, поэтому выбор правильного оборудования очень важен. Этот сайт предназначен для того, чтобы помочь вам найти лучший способ уверенного выполнения измерений радиуса/внутреннего диаметра.

Обязательная к прочтению информация о измерении и советы по выбору идеальной системы измерения!

Помимо введения в системы измерения, в этом руководстве подробно описаны лучшие методы измерения толщины, наружного диаметра, формы и т. д.

Скачать

Найдите лучший метод измерения и подходящее оборудование для измерения радиуса (R) и внутреннего диаметра.

Оптимальная измерительная система
Двухмерный лазерный датчик смещения

Линейный лазер облучает цель и получает профиль поверхности, из которого рассчитывается радиус.

Радиус изогнутой формы и координаты положения центра могут быть рассчитаны внутри.
КЛЮЧЕВЫЕ ПОЛОЖЕНИЯ

Используя 2D-измерение, радиус (R) можно измерить напрямую, без необходимости внешнего вычисления приблизительного R на основе данных отдельных точек.

  • Метод двумерной триангуляции.
    Поточное многоточечное измерение.
    Самая высокая в мире частота дискретизации — 64 000 изображений в секунду.

    Серия LJ-X

    Посмотреть каталог

  • Многоцветный конфокальный метод
    Линейность: от ±0.2 мкм
    Конфокальный датчик смещения

    Серия CL

    Посмотреть каталог

Оптимальная измерительная система
Двухмерный оптический микрометр Thrubeam

Внутренний диаметр измеряется по изображению, полученному методом 2D оптической проекции.

Приблизительный радиус измеряется с использованием данных из указанной области дуги.
КЛЮЧЕВЫЕ ПОЛОЖЕНИЯ

Даже если цель смещается в пределах диапазона измерения, радиус можно правильно измерить с помощью функции коррекции положения.

  • Двухмерный телецентрический оптический метод. Одновременное измерение до 100 с калиброванным высокоскоростным измерением.

    Серия ТМ-Х

    Посмотреть каталог

Оптимальная измерительная система
Лазерный датчик смещения

Диаметры отверстий измеряются путем изгиба оптических осей двух сенсорных головок на 90° с помощью призмы.

А
Центр отверстия

Б
Диаметр

КЛЮЧЕВЫЕ ПОЛОЖЕНИЯ

Лазерные лучи проходят параллельно через центр отверстия и ударяются о призмы, отражаясь от противоположных внутренних стенок. Заготовку можно вращать для измерения округлости и эксцентриситета.

  • Многоцветный конфокальный метод
    Линейность: от ±0.2 мкм
    Конфокальный датчик смещения

    Серия CL

    Посмотреть каталог

  • Спектрально-интерференционный метод
    Сверхвысокое разрешение 1 нм
    Головка микропроцессорного датчика 2 мм

    Серия СИ

    Посмотреть каталог

ИНДЕКС

Измерение

— Как измерить радиус скругления под углом, отличным от 90 градусов Измерение

— Как измерить радиус скругления под углом, отличным от 90 градусов
Сеть обмена стеками

Сеть Stack Exchange состоит из 179 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетите биржу стека
  1. 0
  2. +0
  3. Войти
  4. Зарегистрироваться

Home Improvement Stack Exchange — это сайт вопросов и ответов для подрядчиков и серьезных мастеров.Регистрация занимает всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Любой может задать вопрос

Любой может ответить

Лучшие ответы голосуются и поднимаются на вершину

спросил

Просмотрено 9к раз

У меня есть два скругленных угла, которые не находятся под углом 90 градусов на алюминиевой детали.Я хочу измерить радиус скругления, но у меня нет причудливых инструментов для измерения радиуса, только штангенциркуль.

Можно ли как-нибудь измерить радиус скругления этих углов, используя только штангенциркуль или, может быть, другие обычные инструменты?

Дэниел Гриском

6,1683232 золотых знака2828 серебряных знаков4040 бронзовых знаков

спросил 24 апр 2016 в 21:00

Нику СурдуНику Сурду

11311 серебряный знак66 бронзовых знаков

Я использую низкотехнологичные вещи для таких вещей.Крышки от бутылок, крышки от банок, рулоны скотча, 5-галлонные ведра, все, что может соответствовать кривой, которую я пытаюсь измерить. Как только я нахожу тот, который соответствует кривой, я измеряю диаметр и делю на радиус. Существует формула нахождения диаметра, если вы можете установить линейку или хотя бы провести прямую линию между двумя точками дуги.

Мне нужно будет найти его и добавить позже. Это очень просто, и я часто им пользовался…