Какие электроды бывают: Виды сварочных электродов

alexxlab | 24.05.1986 | 0 | Разное

Содержание

Какие электроды бывают | Что такое электрод

Какие электроды лучше для инвертора

Для Вашего инвертора мы рекомендуем использовать сварочные электроды ООО Ватра. Электроды выпускаются на заводе уже с 1992 года их состав постоянно совершенствуется.

В выпускаемой линейке вы найдете все электроды для ручной дуговой сварки с разным покрытием. Низкие цены, полный ассортимент и использование мировых производственных компаний наших электродов –это несомненно конкурентное преимущество на рынке.

У нас на сайте вы можете оставить заказ на пробную пачку для испытаний. Мы всегда открыты для наших клиентов.

Как правильно выбрать ток при сварке

Для правильного выбора сварочного тока можно воспользоваться таблицей в которой приведен расчет по формуле:

Ток = 1 мм диаметра электрода * от  30 до 40 А сварочного тока

Имеем электроды диаметром 3 мм, то диапазон сварочного тока будет равен от 90 до 120 А.

Для того, чтобы варить электродом 3 мм сварочный аппарат должен иметь максимальный ток не менее 120 А.

Важно: при сварке вертикальных и потолочных швов, силу тока уменьшают на 10-20%

Диаметр электрода, мм

Сварочный ток, А

1,6

35-60

2,0

30-80

2,5

50-110

3,0

70-130

3,2

80-140

4,0

110-170

5,0

150-220

Как правильно выбрать электроды

При подборе электродов специалист по продажам Вам задаст несколько вопросов от которых зависит выбор того или иного сварочного материала.

Выбор электрода и его диаметра напрямую зависит от свариваемого материала. Электрод –это металлический стержень с нанесенным на него электродным покрытием. Состав стержня электрода должен быть похож по составу на свариваемый материал. А толщина электрода зависит от толщины свариваемого изделия. В таблице вы найдете рекомендации по выбору электрода.

Толщина металла, мм

Диаметр электрода, мм

2-3

1,6 / 2,0

3-5

2,0 / 2,5 / 3,0 / 3,2 / 4,0

5-8

3,0 / 3,2 / 4,0 / 5,0

Какие методы сварки бывают

При выборе сварочных материалов и аппарата для сварки немаловажную роль играет требования, которые будут предъявляться к качеству шва, производительность, мобильность оборудования. Для этого надо разобраться в методах сварки и выбрать подходящий именно Вам изучив выгоды и преимущества каждого.

Сварочный процесс делится на несколько видов сварки: ММА сварка, MIG/MAG, TIG.

1. ММА сварка – это ручная дуговая сварка штучным электродом с разным покрытием и применением инверторного аппарата. Именно эта сварка самая распространенная из-за своих выгод в использовании.

Выгоды ММА сварки:

  • Доступный процесс сварки даже для новичка.
  • Экономный вариант.
  • Сварка во всех положениях.
  • Быстрая смена электрода и свариваемого материала.
  • Отсутствие газовых баллонов.

Минусы ММА сварки:

  • Невысокая производительность.
  • Удаление шлака с детали.

При такой сварке необходимо следить за рекомендациями на упаковке электродов и правильно подключать полярность. Если полярность будет не соблюдена, то на выходе получим плохую дугу.

2. MIG/MAG сварка – это сварка в среде защитного газа. Применяется аргон, гелий, или смеси.
Сварка происходит на постоянном токе прямой и обратной полярности. Для сварки используют сварочную проволоку.

Достоинства:

  • Большая производительность.
  • Сварка тонкого металла.

Недостатки:

  • Наличие газового баллона.
  • Дорогие расходники.

3.Сварка TIG- это сварка неплавящимся вольфрамовым электродам в защитной газовой среде. Применяют для сварки цветных металлов и нержавейки.

Преимущества:

  • Аккуратный сварной шов.
  • Сварка без брызг.
  • Для металлов от 0,8 мм.

Недостатки:

  • Необходим опыт при проведении сварочных работ.
  • Ограниченная производительность.

Сварочные электроды | Электроды от Электродгруп | Производство электродов МР, УОНИ, ОЗС, АНО,

Осуществление любых ответственных работ, в том числе ручной дуговой сварки, одним из обязательных условий имеет компетентный подход к подбору материалов. Неотъемлемой составляющей этой процедуры является соответствующее внимание ко всем параметрам сварочных электродов, одним из которых является их диаметр.

Диаметр сварочных электродов

Диаметр сварочных электродов для работы с различными по химическому составу сталями прописан в различных нормативных документах. К примеру, согласно ГОСТ- 9466-75, определен номинальный диаметр электрода, который соответствует диаметру стержня. Следует отметить, что номинальный диаметр электрода для сварки не включает в себя толщину обмазки.

Толщина покрытия электродов для сварки

Согласно п. 1.5. ГОСТ-9466-75, для каждого диаметра и марки электрода существует своя индивидуальная толщина обмазки. Определяется зависимости от отношения D/d, где D – диаметр с покрытием, а d – диаметр стержня, при этом соотношение у электродов с тонким покрытием (буквенное обозначение М) должно быть менее или равно 1,2; для электродов со средним покрытием (буквенное обозначение С)  должно быть менее или равно 1,45; для электродов с толстым покрытием (буквенное обозначение Д)  должно быть менее или равно 1,80; а для электродов с особо толстым покрытием (буквенное обозначение Г) должно быть больше 1,80.

К примеру, сварочные электроды УОНИ-13/45, марка Э-42А УОНИИ-13/45-d4-УД Е 412(4)-Б 20. В соответствии с маркой номинальный диаметр электрода равен d4, показатель – Д означает, что покрытие толстое. Полный диаметр D электрода с покрытием равен 6 мм, отношение D/d или 6/4 равно 1,5, что соответствует параметру электродов с толстым покрытием так как попадает в диапазон от 1,45 до 1,8.

Примечательно, что иностранные производители придерживаются таких же правил, только диаметры импортных электродов не соответствуют российским стандартам. Так к примеру японские сварочные электроды LB-52U имеют номинальные диаметры d. 2,6, d. 3,2, d. 4, а диаметры вместе с покрытием D 3,9, D 4,8, D 6, отношение диаметров равны 1,5, что соответствует толстому покрытию. Также сварочные электроды ОК 53.70 фирмы The ESAB Group произведенные в Швеции соответствуют международным стандартам d. 2,6, d. 3,2, d. 4 мм, а принадлежащий ESAB российский Завод ЭСАБ-СВЭЛ выпускает продукцию с торговой маркой ОК с диаметрами российских стандартов.
Выбор диаметра электрода

Выбор диаметра электрода для сварки осуществляется в зависимости от толщины свариваемого металла, его марки и химического состава, формы кромок, положения сварки, разновидности соединения. К основным особенностям различных диаметров электродов относятся:

1.      Сварочные электроды 1 мм – предназначены для работы с металлом, толщина которого 1-1,5 мм, при силе тока 20-25А;

2.      Электроды сварочные 1,6 мм – в соответствии с ГОСТ9466-75 для низкоуглеродистой и легированной стали выпускаются двух размеров 200 или 250 мм,  используемые для работы с металлами толщина которых от 1 до 2 мм с силой тока 25-50А;

3.  Электроды сварочные 2 мм

– согласно ГОСТ9466-75 для низкоуглеродистой и легированной стали изготавливаются длинной 250 мм, допускается также длинна 300 мм,  толщина свариваемых металлов от 1 до 2 мм, сила тока 50-70А;

4.       Электроды сварочные 2,5 мм – по ГОСТ9466-75 для низкоуглеродистой и легированной стали выпускаются длинной 250-300мм, допускается также длинна 350 мм,  толщина свариваемых металлов от 1 до 3 мм, сила тока 70-100А;

5.   Электроды сварочные 3 мм – наиболее широко применяемый диаметр электрода, в соответствии с ГОСТ9466-75 для низкоуглеродистой и легированной стали выпускаются трех размеров 300, 350 и 450 мм, предназначены для работы с металлами,  толщина которых от 2 до 5 мм с силой тока 70-140А;

6.        Электроды сварочные 4 мм – широко используемый диаметр пригодный для работы как на профессиональном так и на бытовом оборудовании. Выпускается согласно ГОСТ9466-75 двух размеров 350 и 450 мм для любых видов стали, для металлов, толщина которых от 2 до 10 мм с силой тока 100-220А;

7.  Электроды сварочные 5 мм – электроды этого диаметра требуют достаточно мощного сварочного оборудования. В соответствии с ГОСТ9466-75, изготавливаются длинной – 450 мм для низкоуглеродистой и легированной, а для высоколегированной стали допускается также длинна – 350 мм. Предназначены для работы с металлами, толщина которых от 4 до 15 мм с силой тока 150-280А;

8.     Электроды сварочные 6 мм – предназначены для работы на профессиональном оборудование. Согласно ГОСТ9466-75, выпускается длинной – 450 мм для низкоуглеродистой и легированной, а для высоколегированной стали допускается также длинна – 350 мм. Предназначены для работы с металлами, толщина которых от 4 до 15 мм с силой тока 230-370А;

9.        Электроды сварочные 8-12 мм – для работы на высокопроизводительном промышленном оборудовании. В соответствии с ГОСТ9466-75, выпускается длинной – 450 мм для низкоуглеродистой и легированной, а для высоколегированной стали допускается также длинна – 350 мм. Предназначены для работы с металлами, толщина которых свыше 8 мм с силой тока от 450А;

При этом необходимо отметить, что при определенном диаметре электрода диапазон силы тока для каждой марки электродов свои. К примеру, при диаметре электрода 3 мм для УОНИ 13/55 сила тока 70-100А, а для МР-3 сила тока 80-140А.

Как выбрать электроды для сварки

Когда дело доходит до сварки, выбор оборудования может быть невероятно широк. Знание того, какой именно затемняющий шлем покупать, какое защитное снаряжение будет наиболее безопасным, или даже какой металл использовать, – это все то, что нужно знать перед началом работ.

Новичкам действительно нужно учитывать только несколько основных факторов, но как только вы встанете на ноги и начнете работать и приобретете больше опыта, вам нужно будет понять более глубоко принцип работы элементов вашего оборудования.

Возможность различать типы сварочных электродов (прутков) – и знание их сильных и слабых сторон и наилучшего применения – это только одна из тех особенностей, которые оказывают огромное влияние на прочность и качество ваших сварных швов. Специалисты smsm.ru ответят на любые ваши вопросы и помогут приобрести электроды для сварки.

Сварочный электрод – это кусок проволоки, соединенный со сварочным аппаратом. Через эту проволоку пропускается ток, который помогает прочно соединить два куска металла.


В некоторых случаях, а именно сварочных аппаратах SMAW и т.п. проволока фактически расплавляется, становясь частью самого сварного шва. Эти сварочные прутки называются расходными электродами. Для сварки TIG (ручная сварка неплавящимися вольфрамовыми электродами в среде защитного газа аргона) сварочные прутки не плавятся, поэтому они называются неплавящимися электродами.

В рамках обеих этих групп существует множество различных вариантов и типов, которые будут более подробно рассмотрены ниже.

Сварочные прутки обычно имеют покрытие, хотя материалы, из которых они состоят, могут сильно отличаться. Также доступны незащищенные электроды (изготовленные без каких-либо дополнительных покрытий), хотя они встречаются гораздо реже. Они используются для определенных специальных работ, например, для сварки марганцевой стали.

Важно выбрать подходящий тип сварочного прутка, чтобы создать чистые и прочные сварные швы высшего качества. Выбор электрода определяется требованиями сварочных работ. К ним относятся:

  • Прочность при разрыве
  • Вязкость
  • Коррозионная стойкость
  • Цветной металл
  • Положение сварки
  • Полярность
  • Длительность работы
  • Расходные электроды.


Оскар Кьельберг изобрел первый в мире сварочный электрод с покрытием в 1904 году, погрузив голую проволоку в смесь карбонатов (включая целлюлозу) и силикатов в качестве связующего.

В то время как металлургический прогресс, состав покрытия электродов и технологии производства сохраняются по сей день, фундаментальные принципы электродуговой сварки (ЭДСП), также известной как стержневая сварка, остаются неизменными. Покрытие электродов обеспечивает:

  • Дуговая защита при разложении карбоната кальция (CaCO3) в покрытии до CaO и CO2 под воздействием дугового тепла.
  • Основной источник шлаковой системы, поддерживающей сварочную лужу и способствующей удалению примесей из сварочного шва расплавленного металла.
  • Устойчивость дуги к таким элементам, как натрий и калий.
  • Первичный источник легирования и дополнительного наполнителя металла.

Как упоминалось ранее, в ручной сварке обычно используют сварочные прутки, которые здесь будут называться расходными электродами. К ним относятся электроды с легким покрытием, а также электроды с экранированной дугой или с толстым покрытием.

Для начала, глядя на классификацию сварочной проволоки, вы уже можете сказать достаточно много о типе используемого электрода. Первые две цифры относятся к прочности на растяжение или к тому, какое напряжение может выдержать сварочный шов. Чем больше число, тем сильнее электрод.


Третья цифра указывает на то, в каких положениях может использоваться сварочная проволока. Например, цифра «1» означает, что электрод является полнопозиционным.

Последнее число немного сложнее. В сварке SMAW используются электроды, покрытые различными химическими веществами, которые защищают соединения во время сварки. Последняя цифра в классификации используется для обозначения покрытий, которые были использованы на электродах, и, таким образом, какой ток должен использоваться.

Как следует из названия, электроды с легким покрытием  обрабатываются тонким слоем, который был нанесен кистью или с помощью распыления. Обычно он состоит из нескольких различных материалов, которые, скорее всего, будут похожи на металлы, которые вы свариваете вместе.

Рекомендуемые товары

Товаров не найдено

Дуговые потоки, создаваемые при использовании голых стержней, трудно контролировать, поэтому, если ваша работа позволяет, отдайте предпочтение использованию электрода с ламинированным покрытием, которое повысит стабильность дуги. Это сделает вашу работу быстрее и проще.

Однако это не единственная цель легкого нанесения покрытия на сварочные прутки. Другие преимущества использования электродов с тонким покрытием заключаются в том, что примеси, такие как оксиды и сера, уменьшаются (или полностью исключаются), капли металла в конце сварочной проволоки более равномерны по размеру и частоте, что означает, что ваши швы получатся более гладкими и аккуратными, и образуют только тонкий слой шлака.

Экранированные дуговые электроды аналогичны электродам со легким покрытием, за исключением того, что они имеют толстое покрытие. Благодаря своей более жесткой и прочной конструкции, они лучше подходят для сварки чугуна.

Существует три различных типа покрытий, наносимых на экранированные дуговые электроды, каждый из которых имеет свои результаты в процессе сварки. Во-первых, это электрогды с покрытиями, содержащими целлюлозу, в которых для защиты зоны сварки используется слой газа.


Покрытие на целлюлозном электроде содержит до 30% и более древесной муки. Покрытие относительно тонкое (от 12 до 15 процентов диаметра электрода) и образует тонкий, легко снимаемый, быстро замерзающий шлак, пригодный для сварки в любом положении, включая вертикально вверх и вертикально вниз.

Целлюлозные электроды обеспечивают выкапывание/привод дуги с глубоким проникновением. Сварочная лужа хорошо впитывается и распространяется, обладает отличными механическими свойствами и имеет характерные пульсации.

К целлюлозным электродам относятся E6010, E7010 и E6011, которые обычно используются для труб, барж, ремонта ферм, технического обслуживания и очистки грязных листов. Во-вторых, покрытия второго типа включают минеральные вещества, которые образуют слой шлака.


Рутил – это минерал, состоящий в основном из диоксида титана. Рутиловые электроды, такие как электроды из нержавеющей стали классов E6013, E7014 и XXX-16, обеспечивают мягкую дугу с более легким проникновением, чем целлюлозные электроды.

Шлак легко поддается контролю, дуга легко воспламеняется и ударяется, что повышает аккуратность сварки. Обычно они используются в общем производстве, где не требуются механические свойства критических сварных швов.

Третий тип покрытия на экранированных дуговых электродах состоит из комбинации целлюлозы и минералов.


Основные электроды имеют дугу со средним проникновением и отличными механическими свойствами. Покрытие выполнено из низководородного железосодержащего порошка, TiO2, CaCO3 и CaF2 (фтористый кальций). Покрытие имеет среднюю толщину, а добавление железного порошка увеличивает осаждение.

Он относительно быстро замерзает, что позволяет выполнять сварку плоским, горизонтальным, вертикальным и верхним слоем вверх. Основные электроды, такие как E7018, используются для сварных швов в металлоконструкциях, мостах, судах и морских нефтегазовых установках, где важны механические свойства.

Экранированные дуговые электроды, образующие слой газа, идеально подходят, поскольку они выступают в качестве высокоэффективного защитного барьера, создающего прочные сварные швы. Сварочная ванна должна быть защищена от определенных атмосферных газов (а именно кислорода и азота), которые воздействуют на сварные швы и делают их слабыми, пористыми и хрупкими.

Такая защита может быть обеспечена либо с помощью сварочного прутка с покрытием, либо с помощью струи газа, способной оградить сварочную ванну от воздуха (как написано в описании экранированных дуговых электродов с целлюлозным покрытием).

Как и электроды с легким покрытием, экранированные дуговые электроды уменьшают содержание оксидов, серы и других примесей в металле, оставляя чистые, гладкие, обычные сварочные швы. Кроме того, сварочные дуги, создаваемые этими сварочными прутьями, гораздо проще контролировать, чем голые электроды, которые могут вызвать большое количество брызг.

Выбор дугового электрода с минеральным покрытием, который образует шлак, может показаться не разумным, но, на самом деле, этот шлак может оказать положительное воздействие.

Он охлаждается медленно – намного медленнее, чем экранированные дуговые электроды с целлюлозным покрытием, – всасывая примеси на поверхность. В результате вы получите высококачественные, прочные, долговечные и чистые сварные швы.

Правильный выбор сварочного прутка – это гораздо больше, чем кажется на первый взгляд. Важно овладеть искусством работы с четырьмя основными и наиболее распространенными сварочными прутьями (7018, 6013, 6011 и 6010), так как это значительно облегчит понимание принципов и свойств других. Специалисты smsm.ru помогут вам с выбором нужного электрода.



Электроды для наплавки : список марок

Электроды

Тип электрода по ГОСТ 10051-75 или тип наплавленного металла

Диаметр, мм

Положение наплавки

Основное назначение.

Твердость наплавленного металла

группа 1

ОЗН-300М

11Г3С

4,0;5,0

Нижнее

Наплавка быстроизнашиваемых деталей из углеродистых и низколегированных сталей (например, валы, оси, автосцепки, крестовины, другие детали автомобильного и железнодорожного транспорта).

НВ 270-360

ОЗН-400М

15Г4С

4,0;5,0

Нижнее

Для наплавки быстроизнашиваемых деталей из углеродистых и низколегированных сталей (например, валы, оси, автосцепки, крестовины, другие детали авто-мобильного и железнодорожного транспорта).

НВ 360-430

ОМГ-Н

Э-65Х11Н3

4,0;5,0

Нижнее, наклонное

Наплавка изношенных участков и заварка дефектов литья железнодорожных крестовин и других деталей из стали марки 110Г13Л.

HRCэ 27-35

ЦНИИН-4

Э-65Х25Г13Н3

4,0

Нижнее

Для наплавки изношенных участков и заварка дефектов литья железнодорожных крестовин и других деталей из стали типа 110Г13Л.

HRCэ 25-37

группа 2

ОЗШ-1

Э-16Г2ХМ

3,0;4,0; 5,0

Все, кроме вертикального сверху вниз

Для наплавки молотовых и высадочных штампов.

НВ 320-365

УОНИ-13/НЖ

20Х13

Э-20Х13

3,0;4,0; 5,0

Нижнее, наклонное

Наплавка штампов холодной и горячей (до 400оС) обрезки, быстроизнашиваемых деталей машин и оборудования.

HRCэ 41,5-49,5

ОЗШ-3

Э-37Х9С2

2,5;3,0; 4,0;5,0

Нижнее, вертикальное

Наплавка обрезных и вырубных штампов холодной и горячей (до 650оС) штамповки, быстроизнашиваемых деталей машин и оборудования.

HRCэ 53-59

ОЗШ-7

5Х10С3М

2,5;3,0; 4,0;5,0

Нижнее, вертикальное

Для наплавки кузнечно-штамповой оснастки, работающей при температурах до 650оС.

HRCэ і56

ОЗШ-2

10Х5М10В2Ф

2,5;3,0; 4,0

Нижнее, наклонное

Для наплавки штампов горячей штамповки.

HRCэ і57

ЭН-60М

Э-70Х3СМТ

2,5;3,0; 4,0;5,0

Нижнее, полувертикальное

Наплавка штампов всех типов, работающих при температуре до 400оС, быстроизнашиваемых деталей машин и оборудования.

HRCэ 53-61

ОЗИ-3

Э-90Х4М4ВФ

3,0;4,0; 5,0

Нижнее

Наплавка штампов холодной и горячей (до 650оС) штамповки, быстроизнашиваемых деталей горно-металлургического и станочного оборудования.

HRCэ 59-64

группа 3

ОЗН-6

90Х4Г2С3Р

4,0;5,0

Нижнее, вертикальное, ограниченно потолочное

Для наплавки быстроизнашиваемых деталей горнодобывающих и строительных машин и металлургического оборудования.

HRCэ і58

ОЗН-7

75Х5Г4С3РФ

4,0;5,0

Нижнее

Для наплавки быстроизнашивающихся деталей, преимущественно из стали 110Г13Л.

HRCэ і56

ОЗН-7М

75Х5Н2СФР

4,0;5,0

Нижнее

Наплавка быстроизнашиваемых деталей, преимущественно из стали 110Г13Л.

HRCэ і56

ОЗН/ВСН-9

115Х17Н3Г2СРТ

4,0;5,0

Нижнее

Для наплавки деталей землеройных машин в условиях воздействия мерзлых грунтов.

HRCэ і 46

ВСН-6

Э-110Х14В13Ф2

4,0;5,0

Нижнее

Наплавка быстроизнашиваемых деталей из углеродистых и высокомарганцовистых сталей.

HRCэ 51-56,5

ЭНУ-2

360Х15Г3Р

4,0;5,0

Нижнее, наклонное

Наплавка быстроизнашиваемых стальных и чугунных деталей (ударные нагрузки – умеренные).

HRCэ і58

Т-590

Э-320Х25С2ГР

4,0;5,0

Нижнее, наклонное

Наплавка быстроизнашиваемых стальных и чугунных деталей машин (ударные нагрузки – минимальные).

HRCэ 58-64

Т-620

Э-320Х23С2ГТР

4,0;5,0

Нижнее, наклонное

Наплавка быстроизнашиваемых стальных и чугунных деталей машин (ударные нагрузки – умеренные).

HRCэ 56-63

группа 4

ОЗИ-5

Э-10К18В11М10Х3СФ

3,0;4,0; 5,0

Нижнее

Для наплавки металлорежущего инструмента и штампов горячей (до 800-850оС) штамповки.

HRCэ 63-67

ОЗИ-6

100Х4М8В2СФ

2,5;3,0; 4,0;5,0

Нижнее, наклонное

Наплавка при изготовлении металлорежущего инструмента, ремонте тяжелонагруженных штампов холодной и горячей (до 650оС) штамповки.

HRCэ 59-64

группа 5

ЦН-6Л

Э-08Х17Н8С6Г

4,0;5,0

Нижнее

Наплавка уплотнительных поверхностей деталей арматуры котлов, работающих при температурах до 570оС и давлении до 78 МПа.

HRCэ 29,5-39

ЦН-12М

Э-13Х16Н8М5С5Г4Б

4,0;5,0

Нижнее

Наплавка уплотни-тельных поверхностей деталей арматуры энергетических установок, работающих при температуре до 6000С и высоких давлениях.

HRCэ 39,5-51,5

группа 6

ОЗШ-6

10Х33Н11М3СГ

2,5;3,0; 4,0

Нижнее

Наплавка кузнечноштамповой оснастки холодного и горячего деформирования металлов, быстроизнашиваемых деталей металлургического, станочного и другого оборудования, работающего в тяжелых условиях термической усталости (до 950оС) и больших давлений.

HRCэ 52-60

ОЗШ-8

11Х31М3ГСЮФ

3,0;4,0

Нижнее, наклонное

Для наплавки кузнечноштамповой оснастки горячего деформирования металлов, работающих в сверхтяжелых условиях термической усталости (до 1100оС) и больших давлений.

HRCэ 51-57

какие бывают, где какие используются, схожие и отличительные характеристики

Сварочный электрод представляется металлическим или неметаллическим стержнем, изготовленным из токопроводящего материала, предназначен для подвода электричества к свариваемым элементам. Стержни выпускаются плавящимися и неплавящимися.

Последние выполняются из тугоплавкого сырья — вольфрама, синтетического графита либо электротехнического угля.

Плавящие же делают из сварочных прутков, нитей, покрытых защитным слоем. Обмазка защищает сердечник от негативного атмосферного воздействия, обеспечивает стабильное горение электрической дуги.

Содержание статьиПоказать

Общие сведения

Ручная электродуговая сварка применяется на всех промышленных и ремонтных предприятиях. Стержневые продукты походят на металлические пруты различного диаметра — 1,0-6,0 мм и длины — 25-45 см.

Предназначены для соединения элементов выполненных из чугуна, сталей, цветного металла, не требуют больших энергетических, материальных затрат.

Отрицательными сторонами термического процесса считается зависимость операции от квалификации сварщика, низкий КПД относительно более современных видов сварки, вредные испарения при исполнении работы.

Применение

Стержневые продукты используются для стыковки чугунных, стальных деталей, конструкций из цветных металлов, резки материалов.

Современные электроды разных видов позволяют проводить сварочные операции в любом пространственном положении.

Продукты для термических работ выполняются под определенные задачи, что делит их на конкретные виды и классы.

Марки

Плавящиеся стержни передают ток к деталям, образуют химическую реакцию с расплавленным материалом, чем обеспечивается соединение конструкций.

Неплавящиеся виды только осуществляют подвод разряда к сочленяемым элементам, присадочные же проволоки, прутки подводят отдельно.

Угольные, графитовые стержни обладают хорошей проводимостью, предназначены для сварки-резки, наплавочных работ, благодаря высокой температуре расплава.

Используются совместно с присадками, подаваемыми на участок дуги в процессе сварки либо предварительно уложенными на соединяемые области.

Главными их особенностями являются возможность многократного использования, неприлипание к поверхностям сочленяемых элементов.

Сердечник плавящегося электрода защищен обмазкой, которая обеспечивает высокое качество валика, улучшает эксплуатационные данные обработанной конструкции, предотвращает проникновение вредных примесей к сварочной ванне.

Газообразующий слой включает крахмал, диоксид марганца и др.

Защитное напластование также повышает скорость операции вследствие подачи большой силы напряжения, формирования предохранительной пленки на металлической плоскости, препятствующей попаданию в зону атмосферного воздуха.

Классификация

Электропроводные стержни обусловливаются различными характеристиками, куда входит толщина продукта. Это необходимо для правильного выбора при работе с конструкцией определенной толщины.

Маркировка, диаметр, описание вида электрода обычно присутствует на упаковке или коробке.

Электрод должен обеспечить следующие позиции:

  • стабильное горение электрической дуги, быстрое зажигание;
  • непрерывное расплавление обмазки;
  • равномерное наслоение шлака на валик;
  • легкое удаление шлака со сварочного валика;
  • отсутствие углублений, трещин, эффекта непроваривания.

Назначение продукта главным образом зависит от структуры металлического сердечника. При его изготовлении принимается во внимание группа факторов, которые позитивно влияют на формирование шва.

Таковыми являются:

  1. Классификация токопроводящего стержня по назначению.
  2. Размещение детали в конкретном месте, ее характеристика.
  3. Пространственное положение конструкции, факторы проведения работ.
  4. Толщина обрабатываемых элементов.
  5. Рабочие характеристики сварочного валика — изгибающий момент, устойчивость к разрыву, концентрация кислорода и др.

Токопроводящие стержни должны соответствовать типу обрабатываемого материала, что так же указывается на коробке. Для сваривания сталей используются следующие электроды:

  • углеродистых, низколегированных конструкционных, с кратковременной устойчивостью к разрыву до 600 МПа — “У”;
  • легированных конструкционных, с приведенной выше устойчивостью — “Л”;
  • легированных теплоустойчивых — “T”;
  • высоколегированных — “B”;
  • наплавки слоев, обусловленных особыми свойствами — “H”;.

Кроме буквенной классификации используется цифровая, указывающая наименьшую временную устойчивость к разрыву в ПМа.

Стоящий за цифрами символ A говорит о повышенных пластических свойствах, вязкости, некоторому ограничению химического состава.

Сварочная проволока

Проволоки насчитывают четыре вида:

  • алюминиевые;
  • омедненные нити;
  • нержавеющие;
  • трубчатые порошковые.

Первый тип используется для сварки алюминия и кремния либо марганца. Омедненные практикуются при соединении низкоуглеродистых сталей с низколегированными.

Прутки подобного состава повышают качество валика, содействуют горению электрической дуги, ограничивают распыление расплавленного металла.

Нержавеющие нити спаивают никелированные и хромированные стали, нержавейку. Трубчатая же проволока нашла применение в судостроении, там, где не рекомендуется использование иных видов стержней.

Последние производят операции в облаке защитных газов, порошковая ими не обладает.

Не последнюю роль играет обмазка электрода — покрытие, которое обеспечивает устойчивое горение дуги, формирование металла на валике с заданными показателями.

Таковыми представляются способность материала поглощать механическую энергию, сопротивление коррозии, пластичность и прочность.

Шлак предупреждает попадание кислорода с азотом в сварочную ванну, которые могут нарушить технологичность конструкции. Он также способствует уменьшению скорости затвердевания валика, позволяет выходить из него неметаллическим и газовым примесям.

Компонентами обмазки являются марганцевая руда, осадочная карбонатная горная порода, обогащенные титановые руды, кварцевый песок и др.

Легирование

Легирование сварочного валика совершается для повышения физических, механических свойств сочленения. Улучшение производится за счет добавочных компонентов — хрома, вольфрама, молибдена, никеля, марганца.

Легированная проволока так же содержит необходимые элементы, которые диффундируются в обрабатываемый металл, делаясь частью его состава.

Поможет повысить производительность процесса и увеличить слой наплавляемого металла, включенный в обмазку металлический порошок.

Он улучшает технологические параметры стержня, снижает скорость остывания материала, облегчает зажигание электрической дуги, проведение операции в условиях низких температур.

Электропроводные изделия покрываются следующими типами обмазки:

  1. A — кислотосодержащая, с включением оксидов марганца, железа, титана и кремния. Используется при операциях со сталями, не имеет пространственных локализаций.
  2. Б — основа содержит фторид кальция и соль угольной кислоты с кальцием. Не применяется при вертикальной сварке.
  3. Ц — целлюлозное покрытие с органическими добавками, которые защищают дугу и образуют тонкий пласт шлака.
  4. P — рутиловая обмазка уменьшает рассеивание горячего металла, стабилизирует горение разряда, формирует любые пространственные швы.
  5. Ж — указывает на железную 20%-ю добавку пудры.
  6. П — относится к прочим видам обмазки.

Существующие продукты со смешанным видом оболочки обозначаются по Государственному стандарту 946675 двойными символами:

  • кислое-рутиловое — AP;
  • рутиловое-основное — PБ;
  • рутиловое-целлюлозное — PЦ;
  • рутиловое с железной пудрой — PЖ.

Электроды подразделяются для работы в определенных пространственных позициях. Они маркируются цифровыми символами:

  • 1) — универсальный тип;
  • 2) — подходит для всех пространственных раскладов кроме вертикали;
  • 3) — допустим для вертикали-горизонтали, но не потолка.

Цифра 4 указывает только на горизонтальное положение.

Условия использования

Работа со сварочными продуктами обусловлена соблюдением некоторых правил. Одним из первых является целостность стержней.

Коробка с электродами не должна быть разрушена, весовые данные должны совпадать с этикеткой на упаковке, а шлаковый слой легко отставать от шва.

Не допускается попадание в контейнер воды, другой влаги, которая приводит к ухудшению сварочных операций за счет сырого покрытия. В случае отсыревания продукта, его следует высушить в специализированной печи не менее 60 мин. при температуре 260° C.

После термообработки электроды необходимо тщательно упаковать для предотвращения последующего увлажнения. Стержни повторно сушить не рекомендуется вследствие потери ими технологических свойств.

Остатки влаги могут сказаться негативным образом на качестве валика, привести к сильному разбрызгиванию плавящегося металла.

Образование углублений, трещин и раковин так же является следствием намокания. В работу не допускаются погнутые стержни, имеющие поврежденную обмазку.

Электроды для ручной сварки. | МеханикИнфо

Существует много различных марок сварочных электродов. Все они различаются толщиной стержня и металлом. Электроды подбираются в зависимости от свариваемого металла. Сорт и марка стали зависит от того, какую марку электродов выбрать. Рассмотрим некоторые из них:

Уони-13/55 – эти электроды используют при сварке углеродистых и низколегированных сортов стали. При сварке используют постоянный ток с обратной полярностью;

Ано-4 — для углеродистых сортов стали (временное сопротивление до 450 Мпа). Сварка производится переменным и постоянным током;

ЦЛ-11 — для нержавеющих сортов стали. Сварка производится постоянным током обратной полярности.

Ниже вы можете ознакомится с несколькими видео про то, как подобрать сварочные электроды, маску для работы, а также про то как превратить сварочный инвертор для ручной сварки в полуавтомат…

Также мы поговорим о других марках электродов для разных сортов стали:

Марки электродов.

Низколегированные и углеродистые сорта сталей свариваются следующими марками электродов:

АНО-4; АНО-6; АНО-6М; АНО-13; АНО-17; АНО-21; АНО-24; АНО-29М; АНО-32; АНО-36; ВСЦ-4; ВСЦ-4М; ОЗС-42; ВН-02-00; МР-3С; МР-3М; МР-3; АНГ-1; ОМА-2; ОЗС-4; ОЗС-6; ОЗС-12; ОЗС-21; ОЗС-23; ОЗС-30; ОЗС-32; ОЗС-41.

С повышенными требованиями пластичности к свариваемому шву до 50 кгс/мм2:

УОНИ-13/45; УОНИ-13/55; АНО-Д; ОЗС/ВНИИСТ-26; МТГ-01К; АНО-11; АНО-ТМ; АНО-ТМ/СХ; ВП-6; МТГ-02; ОЗС-18; ОЗС-25; ВН-48; ВН-48У; ОЗС-28; ОЗС-29; ДСК-50У; ИТС-4С; ОЗС-33; ТМУ-21У; ЦУ-4; ЦУ-5; АНО-8.

При 50 кгс/мм2:

ВСЦ-4А; 55-У; ИТС-4; АНО-Т; ТМУ-50; УОНИ-13/55С; УОНИ-13/55ТЖ; УОНИИ-13/55Р; ЦУ-5; ЦУ-7; ЦУ-8; Э-138/50Н.

До 55 кгс/мм2:

ВИ-10-6; ВСФ-65У; ОЗС/ВНИИСТ-27; МТГ-03; УОНИ-13/55У.

До 60 кгс/мм2:

УОНИ-13/65; ОЗС-24М; ВСФ-65; АНО-ТМ60.

Электроды для сварки легированных и конструкционных сталей

До 70 кгс/мм2:

АНП-1; АНО-ТМ70; АНП-2; ВСФ-75.

До 80 кгс/мм2:

НИАТ-3М; УОНИ-13/85; УОНИ-13/85У.

До 100 кгс/мм2:

АН-ХН7; ВИ-10-6; ОЗШ-1.

Электроды для сварки нержавеющих сортов стали:

ЦЛ-11; ЦЛ-25/1; ЦТ-10; ЦТ-15; ЦТ-28; НЖ-13; НЖ-134; ЭА-48М/22; ЭА-400/10У; ЭА-395/9; ЭА-400/10У; ЭА-981/15; ОЗН-300М; ОЗЛ-6; ОЗЛ-8; ОЗЛ-9А; ОЗЛ-17У; ОЗЛ-19; ОЗЛ-25Б; ОЗЛ-28; ОЗЛ-32; ОЗЛ-36; ОЗЛ-310; НИИ-48Г;  НИАТ-1; НИАТ-5; ОЗЛ-312; АНЖР-1; АНЖР-2; АНЖР-ЗУ; КТИ-7А; ЗИО-8

Электроды марок: НИАТ-1; ЭА-400/10У; ЦТ-15; НЖ-13; используются для сварки нержавеющих сталей коррозионностойких, которые не подвержены коррозии.

Пищевая нержавеющая сталь сваривается электродами марок: ЦЛ-11; ОЗЛ-8.

Для сварки жаропрочных сортов нержавеющей стали пользуются сварочными электродами следующих марок: АНЖР-2; КТИ-7А; ОЗЛ-6.

Электроды для ручной сварки. Подбираем сварочные электроды.

Существуют сварочные электроды с неметаллическими стержнями, обычно они изготавливаются из такого материала как графит, также бывают угольные стрежневые электроды (СК, ВДК, ВДП). Такой тип неметаллических электродов относится к классу неплавящихся.

Все остальные стержни сварочных электродов изготавливают из металла, они также делятся на плавящиеся и неплавящиеся.

Плавящиеся металлические сварочные электроды изготавливают из: стали, чугуна, меди, алюминия, бронзы и т.д.

Неплавящиеся металлические сварочные электроды бывают: вольфрамовые, торированные, лантанированные, итрированные.

Сварочные электроды покрываются различными веществами, от этого зависит: металл свариваемого шва; его химический состав; дуга, образуемая электродом; удаление шлака; токсичность выделяемых газов; и конечно же сам шов.

Покрытия делятся на:

Основное;

Кислое;

Рутиловое;

Целлюлозное.

Все 4 покрытия имеют общий стандарт ГОСТ 9466-75 и обозначаются русскими буквами:

  1. Основное покрытие сварочных электродов обозначается буквой «Б»;
  2. Кислое покрытие сварочных электродов обозначается буквой «А»;
  3. Рутиловое покрытие обозначается буквой «Р»;
  4. Целлюлозное покрытие обозначается буквой «Ц».

Какие диаметры электродов бывают

Сварка — это совокупность многих процессов, которые позволяются производить сплавление металла без переплавки всех частей изделия. На сам процесс сварки влияет ток, полярность и род тока, напряжение дуги, скорость сварки и диаметр электрода. Длина электрода, свойства покрытия самого электрода, температура металла перед свариванием и подобные процессы влияют на процесс сварки лишь частично. Поэтому при произведении сваривания Вам не обязательно следить за состоянием этих факторов.

Однако одно из самых сильных влияний на сварочный процесс оказывает диаметр электрода. Чем больше диаметр электрода, тем больше Вам нужно добавлять ток. Также чем больше диаметр, тем большую толщину металла им можно сваривать. В основном при стандартных свариваниях самым популярным диаметром электродов является 2,5 миллиметра, однако такой диаметр рассчитан средние толщины металла, то есть около 3 — 4 миллиметров.

Помимо самых популярных толщин электродов существует еще много, однако самыми популярными и теми, которые можно купить практически в каждом магазине сварочных электродов и сварочного оборудования.

Это такие диаметры: 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0. Практически в каждом специализированном магазине Вы сможете это все купить. Однако если Вам нужны электроды большего диаметра, то Вы можете без проблем их заказать. Кроме этого Вам нужно еще и правильно подбирать диаметр электрода к толщине металла. Ваш выбор диаметра электрода должен зависеть не только от толщины свариваемого металла, а также еще и от свойств металла. Для того, чтобы правильно подобрать диаметр электродов воспользуйтесь форумами, блогами или специализированными сайтами.

Помимо основы — сварочных электродов, для сварочного процесса очень важно, чтобы был правильно подобран сварочный ток, то есть он должен соответствовать диаметру данных электродов. Если же Вы превысили или сильно понизили ток, в первом случае Вы, скорее всего, прожжете металл, а во втором — у Вас навряд ли выйдет вообще зажечь дугу, а если и выйдет, то не надолго.

Узнать правильную величину сварочного тока Вы можете либо на упаковке электродов, либо на специализированных сайтах для сварщиков. В этом случае Вам нужно помнить, что слушать советов других необязательно, ведь если, к примеру, Вы имеете дело с тонким металлом, небольшое превышение сварочного тока способно испортить Ваше изделие. Поэтому Вам нужно точно узнавать, какой требуемый ток для произведения сварочного процесса. Помните, что правильный подбор тока влияет на успех сварочного процесса.

Как видите, придерживаться правил, которые требуют электроды очень важно. Правильный подбор диаметра электрода по отношению к толщине металла и правильный подбор сварочного тока позволят Вам производить сваривание нужных Вам деталей без пользования услугами профессиональных сварщиков. Таким образом Вы сэкономите немало денег, сил и времени, тем самым ускоряя сварочный процесс в несколько раз.

Источник: elektrod-3g.ru

Диаметр электрода

Осуществление любых ответственных работ, в том числе ручной дуговой сварки, одним из обязательных условий имеет компетентный подход к подбору материалов. Неотъемлемой составляющей этой процедуры является соответствующее внимание ко всем параметрам сварочных электродов, одним из которых является их диаметр.

Диаметр сварочных электродов

Диаметр сварочных электродов для работы с различными по химическому составу сталями прописан в различных нормативных документах. К примеру, согласно ГОСТ- 9466-75, определен номинальный диаметр электрода, который соответствует диаметру стержня. Следует отметить, что номинальный диаметр электрода для сварки не включает в себя толщину обмазки.

Толщина покрытия электродов для сварки

Согласно п. 1.5. ГОСТ-9466-75, для каждого диаметра и марки электрода существует своя индивидуальная толщина обмазки. Определяется зависимости от отношения D/d, где D — диаметр с покрытием, а d — диаметр стержня, при этом соотношение у электродов с тонким покрытием (буквенное обозначение М) должно быть менее или равно 1,2; для электродов со средним покрытием (буквенное обозначение С) должно быть менее или равно 1,45; для электродов с толстым покрытием (буквенное обозначение Д) должно быть менее или равно 1,80; а для электродов с особо толстым покрытием (буквенное обозначение Г) должно быть больше 1,80.

К примеру, сварочные электроды УОНИ-13/45, марка Э-42А УОНИИ-13/45-d4-УД Е 412(4)-Б 20. В соответствии с маркой номинальный диаметр электрода равен d4, показатель – Д означает, что покрытие толстое. Полный диаметр D электрода с покрытием равен 6 мм, отношение D/d или 6/4 равно 1,5, что соответствует параметру электродов с толстым покрытием так как попадает в диапазон от 1,45 до 1,8.

Примечательно, что иностранные производители придерживаются таких же правил, только диаметры импортных электродов не соответствуют российским стандартам. Так к примеру японские сварочные электроды LB-52U имеют номинальные диаметры d . 2,6, d . 3,2, d . 4, а диаметры вместе с покрытием D 3,9, D 4,8, D 6, отношение диаметров равны 1,5, что соответствует толстому покрытию. Также сварочные электроды ОК 53.70 фирмы The ESAB Group произведенные в Швеции соответствуют международным стандартам d . 2,6, d . 3,2, d . 4 мм, а принадлежащий ESAB российский Завод ЭСАБ-СВЭЛ выпускает продукцию с торговой маркой ОК с диаметрами российских стандартов.

Выбор диаметра электрода

Выбор диаметра электрода для сварки осуществляется в зависимости от толщины свариваемого металла, его марки и химического состава, формы кромок, положения сварки, разновидности соединения. К основным особенностям различных диаметров электродов относятся:

1. Сварочные электроды 1 мм – предназначены для работы с металлом, толщина которого 1-1,5 мм, при силе тока 20-25А;

2. Электроды сварочные 1,6 мм – в соответствии с ГОСТ9466-75 для низкоуглеродистой и легированной стали выпускаются двух размеров 200 или 250 мм, используемые для работы с металлами толщина которых от 1 до 2 мм с силой тока 25-50А;

3. Электроды сварочные 2 мм – согласно ГОСТ9466-75 для низкоуглеродистой и легированной стали изготавливаются длинной 250 мм, допускается также длинна 300 мм, толщина свариваемых металлов от 1 до 2 мм, сила тока 50-70А;

4. Электроды сварочные 2,5 мм – по ГОСТ9466-75 для низкоуглеродистой и легированной стали выпускаются длинной 250-300мм, допускается также длинна 350 мм, толщина свариваемых металлов от 1 до 3 мм, сила тока 70-100А;

5. Электроды сварочные 3 мм – наиболее широко применяемый диаметр электрода, в соответствии с ГОСТ9466-75 для низкоуглеродистой и легированной стали выпускаются трех размеров 300, 350 и 450 мм, предназначены для работы с металлами, толщина которых от 2 до 5 мм с силой тока 70-140А;

6. Электроды сварочные 4 мм – широко используемый диаметр пригодный для работы как на профессиональном так и на бытовом оборудовании. Выпускается согласно ГОСТ9466-75 двух размеров 350 и 450 мм для любых видов стали, для металлов, толщина которых от 2 до 10 мм с силой тока 100-220А;

7. Электроды сварочные 5 мм – электроды этого диаметра требуют достаточно мощного сварочного оборудования. В соответствии с ГОСТ9466-75, изготавливаются длинной – 450 мм для низкоуглеродистой и легированной, а для высоколегированной стали допускается также длинна – 350 мм. Предназначены для работы с металлами, толщина которых от 4 до 15 мм с силой тока 150-280А;

8. Электроды сварочные 6 мм – предназначены для работы на профессиональном оборудование. Согласно ГОСТ9466-75, выпускается длинной – 450 мм для низкоуглеродистой и легированной, а для высоколегированной стали допускается также длинна – 350 мм. Предназначены для работы с металлами, толщина которых от 4 до 15 мм с силой тока 230-370А;

9. Электроды сварочные 8-12 мм – для работы на высокопроизводительном промышленном оборудовании. В соответствии с ГОСТ9466-75, выпускается длинной – 450 мм для низкоуглеродистой и легированной, а для высоколегированной стали допускается также длинна – 350 мм. Предназначены для работы с металлами, толщина которых свыше 8 мм с силой тока от 450А;

При этом необходимо отметить, что при определенном диаметре электрода диапазон силы тока для каждой марки электродов свои. К примеру, при диаметре электрода 3 мм для УОНИ 13/55 сила тока 70-100А, а для МР-3 сила тока 80-140А.

Источник: electrodgroup.ru

Разновидности электродов по диаметру — какие бывают и как выбрать

На рынке представлено огромное множество электродов. Все они отличаются по своим техническим характеристикам и предназначены для разных работ с разными материалами. Однако одни и те же модели могут отличаться между собой размерами и что самое главное, диаметром. Сегодня будем выяснять, какое влияние оказывает диаметр электрода на его рабочие свойства и как правильно его подобрать, что сварка была эффективной и простой.

Какие бывают диаметры электродов?

Разные производители предусматривают разные диаметры. Здесь играет роль также их назначение. Большой диаметр требуется не для всех металлов, и потому выпускать стержни больше определенного размера незачем. Чтобы познакомиться с разными диаметрами на практике, давайте посмотрим какие диаметры предлагают разные производители в своих моделях:

МР-3 — 2, 2,5, 3, 4, 5 мм;

Помимо диаметра, во внимание принимается также длина электродов. Это не столь важный параметр, но о нем все же полезно знать. Длина прутка имеет прямую зависимость от диаметра. Чем больше диаметр, тем больше длина. Причиной такого соотношения является расход электродов, и частая необходимость делать непрерывные соединения.

При больших токах электроды плавятся быстрее.

Сварщики предпочитают пользоваться электродами, имеющими наибольшую длину. В этом случае не придется прерываться во время работы. Это позволяет делать длинные швы беспрерывными. В результате вы получаете красивое, надежное и равномерное соединение. Длинные швы нужны не везде и короткие стержни отлично подходят для таких работ.

Почему тонкие электроды не делают длинными? Дело в том, что ими было бы неудобно пользоваться. Они бы часто гнулись и ломались, что повредило бы покрытие, необходимое для качественной работы.

Не все марки имеют широкий выбор размеров, поскольку имеют собственную специализацию.

Зависимость диаметра от толщины металла

Чтобы надежно соединить большие детали и массивные конструкции, требуется сделать на них большой шов. Для его получения понадобятся электроды с большим диаметром. На них также можно подать больший ток, чтобы расплавить металл, имеющий большую толщину и требующий более глубокой проплавки.

Таким образом зависимость между диаметром стержней и толщиной металла является прямо пропорциональной. Чем больше толщина металла, тем больший диаметр электрода требуется для его сварки.

Некоторые виды электродов выпускаются в диаметрах до 8 мм. Они могут потребоваться на промышленных производствах при сборке и ремонте толстых конструкций. При сварке тонкостенных изделий, применяются небольшие диаметры — от 1 мм, поскольку так удается добиться большей точности шва.

Если диаметр прутка будет больше толщины металла, он просто проплавит его. Для расплавки электрода потребуется мощность, которую не способны выдержать более тонкие изделия.

Зависимость силы тока от толщины материалов

Металл, имеющий большую толщину, требует большой температуры для расплавки и соответственно большой силы тока. Электрод с небольшим диаметром не может передать большого тока на металл. Вместо этого он просто вскипит и разбрызгается.

Изделия, имеющие большую толщину, требуют больших сварочных токов. Это обусловлено не только температурой плавления, но также глубиной проплавки и шириной шва. Только электроды с большими диаметрами могут выдерживать высокие токи и качественно передавать их на свариваемые детали.

Помимо способности переносить и использовать большие токи, в работе с толстым материалом, особую роль играет также источник тока. Без хорошего трансформатора сварщику не удастся получить нужные значения тока и сделать надежное соединение. Аппарат должен иметь и большой запас прочности, поскольку на сварку массивных конструкций уходит очень много времени. Работать на максимальных мощностях в течение нескольких часов может далеко не вся сварочная техника.

Заключение

Выбор диаметра электродов производится с учетом предстоящих работ и свариваемых материалов. Правильно подобрав размеры электродов, можно сделать прочное и надежное соединение, которое прослужит долгие годы.

Электроды с большими диаметрами используются на особых производствах, где собираются и обслуживаются конструкции и изделия, работающие в условиях высоких температур, большого давления или в агрессивных средах. Для большинства бытовых работ отлично подходят стандартные диаметры стержней до 3 — 4 мм.

Источник: instrument-blog.ru

Диаметры электродов

Толщина металла, мм3…54…1012…2430…40
Диаметр электрода, мм3…44…55…66…8

Первый слой при сварке многослойных швов выполняется электродами диаметром не более 3…4 мм.

По принятому диаметру электрода и положению шва в пространстве, воспользовавшись формулой К.К. Хренова, можно подобрать величину сварочного тока, определяющую устойчивость горения дуги:

где Iсв – сила сварочного тока, А; диаметр электрода, мм.

Для повышения производительности процесса сварки целесообразно применять максимально допустимый для данного типа электродов сварочный ток.

Выбирают такую скорость сварки, при которой можно получить шов требуемого поперечного сечения. Род и полярность тока зависят от свариваемого металла и применяемых электродов.

Металл небольшой толщины сваривают на постоянном токе обратной полярности (плюс на электроде). Этим уменьшается вероятность образования прожогов и перегрева металла. Низкоуглеродистые и низколегированные стали средней и большой толщины экономичнее сваривать на переменном токе.

Сварку швов в вертикальном и потолочном положении выполняют, как правило, электродами диаметром не более 4 мм. При этом сила тока должна быть на 10…20% ниже, чем для сварки в нижнем положении. Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20…30 В и указывается в паспорте на электроды.

Технология дуговой сварки. Процесс сварки начинается с зажигания сварочной дуги, для чего сварщик легким прикосновением конца электрода к изделию создает короткое замыкание цепи. Зажигание осуществляется либо прямым отрывом на 2…3 мм электрода после короткого замыкания («впритык»), либо скользящим движением конца электрода с кратковременным касанием электрода («спичкой»), как это видно на рис. 10.6.

Рис. 10.6. Способы зажигания дуги:

Если сварщик замедлит отрыв электрода от изделия, может произойти «примерзание» электрода, т.е. приварка его конца к изделию, так как под действием большого тока конец электрода быстро расплавляется

Сварочная дуга вызывает интенсивный местный нагрев. Металл изделия в зоне горения дуги быстро достигает жидкого состояния, образуя ванну расплавленного металла. Металл на конце электрода также расплавляется и под действием сил поверхностного натяжения получает сфероидальную, каплевидную форму. В ванне жидкие металлы электрода (присадочный металл) и изделия (основной металл) смешиваются, образуя однородный сплав.

Чтобы обеспечить качественную сварку, сварщик должен беспрерывно поддерживать нужную длину дуги, не допускать ее обрывов и манипулировать электродом в определенном порядке. Постоянство длины дуги обеспечивается непрерывной подачей электрода к изделию по мере его расплавления.

Вследствие давления газов и потока электронов, исходящего из конца электрода в процессе сварки, на основном металле образуется углубление, называемое кратером. Расстояние между концом электрода и дном кратера называют длиной дуги. Обычно нормальная длина дуги поддерживается в пределах 0,5…1,1d.

Чрезмерное увеличение длины дуги ухудшает качество сварки из-за уменьшения устойчивости горения дуги и увеличения доступа воздуха к расплавленному металлу. Кроме этого повышается угар (испарение части расплавленного металла электрода и шлака в виде окислов) и разбрызгивание металла, ухудшается формирование шва.

Толщина слоя основного металла, перешедшего в расплавленное состояние, называется глубиной провара. При обычной ручной сварке глубина провара незначительна, достигает 1…2 мм.

Манипуляция электродом состоит из двух движений – движения вдоль шва и движения поперек шва. Ведение дуги производится таким образом, чтобы обеспечить проплавление свариваемых кромок и получить требуемое количество наплавленного металла при хорошем формировании шва (нормально сформированный шов в большинстве случаев должен иметь ширину, равную 3…5 диаметрам электрода). Это достигается поддерживанием постоянной длины дуги соответствующим перемещением конца электрода (рис. 10.7).

Рис. 10.7. Виды поперечного перемещения конца электрода:

1, 2, 3 – движения, обеспечивающие равномерный прогрев середины и

кромки стыка; 4, 5 – движения, обеспечивающие увеличенный прогрев

середины стыка; 6, 7 – движения, обеспечивающие усиленный прогрев

Большое значение в технике сварки имеют умелое прерывание дуги и повторное ее зажигание. Следует различать прерывание дуги в процессе сварки, которое произошло самопроизвольно или для смены электрода, и прерывание дуги по окончании сварки шва или его отдельного участка. В первом случае после обрыва дуги в шве образуется кратер, являющийся местом скопления неметаллических включений и причиной образования трещин. Для обеспечения хорошего провара металла в месте кратера повторное зажигание дуги производят на основном металле, а затем переносят дугу на шов и расплавляют металл в месте образования кратера. Во втором случае не допускают образование кратера при обрыве дуги, заплавляя его металлом. Заварку кратера производят, держа электрод неподвижно до самопроизвольного обрыва дуги или частыми короткими замыканиями электрода, что также обеспечивает заполнение кратера металлом.

Протяженность сварных швов имеет большое значение для выбора порядка их выполнения. Короткие швы (длиной не более 250…300 мм) выполняют «на проход», т.е. движением дуги от одного конца шва к другому. Швы длиной 300…1000 мм выполняют от середины шва к концам. Швы большой протяженности обычно выполняют обратноступенчатым способом отдельными участками. Длина участка (ступени) принимается 100…350 мм, в этих пределах равна длине шва, который может быть выполнен целым числом электродов (одним, двумя, тремя и т.д.). При сварке тонкого металла участки делают короче, а при сварке более толстого – длиннее.

Оборудование и принадлежности для электродуговой сварки. Источником тока являются сварочные агрегаты, которые бывают постоянного и переменного тока.

Агрегаты переменного тока состоят из сварочного трансформатора, дросселя (регулятора тока). Агрегаты постоянного тока состоят из сварочного генератора и электродвигателя, вращающего генератор.

К преимуществам агрегатов переменного тока относятся портативность, дешевизна и простота обслуживания агрегата, а также меньший расход электроэнергии.

При постоянном токе дуга горит более устойчиво, процесс сварки проще. Постоянный ток целесообразно применять при наложении вертикальных и потолочных швов, при сварке тонких (t 20 мм) листов, а также при сварке низколегированных сталей.

Принадлежностями для ручной сварки являются: электрододержатель (служит для закрепления электрода и подвода к нему сварочного тока), коробка с электродами, щиток или шлем с защитными стеклами, инструмент для очистки мест сварки и шва (специальный молоток, зубило, стальная щетка, шлифовальная машинка), специальное зубило для холодной проковки швов, набор шаблонов для промера швов, спецодежда, рукавицы, клеймо сварщика для клеймения швов по окончании сварки.

Сварщик должен защищать лицо щитком или шлемом, а руки и тело – брезентовой одеждой, так как лучи электрической дуги, попадая на незащищенную кожу, вызывают ожоги с последующим воспалением.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8355 — | 7973 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Электроды разного диаметра: специфика применения

Качественное соединение свариваемого металла кроме особенностей подключения сварочного аппарата во многом зависит от спецификации электрода. Диаметр металлического стержня электрода также важен для правильного соединения материалов, как и знание специфики самих материалов.

Для электродуговой сварки толщина электрода выступает важной характеристикой требующей не только корректировки соответствующего показателя силы тока, но и возможности расплавить ввариваемые поверхности заготовок. Маркировка диаметра электродов всегда указывается на упаковке. Такое маркирование позволяет подобрать оптимальную силу тока и рассчитать толщину деталей для сваривания, то есть рассчитать мощность сварочного аппарата и выставить необходимые показатели для работы.

Для сваривания тонкотелых деталей, например, листового металла используются аппараты ручной дуговой сварки, в которых применяется технология сваривания металла в защитной среде инертных газов, это в основном ручная аргонодуговая сварка, или как ее называют по-другому сварка полуавтоматом. Такая особенность связана с тем, что самые тонкие по диаметру электроды 1,2-1,6 мм обычно в домашних мастерских не используются, потому, что требуют высокой квалификации сварщика.

Самыми популярным выступают размеры диаметром 3 или 3,2 мм. Это основной рабочий диапазон, используемый повсеместно. Стоит отметить, что и большинство сварочных аппаратов бытового назначения отлично справляются с большинством задач, именно используя такие электроды.

Электроды толще 6 мм в основном используются для восстановления поврежденных поверхностей или наплавки металла, это специальный вид продуктов, требующих значительный по силе ток, который большинство бытовых инверторов просто не в состоянии выдать из-за своих характеристик.

В целом толщина электродов может быть использована для сваривания деталей, в зависимости от их толщины:

  • 1-2 мм металла соединяется электродами 1,5-2 мм;
  • для металла 3-5 мм подходят 3-4 мм марки;
  • конструкции из металла 6-12 мм свариваются 4-5 мм электродами;
  • для металла 12-15 мм подходят 5 мм;
  • 16-20 мм требуют диаметр в 6-8 мм;
  • более мощные конструкции свариваются 8-10 мм стержнями.

Вторым важным показателем диаметра электрода выступает необходимость выдерживания сварочным аппаратом установленной величины сварочного тока:

  • 1,5-2 мм требуют 30-45 А;
  • 3-4 мм соответствует показатель тока в 65-200, а в зависимости от толщины свариваемого металла;
  • 5-6 мм 200-250 А;
  • 8 и выше от 250А.

Кроме того, что на упаковке указывается маркировка диаметра электрода и соответствие необходимой силе тока, в расшифровке указывается и целевое назначение для применения соединения специфического материала. Такая спецификация позволяет использовать необходимые по размеру электроды и в месте наложения шва не допускать излишнего нагрева металла, то есть не давать металлу изменять свои свойства.

Так, сегодня в большинстве случаев используется в качестве элементов конструкций металл, маркируемый как:

  • стали углеродистые и низколегированные;
  • конструкционные легированные стали и конструкции;
  • теплоустойчивые легированные стали;
  • высоколегированные стали со специальными свойствами;

Соответствующее обозначение в обязательном порядке указывается на упаковке, имеющей соответствующий буквенно-цифровой код:

  • «У» – применение для соединения углеродистых и низколегированных сталей и конструкций;
  • «Л» – предназначенные для легированных конструкционных сталей;
  • «Т» – специальные легированные теплоустойчивые стали;
  • «В» – высоколегированные стали;
  • «Н» – материалы, используемые для наплавки слоев на поверхности металла.

Обозначение в соответствии с положением шва в пространственным

Для надежного соединения деталей большую роль играет такой фактор, как пространственное положение шва. Для разных видов работ производители разработали специальные по своим свойствам электроды, способные обеспечивать надежную дугу в положениях, для которых они предназначены.

Самым легким считается горизонтальное положение свариваемых деталей, в таком положении детали находятся внизу, а сварочный электрод вверху, это так называемое базовое положение, для сварки деталей в таком положении особых навыков не требуется, да и специальные свойства электродов здесь не нужны.

В буквенно-цифровом коде такое обозначение выступает под цифрой 1.

Для работ во всех положениях свариваемых деталей и поверхностей, кроме наложения шва сверху вниз маркировка соответствует цифре 2.

Для большинства поверхностей, нижнего, горизонтального и в вертикальной плоскости по направлению сварного шва «снизу вверх» соответствует номенклатура 3.

Для нижнего положения и нижнего в «лодочку» положения, так называемых потолочных работ используются электроды с маркировкой 4.

Универсальные по назначению электроды, в том числе и для специальных сварных швов маркируются цифрой 5.

Тем, кто только начинает приобщаться к сварочным работам рекомендуется использовать обычные сварочные электроды самого первого уровня. Это наиболее оптимальный вариант, при условии, что большинство деталей будет расположено в горизонтальном положении и сваривание, будет производиться сверху вниз. Образуемая при возникновении электрической дуги сварная ванны металла в таком положении никуда не утекает, остается на месте и позволяет сформировать надежный шов.

Использование свойств электродов в зависимости от качества удобства в работе

Одним из важных свойств процесса электросварки выступает стабильность электрической дуги, возникающей в момент прикосновения электрода и свариваемой детали. В этом процессе для формирования правильной свариваемой ванны металла играет качество и состав обмазки электрода или его покрытия. Сегодня в зависимости от технологии производства применяются четыре основные типа покрытия стержней, которые имеют различия:

  • по толщине слоя покрытия;
  • качеству изготовления;
  • составу основных компонентов.

Толщина слоя маркируется на упаковке обозначением кода буквенными кодировками:

  • М – самое тонкое покрытие;
  • С – покрытие средней толщины;
  • Д – толстый слой покрытия;
  • Г – специальный увеличенный толстый слой покрытия.

Качество изготовления, указывается цифровым обозначением в нижней части маркировки, высшее качество соответствует 1, среднее 2, низкое качество 3.

Для создания нормальных условий сваривания металла большую роль играет не только качество, но и состав покрытия, формирующий шлаковую поверхность и образующий пространство вокруг сварной ванны металла со специальной средой необходимой для плавления металла.

Производители сегодня создают покрытие из основных четырех видов покрытия стержня:

  • «А» – покрытие кислотное;
  • «Б» – основной вид покрытия;
  • «Ц» – целлюлозное или органическое покрытие;
  • «Р» – рутиловое.

Для каждого типа покрытия имеются специфические, свойственные только этим видам особенности работы и качественные показатели, как сварочных ванн, так и степени формирования капель металла и их разбрызгивания.

Маркированные буквой «А» – электроды с кислотным типом покрытия, во время работы характеризуются образованием особо жидкой сварочной ванной, это связано с тем, что металл стержня электрода переходит в нее уже в жидком состоянии.

Такое поведение характерно для нестабильной, неустойчивой дуги, во время формирования ванны металл разбрызгивается и появляется высокая вероятность резкого повышения температуры свариваемых заготовок. Кислотное покрытие требует осторожности и умения в работе, поскольку нередки случаи прожига поверхности, особенно тонкого листового металла. Создать прочный шов удается не всегда, при сваривании таким электродом, образуется насыщенный кислородом шов, что не добавляет в крепости соединению.

Основное покрытие, маркирующиеся литерой «Б» среди своих особенностей формирует короткую дугу, это особенность проявляется в формировании ванны с малой подвижностью. При расплавлении металла электрода формирует капли в основном среднего и крупного размера, такая размерность капли не дает растекаться металлу и шов ложиться более жесткий. При использовании сварочных аппаратов переменного тока следует быть особо внимательным, поскольку плавиковый шпат покрытия CaF2, дает дополнительную корку, что существенно усложняет процесс сварки.

С другой стороны, это тот тип покрытия, который среди всех типов отличается наилучшими характеристиками вязкости и плотности. Сварочный шов с использованием электродов с основным покрытием практически не образуют трещин и разрывов, металл отлично заполняет пустоты и надежно соединяет заготовки. Электроды с основным покрытием для ручной дуговой сварки применяются не только для сваривания простых конструкций, они повсеместно используются для конструкций с высокой нагрузкой и такими, к которым предъявляются особые требования, например, емкости подавлением.

Вместе с тем, такой отличный результат требует к применению электродов с основным покрытием и дополнительной подготовки поверхностей:

  • устройство фасок заготовок;
  • разделка кромок;
  • зачистка от ржавчины и обработка от органических примесей;
  • надежное и плотное сочленение частей.

В качестве дополнительной подготовки рекомендуется прокалить поверхности для улучшения свойств сварного шва.

Органические вещества, применяемые в формировании покрытия электродов маркируются на упаковке литерой «Ц», это обозначение свидетельствует, что в числе основных веществ, участвующих в формировании покрытия имеется целлюлоза. Для таких материалов характерной особенностью выступает универсальность применения в плане пространственного наложения шва, они пригодны для любых типов швов. Однако, следует быть особо внимательными при проваривании вертикальных швов и швов с нижним расположением – целлюлозное покрытие дает большое разбрызгивание металла, что приводит в получению грубого, широкого шва. Получить красивый шов новичку с помощью электрода с органическим покрытием будет чрезвычайно сложно, да и опытные сварщики как показывает практика практически не применяют этот тип покрытия при формировании однопроходных лицевых швов. Большое содержание в целлюлозе газообразующих веществ и компонентов, выделяющих при горении огромное количество газа, с другой стороны, отлично формируют газозащитный слой ванны, и не дают угаснуть дуге.

Насыщенность газозащитного слоя вокруг сварочной ванны делает возможным формирование надежного сварного шва, поскольку крупные капли металла не растекаются, и хорошо остывает. Электроды с целлюлозным покрытием незаменимы для вертикальных швов, ответственных соединений в качестве первопроходного конструктивного шва, наложения швов сверху вниз.

Рутиловое покрытие сегодня наиболее оптимальный вариант для тех, кто только собирается начать использовать соединение деталей с помощью электродуговой сварки. Электроды, маркируемые на упаковке литерой «Р» характеризуются легким возбуждением дуги, стабильностью ее поддержания, отличной формой и аккуратностью шва. В дополнении ко всем перечисленным характеристиками следует добавить еще и отличное качество сварного шва, замечательно соединяющее поверхности.

Для рутиловых поверхностей характерным выступает и такая особенность, как возможность прохождения повторным швом поверх первого без удаления шлака. TiO2, входящий в качестве одного из основных компонентов покрытия обеспечивает такую возможность, что существенно экономит силы и возможности. Практически при использовании рутиловых электродов не происходит выделения токсических веществ и позволяет контролировать процесс сварки буквально в любом положении. Формируемый шов соединения имеет низкую пористость внутренней структуры и отличную отделимость шлака. Эти электроды отлично подходят для соединения прихваточных швов, угловых соединений и формирования лицевых швов.

Источник: svarkagid.com

Electrode – Energy Education

Рисунок 1. Упрощенная схема гальванического элемента с цинковым и медным электродами для замыкания цепи через неметаллическую среду.

Электрод представляет собой проводник, который используется для установления контакта с неметаллической частью цепи. [1] Электроды обычно используются в электрохимических элементах (см. рис. 1), полупроводниках, таких как диоды, и в медицинских устройствах. Электрод – это место, где происходит перенос электрона.

Электрод классифицируется как катод или анод в зависимости от типа протекающей химической реакции. Если на электроде происходит реакция окисления (окисление представляет собой потерю электронов), то электрод классифицируется как анод. Если на электроде происходит реакция восстановления (восстановление — это присоединение электронов), то электрод классифицируется как катод. [2] Обычный ток в чем-то вроде разряжающейся батареи поступает в устройство через его анод и выходит из устройства через катод. [3]

Различают активных электродов и инертных электродов. Например, магниевый электрод обычно является активным электродом, поскольку он участвует в окислительно-восстановительной (сокращенно «окислительно-восстановительной») реакции. Платиновый электрод обычно является инертным электродом, поскольку он не участвует в окислительно-восстановительной реакции. Инертный электрод химически неактивен и присутствует только для того, чтобы ток мог протекать через электрохимическую ячейку. [2]

Анод и катод

Рисунок 2. Упрощенная схема, показывающая анод и катод топливного элемента. Обратите внимание, что стрелки на диаграмме показывают поток электронов. Обычный ток будет в противоположном направлении.

Есть много способов понять, какой электрод является анодом, а какой катодом в электрохимической системе. Иногда аноды и катоды описываются как отрицательные и положительные электроды. Однако это может сбить с толку, поскольку аноды и катоды могут быть отрицательными или положительными, в зависимости от того, производит электрохимическая ячейка электричество или потребляет электричество.Таким образом, самый полезный способ думать об этом – это отношение к потоку электронов. Как было сказано ранее, анод относится к электроду, на котором происходит окисление или откуда электроны вытекают . Катод относится к электроду, на котором происходит восстановление или где электроны текут в . [4]

Аноды и катоды находятся в электрических компонентах с потенциалом ячейки, включая батареи, топливные элементы, фотогальванические элементы, электролитические элементы и диоды.

Для дальнейшего чтения

Для получения дополнительной информации см. соответствующие страницы ниже:

Список литературы

Стандартные электроды – Химия LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Что такое механика электрода?
    1. Какие процессы происходят?
    2. Из чего сделан электрод?
  2. Примеры электродов
  3. Стандартный водородный электрод
    1. Из чего состоит СТЭ?
    2. Что происходит в этом процессе?
  4. Трехэлектродная система
  5. Ссылки
  6. Проблемы
  7. Авторы и авторы

Электрод по определению представляет собой точку, в которой ток входит и выходит из электролита.Когда ток покидает электроды, он известен как катод, а когда ток входит, он известен как анод. Электроды являются жизненно важными компонентами электрохимических элементов. Они переносят произведенные электроны из одной полуэлемента в другую, что создает электрический заряд. Этот заряд основан на стандартной электродной системе (SHE) с эталонным потенциалом 0 вольт и служит средой для любого расчета потенциала клетки.

Какова механика электрода?

Какие процессы происходят?

Электрод – это металл, поверхность которого служит местом, где устанавливается окислительно-восстановительное равновесие между металлом и тем, что находится в растворе.Электрод может быть анодом или катодом. Анод получает ток или электроны из смеси электролитов, таким образом окисляясь. Когда атомы или молекулы подходят достаточно близко к поверхности электрода, раствор, в который помещен электрод, отдает электроны. Это заставляет атомы/молекулы становиться положительными ионами.

С катодом происходит обратное. Здесь электроны высвобождаются из электрода, а раствор вокруг него восстанавливается.

Из чего сделан электрод?

Электрод должен быть хорошим электрическим проводником, поэтому обычно это металл. То, из чего сделан этот металл, зависит от того, участвует ли он в реакции. Для некоторых реакций требуется инертный электрод, который не участвует. Примером этого может быть платина в реакции SHE (описанной ниже). В то время как в других реакциях используются твердые формы реагентов, что делает их электродами. Примером этого типа ячейки может быть:

.

(левая сторона — анод) Cu(s)|Cu(NO 3 ) 2 (водный) (0.1M)||AgNO 3 (водн.) (0,01M)|Ag(s) (правая сторона — катод)

(В приведенной выше конфигурации ячейки: внешние компоненты являются электродами для реакции, а внутренние части представляют собой растворы, в которые они погружены)

Здесь видно, что используется твердая форма реагента – медь. Медь, как и серебро, участвует в качестве реагентов и электродов.

Примеры электродов

Некоторые обычно используемые инертные электроды: графит (углерод), платина, золото и родий.

Некоторые часто используемые реактивные (или вовлеченные) электроды: медные, цинковые, свинцовые и серебряные.

Стандартный водородный электрод

Стандартный водородный электрод (SHE) — это электрод, который ученые используют для сравнения во всех реакциях с потенциалом полуэлемента. Значение стандартного электродного потенциала равно нулю, что составляет основу, необходимую для расчета клеточных потенциалов с использованием разных электродов или разных концентраций. Важно иметь этот общий эталонный электрод так же, как для Международного бюро мер и весов важно иметь запечатанный кусок металла, который используется для эталона S.I. Килограмм.

Из чего сделана ОНА?

SHE состоит из 1,0 М раствора H + (водный), содержащего квадратный кусок платинированной платины (соединенный с платиновой проволокой, по которой может происходить обмен электронами) внутри трубки. Во время реакции газообразный водород затем проходит через трубку в раствор, вызывая реакцию:

2H + (водн.) + 2e <==> H 2 (г).

Платина

используется потому, что она инертен и мало реагирует с водородом.

Что происходит в этом процессе?

Сначала начальный разряд позволяет электронам заполнить самый высокий занятый энергетический уровень Pt. При этом часть ионов H+ образует ионы H 3 O + с молекулами воды в растворе. Эти ионы водорода и гидроксония затем подходят достаточно близко к платиновому электроду (на платинированной поверхности этого электрода), где водород притягивается к электронам в металле и образует атом водорода. Затем они объединяются с другими атомами водорода, чтобы создать h3(g).Этот газообразный водород выпускается из системы. Чтобы реакция продолжалась, к электроду требуется постоянный поток H 2 (г). Провод Pt подключен к аналогичному электроду, в котором происходит противоположный процесс, создавая заряд, который соответствует 0 вольт. Другие стандартные электроды обычно предпочтительнее, потому что электрод SHE может быть сложным в настройке. Трудность возникает при подготовке платинированной поверхности и контроле концентрации реагентов.По этой причине SHE называют гипотетическим электродом.

Трехэлектродная система

Трехэлектродная система состоит из рабочего электрода, электрода сравнения и вспомогательного электрода. Трехэлектродная система важна в вольтамперометрии. Все три электрода служат уникальному валку в трехэлектродной системе. Электрод сравнения относится к электроду, который имеет установленный электродный потенциал. В электрохимической ячейке электрод сравнения можно использовать как полуячейку.Когда электрод сравнения действует как полуячейка, можно определить электродный потенциал другой полуячейки. Вспомогательный электрод — это электрод, который следит за тем, чтобы ток не проходил через эталонную ячейку. Это гарантирует, что ток равен току рабочего электрода. Рабочий электрод — это электрод, который переносит электроны к присутствующим веществам и от них. Вот некоторые примеры эталонных ячеек:

.

Каломельный электрод: Этот электрод сравнения состоит из молекул ртути и хлорида ртути.Этот электрод может быть относительно проще в изготовлении и обслуживании по сравнению с SHE. Он состоит из твердой пасты Hg 2 Cl 2 и жидкой элементарной ртути, прикрепленной к стержню, погруженному в насыщенный раствор KCl. Необходимо, чтобы раствор был насыщенным, так как это позволяет фиксировать активность хлоридом калия, а напряжение быть ниже и ближе к СВЭ. Этот насыщенный раствор позволяет происходить обмену ионами хлора. Все это обычно помещают внутрь трубки с пористым соляным мостиком, позволяющим электронам течь обратно и замыкать цепь.-_{(водн.)}\]

Серебряно-хлоридный электрод : Электрод такого типа осаждает в растворе соль, которая участвует в электродной реакции. Этот электрод состоит из твердого серебра и его осажденной соли AgCl. Это широко используемый электрод сравнения, потому что он недорогой и не такой токсичный, как каломельный электрод, содержащий ртуть. Серебряно-хлоридный электрод изготавливается путем взятия проволоки из твердого серебра и кодирования ее в AgCl. Затем его помещают в пробирку с раствором KCl и AgCl.-_{(водн.)}\]

Список литературы

  1. Айвз, Дэвид Дж. Г. и Джордж Джон. Янц. «2. Водородный электрод». Электроды сравнения. Нью-Йорк [usw.]: Acad. Пр., 1961. Печать.
  2. Аллманд А. и Гарольд Иоганн Томас. Эллингем. «Глава 4: Электролизная ванна». Принципы прикладной электрохимии, . Нью-Йорк: Лонгманс, Грин, 1924. Печать
  3. .
  4. Стандартный водородный электрод: искаженная концепция, http://pubs.acs.org/doi/pdf/10.1021/ed050p604

Проблемы

1. Какой электрод окисляет раствор в полуэлементе? Анод или катод?

2. Почему стандартный водородный электрод важен для расчета потенциалов клеток?

3. Определите, какая сторона является катодом, а какая анодом.

Ag(ы) | Ag+(водн.)(0,5M) || Ag + (водн.) (0,05M) | Ag(s)

4. Почему важно использовать инертный электрод в ситуациях, подобных SHE?

5.Каков стандартный полуэлементный потенциал для SHE?

Ответы (выделите, чтобы увидеть):

1. Анод

2. Это важно при расчете потенциалов полуклеток, поскольку служит в качестве эталона. Без этого электрода не было бы основы для расчета значений клеточных потенциалов.

3. Левый — анод, правый — катод.

4. В этой ситуации важно использовать инертный электрод, потому что он не будет реагировать или участвовать в реакции в ячейке, а просто обеспечит площадь поверхности для протекания реакции.

5. 0 вольт.

Авторы и авторство

Электроды

: определение и типы — видео и расшифровка урока

Аноды и катоды

Аналогичным образом, существует два различных типа электродов:

  1. Анод — это электрод, который притягивает анионы.
  2. Катод представляет собой электрод, который притягивает катионы.

Чтобы запомнить взаимосвязь между ионами и электродами, полезно знать, что «кошка» в слове «катод» относится к катиону.Первая буква «а» в слове «анод» означает анион.

Когда вы соединяете оба электрода вместе, вы можете образовать электрическую цепь. Электрическая цепь — это путь, по которому текут электроны. Таким образом, если электрод — это наш мост, по которому движутся электроны, цепь — это дорожная карта, которую электроны используют, чтобы определить, куда им двигаться. В электрических устройствах электроны всегда будут течь от анода к катоду.

Как работает электрод?

При описании работы электрода в качестве примеров можно привести два различных электрических устройства.Первый пример касается нашей батареи. Как показано на этой диаграмме, батарея имеет две клеммы, катод и анод. Два разных процесса, происходящих внутри батареи, способствуют протеканию электрического тока. Во-первых, в батарее происходят химические реакции. Во-вторых, у нас есть электроны, летящие вокруг от анода и катода, чтобы генерировать электричество для устройства.

Функция электрода в батарее

Допустим, вы хотите включить фонарик.Когда вы помещаете батарею в держатель, происходят химические реакции. Эти реакции высвобождают много ионов на аноде. Когда ионы растворяются, они оставляют свои электроны на аноде.

Накопление на аноде, электроны недовольны. Они скорее покинут это тесное пространство, чем сбиваются в кучу. Для этого они едут к месту расположения батареи с доступной занятостью, к катоду. Путешествуя по цепи от анода к катоду, в нашем фонарике может генерироваться свет.Но что произойдет, если мы вытащим аккумулятор? Если батарея удалена, наш источник энергии, используемый для запуска химических реакций, создающих этот поток электронов, подходит к концу. Конечным результатом является фонарик без света.

На этой диаграмме мы также можем увидеть аналогичный процесс в электролитических ячейках. Электролитическая ячейка представляет собой устройство, используемое для преобразования химической энергии в электрическую. Электролизер используется в электрометаллургии для удаления драгоценных металлов из минеральных руд.

Основное различие между батареей и электролитическим элементом заключается в том, что электрод погружен в раствор. Катионы и ионы, плавающие в этом растворе, называются электролитами. Вы заметили блок питания в камере? Этот источник энергии работает для перемещения электронов через раствор от анода к катоду. Когда электроны движутся, это вызывает ток в растворе.

Функция электрода с использованием электролитической ячейки

Независимо от того, генерируется ли электрический ток в батарее или в электролизере, электроды пропускают любой ток.

Краткий обзор урока

Электроды — это проводники, по которым проходят электроны, создавая ток. Существует два типа электродов, катоды и аноды. Катод притягивает положительно заряженные катионы. Анод притягивает отрицательно заряженные анионы.

Электроды обычно изготавливаются из металлов, таких как платина и цинк. Как отличные проводники электричества, они встречаются в электрических устройствах, таких как батареи и гальванические элементы.Электроны, протекающие от отрицательного конца электрода или анода к положительному концу или катоду, означают, что может генерироваться электрический ток.

Объяснитель: Что такое электрод?

анод : Отрицательная клемма батареи и положительно заряженный электрод в электролитической ячейке. Он притягивает отрицательно заряженные частицы. Анод является источником электронов для использования вне батареи, когда она разряжается.

батарея : Устройство, которое может преобразовывать химическую энергию в электрическую.

катод : Положительная клемма батареи и отрицательно заряженный электрод в электролитической ячейке. Он притягивает положительно заряженные частицы. Во время разряда катод притягивает электроны снаружи батареи.

химикат : Вещество, состоящее из двух или более атомов, которые соединяются (связываются) в фиксированной пропорции и структуре. Например, вода — это химическое вещество, образующееся при соединении двух атомов водорода с одним атомом кислорода. Его химическая формула H 2 O.Химический также может быть прилагательным для описания свойств материалов, которые являются результатом различных реакций между различными соединениями.

химическая реакция : Процесс, включающий перестройку молекул или структуры вещества, в отличие от изменения физической формы (например, из твердого состояния в газообразное).

проводящий : (в физике и технике) Процесс или способность некоторой структуры направлять через нее поток некоторого тока (особенно электрического тока).

проводник : (в физике и технике) Материал, через который может протекать электрический ток.

медь : Металлический химический элемент того же семейства, что и серебро и золото. Поскольку он является хорошим проводником электричества, он широко используется в электронных устройствах.

космос : (прил. космический) Термин, относящийся ко Вселенной и всему, что в ней находится.

текущий : Жидкость — например, вода или воздух, — которая движется в узнаваемом направлении.(в электричестве) Поток электричества или количество заряда, проходящего через какой-либо материал за определенный период времени.

электрическая цепь : Путь, по которому текут электроны. Точка, в которой эти электроны входят в электрическую цепь, называется «источником».

электричество : Поток заряда, обычно возникающий в результате движения отрицательно заряженных частиц, называемых электронами.

электрохимический : Прилагательное, обозначающее процессы, посредством которых электричество влияет на химические изменения в каком-либо веществе, а также то, как химическая энергия может быть преобразована в электрическую энергию или наоборот.

электрод : Устройство, которое проводит электричество и используется для установления контакта с неметаллической частью электрической цепи или для контакта с чем-то, через что проходит электрический сигнал. (в электронике) Часть полупроводникового устройства (например, транзистора), которая либо высвобождает, либо собирает электроны или дырки, либо может управлять их движением.

электролиз : Использование электрического тока для разделения химических веществ в растворе. Ток заставляет ионы двигаться к электродам — катоду или аноду — на любом конце системы.

электролит : неметаллическая жидкость или твердое вещество, проводящее ионы — электрически заряженные атомы или молекулы — для переноса электрических зарядов. (Некоторые минералы в крови или других телесных жидкостях могут служить ионами, которые перемещаются, чтобы нести заряд.) Электролиты также могут служить ионами, которые перемещают положительные заряды внутри батареи или конденсатора.

электрон : Отрицательно заряженная частица, обычно вращающаяся вокруг внешних областей атома; также носитель электричества внутри твердых тел.

инженер : Человек, который использует науку для решения проблем. Глагол «спроектировать» означает разработать устройство, материал или процесс, который решит какую-то проблему или неудовлетворенную потребность. (v.) Для выполнения этих задач или имя лица, которое выполняет такие задачи.

сила : Некоторое внешнее воздействие, которое может изменить движение тела, удерживать тела близко друг к другу или вызывать движение или напряжение в неподвижном теле.

графит : Подобно алмазу, графит (вещество, содержащееся в грифеле карандаша) представляет собой форму чистого углерода.В отличие от алмаза, графит очень мягкий. Основное различие между этими двумя формами углерода заключается в количестве и типе химических связей между атомами углерода в каждом веществе.

водород : Самый легкий элемент во Вселенной. В виде газа он бесцветен, не имеет запаха и легко воспламеняется. Это неотъемлемая часть многих видов топлива, жиров и химических веществ, из которых состоят живые ткани. Он состоит из одного протона (который служит его ядром), вокруг которого вращается один электрон.

металл : Что-то, что хорошо проводит электричество, имеет тенденцию быть блестящим (отражающим) и податливым (это означает, что ему можно придать форму с помощью нагревания и без слишком большого усилия или давления).

окисление : (прил. окислительный) Процесс, при котором одна молекула отбирает электрон у другой. Говорят, что жертва этой реакции «окислилась», а окислитель (вор) «восстановился». Окисленная молекула снова становится целой, отнимая электрон у другой молекулы. Окислительные реакции с молекулами в живых клетках настолько бурны, что могут вызвать гибель клеток. В окислении часто участвуют атомы кислорода, но не всегда.

восстановление : (в химии) Процесс, в котором атом получает электрон, похищая его у другого атома или молекулы.Восстановление противоположно окислению.

цинк : Металлический элемент, который в чистом виде пластичен (легко деформируется) и является важным микроэлементом для растений и животных.

Что такое электрод? – УСЕСИ

Электрод определяется как точка, в которой ток входит и выходит из электролита. Когда ток выходит из электрода, он известен как катод, а когда он входит, он известен как анод. Электроды переносят электроны от одной полуэлемента к другой, создавая электрический заряд.Заряд измеряется с помощью стандартной системы электродов (SHE) с эталонным потенциалом 0 вольт, который служит средой для любого расчета потенциала клетки. Электроны являются жизненно важными компонентами электрохимических элементов.

Механика электрода

Электрод представляет собой металл, и его поверхность служит местом, где устанавливается окислительно-восстановительное равновесие между металлом и раствором, каким бы он ни был. Если электрод является анодом, он получает ток или электроны от смеси электролитов и окисляется.Когда атомы или молекулы приближаются к поверхности электрода, раствор, в котором находится электрод, отдает электроны, в результате чего атомы становятся положительными ионами.

Из чего сделан электрод?

Электроды обычно металлические, но их тип зависит от того, участвует ли он в реакции. Для некоторых реакций требуется инертный электрод, который не участвует. Другие реакции требуют твердых форм реагентов, что делает их электродами. Обычно используемые инертные электроды могут быть изготовлены из графита, платины, золота или родия.Реактивные электроды могут быть изготовлены из меди, цинка, свинца или серебра.

Стандартный водородный электрод

Стандартный водородный электрод используется учеными для справки во всех реакциях с потенциалом полуэлемента. Стандартный электродный потенциал равен нулю, что составляет основу, необходимую для расчета клеточных потенциалов с использованием электродов различных концентраций. Стандартный водородный электрод изготовлен из 1,0 М раствора H+, который содержит квадратный кусок платинированной платины внутри трубки.

Электроды в действии

Электроды действуют как место удержания электронов. Вы можете соединить электроны с терминалом, но ничего не произойдет, пока вы не установите солевой мост между двумя контейнерами. Обычно это полая трубка U-образной формы, наполненная солью. Это позволит ионам перемещаться из одного контейнера в другой, сохраняя растворы нейтральными.

Как только электроны начинают течь, цинк окисляется и высвобождает электроны, которые текут по проводу к медному электроду, где они могут быть использованы для образования медных металлов.Ионы меди из раствора сульфата меди оседают на медном электроде, в то время как цинковый электрод расходуется.

Катионы в солевом мостике перемещаются по контейнеру с медными электродами, заменяя ионы меди по мере их расходования, в то время как анионы в солевом мостике мигрируют в сторону цинка, где они сохраняют электрически нейтральный раствор, содержащий вновь образованные катионы цинка.

В этом случае цинковый электрод работает как анод, где происходит окисление, и помечается знаком «-», а медный электрод работает как катод, где происходит восстановление, и может быть помечен знаком «-». Знак «+».

Трехэлектродная система

Трехэлектродная система является важной частью вольтамперометрии, электрохимического метода, который измеряет ток, возникающий в электрохимической ячейке в условиях, когда напряжение превышает прогнозируемое. Три электрода в этой системе — рабочий электрод, электрод сравнения и вспомогательный электрод. Электрод сравнения имеет установленный электродный потенциал. В электрохимической ячейке электрод сравнения можно использовать как полуячейку.Это позволяет обнаружить электродный потенциал другой половины ячейки.

Вспомогательный электрод служит для предотвращения прохождения тока через эталонную ячейку. Это гарантирует, что ток равен току рабочего электрода. Рабочий электрод переносит электроны к присутствующим веществам и от них.

Некоторые примеры эталонных ячеек включают:

Каломельный электрод: он состоит из молекул ртути и хлорида ртути, и его легче изготовить и обслуживать, чем SHE.Необходимо, чтобы раствор был насыщенным, чтобы активность фиксировалась хлоридом калия, поэтому напряжение будет ниже и ближе к SHE. Насыщение также позволит обмену ионами хлора происходить внутри солевого мостика.

Серебряно-хлоридный электрод: этот электрод осаждает соль в растворе, используемом в электродной реакции. Он состоит из твердого серебра и его осажденной соли. Это широко используемый электрод сравнения, потому что он недорогой и не такой токсичный, как каломельный электрод, содержащий ртуть.Его изготавливают, беря твердый серебряный сплав и кодируя его в AgCl, а затем помещая в раствор KCl и AgCl. Ионы будут образовываться по мере того, как электроны будут входить и выходить из системы электродов.

Электроды являются важной частью работы электричества. Интересно узнать больше о науке, стоящей за ними, и о том, как они действуют в электрическом процессе. Те, кто заинтересован, должны чувствовать себя воодушевленными, чтобы узнать больше об электрическом процессе и о том, как электроды участвуют в простых функциях, которые мы наблюдаем каждый день.

Что такое электроды и что они делают?

Если вы думаете об «электоре» как об электрическом жезле, вы близки к истине. Еще одна подсказка связана с происхождением названия. «Род» в переводе с греческого означает «тропа». Следовательно, электроды — это проводники, по которым электричество входит или выходит из вещества или объекта.

Роль электродов в передаче энергии

Изображение: Македонская академия наук.

В случае свинцово-кислотных аккумуляторов электроды передают энергию к электролиту и от него для питания поляризованного устройства, к которому они подключаются.Эта энергия выходит из батареи через отрицательно заряженный анод и проходит через устройство. Затем он возвращается через положительно заряженный катод, тем самым уменьшая накопленную мощность посредством процесса, называемого восстановлением.

С перезаряжаемыми батареями электроды могут меняться ролями. Мы называем перезаряжаемые батареи «вторичными элементами», а неперезаряжаемые — «первичными элементами». Чтобы помочь вам запомнить это, перезаряжаемые имеют вторичные жизни, но основные только один. На мировом рынке батарей существует множество различных типов первичных и вторичных батарей.

Принцип работы электродов в свинцово-кислотных батареях

Изображение: Университет Карнеги-Меллона

Все батареи имеют катоды и аноды, а также электролит, который их разделяет. Это источник химической реакции, при которой батареи превращаются в электричество. Окисление вызывает накопление электронов на аноде. Эта беспокойная энергия хочет куда-то уйти, но безэлектронный катод находится на дальней стороне изолирующего электролита.

Если мы соединим два электрода через устройство с соответствующими характеристиками, которое регулирует поток, часть электронов пройдет через него и найдет свое новое пристанище в катоде.Мы можем измерить напряжение и ток с помощью мультиметра. Мы также можем использовать этот замечательный источник энергии для питания почти бесконечного количества устройств.

Связанные

Что такое анод батареи?

Что такое катод аккумулятора?

Электролит двойного назначения для аккумуляторов с увеличенным сроком службы

Электроды – обзор | ScienceDirect Topics

Стеклянный электрод

Почти все измерения pH лучше всего проводить со стеклянным электродом (самым ранним из ионоселективных электродов), при этом ЭДС измеряется относительно электрода сравнения.Стеклянный электрод может охватывать практически всю шкалу pH и не подвергается воздействию большинства химических веществ, кроме плавиковой кислоты. Его также можно использовать в присутствии окислителей или восстановителей без потери точности измерения.

Электрод состоит из тонкой мембраны из стекла, селективного к ионам натрия, припаянного к концу стеклянной трубки, не обладающей свойствами ионоселективности. Трубка содержит раствор внутреннего сравнения, в который погружен внутренний электрод сравнения, соединенный экранированным проводом с рН-метром.Внутренний электрод сравнения почти всегда представляет собой электрод из серебра/хлорида серебра, хотя в последнее время иногда используются таламидные электроды*. Внутренний эталонный раствор содержит ионы хлорида, на которые реагирует внутренний электрод сравнения из серебра/хлорида серебра, и ионы водорода, на которые реагирует электрод в целом. Ион, на который реагирует стеклянный электрод, водород в случае рН-электродов, определяется составом стеклянной мембраны.

Стеклянный pH-электрод может быть представлен как

электрод сравнения|тестовый растворa H+‖стеклянная мембрана‖внутренняя эталонный растворa’ H+a′Cl‖AgCl|Ag

Стеклянные электроды для измерения pH бывают трех основных типов: (a ) общего назначения, для широкого диапазона pH в широком диапазоне температур, (b) низкотемпературные электроды (менее 10 °C), которые представляют собой электроды с низким сопротивлением и обычно не подходят для использования при pH выше 9–10, и (c) электроды с высоким pH и/или высокой температурой (более 12 единиц pH).Стеклянные электроды производятся во многих формах, некоторые из которых показаны на рисунках 24.16 и 24.20. Широко распространены сферические мембраны, но доступны полусферические или конические мембраны для повышения надежности там, где, вероятно, потребуется интенсивное манипулирование. Электроды с плоскими мембранами могут быть изготовлены для специальных целей, таких как измерение pH кожи или кожи, а микроэлектроды доступны, но требуют больших затрат. Можно приобрести комбинированные электроды из стекла и электрода сравнения (см. рис. 24.20), а некоторые электроды можно стерилизовать паром.

РИСУНОК 24.20. Комбинированный электрод сравнения и стеклянный электрод для измерения pH. Предоставлено компанией ABB Instrument Group.

Новые электроды, поставляемые в сухом виде, перед использованием следует подготовить в соответствии с рекомендациями производителя или оставить на ночь в 0,1 моль/л −1 соляной кислоты. Электроды лучше не допускать высыхания и хранить в дистиллированной или деминерализованной воде при температуре, близкой к той, при которой они будут использоваться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *