Полимер это материал – Полимерные материалы что это

alexxlab | 08.02.2020 | 0 | Разное

Полимерные материалы: виды, применение, свойства, примеры

Все, что окружает человека в быту, на работе или транспорте – изготовлено из материалов, которые обладают различными свойствами и характеристиками. Искусственное сырье создается человеком с помощью прогрессивных технологий, которые периодически обновляются. К такому ресурсу относят полимерные материалы, в состав которых входят как натуральные, так и искусственные элементы.

С каждым годом доля искусственных материалов, применяемых в различных отраслях народного хозяйства, увеличивается благодаря разнообразию физических свойств и структуры такого сырья, как полимерные материалы. Благодаря большому количеству мономерных звеньев в структуре молекулы полимера, такой материал обладает прочностью наряду с эластичностью и практичностью. Молекулярная масса полимерного сырья имеет высокую массу, которая может измеряться как несколькими тысячами единиц, так и несколькими миллионами.

Полимерные материалы, в большей степени состоят из органики, при этом часто попадается и неорганический полимер. Изготавливают сырье синтетическими методами, с помощью соединения природных элементов по технологии полимеризации, конденсации или другого химического процесса. Составляющими элементами такого ресурса, как полимерные материалы являются:

  • нуклеиновые кислоты;
  • каучук;
  • белки;
  • полисахариды;
  • другие подобные элементы.

 

 

Прочность материалов достигается за счет повторения высокомолекулярных типов групп атомов, такое сырье называют сотополимером или гетерополимером. Характерным признаком ресурса является периодическое повторение структурного фрагмента, так называемого – мономерного звена. Примером такого повторения может быть поливинилхлорид или каучук.

При наличии слабой связи между макромолекулами полимерные материалы называют термопластами, наличие химической связи между звеньями позволяет отнести сырье к реактопластам. К линейному характеру соединений относят целлюлозу, а к разветвленному – амилопектин. Существуют также разновидности более сложных трехмерных пространственных связей.

Классификации полимерных материалов

Зависимо от происхождения полимеры разделяют на синтетические и природные. Несмотря на востребованность природных составляющих, материалы искусственного происхождения, которые производят на низкомолекулярной основе, благодаря синтезу, пользуются большим спросом.

Различия по химическому составу позволяет делить полимерные материалы на:

  • неорганические, у которых нет однотипных соединений, при этом есть органические радикалы, в качестве дополнительных составляющих;
  • элементоорганические полимеры, отличаются способностью удерживать в органическом радикальном соединении, атомы неорганики, хорошо сочетающихся с органикой;
  • органические, которые используют, как основу для пластмассовых изделий.

Характерным отличием структуры, влияющим на свойства материала оказывает макромолекула. Ее вид позволяет разделить полимеры на:

  • плоские;
  • ленточного типа;
  • разветвленной структуры;
  • линейного характера;
  • сетчатого типа;
  • гребнеобразные полимеры;
  • прочие виды.

По свойствам соединений звеньев, полимерные материалы делят по полярности, влияющую на растворимость материалов в разных средах. Ее определяют по разобщению положительных и отрицательных зарядов. Характера этих связей позволяет разделить полимеры на:

  • гидрофильные;
  • гидрофобные;
  • амфильные.

Иначе говоря, можно отнести перечисленные категории к полярным, неполярным или смешанным. Кроме этого, полимеры имеют разные свойства при изменении температуры. Они бывают:

  • термопластичные, имеющие свойство размягчения, при увеличении градуса, а при понижении – твердеют;
  • термореактивные, подвержены разрушению структурных связей между звеньями.

 

 

Явным примером, подчеркивающим различие структуры, будет письмо, отправленное по почте, предварительно заклеенное в конверт. В процессе транспортировки, тщательно склеенные поверхности остаются невредимыми. Но стоит нагреть обработанное место на огне или с помощью раскаленного металлического предмета, как клей утратит свои свойства и конверт откроется.

Полимерные материалы делят на два типа: синтетический (искусственный) и огнеупорный. Синтетика встречается в различных сферах жизнедеятельности человека: в строительстве, промышленности, быту и даже – в одежде. Производство искусственного сырья началось в первые годы ХХ века. Первым запатентованным материалом была бакелитовая смола, которая при нагревании меняла форму.

Современные синтетические материалы подвержены влиянию огня и высоких температур, а некоторые из них могут воспламеняться. Чтобы избежать подобное используют добавки, а также синтезируют сырье с помощью хлора или брома. Галогенированный полимерный материал, который получается после обработки, при сжигании образует газ, способствующий повышению коррозии других материалов. Разнообразие структур полимеров по химическому составу позволяет разделить материалы на несколько видов, которые находят все большее применение в народном хозяйстве.

  1. Полиэтилен Известен по широко применяемой упаковке различного назначения. Свойства и низкая себестоимость сделала такие материалы популярными в разных отраслях. Различают полиэтилен низкого давления, который обладает прочной структурой молекул и высокого давления, с противоположными свойствами. Эти материалы имеют одинаковы по химическому составу, но различаются по структуре решетки.
  2. Полипропилен Прозрачный полимер изготовленный методикой экструзии с охлаждением методом полива или другим способом с раздувом. Не контактирует с маслами и жирами, не деформируется при температурных изменениях, пропускает водяные пары. Эти свойства материала применяются в пищевой и строительной отрасли.
  3. Поливинилхлорид Такие материалы с полимерной основой встречается реже других из-за способности быть хрупким и не эластичным. Был популярен в 60-е годы прошлого столетия, при сжигании образует диоксин. Современные материалы вытесняют эти полимеры за счет более высокой экологичности и улучшения структуры сырья.
  4. Полиолефин Благодаря разнообразному строению макромолекул, эти полимеры включает в себя составляющие элементы пропилена и полиэтилена. Более половины производимой полимерной продукции относят к полиофелинам. Стойкость к разрыву, нагреву и усадке, позволит в ближайшем будущем увеличить объемы изготовления этого сырья. Тем более, что экологичность, которой обладают такие материалы выше других полимеров, а при производстве и утилизации – не выделяет вредных веществ.

Свойства

Внутреннее строение трехмерных форм полимера, соединенных вследствие полимеризации, а в некоторых случаях поликонденсации, четко выявлена и часто просматривается на изломе и разрыве материала. Основная часть полимеров – это органические соединения, при этом встречаются нередко – неорганические варианты.

Свойства полимерных материалов определяются в большей степени строением макромолекул, из которых они состоят. Для изменения характеристик материала используют различные добавки:

  • смазки, которые позволяют избежать прилипания полимерной структуры к металлическим поверхностям оборудования, на котором производится переработка;
  • красители, применяемые в декоративных целях;
  • инсектициды и антисептики, способствующие устойчивости к плесени и воздействию насекомых;
  • антиперенами, позволяющими снизить горючесть полимеров;
  • пластификаторами, с помощью которых снижается температура переработки, повышается морозоустойчивость и улучшается эластичность;
  • наполнители в различном фазовом состоянии позволяют изменить специфические свойства материалов;
  • стабилизаторы, способствующие улучшению прочности полимерных материалов и увеличению срока службы.

Для большинства полимеров характерны различные механические свойства, которые зависят от структуры и внешних факторов воздействия:

  • нагрузки, давления, температуры. Из достоинств полимерных материалов можно выделить такие как: простота механической обработки;
  • водо- и газонепроницаемость;
  • способность к свариванию и склеиванию; химическая устойчивость; низкая теплопроводность;
  • высокая прочность и эластичность;
  • малая плотность;
  • является диэлектриком.

Как и любой другой материал, полимеры обладают недостатками:

  • горючесть;
  • слабая твердость;
  • ускоренное старение;
  • повышенная ползучесть;
  • способность к тепловому расширению;
  • низкая теплостойкость.

Основной характеристикой полимеров считают их деформируемость. Именно по этому признаку в различных температурных режимах обычно оценивают свойства полимерных материалов.

Применение

Благодаря преимуществам полимерных материалов перед другими видами сырья, их использование с каждым годом становится более популярным. Применение полимеров встречается повсюду: в легкой и тяжелой индустрии, сельскохозяйственной и медицинской отрасли. Каждый день приходится сталкиваться с продукцией из полимерных материалов.

При строительстве зданий стали заменять металлические конструкции – пластиковыми. Это окна, армирующие сетки, а также приспособления и инструмент. Геосинтетические материалы широко используются при возведении дорог.

С помощью сеток из синтетических материалов изготавливают поддерживающую оснастку вьющимся растениям для сельского хозяйства. Устройство декоративных заборов с применением пластика также стало популярным благодаря устойчивости к коррозии, которой обладает полимерная сетка.

Геотекстиль и геомембрана используют при возведении бассейнов и искусственных водоемов. Такие полимеры защищают мембрану от грунта и обладают гидроизоляцией.

Упаковка различных товаров производится с помощью полимерных пленок и других видов упаковок, как в супермаркете, так и на рынке. Изготовление несущих конструкций авто- и мототехники позволяет облегчить вес транспортных средств и избежать пагубного воздействия коррозии.

Применение полимерных материалов в производстве и быту становится все популярнее с каждым годом. Низкая стоимость и желаемые технические параметры сырья постепенно вытесняют привычные изделия текстильной, строительной и даже металлургической промышленности. Удобство обработки и химические свойства полимерных изделий повышают качество и продлевают срок службы привычных предметов, создающих комфортные условия для активной жизнедеятельности человека.

Оцените статью:

Рейтинг: 0/5 – 0 голосов

prompriem.ru

Полимерные материалы, пластмассы

Содержание:

1. Историческая справка.

2. Определение полимеров.

3. Пластмассы.

· Определение

· Классификация

а. Природные (органические)

б. Синтетические

4. Основные представители.

· Полистирол

· Полиэтилен

· Полиимид

· Эпоксидные смолы

5. Основные свойства пластмасс.

· Химические свойства

· Физические свойства

Историческая справка.

Термин “поли­мерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содер­жание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах отно­сятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью мо­лекул, проявляющейся в реакциях поли­меризации. Дальнейшее свое развитие наука о полимерах по­лучила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было до­казано существование свободнорадикального и ионного механиз­мов полимеризации. Большую роль в развитии представлений о поликонденса­ции сыграли работы У.Карозерса.

С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие био­полимеры, как целлюлоза, крахмал, кау­чук, белки, а также некоторые син­тетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способ­ностью ассоциировать в растворе в комп­лексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально но­вого представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Полимеры

(Определение полимеров)

Полимеры – высокомолекулярные соединения, вещества с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), в которых атомы, соединенные химическими связями, образуют линейные или разветвленные цепи, а также пространственные трехмерные структуры. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества. Большое число полимеров получают синтетическим путем на основе простейших соединений элементов природного происхождения путем реакций полимеризации, поликонденсации, и химических превращений.

В зависимости от строения основной цепи полимеры делятся на линейные, разветвленные, и пространственные структуры. Линейные и разветвленные цепи можно превратить в трехмерные действием химических агентов, света, и радиации, а также путем вулканизации.

Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Разветвленные и трехмерные полимеры, как правило, являются аморфными. При нагревании они переходят в высокоэластическое состояние подобно каучуку, резине, и другим эластомерам. При действии особо высоких температур, окислителей, кислот и щелочей, органические и элементоорганические ВМС подвергаются постепенному разложению, образуя газообразные, жидкие, и твердые соединения.

Физико-механические свойства линейных и разветвленных полимеров во многом связаны с межмолекулярным взаимодействием за счет сил побочных валентностей. Так, например, молекулы целлюлозы взаимодействуют между собой по всей длине молекул, и это явление обеспечивает высокую прочность целлюлозных волокон. А разветвленные молекулы крахмала взаимодействуют лишь отдельными участками, поэтому не способны образовывать прочные волокна. Особенно прочные волокна дают многие синтетические полимеры (полиамиды, полиэфиры, полипропилен и др.), линейные молекулы которых расположены вдоль оси растяжения. Трехмерные структуры могут лишь временно деформироваться при растяжении, если они имеют сравнительно редкую сетку (подобно резине), а при наличии густой пространственной сетки они бывают упругими или хрупкими в зависимости от строения.

ВМС делятся на две большие группы: гомоцепные, если цепь состоит из одинаковых атомов (в том числе карбоцепные, состоящие только из углеродных атомов), и гетероцепные, когда цепь включает атомы разных элементов. Внутри этих групп полимеры подразделяются на классы в соответствии с принятыми в химической науке принципами.

Так, если в основную или боковые цепи входят металлы, сера, фосфор, кремний и др., полимеры относятся к элементоорганическим соединениям.

Полимерные материалы делятся на три основные группы: пластические массы, каучуки, волокна химические. Они широко применяются во многих областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта.

Пластмассы.

Определение.

ПЛАСТМАССЫ (пластические массы, пластики)-материалы на основе полимеров. Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.

Эти вещества состоят в основном из углерода (C), водорода (H), кислорода (O) и азота (N). Все полимеры имеют высокую молекулярную массу, от 10 000 до 500 000 и более; для сравнения, кислород (O2 ) имеет молекулярную массу 32. Таким образом, одна молекула полимера содержит очень большое число атомов.

Классификация.

Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими. Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие. Сырьем обычно являются простые, легко доступные побочные продукты угольной и нефтяной промышленности или производства удобрений.

Первым термопластом, нашедшим широкое применение, был целлулоид—искусственный полимер, полученный путем перера­ботки природного—целлюлозы.

Основные представители.

Полистирол— неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210 … … 350 К. Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостой­кость, антистатические свойства, пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к дей­ствию органических растворителей (толуол, бензол, четыреххло­ристый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).

Полистирол вспенивающийся широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать вре­менную изоляцию от воздействия тепла, излучаемого другими эле­ментами.

Полиэтилен— полимер с чрезвычайно широким набором свойств и использующийся в больших объемах, вследствие чего его считают королем пластмасс. За 10… 12 лет экс­плуатации прочность его снижается лишь на ¼. Благодаря хи­мической чистоте и неполярному строению полиэтилен обладает высокими диэлектрическими свойствами. Они в со­четании с высокими механическими и химическими свойствами обусловили широкое применение полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.

Помимо полиэтилена общего назначения выпускаются его мно­гие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от корро­зии), электропроводящий (для экранирования).

Главный недостаток полиэтилена—сравнительно низкая нагревостойкость

Полиимид новый класс термостойких полимеров, аромати­ческая природа молекул которых определяет их высокую прочность вплоть до температуры разложения, химическую стойкость, тугоплавкость. Полиимидная пленка работоспособна при 200°С в течение нескольких лет, при 300°С —1000 ч, при 400°С —до 6 ч. Кратковременно она не разрушается даже в струе плазменной горелки. При некоторых специфических усло­виях полиимид превосходит по температурной стойкости даже алюминий. Степень разрушения полиимида – 815°С., алюминия 515°С.

Эпоксидные смолы— продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца

Основные свойства пластмасс .

Химические свойства.

С точки зрения химического поведения полимер похож на мономер (или мономеры), из которого (или которых) он получен. Углеводороды этилен H2 C=CH2 , пропилен H2 C=CH–CH3 и стирол H2 C=CH–C6 H5 претерпевают присоединительную полимеризацию, образуя полиэтилен, полипропилен и полистирол со следующими структурами

mirznanii.com

Полимерные материалы Википедия

Полиме́ры (от греч. πολύ «много» + μέρος «часть») — вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимерами могут быть неорганические и органические, аморфные и кристаллические вещества. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются[1]. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов[2].

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (−CH2−CHCl−)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических преобразований. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

ru-wiki.ru

Полимер Википедия

Полиме́ры (от греч. πολύ «много» + μέρος «часть») — вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимерами могут быть неорганические и органические, аморфные и кристаллические вещества. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются[1]. Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов[2].

Если связь между макромолекулами осуществляется с помощью слабых сил Ван-Дер-Ваальса, они называются термопласты, если с помощью химических связей — реактопласты. К линейным полимерам относится, например, целлюлоза, к разветвлённым, например, амилопектин, есть полимеры со сложными пространственными трёхмерными структурами.

В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (−CH2−CHCl−)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.

Полимер образуется из мономеров в результате реакций полимеризации или поликонденсации. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, полисахариды, каучук и другие органические вещества. В большинстве случаев понятие относят к органическим соединениям, однако существует и множество неорганических полимеров. Большое число полимеров получают синтетическим путём на основе простейших соединений элементов природного происхождения путём реакций полимеризации, поликонденсации и химических преобразований. Названия полимеров образуются из названия мономера с приставкой поли-: полиэтилен, полипропилен, поливинилацетат и т. п.

ru-wiki.ru

технология, виды, производство и применение

Полимерные материалы – это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая молекулярная масса, которая соответствует следующему значению: М> 103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации – это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: метилового спирта, диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение эпоксидных смол и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них (силикатное стекло, слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы – это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные композиционные материалы. Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию электрохимической коррозии. Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1–10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1–10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Плиточные материалы, изготовленные на основе полимерных компонентов, обладают весьма малой истираемостью, химической стойкостью и долговечностью. В зависимости от типа сырья, этот вид полимерной продукции делят на кумаронополивинилхлоридные, кумароновые, поливинилхлоридные, резиновые, фенолитовые, битумные плитки, а также древесностружечные и древесноволокнистые плиты.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

autogear.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *