Обозначение электромагнитного клапана на схеме: Запрашиваемая страница не найдена!

alexxlab | 20.06.1984 | 0 | Разное

Содержание

1901R-KBN: электромагнитный клапан для воды и воздуха нормально закрытый 12в/24в/220в непрямого действия GEVAX. КИП-Сервис: промышленная автоматика.

1901R-KBND016-120-220AC Клапан электромагнитный, латунь, 1/2″ (12 мм), 2/2 НЗ, -10°С…+80°С; 0,5…16 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1/2″ (12 мм), 2/2 НЗ, -10°С…+80°С; 0,5…16 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 2 623 Купить

1901R-KBND016-120-24DC Клапан электромагнитный, латунь, 1/2″ (12 мм), 2/2 НЗ, -10°С…+80°С; 0,5…12 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1/2″ (12 мм), 2/2 НЗ, -10°С…+80°С; 0,5…12 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 2 623 Купить

1901R-KBNE016-190-220AC Клапан электромагнитный, латунь, 3/4″ (19 мм), 2/2 НЗ, -10°С…+80°С; 0,5…16 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 3/4″ (19 мм), 2/2 НЗ, -10°С…+80°С; 0,5…16 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 3 316 Купить

1901R-KBNE016-190-24DC Клапан электромагнитный, латунь, 3/4″ (19 мм), 2/2 НЗ, -10°С…+80°С; 0,5…12 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 3/4″ (19 мм), 2/2 НЗ, -10°С…+80°С; 0,5…12 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 3 354
Купить

1901R-KBNF016-250-220AC Клапан электромагнитный, латунь, 1″ (25 мм), 2/2 НЗ, -10°С…+80°С; 0,5…16 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1″ (25 мм), 2/2 НЗ, -10°С…+80°С; 0,5…16 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 3 689 Купить

1901R-KBNF016-250-24DC Клапан электромагнитный, латунь, 1″ (25 мм), 2/2 НЗ, -10°С…+80°С; 0,5…12 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1″ (25 мм), 2/2 НЗ, -10°С…+80°С; 0,5…12 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (тип катушки 1, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 3 689 Купить

1901R-KBNG010-320-220AC Клапан электромагнитный, латунь, 1 1/4″ (32 мм), 2/2 НЗ, -10°С…+80°С; 0,5…10 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1 1/4″ (32 мм), 2/2 НЗ, -10°С…+80°С; 0,5…10 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 6 876 Купить

1901R-KBNG010-320-24DC Клапан электромагнитный, латунь, 1 1/4″ (32 мм), 2/2 НЗ, -10°С…+80°С; 0,5…7,5 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1 1/4″ (32 мм), 2/2 НЗ, -10°С…+80°С; 0,5…7,5 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии
6 876
Купить

1901R-KBNH010-400-220AC Клапан электромагнитный, латунь, 1 1/2″ (40 мм), 2/2 НЗ, -10°С…+80°С; 0,5…10 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1 1/2″ (40 мм), 2/2 НЗ, -10°С…+80°С; 0,5…10 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 9 332 Купить

1901R-KBNH010-400-24DC Клапан электромагнитный, латунь, 1 1/2″ (40 мм), 2/2 НЗ, -10°С…+80°С; 0,5…7,5 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 1 1/2″ (40 мм), 2/2 НЗ, -10°С…+80°С; 0,5…7,5 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 9 332 Купить

1901R-KBNI010-500-220AC Клапан электромагнитный, латунь, 2″ (50 мм), 2/2 НЗ, -10°С…+80°С; 0,5…10 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 2″ (50 мм), 2/2 НЗ, -10°С…+80°С; 0,5…10 бар, 220В 50-60Гц, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 10 192 Купить

1901R-KBNI010-500-24DC Клапан электромагнитный, латунь, 2″ (50 мм), 2/2 НЗ, -10°С…+80°С; 0,5…7,5 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

В наличии

Клапан электромагнитный, латунь, 2″ (50 мм), 2/2 НЗ, -10°С…+80°С; 0,5…7,5 бар, 24В=, конструкция с плавающей мембраной, катушка с влагозащитой (типы катушек 2, 4, тип запчастей A)

Клапаны GEVAX

Gevax

 В наличии 10 192 Купить

Условные графические обозначения. Таблица 2.8 и 2.9 – Арматура трубопроводная и Расходомеры.


Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Технологические понятия и чертежи / / Символы и обозначения оборудования на чертежах и схемах. / / Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005.  / / Условные графические обозначения. Таблица 2.8 и 2.9 – Арматура трубопроводная и Расходомеры.

Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005.

Условные графические обозначения. Таблица 2.8 и 2.9 – Арматура трубопроводная и Расходомеры.

Таблица 2.8 – Арматура (трубопроводная)

 

Таблица 2.9 – Арматура (трубопроводная).




Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.
TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Клапанная аппаратура

Если вы хотите сказать спасибо автору, просто нажмите кнопку: 
   
Каждая гидросистема помимо насоса, исполнительных гидродвигателей и распределительной гидроаппаратуры имеет в своем составе клапаны. Количество клапанов в зависимости от сложности системы варьируется от единиц до нескольких десятков, а в некоторых случаях их количество измеряется сотнями.
В данной статье будут описаны основные типы клапанов, наиболее часто встречающиеся в гидросистемах:
  • Предохранительные клапаны
  • Редукционные клапаны
  • Обратные клапаны
  • Управляемые обратные клапаны
  • Тормозные (контрбалансные) клапаны.

Основной принцип действия клапана

Принцип действия простейшего клапана заключается в уравновешивании силы создаваемой давлением рабочей жидкости на площади седла и силы упругости пружины. Седло клапана — это конструктивный элемент, образующий рабочую кромку, обеспечивающую герметичное прилегание запорного элемента. Простейший клапан имеет конструкцию, изображенную на рисунке 1а. В корпусе 1 имеется рабочая кромка, к которой плотно прилегает поджатый пружиной 3 запорный элемент 2. Сила, создаваемая пружиной 3, определяет разницу давлений между полостями P и T при которой происходит открытие клапана. На рисунке 1б показан клапан в открытом состоянии, где стрелками показано направление движения рабочей жидкости. Двухступенчатые клапаны в зависимости от назначения могут иметь различную конструкцию и будут рассмотрены ниже.

Классификация

По виду запорного элемента различают несколько типов клапанов. Наиболее часто встречаются: сферический (шариковый), конический, плоский (см. рисунок 2). Благодаря высоким герметизирующим свойствам и технологичности наибольшее распространение получили сферические (шариковые) и конические клапаны.


По способу монтажа различают клапаны картриджные, трубного, стыкового (фланцевого) и модульного монтажа. Картриджные клапаны дополнительно подразделяют на вворачиваемые (резьбовые) и закладные. Существует еще одна категория – бескорпусные клапаны. Бескорпусные клапаны это, как правило, набор составляющих элементов клапана предназначенный для установки в клапанную плиту или корпус.

Картриджные и бескорпусные клапаны могут быть использованы в гидросистеме только в составе клапанного блока или установленными в индивидуальный корпус. На рис. 3, на примере клапанного блока картриджные и бескорпусные клапаны показаны до установки и в установленном состоянии.

Клапаны трубного монтажа имеют резьбовые порты для присоединения гидравлических линий. Клапаны стыкового монтажа обычно предназначены для установки непосредственно на гидроагрегат (например, на гидроцилиндр или гидромотор) и фиксируются группой резьбовых крепежных элементов. Клапаны трубного и стыкового монтажа показаны на рис. 4. и рис. 5.





К подгруппе клапанов стыкового монтажа относится модульная гидроаппаратура СЕТОР (см. рис. 6). В зависимости от максимально пропускаемого потока рабочей жидкости аппаратура разбита на несколько групп: CETOP 02, 03, 05, 07 и 08. Перечень компонентов СЕТОР включает в себя целый ряд гидрокомпонентов: это и всевозможные клапаны, и гидрораспределители, и аппаратура управления расходом, и даже фильтрация рабочей жидкости. Все элементы монтируются группами или по отдельности на монтажные плиты. Пример сборки гидросистемы на элементной базе CETOP 03 показан на рис.7.



Предохранительные клапаны


Предохранительный клапан относится к клапанам регулирования давления с кратковременным срабатыванием. Он устанавливается в гидросистему для ограничения максимально возможного давления в линии. Каждая гидросистема имеет предохранительный клапан в линии высокого давления выходящей из насоса. Предохранительные клапаны могут быть установлены в линиях, давление в которых не должно превышать заданной величины. Например, в линии питания гидродвигателей устанавливают предохранительные клапаны для ограничения в них давления и, как следствие, ограничения максимального создаваемого двигателем усилия. Кроме указанных выше у предохранительных клапанов имеется множество типовых применений.

Согласно ГОСТ 2.781-96 предохранительные клапаны на схемах обозначаются как показано на рисунке 8.


В схемных решениях предохранительный клапан может быть применен для обеспечения минимально заданного уровня давления или подпора в линии гидросистемы. При таком применении предохранительные клапаны принято называть подпорными, что отражает характер их работы.

Схематично устройство предохранительного клапана прямого действия изображено на рисунке. 9. В корпусе 1 установлен конический запорный элемент 2, прижимаемый к седлу пружиной 3. Настройка пружины осуществляется регулировочным винтом 4. Контргайка 5 служит для фиксации регулировочного положения винта. Подвижная опора пружины 8 уплотнена по зазору с корпусом 1. Замкнутый объем 6 и зазор 7 являются демпфером колебаний запорного элемента клапана. Клапаны прямого действия имеют высокую скорость срабатывания, что является их основным достоинством. К недостаткам можно отнести нестабильную работу и склонность к автоколебаниям. Также при увеличении рабочих расходов сильно увеличивается и размер клапана. 

Подобных недостатков лишены клапаны непрямого действия, которые часто называют двухступенчатыми или сервоклапанами. Устройство такого клапана показано на рисунке 10. К седлу корпуса 1 пружиной 9 прижат основной запорный элемент 2. В запорном элементе имеется дроссельное отверстие 3. Рабочую полость от линии слива Т отделяет пилотный клапан с запорным элементом 4, поджатый к седлу пружиной 5. Механизм регулировки поджатия пружины состоит из регулировочного винта 7 с контргайкой 10, опоры 6 и уплотнения 8.



Работа клапана происходит следующим образом: при давлении в линии Р ниже настройки срабатывания клапана, уровни давлений в рабочей полости и линии Р одинаковы, основной запорный элемент прижат к седлу пружиной 9. Начальные положения элементов клапана показаны на рисунке 10. При достижении давлением значения настройки пилотного клапана, последний открывается, и рабочая жидкость проходя через дроссельное отверстие 3 устремляется в линию Т. При прохождении рабочей жидкости через дроссельное отверстие создается перепад давлений между линией P и рабочей полостью. Этот перепад давлений воздействует на запорный элемент 2 и преодолевая усилие пружины 9, смещается, что приводит к открытию основного клапана.

Редукционные клапаны

Редукционный клапан относится к клапанам регулирования давления. Он устанавливается в гидросистему для поддержания давления в линии на более низком уровне, чем в основной линии. Иными словами, можно сказать, что редукционный клапан поддерживает давление на постоянном уровне «после себя», имея на входе более высокий уровень давления. Самым распространённым применением является поддержание давления в линии управления распределителями. Редукционные клапаны могут быть установлены в линиях питания гидродвигателей для ограничения в них давления и, как следствие, ограничения создаваемого двигателем усилия.

Согласно ГОСТ 2.781-96 редукционные клапаны на схемах обозначаются как показано на рисунке 11.

 

Схематично устройство редукционного клапана прямого действия изображено на рисунке 12. В корпусе 1 установлен конический запорный элемент 2, прижимаемый к корпусу пружиной 3. При давлении в линии А ниже настройки редукционного клапана рабочая жидкость беспрепятственно перетекает в линию А. После того, как усилие, создаваемое давлением на запорном элементе в линии А превысит усилие, создаваемое пружиной, запорный элемент смещаясь влево, перекроет ток рабочей жидкости из линии Р в А. При этом происходит дросселирование (понижение давления) жидкости на рабочей кромке, вызывая снижение давления в линии А, уравновешивая клапан в некотором положении. Для стабильного поддержания давления редукционным клапаном, полость пружины должна сообщаться с баком. Если в полости пружины создавать некоторое давление, то значение давления, поддерживаемое в линии А, будет увеличиваться прямопропорционально давлению в полости пружины. В этом случае речь идет о редукционном клапане с внешним управлением, а давление в полости пружины называют давлением управления.

Редукционные клапаны седельного типа (см. рис.12) обладают высокой скоростью срабатывания, что может привести к частым и сильным колебаниям давления. Для снижения колебаний давления применяют клапаны золотникового типа. Они обеспечивают более плавную характеристику без забросов давления, но не герметичны и имеют перетечку рабочей жидкости по зазору золотника. Редукционный клапан золотникового типа в рабочем положении показан на рисунке 13.

Для сохранения герметичности и обеспечения плавной характеристики применяются редукционные клапаны непрямого (двуступенчатого) действия. Устройство такого клапана показано на рисунке 14. К корпусу 1 пружиной 9 прижат основной запорный элемент 2. В запорном элементе имеется дроссельное отверстие 3. Рабочую полость А от линии слива Т отделяет пилотный клапан с запорным элементом 4, поджатым к седлу пружиной 5. Механизм регулировки поджатия пружины состоит из регулировочного винта 7 с контргайкой 10, опоры 6 и уплотнения 8.







Работа клапана происходит следующим образом: при давлении в линии А ниже настройки срабатывания клапана, уровни давлений в рабочей полости и линии А одинаковы, основной запорный элемент прижат к корпусу пружиной 9. При достижении давлением значения настройки пилотного клапана, последний открывается, и рабочая жидкость проходя через дроссельное отверстие 3 устремляется в линию Т. При этом создается перепад давлений между линией А и рабочей полостью, воздействующий на запорный элемент 2 и преодолевающий усилие пружины 9, смещает запорный элемент 2 вверх, что приводит к уменьшению проходного сечения (седло-клапан), снижению давления в линии А и уравновешиванию клапана в некотором положении, обеспечивающем заданное давление в линии А.

При понижении давления в линии А клапан под воздействием пружины опускается, увеличивая проходное сечение седло-клапан, что приводит к увеличению давления в линии А и уравновешиванию клапана в новом положении.

Еще одной разновидностью редукционного клапана можно считать редукционно-предохранительный или трехходовой редукционный клапан. Его обозначение на принципиальных гидравлических схемах показано на рис. 15.


Принцип работы редукционно-предохранительного клапана показан на рисунке 16. В корпусе 1 установлены основные элементы: пружина 3 и золотник 2. Пока давление в линии А ниже чем в питающей линии Р клапан 2 находится в правом положении и свободно пропускает жидкость из линии Р в линию А. (см. рис. 16А). При повышении давления в линии Р выше настройки пружины 3, золотник 2 смещается влево и начинает дросселировать жидкость прикрывая окно линии P (см. рис. 16Б), вплоть до полного закрытия (рис. 16В). Если при полном закрытии давление в линии А продолжает расти, то золотник смещается еще левее, приоткрывает окно линии Т и начинает сбрасывать жидкость из линии А в слив (см. рис 16Г)

Обратные клапаны

Обратные клапаны относятся к клапанам управления расходом. Основным их назначением является пропускание потока рабочей жидкости в прямом и блокирование в обратном направлениях. Конструктивно обратные клапаны схожи с предохранительными, но не имеют механизма регулировки сжатия пружины, а часто и самой пружины.

Согласно ГОСТ 2.781-96 обратные клапаны на схемах обозначаются как показано на рис. 17.


Рис. 17

Устройство простейшего обратного клапана соответствует показанному на рис.1а. Где жидкость имеет возможность проходить от линии P к линии Т, преодолев сопротивление пружины, которое эквивалентно значению из диапазона от 0,02 до 1МПа. При этом в обратном направлении жидкость пройти не может. Также распространены конструкции обратных клапанов без пружины.

Часто при проектировании гидросистемы появляется необходимость в применении обратного клапана способного пропускать поток жидкости в обратном направлении по внешнему сигналу управления. В таких случаях речь заходит об управляемых обратных клапанах.

Управляемые обратные клапаны называются гидрозамками и в соответствии с ГОСТ 2.781-96, имеют обозначения, показанные на рисунке 18:


Рис. 18

Схематично устройство гидрозамка изображено на рисунке 19. В корпусе 1 установлены управляющий поршень 4 и конический запорный элемент 2, прижимаемый к корпусу пружиной 3. Рабочим является закрытое положение клапана, при котором рабочая жидкость заперта в линии C2 (см. рис. 19А). Для принудительного открытия клапана давление подаётся в линию V1-C1. После того, как усилие на поршне 4, создаваемое давлением в полости V1-C1, превысит усилие на запорном элементе 2, создаваемое давлением в линии C2 и пружиной 3, поршень 4 переместится вправо и, смещая запорный элемент 2, откроет доступ жидкости из линии C2 в линию V2 (см. рис. 19Б). При подъеме нагрузки (см. рис. 19В) линия V2-C2 свободно пропускает жидкость к гидродвигателю (гидроцилиндру).

При определенных условиях в момент открытия гидрозамков в гидросистеме могут возникать ударные нагрузки, вызванные резким падением давления. Такие нагрузки отрицательно сказываются на большинстве элементов гидросистемы и снижают их ресурс. Для борьбы с этим явлением в гидрозамок встраивают декомпрессор 5 (см. рис. 20). Принцип работы замка с декомпрессором отличается от обычного тем, что при смещении управляющего поршня 4 первым открывается клапан декомпрессора 5. Смещаясь декомпрессор 5 создает небольшую перетечку жидкости из линии С2 в линию V2 и тем самым снижает в нагруженной линии давление. После этого происходит открытие основного клапана 2 и сброс жидкости из С2 в порт V2. Таким образом мгновенного соединения линии, находящейся под высоким давлением, с линией слива удается избежать.




Рис. 20

Одним из важнейших параметров гидрозамков является соотношение площадей седла основного клапана и управляющего поршня. Фактически соотношение определяет во сколько раз, запертое в полости C2 давление, может превышать давление в полости управления V1-C1 при сохранении работоспособности замка. Для замков без декомпрессора значение соотношения определяется как показано на рисунке 21А. Обычно значение соотношения лежит в диапазоне от 1:3 до 1:7. Для замков с декомпрессором определение значения соотношения показано на рис. 21Б. Значения соотношений для гидрозамков с декомпрессором может достигать значения 1:20 и более.


Рис. 21

Широкое распространение получили сдвоенные (двухсторонние) гидрозамки, предназначенные для фиксирования гидродвигателя в заданном положении независимо от направления приложенных к гидродвигателю усилий.

Согласно ГОСТ 2.781-96 двухсторонние гидрозамки на схемах обозначаются, как показано на рис 22.


Рис. 22

Устройство и принцип работы односторонних и сдвоенных (двухсторонних) гидрозамков аналогичны. В закрытом состоянии к седлам в корпусе 1 пружинами 5 и 6 прижаты запорные элементы 3 и 4 (см. рис. 23А). Управляющий поршень 2 в зависимости от наличия давления в линиях V1 и V2 смещается и открывает один из запорных элементов 3 или 4 (см. рис. 23Б)



Рис. 23

При проектировании гидравлических систем, содержащих гидрозамки нужно учитывать несколько условий:

·        В закрытом состоянии для надежного удержания нагрузки линии гидрозамков, ведущие к гидрораспределителю, должны быть разгружены в слив (см. рис. 24) Пренебрежение этим правилом ведет к неполному запиранию магистралей и «сползанию» нагрузки.

·        Для обеспечения безопасности при удержании нагрузки гидрозамки рекомендуется устанавливать, как можно ближе к исполнительному гидродвигателю или непосредственно на него.

·        При совпадении направления нагрузки на исполнительный орган гидродвигателя с направлением его движения (попутная нагрузка), гидрозамок может работать некорректно, постоянно закрываясь и открываясь. Этот режим работы приводит к возникновению ударных нагрузок в гидросистеме и преждевременному выходу из строя ее компонентов. В подобных случаях необходимо вместо гидрозамков применять тормозные клапаны.

Типовые схемы включения односторонних и двухсторонних гидрозамков показаны на рисунке 24.


При проектировании гидравлических систем, содержащих гидрозамки, необходимо учитывать, что для их корректной работы в режиме удержания нагрузки требуется, чтобы порты V1 и V2 были открыты в сливную линию. Это требование обычно обеспечивается установкой гидрораспределителя с золотником, линии А и В которого в нейтральном положении соединены с сливной линией. Примеры подключения показаны на рисунке 24

Тормозные клапаны

Тормозной клапан относится к клапанам регулирования давления. В технической литературе данный вид клапанов часто называют уравновешивающими или контрбалансными (counterbalance). Основное применение эти клапаны находят в системах где на гидродвигателях требуется длительное удержание нагрузки и возможно возникновение нагрузки, совпадающей по направлению с движением исполнительного органа гидродвигателя (попутной нагрузки). По количеству контролируемых линий гидродвигателя тормозные клапаны бывают односторонние и двухсторонние.

На схемах тормозные клапаны обозначаются как показано на рисунке 25.


Рис. 25

Далее будет рассмотрен принцип работы тормозных клапанов на примере работы гидроцилиндра.

Односторонний тормозной клапан.      

На рисунке 26 показано устройство одностороннего тормозного клапана, находящегося в состоянии удержания нагрузки. Клапан состоит из корпуса 10, в котором установлены: дроссель 11, клапан 4, седло 3 с пружиной 2, опорная шайба 1, обойма 7, упор 5, пружина 6 и регулировочный винт 8 с контргайкой 9. Гидравлический цилиндр удерживает нагрузку поршневой полостью. В отличие от гидравлического замка, который удерживает нагрузку независимо от ее величины, тормозной клапан откроется и сработает как предохранительный при величине давления определяемой настройкой поджатия пружины 6. Поэтому, для гарантированного удержания нагрузки такими клапанами давление их настройки выбирают выше максимального на величину от 20% до 50%.


Рис. 26

На рисунке 27 показан тормозной клапан, находящийся в состоянии подъема груза. Для подъема груза гидроцилиндром в порт V2 подается рабочая жидкость. При этом седло 3 смещается влево, преодолевая усилие, создаваемое пружиной 2. Рабочая жидкость из штоковой полости гидроцилиндра свободно уходит в сливную линию. Таким образом осуществляется подъем груза гидроцилиндром. При последующем соединении порта V2 со сливной линией тормозной клапан переходит в режим удержания груза. Дроссель 11 выполняет роль демпфера, который обеспечивает относительно плавное перемещение клапана 4.


Рис. 27

На рисунке 28 показан тормозной клапан в режиме работы с попутной нагрузкой. В начальный момент времени тормозной клапан, запертой им поршневой полостью удерживает груз. Поскольку поршневая полость заперта, то при подаче рабочей жидкости в штоковую полость, в ней создается давление, которое через дроссель 11 воздействует на клапан 4. Под воздействием давления в штоковой полости, клапан 4 преодолевает усилие пружины 6 и смещаясь вправо приоткрывает в слив линию С2, соединенную с поршневой полостью цилиндра. Шток гидроцилиндра приходит в движение. В режиме компенсации попутной нагрузки клапан 4 находится в некотором равновесном состоянии, при котором скорость движения штока гидроцилиндра строго определяется расходом рабочей жидкости, поступающим в штоковую полость. При отклонении клапана от равновесного состояния происходит следующее:

·        При слишком большом открытии клапана 4 расход жидкости С2-V2. превышает величину расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит падение давления в штоковой полости и зазор между клапаном 4 и седлом 3 уменьшается. При этом расход С2-V2 снижается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.

·        При слишком малом открытии клапана 4 расход жидкости С2-V2 ниже величины расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит увеличение давления в штоковой полости и зазор между клапаном 4 и седлом 3 увеличивается. При этом расход С2-V2 увеличивается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.


 Рис. 28

Двухсторонний тормозной клапан.       

В отличие от одностороннего тормозного клапана двухсторонний клапан используется в системах где есть необходимость удерживать гидравлические двигатели под знакопеременной нагрузкой и периодическим воздействием попутной нагрузки при движении как в прямом так и обратном направлениях.

На рисунке 29 показан двухсторонний тормозной клапан в состоянии удержания нагрузки. Его устройство идентично устройству одностороннего тормозного клапана. В его состав входят корпус 20, в котором установлены: разделительный клапан 10, клапан 4(14), седло 3(13) с пружиной 2(12), опорная шайба 1(11), обойма 7(17), упор 5(15), пружина 6(16) и регулировочный винт 8(18) с гайкой 9(19). Гидравлический цилиндр на рисунке 29 может удерживать нагрузку в поршневой или штоковой полости.


Рис. 29

На рисунке 30 двухсторонний тормозной клапан показан в состоянии подъема груза. При подаче рабочей жидкости в порт V2 седло 13, преодолев сопротивление пружины 11, сместится влево и жидкость поступит в порт С2 и поршневую полость гидроцилиндра. Рабочая жидкость из полости V2, проходя через канал в клапане 14, воздействует на клапан 4, смещая его влево. Разделительный клапан 10 в этот момент закрывает канал в клапане 4. При этом между клапаном 4 и седлом 3 образуется зазор, через который рабочая жидкость из штоковой полости гидроцилиндра проходит в сливную линию. Таким образом происходит подъем груза гидроцилиндром. При последующем соединении порта V2 и V1 со сливной линией, тормозной клапан переходит в режим удержания нагрузки. При восприятии нагрузки штоковой полостью гидроцилиндра работа клапана происходит аналогично.


Рис. 30

На рисунке 31 показан тормозной клапан в режиме работы с попутной нагрузкой. В начальный момент времени тормозной клапан, запертой им поршневой полостью удерживает груз. Компенсация попутной нагрузки будет проходить в плече C2-V2. Рабочая жидкость, поданная в порт V1, преодолев усилие пружины 2, смещает седло 3 вправо и через порт С1 попадает в штоковую полость гидроцилиндра. Поскольку поршневая полость заперта, то при подаче рабочей жидкости в штоковую полость, в линии V1-C1 возникает давление, которое через канал в клапане 4 проходит к торцу клапана 14 и преодолев усилие пружины 16 смещает его вправо. Разделительный клапан 10 закрывает канал в клапане 14. При этом появляется зазор между клапаном 14 и седлом 13, через который рабочая жидкость из поршневой полости уходит в сливную линию и шток гидроцилиндра движется вниз. В режиме компенсации попутной нагрузки плечом С2-V2 клапан 14 находится в некотором равновесном состоянии, при котором скорость движения штока гидроцилиндра строго определяется расходом рабочей жидкости, поступающим в штоковую полость. При отклонении клапана от равновесного состояния происходит следующее:

При слишком большом открытии клапана 14 расход жидкости С2-V2. превышает величину расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит падение давления в штоковой полости и зазор между клапаном 14 и седлом 13 уменьшается. При этом расход С2-V2 снижается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.

При слишком малом открытии клапана 14 расход жидкости С2-V2 ниже величины расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит увеличение давления в штоковой полости и зазор между клапаном 14 и седлом 13 увеличивается. При этом расход С2-V2 увеличивается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.

При удержании нагрузки штоковой полостью, компенсация попутной нагрузки будет проходить в плече C1-V1 и клапан 4 будет находится в равновесном состоянии. Порядок поддержания равновесного состояния аналогичен описанному.


Рис. 31

Так же как у гидрозамков, важнейшим параметром тормозных клапанов является отношение рабочей площади основного клапана к площади основного пилотного элемента. Фактически этот параметр показывает соотношение давлений в полостях V1 и C2 необходимых для преодоления усилия пружины 6. Обычно значения соотношений для тормозных клапанов лежат в диапазоне от 1:3 до 1:8. На рисунке 32 показано как определяется соотношение площадей исходя из геометрических размеров клапана.



Рис.32

При проектировании гидравлических систем, содержащих тормозные клапаны, необходимо учитывать, что для их корректной работы в режиме удержания нагрузки требуется, чтобы порты V1 и V2 были открыты в сливную линию. Это требование обычно обеспечивается установкой гидрораспределителя с золотником, линии А и В которого в нейтральном положении соединены с сливной линией. Примеры подключения показаны на рисунке 33


Внимание! Данная статья авторская. При копировании ее с сайта обязательно указывать источник!

С Уважением,

Начальник конструкторского отдела

Лебедев М.К.

Тел.: (495) 225-61-00 доб. 234

E-mail: [email protected]

Библиотеки условных обозначений по ГОСТ для AutoCAD 2002/2004.

размещено: 27 Января 2005
Данные библиотеки включают более 800 условных обозначений, которые выполнены в соответствии со
следующими ГОСТами:

ГОСТ 21.205-93 “Условные обозначения элементов санитарно-технических систем “
ГОСТ 21.403-80 “Обозначения условные графические в схемах. Оборудование энергетическое”
ГОСТ 21.406-88 “Проводные средства связи. Обозначения условные графические на схемах и планах”
ГОСТ 21.608-84 “Внутреннее электрическое освещение. Рабочие чертежи”
ГОСТ 21.609-83 “Газоснабжение. Внутренние устройства. Рабочие чертежи”
ГОСТ 21.611-85 “Централизованное управление энергосбережением. Условные графические и буквенные
обозначения вида и содержания информации “
ГОСТ 21.614-88 “Изображения условные графические электрооборудования и проводок на планах”

Библиотеки разбиты по соответствующим названиям ГОСТов каталогам, которые в свою очередь содержат папки с
названиями таблиц данного ГОСТа.

Для вставки блоков условных обозначений в чертеж необходимо использовать инструмент AutoCAD Design Center
(Центр управления).
Для этого необходимо открыть в AutoCAD окно Design Center и подгрузить в него DWG файл требуемой
таблицы ГОСТа и в палитре Design Center выбрать Блоки (Blocks). Вставку блоков из Design Center в чертеж
удобно производить в режиме Drag&Drop.

Имена блоков.
Принята следующая система маркировки блоков:

Пример маркировки блока : 40680101
первые три цифры (406) – это номер ГОСТа (ГОСТ 21.406-88)
четвертая цифра (8) – номер таблицы данного ГОСТа ( Таблица 8 )
пятая, шестая и седьмая цифры (010) – номер позиции в таблице (Позиция 10)
восьмая цифра (1) – вариант исполнения условного обозначения . Начиная с нуля и далее.

описание цветных электросхем подключения электропроводки и электрооборудования

На автомобилях ВАЗ 2106 схема проводки включает в себя более десяти различных составляющих и модификаций общей сети. Владельцу машины нужно разбираться в этом вопросе, чтобы при необходимости произвести ремонт и диагностику электросети.

Содержание

[ Раскрыть]

[ Скрыть]

Общая схема ВАЗ 2106 с описанием

Общая карта соединений и приборов ВАЗ 2106 Общая карта соединений и приборов ВАЗ 2106

Начнем с описания обозначений общей электросхемы проводки и оборудования ВАЗ 2106:

  • 1 — передние и боковые фары указателей поворотов;
  • 2 — подфарники, расположенные непосредственно под оптикой;
  • 3 — внешние осветительные устройства;
  • 4 — внутренние осветительные приборы;
  • 5 — элементы подсоединения звуковых импульсных устройств;
  • 6 — электрический мотор вентилирующего устройства охладительной системы силового агрегата «шестерки»;
  • 7 — контроллер, предназначенный для автоматической активации электрического моторчика вентилятора;
  • 8 — реле активации звуковых приборов;
  • 9 — реле, защищающее электроцепь моторчика вентилятора;
  • 10 — устройство для регулировки параметра напряжения;
  • 11 — катушка зажигания, расположенная в подкапотном отсеке;
  • 12 — электрический моторчик системы обмыва лобового стекла;
  • 13 — контроллер, следящий за объемом тормозного расходного вещества;
  • 14 — трамблер, именующийся распределительным устройством системы зажигания;
  • 15 — электрический моторчик системы стеклоочистки, предназначенный для активации дворников;
  • 16 — свечи системы зажигания;
  • 17 — контроллер светового индикатора давления моторной жидкости;
  • 18 — контроллер, предназначенный для мониторинга уровня давления моторной жидкости;
  • 19 — регулятор температурного уровня хладагента в охладительной системе;
  • 20 — подкапотный источник освещения;
  • 21 — электромагнитный клапан карбюраторного устройства;
  • 22 — генераторный узел, предназначенный для выработки напряжения во время движения и подзарядки аккумуляторной батареи;
  • 23 — АКБ;
  • 24 — реле, защищающее от перенапряжения контрольный индикатор заряда АКБ;
  • 25 — реле электроцепи активации световых приборов ближнего освещения;
  • 26 — реле электроцепи активации световых устройств дальнего освещения;
  • 27 — реле системы стеклоочистки;
  • 28 — вспомогательный блок с предохранительными устройствами;
  • 29 — главный пластиковый модуль с предохранительными элементами;
  • 30 — устройство активации светового источника заднего хода;
  • 31 — переключатель контрольного светового индикатора ручного тормоза, располагается на приборной панели;
  • 32 — розетка для подключения переносного источника освещения;
  • 33 — прерывательное устройство указателей поворотных огней и световой сигналки;
  • 34 — электрической моторчик системы отопления салона;
  • 35 — переключатель тормозных сигналов;
  • 36 — реле электролинии системы прогрева заднего стекла;
  • 37 — дополнительный резисторный элемент электрического моторчика отопительной системы;
  • 38 — световой индикатор системы освещения багажного отсека;
  • 39 — переключатель внешних осветительных приборов, располагается на центральной консоли в салоне машины;
  • 40 — переключатель для активации и отключения системы прогрева заднего стекла;
  • 41 — замок зажигания;
  • 42 — устройство переключения освещения световых приборов, применяется для активации дальнего и ближнего света;
  • 43 — рычаг для переключения поворотных огней;
  • 44 — переключатель звуковых сигналов, установлен на руле в салоне;
  • 45 — рычаг активации и переключения режимов работы системы стеклоочистки;
  • 46 — переключатель системы обмыва лобового стекла;
  • 47 — переключательное устройство для активации освещения контрольной панели;
  • 48 — переключатель для включения и деактивации световой сигналки;
  • 49 — прикуривательное устройство;
  • 50 — выключатель системы отопления в салоне;
  • 51 — контрольный световой индикатор объема рабочей жидкости в резервуаре гидравлического привода тормозной системы;
  • 52 — переключательные устройства световых приборов сигнализации открытых передних дверей;
  • 53 — световые устройства сигналки передних открытых дверей;
  • 54 — переключательные устройства световых приборов, установленных в передних дверях;
  • 55 — контроллер объема горючего со световым индикатором резерва бензина в баке;
  • 56 — контроллер температурного уровня хладагента в охладительной системе;
  • 57 — указательный индикатор давления моторной жидкости со световым устройством;
  • 58 — тахометр, использующийся для считывания данных с коленчатого вала и определения оборотов двигателя;
  • 59 — контрольный световой индикатор активации ручного тормоза;
  • 60 — световой индикатор определения заряда АКБ;
  • 61 — световой индикатор воздушной заслонки карбюраторного двигателя, также называется подсосом;
  • 62 — спидометр, где выводится информация о скорости передвижения машины;
  • 63 — контрольный световой индикатор активации приборов внешнего освещения;
  • 64 — световой индикатор активации фонарей поворотных огней;
  • 65 — световой индикатор активации дальнего освещения оптических приборов;
  • 66 — прерывательное реле светового устройства активации ручного тормоза;
  • 67 — выключательное устройство светового индикатора подсоса, устанавливается на карбюраторных силовых агрегатах;
  • 68 — часы, расположенные в салоне автомобиля;
  • 69 — переключательные устройства для активации и отключения световых приборов, установленных в задних дверях;
  • 70 — источники света в салоне машины;
  • 71 — устройство прогрева заднего стекла;
  • 72 — световой индикатор освещения багажного отсека;
  • 73 — контроллер объема и резерва горючего, располагается в топливном баке ВАЗ 2106;
  • 74 — задние осветительные приборы, оптические устройства для освещения номера авто.

Электросхемы ВАЗ 2106 отдельных составляющих

Ниже представлены схемы проводки ВАЗ 2106 в цветных фото и картинках. Каждая система оснащается планом электрооборудования, позволяющим выполнять соединение проводов и подключать электрические приборы.

Электросхема соединений генератора

Схема генераторного узла «шестерки»

Обозначение компонентов проводки генераторного узла:

  • 1 — АКБ;
  • 2 — генераторная установка «шестерки»;
  • 3 — регуляторное устройство, предназначенное для контроля рабочего параметра напряжения;
  • 4 — замок;
  • 5 — пластиковый модуль с предохранительными элементами;
  • 6 — контрольный световой индикатор, определяющий заряд АКБ;
  • 7 — реле, защищающее электролинию контрольного светового индикатора заряда батареи.

Электросхема стартера

Электросхема стартерного узла на ВАЗ 2106

Проводка «шестерки» для запуска силового агрегата завязана на стартерном узле:

  • 1 — стартерное устройство автомобиля;
  • 2 — АКБ;
  • 3 — генераторная установка;
  • 4 — замок зажигания.

Символом Р1 обозначается втягивающая обмотка реле, а знаком Р2 — удерживающая.

Электросхемы контактной и бесконтактной системы зажигания

В зависимости от модификации отечественная «шестерка» может быть оснащена контактной либо бесконтактной системой зажигания. Оба варианта имеют определенные отличия, указанные в приведенных схемах.

Контактная система зажигания 2106

Обозначение компонентов:

  • 1 — свечи зажигания;
  • 2 — распределитель;
  • 3 — выключатель зажигания;
  • 4 — катушка;
  • 5 — коммутатор;
  • 6 — генератор;
  • 7 — АКБ.
Схема бесконтактной СЗ на «шестерке»

Обозначение составляющих:

  • 1 — АКБ;
  • 2 — генератор;
  • 3 — замок зажигания;
  • 4 — катушка;
  • 5 — коммутатор;
  • 6 — датчик-распределитель;
  • 7 — свечи.

Электрическая схема управления электромагнитным клапаном карбюратора 21053-1107010

Схема управления клапаном карбюраторного устройства 2106

Обозначение компонентов:

  • 1 — концевое переключательное устройство карбюраторного агрегата;
  • 2 — непосредственно сам клапан двигателя;
  • 3 — модуль, использующийся для управления карбюраторным узлом;
  • 4 — катушка зажигания;
  • 5 — коммутаторное устройство;
  • 6 — переключатель зажигания, является замком.

Электросхема указателей поворотов и аварийной сигнализации

Схема указателей поворотных огней и световой сигналки

Обозначение компонентов:

  • 1 — световые устройства поворотных огней, установленные в передних оптических приборах;
  • 2 — АКБ;
  • 3 — генераторный узел авто;
  • 4 — боковые поворотные огни, расположенные на передних крыльях;
  • 5 — главный монтажный модуль с предохранительными элементами;
  • 6 — вспомогательный управляющий блок с предохранительными устройствами;
  • 7 — замок зажигания;
  • 8 — устройство для отключения и активации световой сигналки, монтируется в салоне машины на центральной консоли;
  • 9 — переключательное устройство для активации и отключения поворотных огней;
  • 10 — прерывательное устройство, использующееся для мигания поворотных огней и световой сигналки;
  • 11 — спидометр, оснащенный контрольным световым индикатором активации поворотных огней;
  • 12 — световые устройства указателей поворотных огней в задней оптике.

Схема включения звуковых сигналов

Схема активации и отключения звуковых импульсов

Описание основных элементов этой составляющей электросхемы:

  • 1 — звуковые устройства, использующиеся для воспроизведения импульсов;
  • 2 — реле активации звуковых импульсов, защищает электроцепь от перенапряжения;
  • 3 — переключатель звуковых импульсов;
  • 4 — монтажный модуль с предохранительными элементами;
  • 5 — генераторная установка ВАЗ 2106;
  • 6 — АКБ.

Схема включения электродвигателя отопителя

Схема активации электрического моторчика отопительной системы

Обозначение элементов системы активации электромотора отопительного узла:

  • 1 — электрический моторчик отопительной системы;
  • 2 — дополнительный резисторный элемент;
  • 3 — переключательное устройство электрического мотора печки в салоне машины;
  • 4 — предохранительный модуль;
  • 5 — замок;
  • 6 — генераторный узел;
  • 7 — АКБ.

Модификации

Различные модификации ВАЗ 2106 могут комплектоваться добавочным электрооборудованием. Проводка в этом случае прокладывается дополнительно, а общая схема оснащается другими составляющими.

Схема включения элеткростеклоподъемников передних дверей

Схема активации электрических стеклоподъемников

Описание элементов:

  • 1 — главный предохранительный модуль;
  • 2 — реле, использующееся для защиты электролинии установленных дополнительно стеклоподъемников;
  • 3 — переключательное устройство электростеклоподъемника, установленного на левой двери;
  • 4 — аналогичное устройство, применяющееся для регулировки положения стекла в правой двери спереди;
  • 5 — электродвигатель левого подъемника стекла;
  • 6 — вспомогательный модуль с предохранительными элементами;
  • 7 — замок зажигания.

Контакт А подсоединяется к контакту 30 на генераторной установке, контакт Б – к переключательному устройству системы освещения панели. Выход В представляет собой условное обозначение разъемов в колодке электродвигателя системы.

Канал «Ввидео ролике» продемонстрировал процедуру монтажа и подключения электростеклоподъемников на ВАЗ 2106.

Схема управления электромагнитным клапаном карбюратора

Модифицированная схема управления карбюраторным клапаном

Модифицированный вариант схемы управления карбюраторным клапаном имеет несколько отличий:

  • 1 — переключатель зажигания или замок;
  • 2 — генераторная установка питания оборудования напряжением;
  • 3 — АКБ;
  • 4 — катушка зажигания;
  • 5 — коммутаторный узел, расположенный в моторном отсеке;
  • 6 — управляющий модуль;
  • 7 — сам клапан карбюраторной установки;
  • 8 — концевой переключатель карбюраторного устройства.

Электродвигатель вентилятора системы охлаждения двигателя

Схема электрического мотора вентилятора охладительной системы

Описание компонентов:

  • 1 — генераторный узел, установлен под капотом;
  • 2 — АКБ;
  • 3 — переключатель зажигания или замок;
  • 4 — главный модуль с предохранительными элементами;
  • 5 — реле, защищающее электролинию системы активации электрического моторчика вентилятора охлаждения силового агрегата;
  • 6 — контроллер активации вентилирующего устройства;
  • 7 — непосредственно сам вентилятор;
  • 8 — вспомогательный предохранительный модуль.

Схема предохранителей и реле ВАЗ 2106

«Шестерка» оснащается предохранительным модулем, обозначения его компонентов приведены ниже.

Описание компонентов модуля с предохранительными элементами Схема предохранительного модуля

Видео «Руководство по самостоятельной замене колодки предохранителей»

Пользователь Ramanych наглядно показал, как можно произвести замену колодки предохранительных элементов на «шестерке».

Как читать автомобильные электросхемы – примеры, объяснения

Выход из строя электронных компонентов современного автомобиля может приводить к его полному обездвиживанию. Хорошо, если это случилось у вашего дома или работы, но если такое случается на трассе или на природе – такая поломка может обойтись вам крайне дорого: как в плане денег, так и в плане потерянного времени и даже (надеюсь до такого не дойдет) здоровья!

Почему полезно разбираться в автоэлектрике

Даже если у вас не технический склад ума или ваш доход позволяет вам не задумываться о таких мирских мелочах – замена обычного сгоревшего предохранителя в долгом пути позволит вам значительно облегчить жизнь. Я уж не говорю о тех случаях, когда сервисмэны, не желая разбираться в проблеме вашего автомобиля, призывают вас менять все датчики подряд, тратя на эту “карусель” значительные суммы денег (что кстати иногда не гарантирует положительного результата). По-этому, я предлагаю вам не сдаваться раньше времени и попробовать самостоятельно диагностировать поломку вашего автомобиля, а для этого было бы неплохо иметь под рукой электрические схемы, и самое главное – уметь их читать и понимать.

Электросхемы? – разберется даже школьник!

Встретив впервые принципиальную электрическую схему автомобиля, я понял, что принципы ее построения и обозначение на ней элементов – стандартизированы, и те элементы, которые присутствуют во всех автомобилях – обозначаются одинаково, независимо от производителя автомобиля. Достаточно один раз разобраться, как читать такие электросхемы, и вы с легкостью сможете понимать, что на ней изображено, даже если вы впервые видите конкретную схему от конкретного автомобиля и даже ни разу не лазили к нему под капот.

Графические обозначения элементов схемы могут слегка отличаться, к тому же бывают черно-белые варианты исполнения и цветные. Но буквенное обозначение везде одинаково. Помимо принципиальных электрических схем полезно иметь схемы, на которых обозначено физическое расположение (в пространстве) на кузове различных жгутов, разъемов и точек заземления – это поможет вам быстро отыскать их. Итак, давайте взглянем на примеры таких схем, а потом приступим к описанию их элементов.

Пример принципиальной электрической схемы автомобиля


На принципиальной схеме не указано физическое взаимное расположение элементов, а лишь показано, как эти элементы связаны друг с другом.  Важно понимать, что если два элемента на такой схеме изображены рядом друг с другом – на самом кузове они могут быть совершенно в разных местах.

Схематическое расположение электрических компонентов на кузове


Такая схема несет другой тип информации: трассировка кабельных кос и приблизительное расположение разъемов на кузове.

Трехмерная точная схема расположения электрических компонентов автомобиля

Встречаются и такие схемы, на которых уже точно показано, как и куда проходят кабельные трассы в кузове автомобиля, а также точки заземления.

Стандартные элементы принципиальной схемы автомобиля

Приступим же, наконец, к рассмотрению элементов схемы и научимся ее читать.

Стандартные цепи питания и соединение элементов

Цепи питания – элементы схемы передающие ток, изображаются линиями: в верхней части схемы изображены цепи с положительным потенциалом (“плюс” аккумулятора), а внизу – с нулевым, т.е. земля (или “минус” аккумулятора).

Цепь 30 – идет от плюсовой клеммы аккумулятора, 15 – от аккумулятора через замок зажигания – “Зажигание 1”Цепь под номером 31 – заземление

Некоторые провода также имеют цифровое обозначение в месте подключения к устройству, это цифровое обозначение позволяет не прослеживая цепь определить откуда он идет. Эти обозначение объединены в стандарте DIN 72552 (часто используемые значения):


Для удобства, соединения между элементами на цветных схемах изображены разными цветами, соответствующими цветам проводов, а на некоторых схемах также указывается сечение провода. На черно-белых схемах цвета соединений обозначаются буквами:

Иногда можно встретить пустую окружность в узле – это означает, что данное соединение зависит от комплектации автомобиля, линии при этом, как правило, подписаны.

Обозначение разъемов на электросхеме – коннекторы

Пин №2 разъема С301 соединяется с пином №9 разъема С104, который, в свою очередь, идет в пин №3 разъема С107

Провода в автомобильной электропроводке соединяются несколькими способами, и один из них – разъемы (Connector). Обозначаются разъемы буквой “С” и порядковым номером. На рисунке слева вы видите схематическое изображение соединений участков провода через разъемы. Вообще, правильнее говорить не “пин №2”, а “терминал №2”, если встретите в схеме такое понятие, то теперь будете знать, что это порядковый номер соединения (контакта) в разъеме.

 

Ну а на этом рисунке видно, как нумеруются контакты в разъемах и как правильно их считать, чтобы узнать где какой пин. Контакты нумеруются со стороны “мамы” с верхнего угла слева на право построчно. Со стороны “папы”, соответственно, зеркально.

 

Кстати, на многих форумах автомобильные разъемы почему-то называют “фишками”, в гугле по поводу такой “этимологии” никакой информации нет. Если вы знаете или догадываетесь, откуда пошло такое название, пишите в комментариях, не стесняйтесь.

Соединение проводов в автомобиле – соединительные колодки (Splice)

Помимо разъемов (Connectors) провода в автомобиле соединяются при помощи пакета перемычек или соединительных колодок ( в электросхемах на английском – Splice). Обозначаются соединительные колодки, как вы видите на рисунке, буквой “S” и порядковым номером, например: S202, S301.

В некоторых электросхемах есть отдельное описание каждой колодки и расписано назначение проводов, подводимых к ней. Главная отличительная особенность колодки (Splice) от разъема (Connector) в том, что соединяется группа проводов: есть один входящий провод и группа исходящих потребителей, как правило, это шины питания.

Обозначение предохранителей на электросхемах

Еще один элемент электрической схемы, передающий энергию – предохранитель.  Предохранители в автомобиле имеют два обозначения: Ef – предохранитель в моторном отсеке (engine fuse) и F (fuse) – предохранитель в салоне автомобиля. Как и во всех других случаях, после обозначения идет порядковый номер предохранителя и номинал тока ( в Амперах), на который он рассчитан. Все предохранители расположены рядом – в блоках предохранителей и реле.

Обозначение автомобильных реле: распиновка, контакты

Автомобильное реле имеет обычно 4 или 5 контактов, которые имеют стандартную нумерацию (но бывают и случаи, когда нумерация не совпадает). Два контакта при этом являются управляющими: 85 и 86, а остальные коммутируют контакты, по которым проходят значительные токи. Реле,  как и предохранители, располагаются, в основном, в блоках под капотом и в салоне, но бывают случаи навесного монтажа реле в любом непредсказуемом месте, особенно при самостоятельной установке кем-либо.

Условные обозначения автомобильных датчиков на схемах

  1. Датчик холостого хода (ДХХ)
  2. Электронный блок управления (ЭБУ) двигателем
  3. Датчик температуры охлаждающей жидкости
  4. Датчик положения дроссельной заслонки (ДПДЗ)
  5. Датчик абсолютного давления воздуха во впускном коллекторе  (ДАД)
  6. Датчик давления в системе кондиционирования
  7. Датчик температуры воздуха во впускном коллекторе

На схеме выше представлены далеко не все датчики, которые могут быть в автомобиле. Условное обозначение датчиков также может отличаться, но все они обычно подписаны, как и все другие элементы, преобразующие энергию в электрической сети автомобиля.

Условные обозначение сложных элементов на автомобильных схемах – примеры схем

Теперь рассмотрим, как на электрической схеме обозначены более сложные и не стандартные элементы, такие как: стартер, катушка зажигания и другие и приведем несколько примеров схем, на которых они изображены.  В различных схемах изображение таких элементов может меняться, но элементы всегда подписаны и интуитивно понятно нарисованы, по-этому, ниже будут приведены только некоторые из них, иначе эта статья растянется надолго.

  1. Аккумуляторная батарея (АКБ)
  2. Замок зажинагия
  3. Комбинация приборов
  4. Выключатель
  5. Стартер
  6. Генератор

Если вы помните школьный курс физики, то найдете на схеме, представленной выше, уже знакомые обозначения, например: электромотор, диод, ключ, элемент питания, лампа накаливания. Эти, знакомые почти каждому, условные обозначения помогают понять смысл и назначение приборов в бортсети автомобиля, преобразующих электроэнергию.

 

  1. Катушка зажигания
  2. Электронный блок управления двигателем (ЭБУ)
  3. Датчик положения коленчатого вала

На этой схеме уже появляется такой более сложный элемент схемы как – блок управления или контроллер. Каждый элемент сети автомобиля, имеющий микросхемы или транзисторные ключи в своем составе, помечается значком с изображением транзистора. Обращаю ваше внимание на то, что в данном примере выше, изображены далеко не все выводы ЭБУ – только те, которые нужны именно на этой схеме. На схемах ниже вы так же встретите изображение ЭБУ.

 

  1. Блок управления двигателем (ЭБУ)
  2. Октан-корректор
  3. Электромотор (в данном случае – бензонасос)
  4. Датчик концентрации кислорода

На этой схеме еще раз изображен ЭБУ, но уже с другими выводами, кстати, по нарисованным ключам на ЭБУ можно понять, какую функцию в данном случае выполняет контроллер: замыкает данные линии на землю, то есть запитывает элементы, подключенные к этим проводам и плюсовой клемме АКБ.



  1. Электромагнитный клапан рециркуляции отработавших газов
  2. Двухходовой клапан
  3. Гравитационный клапан
  4. Комбинация приборов
  5. Электронный блок управления двигателем
  6. Датчик скорости

На данном примере схемы мы встречаемся с изображением клапанов, прошу обратить внимание, что у двухходового клапана контакты пронумерованы, в отличие от остальных. На изображении датчика скорости изображен транзистор, значит в элементе присутствует полупроводниковый элемент.

  1. Переключатель наружного освещения
  2. Переключатель указателей поворота
  3. Переключатель корректора фар
  4. Корректор левой фары
  5. Левая фара автомобиля
  6. Корректор правой фары
  7. Правая фара автомобиля

На данной схеме изображены элементы управления освещением автомобиля. У таких сложных переключателей как замок зажигания или переключатель наружного освещения имеется набор контактов, между которыми в различных положениях переключателя коммутируется ток. На схеме прекрасно видно, в каком режиме переключателя какие контакты соединяются.

Автоэлектрика? Проще простого!

Итак, мы рассмотрели с вами самые распространенные элементы электрических схем автомобилей, посмотрели как они изображаются на схемах и какие ключевые особенности при этом присутствуют. Искренне надеюсь, что эта статья научила вас чему-нибудь или даже выручила вас в сложной ситуации с поломкой автомобиля. Если у вас появились вопросы, было бы здорово, если вы их напишете в комментариях под этой статьей. Всем огромной удачи на дорогах и увидимся в следующих статьях об автоэлектрике!

Символы клапана

| Tameson.com

Клапаны

могут иметь два или более порта и управлять потоком среды между этими портами. Функциональная схема клапана описывает различные состояния переключения. Для систематического представления используются символы. В этой статье объясняется логика символов клапана.

Функции контура

Клапаны имеют два номера, например 2/2-ходовой клапан. Первое число указывает количество портов подключения. Второе число – это количество состояний переключения.2/2-ходовой клапан имеет два трубных соединения (впускное и выпускное) и два состояния переключения (открытое и закрытое). Обозначение нормально закрытый (NC) или нормально открытый (NO) определяет, закрыт или открыт клапан в обесточенном состоянии. 3/2 ходовой клапан имеет три порта и два состояния переключения. В каждом состоянии переключения закрывается отдельный порт. Возможны дополнительные порты и состояния переключения.

Символы клапана

Для каждого состояния клапана рисуется один квадрат. Клапан 2/2 имеет два состояния (открыт / закрыт) и поэтому представлен двумя соседними квадратами.В каждом квадрате показано, как среда может течь между портами. Это делается с помощью стрелок, которые указывают, какие порты подключены и каково направление потока. Закрытые порты обозначаются буквой «Т». Чтобы указать, какой квадрат активен, когда соленоид находится под напряжением, с обеих сторон используется маленький символ исполнительного механизма. Слева символ соленоида используется, чтобы показать, что левый квадрат – это состояние под напряжением. Справа символ пружины используется для состояния покоя.

В таблице ниже показаны альтернативные варианты управления клапаном.

Пример: нормально открытый 2/2-ходовой электромагнитный клапан, символ

Большинство электромагнитных клапанов – это нормально закрытые 2/2-ходовые клапаны. В этом примере показан символ «нормально открытого» 2/2-ходового электромагнитного клапана. Открытое и закрытое состояние снова отображаются двумя прямоугольными квадратами. Часто бывает, что символы исполнительного механизма (пружина и катушка) опускаются, поэтому становится неясно, какое состояние является состоянием под напряжением. Также обратите внимание, что у некоторых производителей левый и правый квадраты меняются местами.Это может привести к путанице, особенно если не указаны символы исполнительных механизмов.

Нормально открытый 2/2-ходовой электромагнитный клапан, символ

Пример: символы 3/2-ходового электромагнитного клапана

3/2-ходовые электромагнитные клапаны

имеют два положения и три порта подключения. Эти клапаны могут использоваться для множества приложений, таких как переключение между двумя контурами или приведение в действие гидроцилиндра. Приведенные ниже символы показывают различные функции контура 3/2 ходовых клапанов.

Символы 3/2-ходового электромагнитного клапана

Дополнительная информация

Для получения дополнительной информации щелкните одну из ссылок ниже:


Ежемесячный информационный бюллетень Тамесона

  • Для кого это: Вы! Существующие клиенты, новые клиенты и все, кто ищет информацию о контроле жидкости.
  • Почему ежемесячный информационный бюллетень Tameson: Он прямолинейный, серьезный и полон актуальной информации об индустрии контроля жидкости один раз в месяц.
  • Что в нем: Объявления о новых продуктах, технические статьи, видео, специальные цены, отраслевая информация и многое другое, на что вам придется подписаться, чтобы увидеть!
Подписаться на рассылку новостей

Мы не можем найти эту страницу

(* {{l10n_strings.REQUIRED_FIELD}})

{{l10n_strings.CREATE_NEW_COLLECTION}} *

{{l10n_strings.ADD_COLLECTION_DESCRIPTION}}

{{l10n_strings.COLLECTION_DESCRIPTION}} {{addToCollection.description.length}} / 500 {{l10n_strings.TAGS}} {{$ item}} {{l10n_strings.ПРОДУКТЫ}} {{l10n_strings.DRAG_TEXT}}

{{l10n_strings.DRAG_TEXT_HELP}}

{{l10n_strings.LANGUAGE}} {{$ select.selected.display}}

{{article.content_lang.display}}

{{l10n_strings.AUTHOR}}

{{l10n_strings.AUTHOR_TOOLTIP_TEXT}}

{{$ select.selected.display}} {{l10n_strings.CREATE_AND_ADD_TO_COLLECTION_MODAL_BUTTON}} {{l10n_strings.CREATE_A_COLLECTION_ERROR}}

Ein Fehler ist aufgetreten (404)

Сучбегриф

Dokumentarten Алле

Dokumente seit

Gruppe AlleHome ЭЛЬСТЕР-Instromet Produkte Archiv Brennwertmesstechnik Электроник Data Logger DL210 Модем EM260 Programmsystem ГАЗ-РАБОТЫ ПО WinPADS Gasdruckregelgeräte Gasmessgeräte Turbinenradgaszähler SM-RI-2 Brennwertmesstechnik Energiemessgerät EnSonic (Produktion eingestellt) Gasbeschaffenheits-измерительные приборы газовой лаборатории Q1 унд GasLab Q2 Gasqualitätsmessgerät EnCal 3000 proChain Gasqualitätsmessgerät EnCal 3000 унд EnCal 3000 Quad Datenspeicher Datenspeicher Регистратор данных DL230 потока Компьютер Brennwertmengenumwerter газа-сеть F1 Encore ВМ1 Encore РС1 Encore МС1 Encore ZM1 FC2000 Mengenumwerter газа-сеть Z0 Mengenumwerter газа-сеть Z1 Gasdruckregelgeräte Hochdruckregler Осевые клапан Mitteldruckregler Gasdruckregelgerät J – Mitteldruck Gasdruckregelgerät M2R Gasdruckregelgerät МАФ Gasdruckregelgerät MR Niederdruckregler Gasdruckregelgerät HR Gasdruckregelgerät J – Niederdruck Gasdruckregelgerät NDAF Gasdruckregelgerät ZR, ZRE, ZRH Sicherheitsgeräte Zubehör Anschlussstücke Gasmessgeräte Balgengaszähler Balgengaszähler BK-G1,6 Balgengaszähler BK-G10 / G16 Balgengaszähler BK-G2,5 Balgengaszähler BK-G25 Balgengaszähler BK-G4 Balgengaszähler BK-G40 / 65/100 Balgengaszähler BK- О6 Hochdruck-Balgengaszähler HDBGZ Impulsnehmer В-Z6x Drehkolbengaszähler Drehkolbengaszähler ИРМ-1 Drehkolbengaszähler ИРМ-3 ДУО Drehkolbengaszähler РАБО G16 – G250 Drehkolbengaszähler РВГ G16 – G400 Drehkolbengaszähler РВГ ST G10 – G25 Impulsgeber Е1-Sxxx N95000 NJ унд SJ S1 S2 Si35-K10- Y1 Laborgaszähler Experimentiergaszähler, nasse Bauart Experimentiergaszähler, trockene Bauart Turbinenradgaszähler und Quantometer Quantometer Q / Q75 Quantometer QA / QAe StrömungsgleichterbinN und K Turbinenradgaszähler TR-X Turbinenradialgaszähler TRRZ Ultraschallzähler Checksonic-vx: Ultraschallgaszähler Ultraschallgaszähler Q.Звуковой Ultraschallmeter USM Zählwerksvarianten АБСОЛЮТ-ДАТЧИК S1 / S11D / MI-2 / AE LIS-200, Datenübertragung, Программное обеспечение Datenauswertung Software WinLOOK Datenfernübertragung Meldegeräte, Шлюзы Encore DC1 Encore МС1 Mengenumwerter / Kommunikationstechnik Kommunikationstechnik Funktionseinheit FE260 Mengenumwerter EK205: Elektronischer Mengenumwerter EK220: Elektronischer Mengenumwerter EK280 : Elektronischer Mengenumwerter Parametrierungs-, Datenerfassungs-Software Lokale Datenerfassung Read Mobile Smart Metering ACM: Kommunikationsmodule AE: АБСОЛЮТ-ДАТЧИК AE: Protokollvarianten ECM: Kommunikationsmodule Elektronisches Zählwerk Смарт клапан Systeme унд Lösungen наблюдательным Люкс Wasserstoff им Erdgasnetz Allgemeine Kundeninformationen Herstellererklärungen Thermal Solutions Dienstleistungen Kundenschulungen Planungshandbuch Gastechnik Grundlagen Technischer Service Produkte 01 Kuge lhähne und Filter Gasfilter GFK Kugelhähne AKT Kugelhähne mit thermischer Armaturen-Sicherung AKT..TAS Manuelle Gas-Absperrventile Thermische Armaturen-Sicherungen TAS 02 Druckregler Abblaseventil VSBV Gas-Druckregler GDJ Gas-Druckregler J78R, 60DJ Gas-Druckregler Maxon Gas-Druckregler VGBF Gas-Gleichdruckrregler GIK Abblase-Magnetventile VAN Dichtheitskontrollen ТК Drosselklappen Б.В. Drosselklappen БВГ, BVA, BVH Drosselklappen ДКР Drosselklappen в Zwischenflanschbauweise für Heißluft WBV-H Drosselklappen мит Stellantrieb BV-Пак Druckregler мит Magnetventil VAD, VAG, VAH, VAV Elektromechanisches Hochdruck-Газ-Sicherheitsabsperrventil Elektromechanisches Hochdruck-ола -Sicherheitsabsperrventil Elektronische Verbundregelungen SMARTLINK® MRV Elektronisches Regelventil SMARTLINK® CV Газо-магнитный вентиль VAS, VCS Газо-магнитный вентиль VE, V4295 Газо-магнитный вентиль VG Газо-магнитный вентиль VGP Газ-мото rventile В.К. Linearstellglieder IFC, VFC Luft-Magnetklappen MB 7 / BVHM Luft-Magnetventile VAA Pneumatische Sicherheitsabsperrventile für Flüssigkeitsbetrieb Серия 8000 Pneumatische Sicherheitsabsperrventile Серия 8000 Stellantriebe IC Stellantriebe SMARTLINK® DS valVario-Zubehör Ventile дер Serie Н.И. für ден EINSATZ в explosionsgefährdeten Bereichen Ventile MICRO-RATIO ® (тип MPO) Ventile Typ A 04 Druckwächter Gas-Druckwächter C6097 Gas-Druckwächter DG Gas-Druckwächter DG..C. ® L408J Stufige Druckwächter PressureTrol® L404F, T, V 05 Kompakteinheiten Intelligentes Verbrennungsmanagementsystem SMARTFIRE® Regelventile RV, Regelventile mit Magnetventil RVS Serie VQ400 / 800 Serie VR400 / VR800 06 Elektr. Flammenüberwachung унд Steuerung Baugruppenträger БГТ Brennersteuerung BCU 370 Brennersteuerung BCU 570 Brennersteuerung Серия 7800 Brennersteuerungen BCU 4, Поколение 2019 Brennersteuerungen BCU 400 Brennersteuerungen BCU 560, BCU 565, BCU 580 Feldbusanschaltung ПФА 700 Fernüberwachungslösung Термическое IQ ™ Flammenwächter FDU 510, FDU 520 Flammenwächter für Dauerbetrieb IFW 50 Flammenwächter IFW 15 Flammenwächter PFF Gasfeuerungsautomaten IFS 110IM, 111IM Gasfeuerungsautomaten IFS / IFD 244 Gasfeuerungsautomaten IFS / IFD 258 Gasfeuerungsautomaten PFU Industrielle Flammenüerungsautomaten PFU Industrielle FlammenüberwachessalService-Сигнал 700 / S600U Verlängerung FASA P522 Сигнал Prozessoren P53x Сигнал Prozessoren S5xx Flammendetektoren WATCHDOG III Flare-Monitor Zündvorrichtung der Serie GHE Kesselsteuerung SOLA Ofenschutzsystem-Steuerung FCU R elais-Baugruppe PFR 704 Stromversorgung PFP 700 Taktsteuerung MPT 700 Verbrennungsmanagementsystem SLATE ™ 07 Industriebrenner 07a Brenner für direct beheizte Öfen Beta-Gas- und -Ölbrenner BBG / BBC Brenner für Gas- und -Ölbrenner BBG / BBC Brenner für Gas- und -Ölbrenner BBG / BBC Brenner für Gas- und -Ölbrenner 0 BIC, BIC 0, BIC 0, BIC 0 Brennergröße 140 Brennergröße 165 Brennergröße 200 Keramikrohrsets ТСК Бреннер für Gas BIO, BIOA, ЗИО Brennergröße 050 Brennergröße 065 Brennergröße 080 Brennergröße 100 Brennergröße 125 Brennergröße 140 Brennergröße 165 Brennergröße 200 Dreifach luftgestufter Ultra-Low-NOx-Бреннер TriOx Flachflammen-Gasbrenner WHG, WHG-H Flachflammen-Gasbrenner-Systeme WHG (P) Gasbrenner KINEMAX® Hochgeschwindigkeitsbrenner ThermJet TJ Kegelgasbrenner RKG Lanzenbrenner ExtensoHeat Low-NOx-Brenner BIC..M Low-NOx-Invisiflame®-Flachflammen-Gasbrenner WHI Luftüberschussbrenner BIC..L Mehrstoffbrenner WIDE-RANGE® Mündungsmischende Gas- und Ölbrenner NMC Ringspaltbrenner Ultra-Low-NOx-Brenner-Stratocaster BIC. NOx-Rekuperatorbrenner ECOMAX LE Mantelstrahlrohrbrenner SER Rekuperator Bayonet Ultra BU Рекуператорбреннер Сегмент ECOMAX -Brenner BrightFire 200 Luft-Gas-Throughport-Brenner WGD Luft-Gas-Throughport-Brenner WTPUG Luft-Öl-Throughport-Brenner WTPU Montagehalterungen und Zubehör für Glasbrenner Sauerstoffbrenner (Next Gen) PrimeFTHER FH SauerXYSToffbrenner® SauerXYSToffbrenner® 300 ФВЧ Sauerstoffbrenner OXYTHERM® LE Sauerstoffbrenner OXYTHERM® Титан Sauerstoffbrenner PrimeFire 100 Sauerstoffbrenner PrimeFire 300 Sauerstoffbrenner PrimeFire 400 07D Linien- унд Kanalbrenner für умирают Lufterwärmung Базис-Linienbrenner LINOFLAME® Kanalbrenner АГ-МА Kanalbrenner АГ-МА DualBlock Kanalbrenner COMBUSTIFUME® Kanalbrenner FlueFire Kanalbrenner HC AIRFLO® Kanalbrenner LV AIRFLO® Kanalbrenner RatioStar Linienbrenner AirHeat V1 Linienbrenner AirHeat V2 Linienbrenner APX Linienbrenner NP-LE AIRFLO® Linienbrenner NP-RG AIRFLO® Low-NOx-Brenner-NOx-Brenner-NOx-NOx-Brenner® Brennox-NOx-NOx-Brenner® Brennox-NOx-Brenner® Brennox-NOx-Brenner® die Lufterwärmung Brenner für die Lufterwärmung Ratio Öl Vortometric Бреннер ОПТИМА ™ СЛС Einzelbrenner цур direkten Beheizung VALUPAK®-II Kompaktes Brennersystem HeatPak с низким уровнем NOx-Einzelbrenner KINEDIZER® LE с низким уровнем NOx-Einzelbrenner OVENPAK® LE Mehrstoffbrenner MEGAFIRE® HD Niedertemperatur-Einzelbrenner OVENPAK® 400 Niedertemperatur-Einzelbrenner OVENPAK® 500 SMART Горелка BCU mit Brennereinheit HEATPAK SMART Горелка SLATE mit Brennersystem OVENPAK® LE Ultra-Low-NOx-Brenner M-PAKT® 07f Tauchrohrbrenner Tauchrohrbrenner ImmersoJet Tauchrohrbrenner TUBE-O-THRBRENTER® TUBE-O-FLAMEHRBRENER® TUBE-O-FLAMEHRENCHROBRENER® TUBE-O-FLAMEHRENCHROBRENER® Trommeltrocknung MegaStar MS Mehrstoffbrenner für Trommeltrocknung StarJet SJC-Gasbrenner für Trommeltrocknung NovaStar NS 08 UV Sonden und Zündkomponenten IR-Flammenfühler C7915 UV-Flammenfür C7915 UV-Flammen70 C7915 UV-Flammen70 C7915 UV-Flammen70 -Flammenfühler C7961 УФ-Flammenwächter УФ-зонда für Dauerbetrieb UVC, УФ-UVD Sonden УВС УФ-Sonden-Wärmeschutz Zünd- унд Fühlereinrichtungen Затмение Zünd- унд Fühlerelektroden FE, FZE Zünd- унд Überwachungskomponenten Maxon Zündtransformatoren Затмение Zündtransformatoren Q652 Zündtransformatoren ТЗИ, TGI 09 Zündbrenner und Luft-Gas-Mischer Brennerdüsen Sticktite и Ferrofix Brennerdüsen STICKTITE ™ / PILOTPAK ™ Gas-Zündbrenner IPG Luft-Gas-Mischer ATJ Maxon-Zündbrenner für Gas Mischdüsen VENTITE® Mischer MULTI-RATIO® Mischrovenhre Zündbrenner LVDT / HC Zündbrenner Maxon OXY-PILOT Zündbrenner E Q179A Zündbrenner ZAI Zündbrenner ZIO 40 Zündbrenner ZKIH Zündbrenner ZMI 10 Zubehör Absperrurchlappussen ZIVA Digämenga Druckregels Druckregels hlschläuche ES Elektronisches Druckmessgerät DMG Гибкая Rohrnippel ФПН Gasrücktrittsicherungen Диск Тип Gasrücktrittsicherungen GRS, GRSF Manometer ИРК, RFM Манометр PI Massenstrommessgeräte SMARTLINK® Meter Mengeneinstellhähne Регулируемый диафрагменный клапан Mengeneinstellhähne ГЭВ, GEH, LEH Messblenden OMG Messblendensets FLS унд MBO Schaugläser Temperaturregler Универсальный цифровой контроллер ETC Thermoelemente 11 Gebläse унд Druckerhöhungseinrichtungen Фильтр & Schalldämpfer ВПБ Gasdruckerhöhungseinrichtungen Герметичный Бустер Industriegebläse SMJ Luftgebläse ТВА Luftgebläse TBA50 12 внутриклеточно Exothermics унд indirekte Lufterhitzer Indirekte Lufterhitzer ЭР Indirekte Lufterhitzer RHT внутриклеточно Впадина нержавеющей стали внутриклеточно Синусоидальная плиты внутриклеточно Трубчатые 13 Ventilstrecken, standardisierte Systeme Bedieneinheiten CP Gasleitungen PGM / РГМ Gasregeleinrichtung РГМ Kompaktes Brenne rsystem HeatPak Lufterhitzer AH Schalttafel BCS Schalttafeln Maxon Ventilstrecken Конфигурируемые комплектные клапанные агрегаты Ventilstrecken Стандартные сегменты клапанных агрегатов Vormontierte LP (Flüssigpropan) -Systeme PLPM Vormontierte Öl-undtemerekölöl-Systeme OS B, F, G & K Micro Cam Ölventile MCOV Elektrische Öl-Beheizungseinrichtungen im Einlass SHE Elektrische Ölleitungsheizung LHE Flexible Ölschlauche aus Metall FOH Leichtöl-Versorgungseinheiten Maxon Öl-Druck-Druck- -Viskositätsregelung OVC Ölfilter OF Ölleitungsheizung LHO Ölpumpen- und Motor-Sets RP Ölversorgungs-Pumpen-Einheit SPU Temperaturanzeigen TI Ventile MICRO-RATIO® (MPO Style) 15 Ausgelaufene Produkte 2-Magnetic Produkte..Z 2-stufige Gasmagnetventile VS..Z 2-stufige Prozessventile VP..ML Abblasesichtgerät AS Abblaseventil ANOV Abgasrezirkulationseinrichtung E-Jector Anti-Pulsationseinheit ASC Bayonet Rekuperator BR BC Bedieneinheit Einzelbrenner Fucking Gas Горелка Brenner für Gas und Öl Incinopak Brenner für Gas und Öl Mark IV Brenner für Gas ZIO 240-320 Brenner mit großem Regelbereich WRO Brenner-Überwachungsdisplay Bi-Flame Multi-Flame Brennerdüsen Blastass Tips Brennersteregenselbrennerdüsen Brennerdüsen Brennerdüsen Blastass Tips Brennersteregenserfüser Магнитвентил Г.В..Ml Канальных Горелок Ratio LO-NOX Eclipse, ES Регулятор EcoStar II Emmisionsarmer Mehrstoffbrenner für Trommeltrocknung ESII Einstellventil LVG Einzel-, Luftheizungsbrenner Valupak Einzelbrenner OVENPAK® II Enerjet Hochgeschwindigkeits-Газ-ол-Бреннер ЕЕК Фильтр волокно лента Flächenbrenner Delta ТОГО III мит stabilem Brennstoff-Люфт -Verhältnis Flachflammenbrenner Deep Spiral Flame DSF Flachflammenbrenner Vortiflare Flammensimulator SimaFlame Flammenwächter Peek-A-Flame FVS-FVA Einstellbare Durchflussventile AFV Gas-Absperrventile Autotite Gas-Absregleng Gas-Druhlüt Grudich-Gruft-Gruft-Grufler-Gruck-Gruft-Grundich -Магнитвентиль СВ2-Серия Газ-Магнитовентиль VS..Ml Газ-ол-Бреннер мит großem Regelbereich ВКР Газ-Zündbrenner Eclipse, Газ-Zündbrenner НМП Gasbrenner CYCLOMAX Gasbrenner für Strahlrohre РФГ Gasdruckerhöhungseinrichtungen BoostPak Gasfeuerungsautomat Би-Пламя Gasfeuerungsautomat Мульти-Пламя Gasfeuerungsautomat Вери-Пламя Gasfeuerungsautomaten für Dauerbetrieb IFD 450, 454 Gasfeuerungsautomaten für Dauerbetrieb ПФО 778 Gasfeuerungsautomaten МФС 132B, 135B, 137B Gasfeuerungsautomaten ВБП 778, 748 Gebläse BL Gebläse für Биогаз ТБГ Gebläsebrenner ПБГ Европы Hochdruck-Vormischbrenner АИГ Hochdruckgebläse CBL & SC Hochdruckgebläse FG Industriebrenner MULTIFIRE Industriebrenner Ramfire Industriebrenner Герметичный Насадка Kanalbrenner InciniFume Kanalbrenner V-Line Keramische Flachflammenbrenner CTX Kompakt- Gasbrenner PBG Kompakteinheiten CG 35-45 Labor-Sicherheitssystem VCL, LCU Labor-Sicherheitsventil LSV Linearstellglieder LFC Luft-Gas-Brenner BrightF ire Luft-Gas-Brenner GTNG-DI Luft-Gas-Brenner WRASP-DI Luft-Gas-Mischer LP, футболка, Vari-Set Luft-Magnetventile VR Luft-Öl-Brenner 03FA Luft-Öl-Brenner GTCPA Luftdüsen-Gasbrenner JAG Lufterhitzer -Brenner KINEDIZER® Luftgebläse мит Riemenantrieb ТБАБ Luftzufuhrkomponenten AirJector Magnetventilblöcke MVB Mengeneinstellventile доменной задвижки Messblende FOM Moduline-Anwendungsbeispiele Mündungsmischende Gasbrenner НМГ Ol-Druckregler OPR Ol-Viskosimeter Set VIS воздуха, обогащенный кислород Staging P-Rohr-Бреннер PTB Pre-Mix Gebläsemischer Pressuretrol® Grenzwertregler L604N PVS Einstellbares Ventil, Automatisch APV Radimax рекуператор für Strahlrohre РАУ рекуператор-Бреннер für Tauchrohre ISER Rekuperatorbrenner ThermJet TJSR Rekuperatoren Max-экономайзер RFS-RFE Flammenhaltende Gasdüsen RAF Sauerstoffbrenner OXYTHERM® Sauerstoffbrenner OXYTHERM® FH Sauerstoffbrenner OXYTHERM® LEFF Sauerstoffbrenner PrimeFire 150 Sauerstoffbrenner PrimeFire питателя Schürlochbrenner Selbstmischende Газ-Öl-Бреннер 780 Sicherheitsabsperrventile MV500 Твердотельный Pressuretrol® Regler P7911C Твердотельный Pressuretrol®-Regler P7810C Stellantriebe GT Stellantriebe PRA6 Stellantriebe Trilogy T500 Strahlungsbrenner Infrawave Strahlungsbrenner PS Radiant Tauchrohrbrenner ImmersoPak Trocknungsbrenner BIT Überwachungssysteme CCTV Überwachungssysteme Лазерный уровень Gauge Универсальный газовый -Öl-Brenner SVC Universal-Gasbrenner SVG UV-Sonden T600 UV-Sonden Veri-Flame Verhältnisdruckregler GIH Vibrations-Überwachungssytem VMS Wärmetauscher Cross Flow Wärmetauscher Extern-a-Therm Warmluft-Pilot-SystemULINE ZENFULMENZZZZZZZZZZZZZZZZZZZZZZZZZ MODE Keramikindustrie Kompetenz в Systemtechnik Metallindustrie Richtlinien und Normen Umwelt Über Thermal Solutions Bildschirmschoner und -hintergründe Logos nicht zugeordnete Zertifikate Präsentation Umweltbericht Vorlagen

Sprache AlleDEENFRNLITESDASVNOPTELTRCSPLRUHUSKHRFIROZHSRSLUAETLVLT

Volltextsuche JaNein

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *