Область применения ацетилена – Области применения ацетилена | Статьи и полезная информация

alexxlab | 19.02.2020 | 0 | Разное

Содержание

Ацетилен: применение в медицине, промышленности

Ацетилен относится к углеводородам ненасыщенного ряда. Это соединение, а также его различные гомологи служат сырьем для синтеза большого количества химических продуктов.

Свойства и получение ацетилена

В условиях атмосферного давления и нормальной температуры ацетилен представляет собой бесцветный газ. Если температура опускается до значения -85 градусов и ниже, то это соединение переходит в другое состояние – твердое. При этом образуются кристаллы. Следует отметить, что в жидком и твердом состоянии ацетилен может легко взрываться под воздействием трения или при ударе (гидравлическом или механическом). Именно это свойство во многом обусловливает его область применения. Реакции горения ацетилена происходят в присутствии кислорода. В результате данного процесса возникает пламя, характеризующееся самыми высокими показателями температуры (3150 градусов) по сравнению с другими видами горючего.

Основным способом получения ацетилена является реакция, в которой взаимодействуют карбид кальция и вода. Данный процесс протекает при показателях температуры около 2000 градусов и является эндотермическим.

Существует такое понятие, как выход ацетилена. Это такое его количество, которое выделяется в результате разложения 1 кг карбида кальция. ГОСТ 1460-56 устанавливает конкретные значения данной величины, которая находится в прямой зависимости от степени грануляции исходного вещества. Таким образом, следствием относительно небольшого размера частиц карбида кальция является снижение выхода ацетилена.

Данная закономерность является следствием наличия в мелких частицах карбида посторонних примесей, например оксида кальция.

Существуют и другие, менее громоздкие, дорогие и энергозатратные способы получения ацетилена. Например, реакция термоокислительного пиролиза метана из природного газа; разложение нефти, керосина и других видов горючего путем электропиролиза.

Хранение и транспортировка

Все способы хранения и транспортировки предусматривают использование баллонов. Они заполняются специальной массой пористой консистенции. Ее пропитывают ацетоном, который хорошо растворяет ацетилен. Применение данного способа позволяет значительно увеличить наполняемость баллона ацетилена и, что немаловажно, понижает его взрывоопасность.

Длительное соприкосновение ацетилена с такими металлами, как медь и серебро, может привести к повышению его взрывоопасности. Следовательно, недопустимо использование материалов, которые могут содержать эти металлы, например в вентилях.

Как правило, баллоны должны иметь специальные вентили, предназначенные именно для хранения ацетилена.

Полного использования всей емкости баллона можно достигнуть, храня пустые емкости так, чтобы ацетон был распределен по всему объему баллона. А это возможно только в горизонтальном положении. Наполнение баллона должно происходить очень медленно, что важно для соблюдения условий химической реакции растворения ацетилена в ацетоне, а в частности ее скорости.

Преимущества растворенного ацетилена

Основное преимущество растворенного ацетилена перед тем, который получают с использованием переносных генераторов из карбида кальция, состоит в том, что при применении баллонов происходит повышение труда сварщика примерно на 20 %, а потери ацетилена при этом снижаются на 25 %. Также следует отметить повышение оперативности и маневренности сварочного поста, безопасность. В отличие от газа, полученного из карбида кальция, растворенный ацетилен содержит значительно меньше посторонних веществ, то есть примесей, что позволяет использовать его в особо ответственных сварочных работах.

Основные области применения ацетилена

  • Сварка и резка металлов.
  • Использование в качестве источника яркого, белого света. В данном случае речь идет об ацетилене, получаемом путем взаимодействия карбида кальция и воды. При этом используются автономные светильники.
  • Производство взрывчатых веществ.
  • Получение других соединений и материалов, которыми являются уксусная кислота, этиловый спирт, растворители, пластические массы, каучук, ароматические углеводороды.

Ацетилен: применение в строительстве и промышленности

Автогенные и сварочные работы сопровождают практически все этапы строительства. Именно в этих видах работ применяется ацетилен. В специальном устройстве под названием горелка происходит смешивание газов и непосредственно сама реакция горения. Наивысшая температура данной реакции достигается при содержании ацетилена 45 % от всего объема баллона.

Баллоны с этим газом маркируют следующим образом: окрашивают в белый цвет и большими красными буквами наносят надпись: «Ацетилен»

Строительные работы проводятся в основном на открытом воздухе. Применение ацетилена и его гомологов в этих условиях не должно проходить под воздействием прямых солнечных лучей. Небольшие перерывы должны сопровождаться перекрыванием вентилей на горелке, а длительные – перекрыванием вентилей на самих баллонах.

В химической промышленности очень востребован ацетилен. Применение его заключается в использовании данного вещества в процессе получения продуктов органического синтеза. Это синтетический каучук, пластмассы, растворители, уксусная кислота и т.д.

Ацетилен, являясь универсальным горючим, часто используется в процессах, сопровождающихся газопламенной обработкой. Важно, что применение ацетилена в промышленности возможно только при соблюдении мер безопасности, так как он является взрывоопасным газом.

Карбидные лампы

Название «карбидная лампа» обусловлено использованием в качестве источника света открытого пламени струи сжигаемого ацетилена. Он, соответственно, получен в результате взаимодействия карбида кальция с водой.

Такие лампы были широко распространены в прошлом. Их можно было увидеть на каретах, автомобилях и даже велосипедах. В современное время карбидные лампы используют только в случае острой необходимости в мощном автономном светильнике. Так, спелеологи часто пользуются ими. Отдаленные маяки снабжают именно такими лампами, ведь такой тип освещения намного выгоднее, нежели подведение линий электропередач. Достаточно распространенным является использование таких ламп на судах дальнего плавания.

Ацетилен: применение в медицине

Как используется вещество в этой сфере? Общая анестезия предполагает применение алкинов. Ацетилен является одним из тех газов, которые используются при ингаляционном наркозе. Но повсеместное его применение в этом качестве осталось в прошлом. Сейчас появились более современные и безопасные способы анестезии.

Хотя следует отметить, что и применение ацетилена не представляло большой опасности, так как прежде чем значение его концентрации во вдыхаемом воздухе дойдет до опасного предела, нижний порог горючести будет пройден.

Самым главным условием использования данного газа является соблюдение мер безопасности. Сложно переоценить, насколько опасен ацетилен. Применение его возможно только после проведения всех необходимых инструктажей с работниками различных сфер, в которых он используется.

autogear.ru

Ацетилен: применение в медицине, промышленности

Образование 31 июля 2015

Ацетилен относится к углеводородам ненасыщенного ряда. Это соединение, а также его различные гомологи служат сырьем для синтеза большого количества химических продуктов.

Свойства и получение ацетилена

В условиях атмосферного давления и нормальной температуры ацетилен представляет собой бесцветный газ. Если температура опускается до значения -85 градусов и ниже, то это соединение переходит в другое состояние – твердое. При этом образуются кристаллы. Следует отметить, что в жидком и твердом состоянии ацетилен может легко взрываться под воздействием трения или при ударе (гидравлическом или механическом). Именно это свойство во многом обусловливает его область применения. Реакции горения ацетилена происходят в присутствии кислорода. В результате данного процесса возникает пламя, характеризующееся самыми высокими показателями температуры (3150 градусов) по сравнению с другими видами горючего.

Основным способом получения ацетилена является реакция, в которой взаимодействуют карбид кальция и вода. Данный процесс протекает при показателях температуры около 2000 градусов и является эндотермическим.

Существует такое понятие, как выход ацетилена. Это такое его количество, которое выделяется в результате разложения 1 кг карбида кальция. ГОСТ 1460-56 устанавливает конкретные значения данной величины, которая находится в прямой зависимости от степени грануляции исходного вещества. Таким образом, следствием относительно небольшого размера частиц карбида кальция является снижение выхода ацетилена.

Данная закономерность является следствием наличия в мелких частицах карбида посторонних примесей, например оксида кальция.

Существуют и другие, менее громоздкие, дорогие и энергозатратные способы получения ацетилена. Например, реакция термоокислительного пиролиза метана из природного газа; разложение нефти, керосина и других видов горючего путем электропиролиза.

Хранение и транспортировка

Все способы хранения и транспортировки предусматривают использование баллонов. Они заполняются специальной массой пористой консистенции. Ее пропитывают ацетоном, который хорошо растворяет ацетилен. Применение данного способа позволяет значительно увеличить наполняемость баллона ацетилена и, что немаловажно, понижает его взрывоопасность.

Длительное соприкосновение ацетилена с такими металлами, как медь и серебро, может привести к повышению его взрывоопасности. Следовательно, недопустимо использование материалов, которые могут содержать эти металлы, например в вентилях.

Как правило, баллоны должны иметь специальные вентили, предназначенные именно для хранения ацетилена.

Полного использования всей емкости баллона можно достигнуть, храня пустые емкости так, чтобы ацетон был распределен по всему объему баллона. А это возможно только в горизонтальном положении. Наполнение баллона должно происходить очень медленно, что важно для соблюдения условий химической реакции растворения ацетилена в ацетоне, а в частности ее скорости.

Преимущества растворенного ацетилена

Основное преимущество растворенного ацетилена перед тем, который получают с использованием переносных генераторов из карбида кальция, состоит в том, что при применении баллонов происходит повышение труда сварщика примерно на 20 %, а потери ацетилена при этом снижаются на 25 %. Также следует отметить повышение оперативности и маневренности сварочного поста, безопасность. В отличие от газа, полученного из карбида кальция, растворенный ацетилен содержит значительно меньше посторонних веществ, то есть примесей, что позволяет использовать его в особо ответственных сварочных работах.

Основные области применения ацетилена

  • Сварка и резка металлов.
  • Использование в качестве источника яркого, белого света. В данном случае речь идет об ацетилене, получаемом путем взаимодействия карбида кальция и воды. При этом используются автономные светильники.
  • Производство взрывчатых веществ.
  • Получение других соединений и материалов, которыми являются уксусная кислота, этиловый спирт, растворители, пластические массы, каучук, ароматические углеводороды.

Ацетилен: применение в строительстве и промышленности

Автогенные и сварочные работы сопровождают практически все этапы строительства. Именно в этих видах работ применяется ацетилен. В специальном устройстве под названием горелка происходит смешивание газов и непосредственно сама реакция горения. Наивысшая температура данной реакции достигается при содержании ацетилена 45 % от всего объема баллона.

Баллоны с этим газом маркируют следующим образом: окрашивают в белый цвет и большими красными буквами наносят надпись: «Ацетилен»

Строительные работы проводятся в основном на открытом воздухе. Применение ацетилена и его гомологов в этих условиях не должно проходить под воздействием прямых солнечных лучей. Небольшие перерывы должны сопровождаться перекрыванием вентилей на горелке, а длительные – перекрыванием вентилей на самих баллонах.

В химической промышленности очень востребован ацетилен. Применение его заключается в использовании данного вещества в процессе получения продуктов органического синтеза. Это синтетический каучук, пластмассы, растворители, уксусная кислота и т.д.

Ацетилен, являясь универсальным горючим, часто используется в процессах, сопровождающихся газопламенной обработкой. Важно, что применение ацетилена в промышленности возможно только при соблюдении мер безопасности, так как он является взрывоопасным газом.


Карбидные лампы

Название «карбидная лампа» обусловлено использованием в качестве источника света открытого пламени струи сжигаемого ацетилена. Он, соответственно, получен в результате взаимодействия карбида кальция с водой.

Такие лампы были широко распространены в прошлом. Их можно было увидеть на каретах, автомобилях и даже велосипедах. В современное время карбидные лампы используют только в случае острой необходимости в мощном автономном светильнике. Так, спелеологи часто пользуются ими. Отдаленные маяки снабжают именно такими лампами, ведь такой тип освещения намного выгоднее, нежели подведение линий электропередач. Достаточно распространенным является использование таких ламп на судах дальнего плавания.


Ацетилен: применение в медицине

Как используется вещество в этой сфере? Общая анестезия предполагает применение алкинов. Ацетилен является одним из тех газов, которые используются при ингаляционном наркозе. Но повсеместное его применение в этом качестве осталось в прошлом. Сейчас появились более современные и безопасные способы анестезии.

Хотя следует отметить, что и применение ацетилена не представляло большой опасности, так как прежде чем значение его концентрации во вдыхаемом воздухе дойдет до опасного предела, нижний порог горючести будет пройден.

Самым главным условием использования данного газа является соблюдение мер безопасности. Сложно переоценить, насколько опасен ацетилен. Применение его возможно только после проведения всех необходимых инструктажей с работниками различных сфер, в которых он используется.


Источник: fb.ru

monateka.com

Области применения ацетилена – Справочник химика 21

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. 
[c.69]

    Ацетилен — горючий, взрывоопасный газ, первый член ряда непредельных углеводородов общей формулы С Н2п-2- Химически чистый ацетилен обладает слабым эфирным запахом. Технический ацетилен обычно содержит примеси фосфина, арсина и др. Помимо применения его для кислородно-ацетиленовой сварки и резки металлов, а также в многочисленных областях химической промышленности он использует ся в химических лабораториях. 
[c.205]

    Область применения реакции. Олефины. Свободнорадикальное присоединение тиолов к олефинам и ацетиленам — это реакция. [c.197]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). 

[c.146]

    Производство карбида кальция термической реакцией между коксом и окисью кальция имеет широкое распространение. Так, в 1965 г. для этих целей потреблялось более 2 500 ООО т кокса во всем мире, из которых, вероятно, от 800 до 900 тыс. т в странах Западной Европы. Но не следует ожидать развития производства карбида кальция в ближайшие годы. Основной областью его применения является производство ацетилена, себестоимость которого по этому методу оценивается во Франции немногим больше 1000 франков/т. Во многих случаях ацетилен может быть заменен этиленом, который более экономичен. Кроме того, для производства ацетилена с карбидным процессом конкурируют другие процессы, принцип которых — пиролиз таких углеводородов, как метан, этап и легкие бензины. Этот пиролиз может происходить при внешнем обогреве, частичном сгорании или под действием электрического тока в форме дуги или разряда. Эти процессы обычно дают смеси ацетилена и этилена, пригодные для использования. Нельзя сказать, что эти процессы были хорошо отработаны и надежны к 1967 г., но можно надеяться, что многие из них позволят получать ацетилен с ценой менее 0,80 франков/кг в связи с этим будет ограничена замена его на этилен. 

[c.221]


    Широкое применение найдет ацетилен в производстве различных галоидпроизводных, в первую очередь винилфторида и винилбромида, которые затем полимеризуют для получения ценных полимеров. В частности, одним из перспективных полимеров ближайшего будущего является поливинилфторид. Имеются и многие другие области использования ацетилена, о которых невозможно сказать в кратком введении. [c.12]

    Наиболее важная область применения окислительной циклизации ацетиленов была совсем недавно показана Зондгей-мером с сотрудниками, синтезировавшими целый ряд моноциклических сопряженных полиолефинов С(сн снР , где т = = 7,9, 10,12 и 15. К числу ранее известных соединений этой общей формулы относятся только чрезвычайно устойчивый, планарный, с совершенно выровненными связями бензол и неустойчивый, расположенный во многих плоскостях цикло-октатетраен с чередующимися одинарными и двойными связями. Такие макроциклические соединения были названы [Л ]-анну-ленами , N — число атомов углерода в цикле. Их получение, несомненно, свидетельствует о наступлении новой фазы в химии небензоидных ароматических соединений интересна теоретическая трактовка строения аннуленов. Общий подход к этой проблеме со стороны израильских ученых можно рассмотреть на примере [18 -аннулена. При конденсации гексадиина-1,5(Х1П) под воздействием ацетата меди и пиридина образуется очень сложная смесь углеводородов, которую можно разделить [c.320]

    Большая часть этилена (90%) идет на получение окиси этилена, этанола, полиэтилена, этилбензола, хлористого этила и дихлорэтана. Благодаря низкой стоимости этилен вытесняет более дорогой ацетилен из его основных областей применения. [c.118]

    Имеется еще одна не очень обширная, но весьма важная область применения ацетилена — в навигационных устройствах в качестве светильного газа (маяки, буи и т. д.). В этом случае применяется растворенный (баллонный) ацетилен, получаемый из карбида кальция. [c.12]

    Этот процесс использовали в очень большом масштабе в Германии в период последней войны [9]. Хлористый водород присоединяли к ацетилену в паровой фазе при ПО—180° С в присутствии катализаторов (хлорная ртуть или смесь хлорной ртути и хлористого бария на активированном угле). Хлористый винил, температура кипения которого—13,9° С (760 мм рт. ст.), ожижали при —35° С и затем ректифицировали под давлением. Основной областью применения хлористого винила является производство пластических веществ—полихлорвиниловой смолы, сополимеров хлористого винила с винилацетатом или винилиденхлоридом и др. [c.150]

    Ацетилен служит исходным продуктом для синтеза очень многих более сложных органических соединений. Эта область его использования и является самой обширной. Другое важное применение ацетилена основано на протекающей с большим выделением тепла реакции его сгорания  [c.498]

    В ультрафиолетовой области спектра могут также найти применение оптико-акустические газоанализаторы Оптико-акустический эффект в ультрафиолетовой области спектра наблюдался в азоте, кислороде и ацетилене. [c.260]

    Термическая полимеризация. Первые работы в области полимеризации ацетилена принадлежат Бертло (1866 г.). В последующие годы эта реакция неизменно вызывала интерес химиков, однако до появления карбидного ацетилена исследования носили характер случайных, разрозненных наблюдений. Начало систематического изучения термическ

www.chem21.info

Сферы применения ацетилена | Distroy.ru

Ацетилен, если он эксплуатируется при нормальных условиях влажности
воздуха и температурах – это бесцветный газ, получаемый при помощи стационарных
генераторов. Газ образуется при воздействии воды на карбид кальция. Если
понизить температуру до -85 градусов, газ меняет агрегатное состояние на
твердое и кристаллизуется. Одно из интересных свойств – при ударах или
воздействии трения материал взрывается.

Традиционно, ацетилен применятся в процессе сварочных работ с применением
автогенных аппаратов, а также при резке различных металлов. Технология проста –
имеется два баллона. Один с кислородом, второй – с ацетиленом. Эти два вещества
подаются в горелку и в процессе сгорания дают очень горячее пламя. Температура
может достигать 3200 градусов. Наиболее эффектна смесь, где ацетилена 45%. Для
сварки нужно купить ацетилен в баллонах.
За счет того, что это уникальный универсальный горючий газ, ацетилен часто
применятся в процессах газопламенной резки. Важно, что использование этого газа
становится возможным только при соблюдении определенных мер безопасности – газ
является не только очень горючим, но и взрывоопасным.
Но сварочные работы – это не единственный вариант использования. Очень часто
ацетилен применятся в автономных осветительных приборах – он дает яркий белый
свет. Получают газ в этом случае за счет реакции при смешивании воды и карбида
кальция.
Сегодня можно редко встретить такие лампы, а раньше они использовались
повсеместно для освещения автомобилей и карет. Сейчас также используют
карбидное освещения, но только в узких сферах – для обустройства удаленных
маяков.
Преимущество карбидного освещения – высокая экономичность и большая
автономность. При монтаже ацетиленовой лампы на маяк не возникнет никакой нужды
в подведении отдельной линии электричества. Также эти лампы очень популярны на
кораблях дальнего плавания.
Применятся этот газ и в промышленности. С помощью него получают самые разные
продукты органического синтеза. Без ацетилена нельзя получить уксусную кислоту,
синтетический каучук, растворители, многие виды пластмассы.
Применим газ и в медицинской сфере. Иногда он необходим для проведения
процедуры ингаляционного наркоза. Однако, повсеместное использование в
медицинских целях сходит на нет – сейчас существуют уже более безопасные методы
анестезии.

Предыдущая статьяВиды слотов в казино ВулканСледующая статьяКупить дизельный генератор на 3кВт для дома

distroy.ru

ИсетьТехГаз – технические газы – Ацетилен

Общие сведения

Ацетилен — ненасыщенный углеводород C2h3. Имеет тройную связь между атомами углерода, принадлежит к классу алкинов. В природе на Земле практически не встречается, т.к. из-за присутствия кислорода это крайне неустойчивое соединение, получается путем синтеза. Ацетилен обнаружен в атмосфере Урана, Юпитера и Сатурна.

Впервые газообразный ацетилен получил в 1836 г. Эдмунд Дэви при разложении водой карбида калия, полученного при сплавлении металлического калия с углем: К2С2 + 2Н2О = С2Н2 + 2КОН.

С конца 19 в., когда был разработан дешевый способ получения ацетилена из карбида кальция (CaC2 + 2h3O = C2h3 + Ca(OH)2, который в свою очередь получали прокаливанием смеси угля и негашеной извести (СаО + 3С = СаС2 + СО), этот газ стали использовать для освещения. В пламени при высокой температуре ацетилен, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени — от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому). Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.

 

Физические свойства

При нормальных условиях — бесцветный газ, запах которого напоминает запах чеснока, малорастворим в воде, легче воздуха. Чистый ацетилен при охлаждении сжижается при -83,8°С, а при дальнейшем понижении температуры быстро затвердевает. Он умеренно растворим в воде (1150 мл в 1 л воды при 15°С и атмосферном давлении) и хорошо в органических растворителях, особенно в ацетоне (25 л в 1 л ацетона при тех же условиях и 300 л под давлением 12 атм). Термодинамически ацетилен неустойчив: он взрывается при нагревании до 500° С, а при обычной температуре – при повышении давления до 2 атм. Поэтому его хранят в баллонах, наполненных пористым инертным материалом, который пропитан ацетоном.

 

Химические свойства

Для ацетилена (этина) характерны реакции присоединения, димеризации, полимеризации, цикломеризации.

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м3. При сгорании температура пламени достигает 3300°С (5972 °F). Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в 400 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди. Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

 

Способ производства

В промышленности ацетилен часто получают действием воды на карбид кальция , а также при дегидрировании двух молекул метана при температуре свыше 1400°C.

 

Применение

Ацетилен используют для так называемой автогенной сварки и резки металлов. Для этого нужны два баллона с газами — с кислородом и с ацетиленом. Газы из баллонов поступают в специальную горелку. При сгорании ацетилена в кислороде получается очень горячее пламя; максимальная его температура (3200° С) достигается при содержании ацетилена 45% по объему. В таком пламени очень быстро расплавляются даже толстые куски стали.

Как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (карбидка).

Ацетилен может служить исходным продуктом для синтеза многих более сложных органических соединений. Эта область применения ацетилена в настоящее время является самой обширной. Ацетилен – реакционноспособное соединение, вступающее в многочисленные реакции. Химия ацетилена богата. Из него можно получить сотни разнообразных соединений.

Он используется в производстве взрывчатых веществ (ацетилениды), для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.

 

Преимущества ацетилена при газопламенной обработке металлов

Применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан–бутан и тд.). Однако, преимущество ацетилена – в самой высокой температуре горения, которая достигает 3200 ° С. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки.

 

Сравнительные характеристики пламени при сварке различным газами

Газ Температура пламени, °C
     Ацетилен         3000 – 3200
     МАФ         2930
     Пропан         2600-2750
     Водород         2100-2500
     Метан         2000-2200

 

 

Хранение и перевозка ацетилена

Хранят и перевозят ацетилен в заполненных инертной пористой массой (древесным углем или литой пористой массой) стальных баллонах белого цвета (с красной надписью «АЦЕТИЛЕН») в виде раствора в ацетоне под давлением 1,5-2,5 МПа. Растворенный ацетилен в баллонах перевозят всеми видами транспорта в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта.

 

Опасные факторы и меры безопасности

Ацетилен – взрывоопасный газ. С воздухом образует взрывоопасную смесь. Температура самовоспламенения ацетилена 335°С. Температура воспламенения ацетилено-воздушных смесей 305-470°С, ацетилено-кислородных 297-306°С,

При хранении ацетилена и его применении необходимо заботиться о достаточной вентиляции и учесть правила классификации электрооборудования. Открытое пламя и курение категорически запрещены.

Ацетилен обладает слабым токсическим действием. При длительном вдыхании технического ацетилена появляется рвота и головокружение.

Ацетилен взрывоопасен при следующих условиях:

– при нагреве до 450-500°С и одновременном повышении давления от 1,5 –2,0 атмосфер ацетилен взрывается без внешнего источника воспламенения;

– в смеси с воздухом, если в воздухе содержится ацетилена в пределах от 2,3–80,7% по объему;

– в смеси с кислородом, если ацетилена содержится в пределах от 2,3-93% по объему;

– ацетилено-воздушные и ацетилено-кислородные смеси взрываются при наличии искры, открытого огня, нагретой поверхности или какого-либо другого источника воспламенения.

– при длительном соприкосновении ацетилена с красной медью и серебром образуются взрывчатые соединения, которые взрываются при ударе и повышении температуры;

– при контакте с водой ацетилен способен образовывать твердый кристаллогидрат, представляющий собой кристаллическое вещество белого цвета, напоминающий снег или лед.

Все применяемые материалы, в т.ч. неметаллические части, как, например, заглушки вентилей, прокладки и мембраны должны обладать стойкостью к ацетилену и его растворителям.

Ацетиленовая проводка должна быть стальной. Детали, изготовленные из серебра, меди или сплава, содержащего более 65% меди, нельзя применять из-за опасности образования взрывоопасных соединений меди и ацетилена.

it-gas.ru

Ацетилен — Артель инжиниринг








В промышленности ацетилен получают действием воды на карбид кальция в стационарных генераторах (Ф. Вёлер, 1862 г.), а также при дегидрировании двух молекул метана при температуре свыше 1400° Цельсия. Ацетилен представляет собой бесцветный газ, запах которого напоминает запах чеснока. Он немного легче воздуха. Ацетилен проявляет снотворное действие и при больших концентрациях вызывает удушье. Ацетилен также содержит сульфит водорода, арсен и фосфин, а потому следует избегать вдыхания его в большой концентрации. Ацетилен очень легко воспламеняется и горит. Уже при избыточном давлении 0,6 бар ацетилен может разлагаться на элементы – углерод и водород. Разложение может происходить взрывообразно. Ацетилен широко применяется для газовой резки из-за высокого его энергосодержания. Применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан–бутан и т.д). Однако, преимущество ацетилена – в самой высокой температуре горения, которая достигает 3100°С. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки. Ацетилен – единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.

Свойства ацетилена

Ацетилен (С2Н2) представляет собой химическое соединение углерода и водорода. При нормальных условиях (20° С и атмосферном давлении) ацетилен является газом. В химически чистом виде ацетилен обладает слабым эфирным запахом. Технический ацетилен, благодаря наличию в нем примесей, в частности фосфористого водорода, имеет резкий специфический запах. Ацетилен легче воздуха. Технический ацетилен существует в двух видох: растворенный и газообразный. Газообразный ацетилен – бесцветный газ плотностью при 0 оС и 101,3 кПа (760 м рт. ст.) 1,173кг/м3. Молекулярная масса – 26,038. Растворенный ацетилен представляет собой находящийся под давлением в баллоне раствор ацетилена в ацетоне, равномерно распределенный в пористой массе. Ацетилен способен растворяться во многих жидкостях. Растворимость ацетилена в жидкостях зависят от температуры, чем ниже температура жидкости, тем больше она способна растворить в себе ацетилена. В практике производства растворенного ацетилена используют ацетон, который при температуре 15°С растворяет до 23 объемов ацетилена. Технической ацетилен, полученный при разложении карбида кальция водой, может содержать примеси:

– фосфористый водород;
– сероводород и органические сернистые соединения;
– аммиак;
– кремнистый водород;
– воздух;
– мышьяковые соединения;
– метан, окись углерода;
– углекислоту и водные пары.

Содержание фосфористого водорода в ацетилене должно быть строго ограничено, так как в момент образования ацетилена в присутствии воздуха при высокой температуре может произойти самовоспламенение.

Области применения ацетилена

Технический растворенный ацетилен марки «А» предназначается для питания осветительных установок;
технический растворенный ацетилен марки «Б» и технический газообразный ацетилен предназначаются для использования в качестве горючего газа при газопламенной обработке металлов.

Хранение и перевозка ацетилена

Техническим растворенным ацетиленом наполняют стальные баллоны для растворенного ацетилена с пористой массой (активным углем или литой пористой массой) и ацетоном. Баллоны окрашены в белый цвет и оснащены вентилями специальных типов, предназначенными для ацетиленовых баллонов. Растворенный ацетилен в баллонах ёмкостью 40 литров перевозят всеми видами транспорта в соответствии с правилами перевозки опасных грузов, действующими на данном виде транспорта.

Опасные факторы и меры безопасности

Ацетилен — взрывоопасный газ. С воздухом образует взрывоопасную смесь. Температура самовоспламенения ацетилена 335°С. При хранении ацетилена и его применении необходимо заботиться о достаточной вентиляции и учесть правила классификации электрооборудования. Открытое пламя и курение категорически запрещены. При длительном вдыхании технического ацетилена появляется рвота и головокружение. Ацетилен взрывоопасен при следующих условиях:

– при нагреве до 450-500°С и одновременном повышении давления от 1,5 –2,0 атмосфер ацетилен взрывается без внешнего источника воспламенения;
– в смеси с воздухом, если в воздухе содержится ацетилена в пределах от 2,3–80,7% по объему;
– в смеси с кислородом, если ацетилена содержится в пределах от 2,3-93% по объему;
– ацетилено-воздушные и ацетилено-кислородные смеси взрываются при наличии искры, открытого огня, нагретой поверхности или какого-либо другого источника воспламенения. Температура воспламенения ацетилено-воздушных смесей 305-470°С, ацетилено-кислородных 297-306оС, температура самовоспламенения ацетилена 335°С;
– при длительном соприкосновении ацетилена с красной медью и серебром образуются взрывчатые соединения, которые взрываются при ударе и повышении температуры;
– при контакте с водой ацетилен способен образовывать твердый кристаллогидрат, представляющий собой кристаллическое вещество белого цвета, напоминающий снег или лед.

Все применяемые материалы, в т.ч. неметаллические части, как, например, заглушки вентилей, прокладки и мембраны должны обладать стойкостью к ацетилену и его растворителям. Ацетиленовая проводка должна быть стальной. Детали, изготовленные из серебра, меди или сплава, содержащего более 65% меди, нельзя применять из-за опасности образования взрывоопасных соединений меди и ацетилена.


www.artgas.kz

Реферат.химия.ацитилен

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение  высшего профессионального образования

«Московский авиационный институт

(национальный исследовательский университет)»

Реферат

на тему «Ацетилен»

Выполнил: студент

1МЕТ-1ДБ-033

Мельников Д.В.

Проверил: преподаватель

Белая А.В.

Москва 2015

СОДЕРЖАНИЕ

История открытия.

Название ацетилена по номенклатуре июпак.

Физические характеристики.

Структурная формула ацетилена.

Характеристика класса органических соединений Ацетилена.

Реакции получения ацетилена.

Характерные химические реакции ацетилена.

Области применения ацетилена.

Воздействие ацетилена на человеческий организм и окружающую среду.

Список использованной литературы.

ИСТОРИЯ ОТКРЫТИЯ

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К2С2 + Н2О=С2Н2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С2Н3 ацетилом.

На латыни acetum – уксус; молекула уксусной кислоты (С2Н3О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С2Н3 – Н = С2Н2. Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС2 + СО. Это произошло в конце XIX века.

Тогда ацетилен стали использовать для освещения. В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени – от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому).

Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.

В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина РН3, арсина Ash4.

НАЗВАНИЕ АЦЕТИЛЕНА ПО НОМЕНКЛАТУРЕ ИЮПАК

Согласно номенклатуре ИЮПАК при построении названий алкинов в названиях соответствующих насыщенных углеводородов суффикс -ан заменяется суффиксом -ин. Для указания положения тройной связи и замещающих групп цепь нумеруют также, как в соответствующих алкенах. Этин также возможно именовать тривиально – ацетилен.

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

При нормальных условиях – бесцветный газ, малорастворим в воде, легче воздуха. Температура кипения −83,8 °C. При сжатии разлагается со взрывом, хранят в баллонах, заполненных кизельгуром или активированным углем, пропитанным ацетоном, в котором ацетилен растворяется под давлением в больших количествах. Взрывоопасный. Нельзя выпускать на открытый воздух. C2h3 обнаружен на Уране и Нептуне.

СТРУКТУРНАЯ ФОРМУЛА АЦЕТИЛЕНА

Рис. 1

ХАРАКТЕРИСТИКА КЛАССА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ АЦЕТИЛЕНА

Ацетилен принадлежит к классу алкинов.

Алки́ны (иначе ацетиленовые углеводороды) – углеводороды, содержащие тройную связь между атомами углерода, образующие гомологический ряд с общей формулой Cnh3n-2. Атомы углерода при тройной связи находятся в состоянии sp-гибридизации.

Для алкинов характерны реакции присоединения. В отличие от алкенов, которым свойственны реакции электрофильного присоединения, алкины могут вступать также и в реакции нуклеофильного присоединения. Это обусловлено значительным s-характером связи и, как следствие, повышенной электроотрицательностью атома углерода. Кроме того, большая подвижность атома водорода при тройной связи обуславливает кислотные свойства алкинов в реакциях замещения.

Алкины по своим физическим свойствам напоминают соответствующие алкены. Низшие (до С4) – газы без цвета и запаха, имеющие более высокие температуры кипения, чем аналоги в алкенах. Алкины плохо растворимы в воде, лучше – в органических растворителях.

ацетилен реакция соединение формула

РЕАКЦИИ ПОЛУЧЕНИЯ АЦЕТИЛЕНА

В лаборатории ацетилен получают действием воды на карбид кальция

CaC2+ 2 Н2О = С2Н2↑ + Са(ОН)2

а также при дегидрировании двух молекул метана при температуре свыше 1400 °C:

2СН4 = С2Н2↑ +3Н2↑

ХАРАКТЕРНЫЕ ХИМИЧЕСКИЕ РЕАКЦИИ АЦЕТИЛЕНА

Основные химические реакции ацетилена (реакции присоединения):

Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации).

ОБЛАСТИ ПРИМЕНЕНИЯ АЦЕТИЛЕНА

Ацетилен используют:

– для сварки и резки металлов,

– как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды (см. карбидная лампа),

– в производстве взрывчатых веществ (см. ацетилениды),

– для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов,

– для получения технического углерода,

– в атомно-абсорбционной спектрофотометрии при пламенной атомизации,

– в ракетных двигателях (вместе с аммиаком).

ВОЗДЕЙСТВИЕ АЦИТЕЛЕНА НА ЧЕЛОВЕЧЕСКИЙ ОРГАНИЗМ И ОКРУЖАЮЩУЮ СРЕДУ

Поскольку ацетилен растворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3-80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном. При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает слабым токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м3 согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест».

ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5-100 %.

Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углем) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5-2,5 МПа.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Ньюленд Ю., Фогт Р., Химия ацетилена, Иниздат, 1947.

  2. Федоренко Н.П., Методы и экономика получения ацетилена, Химическая наука и промышленность, 3, т. 1, 1956.

  3. Федоренко Н.П. Химия и химическая технология, № 3, т. I, 1956.

Размещено на Allbest.ru

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *