Полирование химическое: Химическое и электрохимическое полирование

alexxlab | 16.04.2019 | 0 | Разное

Содержание

Химическое и электрохимическое полирование

Один из приемов декоративной обработки ювелирных изделий заключается в .химическом или электрохимическом полировании. Электрохимическое полирование основано на снятии (растворение) металла с поверхности изделий в растворе солей под действием электрического тока.

Химическое полирование – это процесс полировки изделий в растворе, где происходит химическое взаимодействие между активным раствором и поверхностью обрабатываемого изделия. При химическом полировании изделия на несколько минут пог ружают в соответствующий раствор.

Электрохимическое полирование – это процесс полировки изделий под действием электрического тока в ванне с электролитом, где проходит химическая реакция между электролиту и обрабатываемым изделием.

Отличие химического полирования от электрохимического заключается в том. что оно не требует электрического тока, а также имеется возможность массовой обработки изделий.

Схема ванны для электрохимического полирования приведена на рис. 3 1.

Рис 3.1. Схема ванны электрохимическою полирования; 1-катод; 2-анод: З-подвеска; 4-ванна: 5-электролт.

При подключении тока процесс растворения металла начинается с наиболее высоких выст пов шероховатой поверхности, затем поверхность выравнивается, становится гладкой и блестящей. Шероховатости поверхности при электрохимическом полировании исчезают тем быстрее, чем меньше их размеры. Для достижения оптимального выравнивания необходимо, чтобы скорость растворения с того момента, когда все шероховатости и выступы устранены, была бы во всех точках поверхности совершенно одинаковой.

При электрохимическом полировании (анодное растворение металла) на поверхности полируемого изделия образуется вязкая пленка солей, защищающая микровпадины от действия тока и не препятствующая растворению выступов (гребешков), в результате чего поверхность сглаживается, полируется.

Наилучшее качество поверхности дос тигается при электрохимическом полировании чистых и однородных металлов и сплавов. Подбирая специальные составы электролитов и режим работы ванны. можно настолько усилить эффею сглаживания поверхности, что повысится класс шеро.ховаюсги поверхности изделий до 12-13-го.

Электрохимическое полирование – Химическая обработка


Электрохимическое полирование

Категория:

Химическая обработка



Электрохимическое полирование

Электрохимическое полирование представляет собой процесс, обратный гальваническому осаждению металлов: обрабатываемую деталь помещают в качестве анода в ванну с электролитом и при заданном режиме (плотности тока, температуре и времени погружения) осуществляют съем металла. Процесс анодного растворения используют в операциях очистки поверхности металла, удаления заусенцев и грата, заострения, полирования.

Наибольший интерес представляет электрохимическое полирование. Такое полирование наиболее широко распространено в промышленности, но оно весьма трудоемко, плохо поддается механизации и автоматизации. Этим процессом определяются такие важнейшие критерии качества поверхностного слоя, как макро- и микрогеометрия, наклеп, микроструктура, остаточные напряжения. В прямой зависимости от этих критериев находятся эксплуатационные свойства деталей машин и механизмов — усталостная прочность, отражательная, теплоизлучающая и теплопоглощающая способность, обтекаемость жидкостями и газами, коррозийная стойкость.

Полирование определяет также эстетику изделия.

Сущность процесса

Электрохимическое полирование основано на анодном растворении обрабатываемой поверхности при режимах, которые обеспечивают интенсивное растворение микровыступов шероховатой поверхности и замедленное растворение во впадинах. В результате неравномерной скорости растворения шероховатая поверхность сглаживается, и появляется заметный блеск.

Только в случае преимущественного растворения микровыступов на поверхности металла происходит полирование (сглаживание).

Преимущественное растворение микровыступов может происходить тогда, когда у поверхности металла в результате электролиза образуется пленка низкой электропроводности, состоящая из продуктов анодного растворения.

Рис. 1. Схема образования вязкой пленки:
а — впадины; б — вязкая пленка; в — выступы; г — силовые линии тока.

В этом случае толщина пленки, а следовательно, и электрическое сопротивление ее в микровпадинах будут больше, чем на выступах, что и приведет к более интенсивному растворению выступов.

Растворимость анодных продуктов в электролите, скорость диффузии их в электролит, состав и физико-химические свойства анодной пленки имеют существенное значение для процесса полирования. Поэтому этот процесс у различных материалов происходит неодинаково. У многих металлов и сплавов (медь, никель, алюминий, нержавеющие хромистые и хромоникелевые стали) сглаживание сопровождается появлением блеска на обработанной поверхности. У некоторых сплавов (стали карбидного класса, бронзы, латуни) наблюдается блеск без заметного сглаживания шероховатостей. Ряд металлов и сплавов (олово, свинец, серый чугун, высококремнистые стали) вовсе не полируется. Вместо сглаживания образуется’ сильно травленая поверхность с толстыми темными пленками.

Существует несколько гипотез, по-разному объясняющих процесс электрохимического полирования, причем следует отметить, что ни одна из них не объясняет полностью все данные опыта. Наиболее вероятной и логически объясняющей сущность процесса является гипотеза вязкой пленки. Согласно этой гипотезе, электрохимическое полирование может происходить лишь при образовании на поверхности анода в процессе анодного растворения вязкой пленки.

Вязкая пленка состоит из продуктов анодного растворения, обладающих высоким электрическим сопротивлением. Покрывая тонким слоем шероховатую поверхность полируемого металла, эта пленка приобретает неодинаковую толщину на различных участках поверхности. На выступах толщина пленки и соответственно ей критическое сопротивление меньше, чем во впадинах.

Вследствие различного сопротивления пленки и способности электрического тока концентрироваться на остриях плотность тока на выступах будет больше, чем во впадинах. Поэтому скорость растворения вершин выступов будет больше скорости растворения дна впадин. В результате неравномерного распределения плотности тока и вследствие этого различной скорости растворения возникает сглаживание шероховатой поверхности.

Достоинства и недостатки электрохимического полирования

Электрохимическое полирование металлов имеет свои достоинства и недостатки. Главное достоинство метода — высокая производительность. Время полирования практически составляет не более 10 мин., причем габариты детали и форма ее не влияют на производительность. Возможна одновременная обработка такого количества деталей, какое помещается в ванне. Производительность процесса не зависит от твердости и вязкости обрабатываемого материала. Электрохимическое полирование позволяет обрабатывать детали не только простых очертаний, но и сложного профиля, а также внутренние полости, трудно доступные или вовсе не доступные при механическом полировании.

Основное отличие электрохимически полированной поверхности от механически полированной — отсутствие на ней каких-либо следов деформации и структурных изменений. Это — естественное следствие сущности электрохимического процесса, который осуществляется не только без приложения каких бы то ни было механических усилий к обрабатываемой поверхности, но и вовсе без физического прикосновения к ней.

Больше того, электрохимическое полирование удаляет механически деформированный поверхностный слой металла и восстанавливает его истинное строение. В результате анодного растворения поверхность оказывается свободной от механических и термических изменений. Улучшается микрогеометрия; блеск поверхности оказывается больший, чем у механически полированной.

Электрохимическое полирование выявляет дефекты в металле (неметаллические включения, трещины, волосовины, неоднородность структуры).

Поверхности, электрохимически полированные, пассивируются и благодаря этому в 4—6 раз лучше сопротивляются коррозии; они обладают повышенными оптическими свойствами.

Процесс не требует применения полировальных станков, фетровых кругов, абразивных порошков, паст. Возможны автоматизация обработки и одновременное обслуживание нескольких ванн. Значительно облегчаются и оздоровляются условия труда.

Перечисленные достоинства характеризуют несомненное превосходство электрохимического метода над механическим. Однако на нынешней ступени развития этому методу присущи и серьезные недостатки, которые ограничивают применение электрохимического полирования.

Один из основных недостатков — незначительная эффективность сглаживания. Электрохимическим полированием можно улучшить чистоту поверхности на 1—2 класса, причем оно эффективно, если исходная шероховатость не грубее 4—5-го классов. Поэтому при необходимости достигнуть 12—13-го классов приходится механически подготовлять поверхности до 10—11-го классов. Грубо обработанная поверхность (после точения, фрезерования, шлифования), подвергнутая электрохимическому полированию, почти сохраняет макрорельеф поверхности. Сглаживаются полностью лишь отдельные микровыступы и наблюдается закругление гребешков.

Попытки многих исследователей повысить эффективность сглаживания и, по существу, решить задачу электрохимического шлифования практически не привели к положительным результатам. Повышение эффективности сглаживания требует прежде всего применения высоких плотностей тока (более 100 а/см2), что, в свою очередь, приводит к растворению больших толщин металла (0,5—1 мм).

Необходимое время полирования обычно определяется опытным путем и находится, как правило, в пределах 8—10 мин. при полировании сталей. Увеличение производительности полирования сверх 10 мин. не только не ведет к улучшению качества поверхности, но часто, наоборот, ухудшает ее.

Сглаживание следов механической обработки происходит постепенно: после первых 3—4 мин. электрохимического полирования наблюдается уничтожение мелких рисок и появление гладких полированных площадок; после 10 мин. на поверхности остается рельеф грубых рисок, которые в дальнейшем полностью не исчезают, а лишь закругляются, образуя волнистую поверхность. Мы проводили исследования сглаживания при изменении времени полирования от 2 до 20 мин.

Увеличение времени полирования приводит к еще большему растворению металла. Кроме того, оно может вызвать в сплавах вытравливание отдельных структурных составляющих.

Данные этой таблицы показывают, что при возрастании времени полирования шероховатость поверхности улучшается. Однако, начиная с 10 мин. выдержки, улучшение это незначительно, и через 15 и 20 мин. сглаживание наших образцов (сталь У10 закаленная) происходило примерно с одинаковой эффективностью. К этому следует добавить, что значительная эффективность сглаживания сопровождается большим съемом металла. В процессе полирования за 10 мин. растворяется слой металла толщиной 60—100 мк.

Это резко искажает форму и размеры деталей, подвергаемых полированию, и превосходит припуски, оставляемые обычно на полирование.

Кроме того, интенсивное растворение металла приводит к накоплению в электролите большого количества железа (Ре20з). При накоплении Fe203 в количестве 6% к весу электролита полирование становится невозможным.

Так, например, ванна емкостью 10 л при полировании деталей с поверхностью 0,5 дм2 способна практически работать 4—6 суток. Затем железо должно быть удалено из раствора или электролит следует заменить вновь приготовленным.

Однако еще задолго до полного насыщения электролита железом состав электролита в процессе эксплуатации изменяется. Контроль его производят ежедневно, определяя удельный вес, и соответственно корректируют. Убыль воды в результате испарения восполняют довольно частым добавлением горячей воды.

Помимо контроля удельного веса электролита необходимо периодически осуществлять анализ на содержание Сг03, Cr203, h3S04, Н3РО4 и Fe203 и корректировать состав электролита.

При накоплении в электролите 1,5% Сг20з производят под действием тока окисление трехвалентного хрома в шестивалентный, а после окисления электролит прогревают в течение часа при 90—110 °С.

Анализ и корректировка кислот и удаление железа из электролита являются еще более затруднительными операциями. Таким образом, сложность корректировки состава электролита и, в конечном счете, короткий срок службы электролита являются еще одним весьма существенным недостатком электрохимического полирования. Расчеты показывают, что в результате непродолжительного действия электролита и, следовательно, большого удельного расхода кислот электрохимическое полирование в ряде случаев оказывается экономически нерентабельным.

Рис. 2. Зависимость съема металла от времени полирования (углеродистые стали).

Оборудование для электрохимического полирования

Оборудование, предназначенное для осуществления процесса электрохимического полирования, весьма сходно по конструкции с оборудованием, имеющимся в цехах металлопокрытий для операции хромирования.

Основным оборудованием являются ванны, источники постоянного тока низкого напряжения и приборы для измерения и регулирования электрического режима.

Ванны.

Ванны должны быть снабжены электронагревателями, помещенными в защитных, химически стойких, оболочках внутри самой ванны, и водяной рубашкой. Применение двойного нагрева необходимо потому, что при приготовлении и проработке электролита приходится нагревать его до 110—120°С, а в процессе полирования необходимо поддерживать температуру 70—80 °С. Применение водяной рубашки исключает возможность перегрева электролита. Кроме того, она используется для охлаждения проточной водой электролита, который часто перегревается в процессе полирования.

Внутренняя поверхность ванны должна быть облицована химически и температуростойким материалом. В качестве таких материалов для наиболее агрессивного сернофосфорнохромового электролита следует применять свинец, фторопласт-4 либо покрытия из суспензии фторопласта ЗМ или химически стойкой силикатной эмали марки ЛК-1.

В лабораторных условиях могут быть использованы жаростойкое стекло, фарфор, керамика.

Источником питания ванн обычно служат выпрямители селеновые марки ВСГ-ЗМ, купрокеный ВКГ-100 либо германиевый ВАГЗ-9/12-600. При необходимости возможна совместная работа нескольких выпрямителей.

Регулирование тока осуществляется по-разному, в зависимости от режима работы ванны и источника питания. В последнее время в промышленности применяется плавное бесступенчатое регулирование тока изменением напряжения в первичной обмотке трансформатора. Трансформатор смонтирован совместно с селеновым или германиевым выпрямителем. Подробное описание оборудования и схем для регулирования электрического режима можно найти в специальной литературе.

Составы электролитов, их приготовление и корректирование

Для электрохимического полирования предложены сотни различных по составу электролитов.

Это свидетельствует прежде всего о том, что до сих пор не найден состав электролита, который бы удовлетворял следующим основным требованиям:
1) высокой сглаживающей способностью;
2) длительной работоспособностью;
3) способностью полирования многих металлов и сплавов;
4) безопасностью в эксплуатации.

В результате испытаний разных электролитов установлено, что наиболее универсальным в современной технике является электролит, основой которого служит фосфорная кислота с добавлением серной кислоты и хромового ангидрида (фосфорносернохромовый электролит). Всестороннее изучение указанного электролита показало, что в нем практически возможно полировать большое количество марок сталей — от углеродистых до высоколегированных, включая нержавеющие и инструментальные стали. В этом электролите также возможно полировать медь, алюминий и некоторые марки сплавов на их основе.

Рис. 3. Ванна для электрохимического полирования:
1 — корпус наружной ванны; 2 — корпус внутренней ванны; 3 — нагреватель.

Приготовление и корректирование электролита

Порядок приготовления электролита следующий: смешивают фосфорную кислоту уд. веса 1,54 и серную кислоту уд. веса 1,82.

В отдельном сосуде растворяют в воде хромовый ангидрид. После отстаивания сливают его в ванну полирования. Затем вливают в ванну расчетное количество ортофосфорной кислоты уд. веса 1,54, а затем серной уд. веса 1,82. Полученную смесь прогревают при 140° С в течение примерно 1,5—2 час. до достижения уд. веса 1,73—1,74 (для полирования углеродистых сталей) и при 110—120 °С — до удельного веса 1,64 (для полирования нержавеющих сталей).

Опыт эксплуатации фосфорносернохромового электролита показывает, что работоспособность его во многом зависит от того, насколько поддерживается в процессе полирования соотношение соединений шестивалентного и трехвалентного хрома.

Если прикатодное пространство не изолировано от общего объема ванны, то в процессе полирования на катоде происходит восстановление хромовой кислоты, причем продукты восстановления повышают вязкость электролита, доводя его до непригодного состояния. Поэтому рекомендуется прикатодную зону изолировать пористой диафрагмой.

Диафрагма представляет собой узкий керамический пористый сосуд (прямоугольный или цилиндрический), в который помещается катод. Материалом для изготовления диафрагм служит смесь красной и шамотной глины (30% шамотной глины) и песка. В зависимости от габаритов катодов и ванны диафрагма формуется с возможно более тонкими стенками и обжигается при 1000— 1100 °С.

При пользовании диафрагмой срок службы электролита возрастает в 5—6 раз. Анодное окисление трехвалентного хрома при накоплении его свыше 2% ведут при анодной плотности тока 10—15 а/дм2, напряжении 10—12 в и температуре электролита 60 °С. Соотношение анода к катоду 1 : 10. Материалом анодов и катодов служит свинец. После окисления электролит рекомендуют прогреть в течение часа при 90—110 °С.

Особенности электрохимического полирования

Исследование работы фосфорносернохромового электролита показывает, что все три кислоты оказывают взаимно благоприятное влияние. Увеличение содержания фосфорной кислоты позволяет понизить плотность тока и напряжение, тогда как увеличение содержания серной кислоты повышает пределы плотности тока. Изменяя концентрацию и соотношение кислот, возможно установить области полирования для заданной марки материала.

Рис. 4. Схема изоляции прикатодной зоны:
1 — электролит в ванне; 2 — диафрагма; 3 — электролит прикатодной зоны; 4 — катод; 5 — анод.

Рис. 5. Полирующая способность фосфорносернохромовых электролитов при полировании:
а — углеродистых и низколегированных сталей; б — нержавеющих хромистых сталей.

Полирование сталей. Фосфорносернохромо-вые электролиты обладают полирующей способностью в широких пределах концентраций: от 60 до 85% фосфорной кислоты и от 15 до 40% —серной кислоты. На рис. 26 приведены диаграммы, иллюстрирующие области полирующей способности электролита углеродистых и нержавеющих групп сталей. Электрохимическое полирование каждой группы сталей имеет свою особенность. При полировании углеродистых сталей, если необходимо максимально сгладить шероховатости и не требуется блеск, следует увеличить содержание воды в электролите до 30—35%, а хромовой кислоты — до 12—15%. В этом случае при плотности тока 15—25 а/дм2 и температуре электролита 70 °С обрабатываемая поверхность приобретает серебристый цвет. Если необходимо сгладить шероховатость с получением блеска, то целесообразнее осуществить процесс в двух растворах: сгладить в электролите с большим содержанием воды и придать блеск в другом электролите с меньшим содержанием воды.

Рис. 6. Профилограммы шероховатости механически обработанных и электрохимически полированных поверхностей нержавеющей стали:
а — фрезерованная и электрохимически полированная после фрезерования; о — шлифованная и электрохимически полированная после шлифования.

Качество поверхности зависит от содержания углерода в стали и ее структуры. Наиболее легко полируются стали со структурой равномерно распределенного феррита и перлита. С увеличением содержания углерода в стали изменяется величина предельного тока, при котором наступает анодная пассивность.

Наименьший ток соответствует низкоуглеродистой стали (0,1%) с почти ферритной структурой; наибольший — среднеуглеродистой стали (0,45%) при соотношении феррита и перлита 1:1. При дальнейшем увеличении содержания углерода, когда структура становится более однородной и преобладает перлитная составляющая, предельный ток вновь снижается.

При полировании хромистых нержавеющих сталей в электролите при плотности тока 20—30 а/дм2 поверхность получается травленой и сглаживания не наблюдается. При плотности тока 40 а/дм2 наблюдается блеск без сглаживания. Наиболее эффективное сглаживание, сопровождаемое блеском, происходит при плотности тока в пределах 50—70 а/дм2. Этой плотности соответствуют профилограммы шероховатости поверхностей различно обработанной нержавеющей стали марки 2X13.

Из профилограмм следует, что поверхность, шлифованную абразивным кругом зернистостью 12 до 7-го класса, возможно отполировать до 9-го класса. Фрезерованную поверхность с шероховатостью 6-го класса возможно отполировать до 9-го класса.

Следует заметить, что в ряде случаев волнистость поверхности не мешает улучшению ее эксплуатационных свойств. Так, например, исходная фрезерованная поверхность после электрохимического полирования, будучи волнистой, обладает повышенной усталостной прочностью, лучшим сопротивлением коррозии и полным отсутствием деформированного слоя.

Температура электролита

Значительное влияние на качество поверхности оказывает температура. При низких температурах (30— 40 °С) полирования не происходит, и поверхность оказывается травленой, матовой. С повышением температуры поверхность становится более блестящей, но травление сохраняется. При температурном интервале 70—80°С получены лучшие результаты.

Для каждого электролита, режима полирования и полируемого сплава существуют пределы температур электролита, отвечающие лучшему качеству поверхности. При чрезмерном снижении температуры электролита против оптимальной повышается вязкость электролита и соответственно вязкость пленки на аноде, а также затрудняется диффузия продуктов анодного растворения. В результате замедляется процесс анодного растворения, полирующее действие электролита ослабляется или полностью прекращается и наблюдается травленая поверхность.

Чрезмерное повышение температуры ускоряет процесс анодного растворения, снижает вязкость электролита и пленки на аноде, облегчает диффузию и уменьшает омическое сопротивление электролита. С повышением температуры усиливается газообразование, на обрабатываемой поверхности появляются полосы и наблюдаются травленые участки.

Несоблюдение главным образом электрического и температурного режимов приводит к появлению различных дефектов при электрохимическом полировании.

Расстояние между электродами и их перемешивание

Расстояние между электродами оказывает заметное влияние на равномерность удаляемого слоя. Так, при расстоянии 20—40 мм происходит значительное растворение (от 0,2 до 0,6 мм). Увеличение расстояния до 150 мм не приводит к существенному улучшению равномерности съема. Увеличение расстояния не позволяет использовать необходимый ток вследствие высокого удельного сопротивления электролита.

Перемешивание электролита ухудшает качество поверхности, покрывая ее темным налетом, причем эффективность сглаживания не возрастает.

Особенности полирования меди

Возможно полирование меди и некоторых ее сплавов (латуней) и в одной ортофосфорной кислоте уд. веса 1,5 (716 г/л Н3Р04). Однако добавление к ортофосфорной кислоте хромового ангидрида позволяет осуществлять процесс полирования в широких пределах плотности тока (20—70 а/дм2) и сократить время полирования до 1—3 мин. Катодами служат свинцовые пластины. Соотношение поверхностей анода и катода 1 : 3.

В процессе полирования меди, как и при полировании сталей, уменьшается содержание воды, кислоты и происходит восстановление Сг03 до Сг20з. Корректирование электролита осуществляется так же, как и при полировании сталей. Вода добавляется до необходимого удельного веса, а кислота — по данным химического анализа. Сгг03 окисляется на аноде в Сг03.

Эффективность сглаживания электролита невелика. Поэтому подготовка механическим шлифованием должна заканчиваться на зернистости 5. Хорошо полируется без всякой предварительной подготовки листовой холоднокатаный материал. В этом случае должна быть проявлена забота о тщательном сохранении поверхности листа от царапин, забоин и других повреждений.

Следует иметь в виду, что раковины, поры и включения хорошо выявляются электрохимическим полированием. Скорость растворения меди при плотности тока 50 а/дм2 составляет 1 мк/мин, причем снижение удельного веса электролита с 1,5 до 1,3 ускоряет процесс растворения.

Особенности полирования алюминия

Характерная особенность полирования алюминия — интенсивное пассивирование полируемой поверхности и вследствие этого снижение плотности тока до очень малых плотностей (1—2 а/дм2) и повышение напряжения до 15—25 в. Эта особенность не должна смущать, хотя она наступает через 2—4 мин. после завешивания детали и несколько ухудшает блеск.

Если полирование осуществляется с целью получения высокой отражательной способности, рекомендуется в этом случае разрушать образующуюся окисную пленку кратковременным переключением тока с анода на катод (реверсированием) либо выключением тока на несколько секунд.

Резкое ухудшение качества полированной поверхности алюминия наступает в результате анодного растворения алюминия. При накоплении в электролите 30 г/л алюминия, по существу, прекращается работа ванны. Контроль и корректирование раствора осуществляют так же, как и в процессе полирования сталей.

Применение электрохимического полирования

Несмотря на существенные недостатки электрохимического полирования и все продолжающиеся исследования в данной области, этот процесс уже сейчас находит эффективное применение в некоторых производствах.

В то же время из-за отсутствия объективных данных и незнания особенностей электрохимического полирования часто возникают значительные затруднения или принимаются ошибочные решения в выборе этого метода.

Применение электрохимического полирования на нынешней стадии развития целесообразно прежде всего там, где затруднено или невозможно механическое полирование (недостаточные для механического полирования поверхности, недопустим нагрев или силовое воздействие, дефекты материала или механической обработки). Так, например, электрохимическому полированию подвергают различные детали арматуры.

Электрохимически полируют детали карбюратора (в частности, клапан подачи горючего из нержавеющей стали или фольги), тончайшую ленту, проволоку и трубы. Особый интерес представляет полирование труб длиной 6—8 м из нержавеющей стали Х18Н9Т. Механическая очистка внутренней поверхности длинных труб вызывает значительные трудности. Химическая очистка труб не решает задачи—она растравливает поверхность и не полностью очищает от окалины. Электрохимическим полированием внутренняя поверхность становится более гладкой, блестящей, повышается коррозийная стойкость, уменьшается трение жидкости и газов о стенки, обеспечивается высокая производительность процесса.

При полировании длинных труб крупного диаметра (больше 100 мм) и других крупных полых деталей внутренняя полость используется в качестве ванны-электро-лизера. Катод в этом случае монтируется в центре трубы. Полирование ведется с протоком электролита через трубу. Трудности полирования больших поверхностей труб заключаются в необходимости применения тока порядка 10 000 а. Столь большой ток вызывает чрезмерный разогрев электролита и выделение большого количества газов. К тому же трудно выполнима подводка большого тока, поэтому трубы крупных диаметров полируют на небольших участках, непрерывно подвигая катод вдоль трубы. Длина катода зависит от диаметра трубы. Например, для трубы диаметром 200 мм длина катода должна быть 170 мм. Электролит циркулирует под давлением до 4 атм, скорость перемещения катода — до 8 м/мин.

В настоящее время разработано несколько конструкций установок для полирования внутренней и наружной поверхностей труб различных диаметров.

Электрохимическое полирование находит применение и в производстве режущего инструмента. Образующийся при шлифовании инструмента дефектный слой легко снимается электрохимическим полированием. В результате повышаются стойкость инструмента и защита от коррозии. Например, электрохимическое полирование канавок сверл обеспечивает более легкий сход стружки при сверлении и меньший разогрев сверла.

Полирование сверл осуществляется партиями, а не по одному сверлу, как при механическом полировании. Объем ванны емкостью 150 л позволяет загружать одновременно до 30 сверл диаметром 10— 15 мм. Для быстрой загрузки сверл сконструированы приспособления — рамки.

Рис. 7. Полирование сверл:
а — механическое; б — электрохимическое.

Для полирования 1000 сверл диаметром 10 мм в среднем расход электролита составляет 8,7 кг. Соответственно расходуется ортофосфорной кислоты 5,4 кг, серной кислоты — 2,5 кг и хромового ангидрида — 0,8 кг.

Уже указывалось, что электрохимическое полирование удаляет поверхностный слой металла, а многие дефекты материала выступают наружу. Когда преследуют цель декоративной отделки деталей, это свойство является недостатком метода. В случаях необходимости контроля качества поверхности это — несомненное достоинство.

Высокая чувствительность электрохимического полирования к неоднородности состава все больше используется в практике металловедческих лабораторий для контроля качества сталей: выявления микро- и макроструктуры, трещин, флокенов, волосовин, неметаллических включений и других нарушений сплошности металла; определения карбидной неоднородности, склонности сплавов к интеркристаллитной коррозии; обнаружения деформированных участков, явлений термического отпуска тонкого поверхностного слоя. При подготовке шлифов для микроскопического исследования достоинства электрохимического полирования особенно заметны. Поверхность шлифа, полированная электрохимически, освобождается от всех термических и механических изменений (наклепа), неизбежных при механических способах обработки. Она свободна также от каких-либо загрязнений полирующими веществами и пленок, в том числе и окисных, образовавшихся ранее. И хотя полированная поверхность анодно пассивированная, она остается чистой и активной.

Отсутствие на поверхности следов термических воздействий и деформаций и повышенная чистота полированной поверхности позволяют наблюдать истинную, неискаженную структуру исследуемого материала. Электрохимически полированная поверхность особенно удобна для рассмотрения при больших увеличениях. Здесь отчетливо выявляются тончайшие детали структуры, обычно искаженные при механической подготовке (первичное зерно, микроликвация). Электрохимическое полирование в сочетании с химико-механическим методом ускоряет процесс приготовления шлифов.


Реклама:

Читать далее:
Электро-химико-механическая обработка

Статьи по теме:

Химическое полирование

Химическое полирование благородных металлов имеет пока весьма ограниченное применение. Химическое полирование цветных металлов, особенно алюминия, меди и ее сплавов, дает вполне удовлетворительные результаты и применяется в условиях массового производства. Съем металла при химическом полировании сильно зависит от природы металла, состава электролита и температуры.

Для химического полирования меди и се сплавов применяют раствор следующего состава:.

Ортофосфорная кислота…………………………………………935-950 г/л.

Уксусная кислота ледяная………………………………………250-260 г/л.

Азотная кислота………………………………………………….280-290 г/л.

Температура электролита………………………. …………………..18-30 С.

Время полирования…………………………………………………..1-5 мин.

Для химического полирования томпаковых изделий применяют раствор состава:.

Азотная кислота (р-1,4 г/см

)……………………………………….100 мл.

Серная кислота ЬЬЯОДр-Т .84 г/см

)…………………………………400 мл.

Соляная кислота(р= 1,19 г/см )…………………………………………5 мл.

Хромовый ангидрид С Юл……………………………………………….300 г.

Вода………………………………………………………………………….1л.

Температура электролита…………………………………….без подогрева.

Время полирования…………………………………………………….1-2 мин.

Для массового полирования алюминиевых изделий применяют раствор следующею сосі ива:.

Ортофосфорная кислота Н.РО,…………………………………………530 г/л.

Азотная кислота HN0j(.p~1.42 г/см)…………………………………….45 г/л.

Серная кислота (р=1,84 г/см

)……………………………………………416 г/л.

Мочевина……………………………………………………………………5 г/л.

Температура электролита…………………………………………………100С.

Время полирования……………………………………………………..1 5-20 с.

Ванны для химического полирования изготовляют из фарфора, кварца, стали или керамики с применением наружных электронагревателей. Изделия, подвешенные на крюках или помещенные в перфорированные корзины из кислотостойкой стали, погружают в раствор. Для лучшего протекания процесса полирования изделия встряхивают. Хорошие результаты можно получить при повторном полировании. Вынутые после первого полирования изделия погружают в азотную кислоту, разбавленную водой в отношении 1:1, и снова полируют.

Полирование химическое – Справочник химика 21

    Полирование химическое деталей из меди и ее сплавов [c.267]

    Полирование химическое деталей из алюминия и его сплавов [c.267]

    Обобщенная теория структурной коррозии металлов, основанная на дифференциальных анодных кривых, позволяет объяснить большое многообразие явлений структурной коррозии, анодное растворение и поверхностную обработку гетерогенных сплавов и агрессивных средах (межкристаллитную коррозию, коррозию под напряжением, ножевую коррозию, точечную и язвенную коррозию, экстрагивную коррозию, коррозию в зазорах, электрополи-рование, химическое полирование, химическое фрезерование , электрохимическое фрезерование и др.) с учетом природы металла и раствора. [c.79]


    Полирование химическое поверхности— [c.242]

    Химическое полирование. В связи с тем что качество полирования химическим способом ограничено, этот процесс, вероятно, правильнее было бы назвать химическим глянцеванием. При химическом полировании невозможно получить зеркальную поверхность, хотя общая отражательная способность улучшается. [c.63]

    Химическое полирование. Химический способ более производителен, чем электрохимический, не требует сложного оборудования и позволяет полировать детали сложной формы и размеров. Недостаток химического полирования — небольшой срок службы полирующих растворов. Из полирующих растворов по мере их работы (особенно при нагревании) испаряются основные составные части пары уксусной кислоты, окислы азота, хлористый водород и т. д. Так как эти вещества обладают различной [c.111]

    Хотя принципиально и нет различия между гальванической обработкой непроводника после того, как он сделан проводящим, и гальванической обработкой металла, тем не менее процесс обработки непроводника несколько сложнее. Это объясняется двумя причинами проводящий слой бывает очень тонким и многие непроводники чувствительны к химикалиям, содержащимся в обычных ваннах. Толщина металлического покрытия, нанесенного непосредственно на проводящий слой, зависит главным образом от дальнейшей обработки (например, полирования, химического глянцевания) и от назначения изделия. [c.413]

    В отдельных случаях весьма эффективным способом снижения коррозионного разрушения керамических материалов является обработка поверхности механическая (шлифование или полирование), химическая (травление), термическая или химико-термическая. Применяют также защитные покрытия и обмазки. [c.48]

    Технологический процесс изготовления фирменных знаков состоит из операций механической подготовки (шлифования и полирования), химической подготовки (Обезжиривания и в зависимости от требований матирования или химического полирования), оксидирования и фотохимической обработки — нанесения светочувствительного слоя, копирования, проявления и закрепления изображения, обжига эмульсии, вторичного оксидирования и окрашивания фона изображения. [c.66]

    Ниже будут подробно рассмотрены два метода полирования—химический И электролитический, при которых алюминий подвергается окислительным реакциям. Эти методы являются основой для методов, окончательной обработки алюминия. Они имеют целью вызвать рост оксидной пленки значительной толщины, которая предотвращает доступ атмосферы к метал/1у, а также коррозию, Это достигается применением растворов, содержащих кислоты, которые медленно растворяют образующуюся пленку и под влиянием которых последняя делается пористой, в результате чего открывается доступ для среды, образующей пленку нц металле. При энодном окислении, [c.40]

    Полирование химическим методом 1 поверхности в 20 раз дещевле, чем электрохимическим. [c.32]

    Бологнези [1901, сравнивая алюминий, электрополиро-ванный в ванне Жаке с алюминием, полированным химически в смеси кислот, нащел, что в 1-н. растворе НС1 в присутствии ртути, злектрополированная поверхность разъедается более быстро, чем химически полированная. [c.81]

    На сегодня электрополирование применяется широко для нержавеющих сталей — особенно в случае небольших деталей. Для этого материала механическое полирование относительно дорого, и электролитический метод имеет экономическое преимущество. Для алюминия электрополирование, а также полирование химическим путем используется все шире и шире, особенно на сверхчистом металле. [135]. Лакомб ссылается на фактический отказ от механической полировки во Франции в пользу химического или электролитического метода повсюду, где желательно получить конечную блестящую поверхность, т. е. пленку, которая не меняет отражательную способность находящегося под ними металла [136]. [c.239]

    Это относится в равной степени к электролитическим и химическим методам полирования. Химические методы разработаны сравнительно недавно. В связи с тем, что они не требуют применения электрического тока, стоимость их может быть значительно ниже стоимости электрополирования, так как не требуется больших затрат на выпрямители или мотор-генераторы. При химических методах полирования может произойти весьма незначительное ухудшение качества поверхности по сравнению с электрополирован-ной поверхностью после механического полирования ухудшение качества поверхности происходит в меньшей степени. [c.40]


Химические и электрохимические методы обработки деталей.Химическое полирование металлов

Содержание.

Полировать металлы можно простым погружением детали в ванну с химическим раствором без применения электричества. Раствор состоит из следующих веществ:

  • фосфорная кислота концентрированная – 350 мл;
  • азотная кислота концентрированная – 50 мл;
  • серная кислота концентрированная – 100 мл;
  • сернокислая или азотнокислая медь – 0,5 г.

Рабочая температура ванны – 100-110°. Время полирования – 0,5-4 мин. При полировании выделяются удушливые пары, поэтому ванна должна находиться в вытяжном шкафу или на открытом воздухе!
Все данные по режиму полирования приведены для алюминия. Для других металлов время полирования и температура должны быть другими. Латунь и детали из нее на воздухе быстро тускнеют. Поэтому после полировки их покрывают лаком. Но можно получить на латуни стойкое блестящее покрытие. Для этого ее погружают для обезжиривания в 10-15 %-ный раствор какой-либо щелочи и промывают. Затем деталь опускается в раствор бисульфита натрия, промывается в воде и опускается в раствор уксуснокислой меди, подогретый до 36-40°. В зависимости от времени, в течение которого деталь находится в растворе, латунь окрашивается от светло-золотистого цвета до цвета червонного золота. За цветом окраски надо следить, время от времени вынимая деталь из раствора. Потом деталь промывается водой и сушится. Концентрация раствора уксуснокислой меди – 1-5 %. Чтобы окрасить латунь и другие медные сплавы в черный цвет (вороненого металла), деталь погружают на 1-3 мин в следующий раствор:

  • 25 %-ный нашатырный спирт – 500 мл;
  • двууглекислая (или углекислая) медь – 60 г;
  • опилки латунные – 0,5 г.

После смешивания компонентов раствор необходимо два-три раза энергично взболтать. После окрашивания деталь промывается теплой водой, сушится и покрывается бесцветным лаком.

 

По материалам книги ‘ Азбука судомоделизма’

<< Предыдущая статья | Следующая статья >>

ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛИРОВАНИЕ СТАЛИ

Использование данной таблицы поможет Вам подобрать нужный комплект для металлопокрытия. Вам только надо знать какой металл Вы хотите использовать в качестве металлопокрытия и основу — базовый металл или сплав, на который оно будет наноситься.

Анодирование АлюминияХромированной поверхностиМеди, латуни, бронзыНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной сталиЦинка, свинца, свинцовых сплавовНикеляОловаЗолота

Золочение АлюминияХромированной поверхностиМеди, латуни, бронзыНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной сталиЦинка, свинца, свинцовых сплавов НикеляОловаЗолота

Копи-хромирование АлюминияХромированной поверхности Меди, латуни, бронзыНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной стали Цинка, свинца, свинцовых сплавовНикеля ОловаЗолота

Лужение АлюминияХромированной поверхностиМеди, латуни, бронзыНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной сталиЦинка, свинца, свинцовых сплавовНикеляОловаЗолота

Меднение АлюминияМеди, латуни или бронзыХромированной поверхностиНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной сталиЦинка, свинца, свинцовых сплавовНикеляОловаЗолота

Никелирование АлюминияМеди, латуни, бронзыХромированной поверхности Не токопроводящих материаловЖелеза и сталиЛегированной и закаленной стали Цинка, свинца, свинцовых сплавовНикеляОловаЗолота

Серебрение АлюминияХромированной поверхностиМеди, латуни, бронзыНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной стали Цинка, свинца, свинцовых сплавовНикеляОловаЗолота

Цинкование АлюминияМеди, латуни, бронзыХромированной поверхностиНе токопроводящих материаловЖелеза и сталиЛегированной и закаленной сталиЦинка, свинца, свинцовых сплавовНикеляОловаЗолота

Чернение Железа и сталиМеди, латуни и бронзы

Хромирование АлюминияХромированной поверхности Меди, латуни, бронзыНе токопроводящих материаловЖелеза и стали Легированной и закаленной стали Цинка, свинца, свинцовых сплавовНикеля ОловаЗолота

Анодирование – Алюминия

Анодирование создает прочный износостойкий слой на алюминиевой поверхности. После анодирования, поверхность можно отполировать до блеска и тем самым придать ей дополнительной декоративности, или используя красящие пигментные тонеры, окрасить анодированную поверхность в различные цвета.

Перед проведением процесса анодирования, алюминиевую поверхность рекомендуется обработать в травильно-осветлительном cоставе:

  1. Используйте для этого «Травильно-осветлительный состав»

После этого, проводится анодирование алюминиевой поверхности. Используйте для этого представленный комплект:

  1. Комплект «Анодирование алюминия»

Вернуться к подбору комплекта

Золочение – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

  1. Состав «Универсальный очиститель»

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

После этого можно проводить золочение металлической поверхности. Используйте для этого представленный электролит:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

После этого можно проводить золочение металлической поверхности. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

После этого на металлическую поверхность наносится покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

После этого на металлическую поверхность наносится покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Цинкование – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Алюминия

Для того, чтобы нанести металлическое покрытие на алюминий, вы должны сначала провести предварительную подготовку его поверхности. Для этого алюминиевую деталь обрабатывают сначала в растворе универсального очистителя. Используйте для этого представленный состав:

После этого деталь рекомендуется обработать в травильно-осветлительном составе. Используйте для этого представленный комплект:

После обработки в травильно-осветлительном составе, можно использовать 2 варианта обработки алюминиевой поверхности перед нанесением конечного декоративного покрытия.

1 вариант (используя реактив «Цинкатный активатор»)

Проведите цинкатную обработку и осветление алюминиевой поверхности.

Используйте для этого представленный комплект:

После цинкатной обработки, на деталь необходимо нанести покрытие “первичная медь”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска на деталь рекомендуется дополнительно нанести покрытие “блестящая медь”.

Используйте для этого представленный комплект:

После этого, можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

2 вариант (используя реактив «Первичный никель»*)

*Не может использоваться для кремнийсодержащих алюминиевых сплавов.

Обработайте деталь в реактиве “первичный никель”. Используйте для этого представленный комплект:

После этого, для повышения конечного блеска покрытия, на деталь рекомендуется нанести покрытие “блестящая медь”. Используйте для этого представленный комплект:

После этого, можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Меднение – Меди, латуни или бронзы

Перед нанесением блестящего медного покрытия на медь, латунь или бронзу, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Меди, латуни, бронзы

Перед никелированием меди, латуни или бронзы, необходимо сначала провести очистку и активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Цинкование – Меди, латуни, бронзы

Перед цинкованием меди, латуни или бронзы, необходимо сначала провести предварительную очистку и активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Золочение – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Никелевое покрытие, перед проведением процесса хромирования, необходимо активировать. Используйте для этого представленный состав:

После этого, можно проводить золочение металлической поверхности. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Перед нанесением покрытия “КОПИ-ХРОМ”, никель необходимо активировать. Используйте для этого представленный состав:

После этого можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Перед проведением процесса лужения, его необходимо активировать. Используйте для этого представленный состав:

После этого можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Перед проведением процесса серебрения, его необходимо активировать. Используйте для этого представленный состав:

После этого можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Хромирование – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Никелевое покрытие, перед проведением процесса хромирования, необходимо активировать. Используйте для этого представленный состав:

После этого, можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Золочение – Меди, латуни, бронзы

Перед золочением меди, латуни или бронзы, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, для повышения антикоррозионных свойств покрытия, перед проведением процесса золочения, рекомендуется нанести на металлическую поверхность слой никеля. Используйте для этого любой из представленных комплектов:

После этого можно проводить процесс золочения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Меди, латуни, бронзы

Перед нанесением покрытия «КОПИ-ХРОМ» на медь, латунь или бронзу, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого для повышения блеска и износостойкости конечного покрытия, на металлическую поверхность наносится блестящее медное покрытие. Используйте для этого представленный комплект:

Теперь можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Меди, латуни, бронзы

Перед лужением меди, латуни или бронзы, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Теперь можно проводить процесс блестящего лужение. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Меди, латуни, бронзы

Перед серебрением меди, латуни или бронзы, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, для повышения антикоррозионных свойств покрытия, перед проведением процесса серебрения, рекомендуется нанести на металлическую поверхность слой никеля. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Хромирование – Меди, латуни, бронзы

Перед хромированием меди, латуни или бронзы, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Для повышения блеска и износостойкости конечного покрытия, перед проведением процесса декоративного хромирования, на поверхность рекомендуется нанести промежуточный слой никеля. Используйте для этого любой из представленных комплектов:

  1. Комплект «Блестящий никель» (требуется источник питания)
  2. Комплект «Электролиз-никель» (не требуется источник питания)

После этого, можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Меднение – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить металлическое покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Перед проведением процесса блестящего меднения, его необходимо активировать. Используйте для этого представленный состав:

После этого, можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Перед проведением процесса золочения, его необходимо активировать. Используйте для этого представленный состав:

После этого, можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Цинкование – Хромированной поверхности

Блестящее декоративное хромирование представляет собой трехслойное металлическое покрытие состоящее из первичного слоя меди, наносимого на основу для повышения адгезионных и отражательных свойств покрытия, слоя никеля, используемого для повышения его антикоррозийных свойств, и конечного слоя хрома, использующегося в качестве блестящего декоративного покрытия, и обладающего именно в такой связке, одновременно и зеркальным блеском, и исключительными антикоррозионными свойствами. На поверхности хрома в обычных условиях имеется инертная оксидная пленка, которая при нанесении на него другого металлопокрытия не обеспечивает ему достаточного сцепления и поэтому, перед нанесением другого металлопокрытия, необходимо удалить весь слой хрома. Используйте для этого представленный состав:

После удаления слоя хрома, можно заметить покрытие, имеющее едва заметный желтоватый оттенок, это слой никеля. Перед проведением процесса лужения, никелевое покрытие необходимо активировать. Используйте для этого представленный состав:

После этого, можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Анодирование – Не токопроводящих материалов

Используя данные процесс, можно анодировать только алюминиевую поверхность

Вернуться к подбору комплекта

Золочение – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого любой из представленных комплектов:

После металлизации и нанесения химического медного покрытия, на поверхность изделия при малом токе наносится “затягивающее” медное покрытие. Используйте для этого представленный комплект:

После этого, для повышения антикоррозионных свойств покрытия, рекомендуется нанести на металлическую поверхность слой никеля. Используйте для этого любой из представленных комплектов:

Теперь можно проводить золочение. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность при малом токе необходимо нанести “затягивающее” медное покрытие. Используйте для этого представленный комплект:

После этого можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность при малом токе наносится “затягивающее” медное покрытие. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность при малом токе наносится “затягивающее” медное покрытие. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность при малом токе наносится “затягивающее” медное покрытие. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность при малом токе необходимо нанести “затягивающее” медное покрытие. Используйте для этого представленный комплект:

После этого, для повышения антикоррозионных свойств покрытия, рекомендуется нанести на металлическую поверхность слой блестящего никеля. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Цинкование – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материалы является довольно трудоемким процессом. Для нанесения металлического покрытия сначала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность детали, при малом токе наносится “затягивающее” медное покрытие. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Не токопроводящих материалов

Нанесение металлического покрытия на не токопроводящие материлы является довольно трудоемким процессом. Для начала необходимо создать токопроводящий слой на поверхности детали. Используйте для этого представленный комплект:

После металлизации и нанесения химического медного покрытия, на поверхность при малом токе наносится “затягивающее” медное покрытие. Используйте для этого представленный комплект:

После этого на осажденное медное покрытие рекомендуется нанести слой никеля. Используйте для этого любой из представленных комплектов:

  1. Комплект «Блестящий никель» (требуется источник питания)
  2. Комплект «Электролиз-никель» (не требуется источник питания)

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Золочение – Железа и стали

Перед золочением железа или стали, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого представленные составы.

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, для повышения отражательных и антикоррозионных свойств конечного покрытия, на металлическую поверхность наносится слой никеля. Используйте для никелирования любой из представленных комплектов:

Теперь можно проводить процесс золочения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Железа и стали

Перед нанесением покрытия «КОПИ-ХРОМ» на железо или сталь, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого представленные составы.

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого для повышения блеска и износостойкости конечного покрытия, на металлическую поверхность рекомендуется нанести блестящее никелевое покрытие. Используйте для этого представленный комплект:

Теперь можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Железа и стали

Перед нанесением меди на железо или сталь, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Теперь можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Железа и стали

Перед никелированием железной или стальной поверхности, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Железа и стали

Перед серебрением железа или стали необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, для повышения отражательных и антикоррозионных свойств конечного покрытия, нанесите на очищенную поверхность слой никеля. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Хромирование – Железа и стали

Перед хромированием железа или стали, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого представленные составы.

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, для повышения отражательных и антикоррозионных свойств конечного хромированного покрытия, на металлическую поверхность наносится слой никеля. Используйте для никелирования любой из представленных комплектов:

  1. Комплект «Блестящий никель» (требуется источник питания)
  2. Комплект «Электролиз-никель»  (не требуется источник питания)

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Анодирование – Легированной и закаленной стали

Используя данные процесс, можно анодировать только алюминиевую поверхность

Вернуться к подбору комплекта

Золочение – Легированной и закаленной стали

Перед золочением легированной или закаленной стали, необходимо сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

После этого, необходимо обработать поверхность детали в представленном составе:

Затем на поверхность наносится слой блестящего никеля. Используйте для этого представленный комплект:

После этого можно проводить процесс золочения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Легированной и закаленной стали

Перед нанесением покрытия «КОПИ-ХРОМ» на легированную или закаленную сталь, рекомендуется сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

После этого, необходимо обработать поверхность детали в представленном составе:

После этого для повышения блеска и износостойкости конечного покрытия, на металлическую поверхность рекомендуется нанести блестящее никелевое покрытие. Используйте для этого представленный комплект:

Теперь на металлическую поверхность можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Легированной и закаленной стали

Перед лужением легированной или закаленной стали, необходимо сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

После этого необходимо обработать металлическую поверхность в представленном составе:

После этого можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Легированной и закаленной стали

Перед меднением легированной или закаленной стали, необходимо сначала провести электрополировку стальной поверхности. Электрополировка вытравливает тончайший слой металла, удаляет окисные отложения и придает металлической поверхности дополнительный блеск. Используйте для этого представленный комплект:

После этого, необходимо обработать деталь в активаторе для нержавеющей стали. Используйте для этого представленный состав:

После этого можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Легированной и закаленной стали

Перед никелированием легированной или закаленной стали, рекомендуется сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

Затем необходимо обработать поверхность детали в представленном составе:

После этого можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Легированной и закаленной стали

Перед серебрением легированной или закаленной стали, необходимо сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

После этого, необходимо обработать поверхность детали в представленном составе:

Затем на поверхность наносится слой блестящего никеля. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Цинкование – Легированной и закаленной стали

Перед цинкованием легированной или закаленной стали, рекомендуется сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

После этого необходимо обработать поверхность детали в представленном составе:

После этого можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Легированной и закаленной стали

Перед хромированием легированной или закаленной стали, необходимо сначала провести электрополировку стальной поверхности. Используйте для этого представленный комплект:

После этого, необходимо активировать металлическую поверхность и нанести на нее слой никеля. Используйте для этого представленный состав:

Затем на поверхность наносится слой блестящего никеля. Используйте для этого представленный комплект:

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Анодирование – Цинка, свинца, свинцовых сплавов

Используя данные процесс, можно анодировать только алюминиевую поверхность

Вернуться к подбору комплекта

Золочение – Цинка, свинца, свинцовых сплавов

Перед золочением цинка, свинца, медно-свинцовых или оловянно-свинцовых сплавов, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов, и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

Несмотря на возможность напрямую наносить золото на покрытие первичная медь, мы рекомендуем нанести на него промежуточный слой никеля. Это повысит износостойкость и антикоррозионные свойства золотого покрытия. Используйте для никелирования любой из представленных комплектов:

После этого можно проводить процесс золочения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Цинка, свинца, свинцовых сплавов

Перед нанесением покрытия «КОПИ-ХРОМ» на цинк, свинец, медно-свинцовые или оловянно-свинцовые сплавы, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов, и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

После этого, для повышения блеска и антикоррозионных свойств на металлическую поверхность рекомендуется нанести блестящее медное покрытие. Используйте для этого представленный комплект:

Теперь можно нанести покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Цинка, свинца, свинцовых сплавов

Перед лужением цинка, свинца, медно-свинцовых или оловянно-свинцовых сплавов, необходимо сначала провести очистку, затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов, и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Цинка, свинца, свинцовых сплавов

Перед меднением цинка, свинца, медно-свинцовых или оловянно-свинцовых сплавов, необходимо сначала провести очистку, затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное адгезионное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей сделанных из таких металлов и сплавов и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

После этого можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Цинка, свинца, свинцовых сплавов

Перед никелированием цинка, свинца, медно-свинцовых или оловянно-свинцовых сплавов, необходимо сначала провести очистку, затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов, и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

Далее можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Цинка, свинца, свинцовых сплавов

Перед серебрением цинка, свинца, медно-свинцовых или оловянно-свинцовых сплавов, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов, и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

Несмотря на возможность напрямую наносить серебро на покрытие первичная медь, мы рекомендуем нанести на него промежуточный слой никеля. Это повысит блеск и износостойкость металлического покрытия. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Цинкование – Цинка, свинца, свинцовых сплавов

Перед нанесением блестящего цинкового покрытия на цинк, свинец, медно-свинцовые или оловянно-свинцовые сплавы, необходимо сначала провести очистку и затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов, и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Цинка, свинца, свинцовых сплавов

Перед хромированием цинка, свинца, медно-свинцовых или оловянно-свинцовых сплавов, необходимо сначала провести очистку, затем активацию металлической поверхности. Используйте для этого, представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого, на поверхность необходимо сначала нанести первичное медное покрытие. Электролит для первичного меднения имеет нейтральный уровень рН раствора, не разъедает поверхность деталей, сделанных из таких металлов и сплавов и обеспечивает с ними отличное сцепление. Используйте для этого представленный комплект:

Несмотря на возможность напрямую наносить хром на покрытие первичная медь, мы рекомендуем нанести на него промежуточный слой никеля. Это повысит износостойкость и антикоррозионные свойства золотого покрытия. Используйте для никелирования любой из представленных комплектов:

  1. Комплект «Блестящий никель» (требуется источник тока)
  2. Комплект «Электролиз-никель» (не требуется источник тока)

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Золочение – Никеля

Можно сразу наносить золото на никелевую поверхность. Перед золочением рекомендуется только обработать деталь в растворе химического активатора. Используйте для этого представленный состав:

Теперь можно проводить процесс золочения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Никеля

Можно сразу наносить покрытие «КОПИ-ХРОМ» на никель. Перед нанесением покрытия необходимо только обработать деталь в растворе химического активатора. Используйте для этого представленный состав:

Теперь можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Никеля

Перед лужением никелевой поверхности, необходимо только провести активацию металлической поверхности. Используйте для этого представленный состав:

После этого, можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Никеля

Можно сразу наносить никель на никелевую поверхность. Перед никелированием рекомендуется только обработать деталь в растворе химического активатора. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Никеля

Можно сразу серебрить никелевую поверхность. Перед серебрением рекомендуется только обработать деталь в растворе химического активатора. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Цинкование – Никеля

Перед нанесением блестящего цинкового покрытия на никель, необходимо провести активацию металлической поверхности. Используйте для этого представленный состав:

После этого можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Никеля

Можно сразу осаждать хром на никелевую поверхность. Перед хромированием рекомендуется только обработать деталь в растворе химического активатора. Используйте для этого представленный состав:

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Копи-хромирование – Олова

Перед нанесением покрытия «КОПИ-ХРОМ» на олово, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

После этого можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Олова

Перед нанесением олова на оловянную поверхность, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Теперь можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Олова

Перед нанесением меди на оловянную поверхность, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Теперь можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Цинкование – Олова

Перед нанесением блестящего цинкового покрытия на олово, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Олова

Перед хромированием олова, необходимо сначала провести предварительную очистку и затем активацию металлической поверхности. Используйте для этого представленные составы:

  1. Состав «Универсальный очиститель»
  2. Состав «Химический активатор»

Несмотря на возможность напрямую наносить хром на олово, мы рекомендуем нанести на него промежуточный слой никеля. Это повысит износостойкость и антикоррозионные свойства покрытия. Используйте для никелирования любой из представленных комплектов:

  1. Комплект «Блестящий никель» (требуется источник тока)
  2. Комплект «Электролиз-никель» (не требуется источник тока)

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Золочение – Золота

Для нанесения слоя золота на позолоченную поверхность необходимо только провести активацию металлической поверхности. Используйте для этого представленный состав:

После этого можно проводить процесс золочения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Копи-хромирование – Золота

Для нанесения покрытия «КОПИ-ХРОМ» на золото или позолоченную поверхность необходимо только провести активацию поверхности детали. Используйте для этого представленный состав:

Теперь можно наносить покрытие «КОПИ-ХРОМ». Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Лужение – Золота

Для нанесения слоя олова на золото или позолоченную поверхность необходимо только провести активацию металлической поверхности. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего лужения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Меднение – Золота

Для нанесения блестящего медного покрытия на золото или на позолоченную поверхность необходимо сначала провести процесс химической активации. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего меднения. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Никелирование – Золота

Для нанесения никеля на золото или позолоченную поверхность необходимо только провести активацию металлической поверхности. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего никелирования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Серебрение – Золота

Перед серебрением золота или позолоченной поверхности необходимо провести только активацию металлической поверхности. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего серебрения. Используйте для этого представленный электролит:

Вернуться к подбору комплекта

Цинкование – Золота

Перед нанесением блестящего цинкового покрытия на золото необходимо провести только активацию металлической поверхности. Используйте для этого представленный состав:

Теперь можно проводить процесс блестящего цинкования. Используйте для этого представленный комплект:

Вернуться к подбору комплекта

Хромирование – Золота

Для нанесения блестящего декоративного хрома на золото, необходимо провести активацию металлической поверхности. Используйте для этого представленный состав:

Теперь можно проводить процесс декоративного хромирования. Используйте для этого любой из представленных комплектов:

или

Вернуться к подбору комплекта

Полировка нержавеющей стали – методы и их отличия + видео

Полироль для нержавеющей стали помогает нам обновить поверхность и очень быстро сделать ее блестящей простым механическим способом. Но это не всегда эффективно. Какие методы более действенные и насколько они доступны для бытового применения?

1 К каким изменениям приводит полирование?

Полировка – финишная стадия при изготовлении различных изделий. Заключается этот процесс в оплавлении поверхностного слоя толщиной 0,01–0,03 мм. В результате устраняются все мелкие дефекты (микротрещины, царапины, раковины и т. д.). Поверхность получается идеально гладкой и отражает свет. Подобный эффект достигается благодаря тому, что глубина неровностей менее длины волны видимого света.

Полировка различных изделий

Добиться зеркальной поверхности металла можно и другими способами, например, хонингованием. Но они обычно требуют специального оборудования, материалов и знаний. Поэтому их применение оправдано только когда необходимо обеспечить заданную точность. С полированием все намного проще. Для этой операции используются довольно простые станки, а полировальный инструмент можно сделать даже в домашних условиях. Отлично проявили себя войлок, кожа, мягкая ткань. На рынке и в магазинах продаются специальные пасты, сделанные на основе окиси хрома, трепела или крокуса. Эти материалы используются для механического метода, но существуют еще и химические способы обработки поверхности в специальных растворах.

Зеркальная поверхность металла

Правильно подготовить изделие очень важно. На поверхности не допускается наличие различных дефектов, поэтому перед полированием следует стадия шлифования (снятие более толстого слоя). Чтобы найти скрытые изъяны, полирование начинается с наиболее “слабых” участков. Например, в сварных конструкциях это швы, где чаще всего обнаруживаются микротрещины или раковины. Полировку нержавеющей стали, впрочем, как и иных материалов, делают в несколько подходов, каждый раз подбирая рабочий материал меньшей зернистости. Причем желательно свести количество операций к минимуму.

2 Механические методы – классика, доступная каждому

Это наиболее простой способ добиться зеркально гладкой поверхности. Заключается он в следующем. Высокая скорость вращения полировального материала и возникающее при этом трение приводит к повышению температуры, в результате тончайший поверхностный слой оплавляется и становится идеально гладким.

Механическое полирование материала

Существует два вида полировки – черновая и чистовая. Первая делается более крупнозернистыми материалами и необходима для устранения шероховатости поверхности. В качестве рабочего инструмента выступают специальные пасты или ленты, на которые нанесены абразивные частички. Чистовое полирование – финишный этап. В этом случае нашли свое применение специальные порошки, тонкие полировальные пасты, в состав которых дополнительно входят и поверхностно-активные вещества. Они наносятся только на мягкие круги из эластичного материала, которыми и натирают обрабатываемое изделие.

Делать полирование можно и вручную, но это займет очень много времени. Поэтому придется обзавестись специальной шлифовальной машинкой. Начинается обработка наиболее крупнозернистым материалом, а затем каждый последующий раз необходимо уменьшать размер абразива вдвое. При этом лучше не устанавливать скорость больше 4500 об/мин. Финишное полирование начинают с участков, где заметны мелкие риски.

Специальная шлифовальная машинка

Однако если речь идет о мелких элементах незамысловатой формы, тогда возможно избежать электрополировки нержавеющей стали и использовать ручной метод. В этом случае специальная паста наносится на кусочек войлока либо иной мягкой ткани, и поверхность натирается круговыми движениями. Также ручного способа не избежать при обработке труднодоступных мест, куда шлифовальная машинка не сможет достать.

3 Химическое полирование – особенности и рецепты

При этом способе изделие погружают в химический раствор и держат определенное время. Также очень важно соблюдать температурный режим. В результате протекания химических процессов микронеровности на поверхности расплавляются, и она получается идеально гладкой. Главное преимущество этого способа – скорость полировки, обычно процесс занимает несколько минут. Еще вам не понадобится специальный электроинструмент, источник тока. Вы прилагаете минимум усилий в отличие от ручного метода. Кроме того, поверхность равномерно полируется независимо от конфигурации. Жидкий раствор проникает даже в самые укромные места детали.

При этом всем обилии плюсов есть и некоторые недостатки. Во-первых, это меньший блеск, поэтому такое полирование применимо только когда деталь не нуждается в зеркальной поверхности. Во-вторых, раствор недолговечен, так что придется работать интенсивно после его приготовления. В-третьих, смесь очень агрессивная, поэтому особое внимание необходимо уделить технике безопасности. Работы проводятся только в специальной одежде и при хорошей вентиляции помещения. Для химполировки нержавеющей стали используются растворы на основе кислот.

Химполировка нержавеющей стали

Состав № 1

Смешивается 660 г/л соляной, 230 г/л серной кислоты и 25 г/л кислотного оранжевого красителя. Нагреваем раствор до 70–75 °C и погружаем в него деталь. Достаточно подержать ее около 3 мин. При этом смесь желательно периодически перемешивать либо встряхивать изделие, в противном случае на некоторых участках поверхности могут скапливаться пузырьки газов, что негативно скажется на качестве полировки.

Во всех рецептах предполагается использование концентрированных кислот.

Состав № 2

Еще в раствор можно добавить поверхностно-активные вещества (ПАВ), глицерин и бензиловый спирт. Смесь включает 25–35 частей фосфорной, по 5 ч. азотной и соляной, 0,5 ч. сульфосалициловой кислот и 0,5 ч. двунатриевой соли этилендиаминтетрауксусной кислоты (ЭДТА). Также необходимо 1 ч. глицерина, а содержание бензилового спирта не превышает 0,1 ч. В качестве ПАВ используются триэтаноламин, этиленгликоль и оксифос, содержание этих веществ не более 0,015; 0,017 и 0,01 частей соответственно. Изделие из нержавеющей стали предварительно обезжиривается щелочным раствором, затем промывается в проточной воде и высушивается. Тем временем нагреваем смесь до 80 °C и погружаем в нее деталь максимум на 3 минуты.

Погружение изделия в раствор

Состав № 3

В этом случае берется 20–30 % ортофосфорной, 4–5 % азотной и около 4 % соляной кислоты, также в состав входит 1,5 % метилоранжа. Все остальное – дистиллированная вода. Раствор нагревается максимум до 25 °C, а время обработки колеблется от 5 до 10 минут. Чтобы улучшить качество полирования, изделие необходимо периодически шевелить.

4 Электрохимическая полировка – что изменит присутствие тока?

При электрохимической полировке нержавеющей стали изделие тоже погружается в раствор, но только в этом случае через него пропускают электрический ток. На металле есть тонкая оксидная пленка, ее толщина неодинакова на всей поверхности из-за наличия микровпадин и микровыступов. В углублениях она более толстая. Кислотный раствор интенсивней реагирует в местах, где этот защитный слой утончается. Из-за такой разности скорости реакции поверхность получается идеально гладкой и значительно лучшего качества, чем после механической обработки. Покрытия имеют мелкозернистую структуру и лишены пор, благодаря чему значительно снижается коэффициент трения.

К достоинствам этого метода относится высокое качество поверхности, отличная производительность. Электрохимическое полирование не требует физических усилий как при механической обработке, к тому же можно исключить этап обезжиривания. Поверхность полируется очень быстро. Плюс ко всему гальванические покрытия обладают превосходной прочностью сцепления с поверхностями, отполированными механическим методом.

Процесс электрохимической полировки

А вот в недостатки можно записать зависимость от электроэнергии и ее расход. Кроме того, изделие необходимо предварительно отшлифовать механическим способом. Электрохимическая полировка чувствительна к качеству состава, температуре электролита, времени выдержки и плотности пропускаемого тока. Как и в химическом методе, работать придется с вредными для организма составами, поэтому обязательно уделяем должное внимание технике безопасности. Для электрохимического полирования нержавеющих сталей преимущественно используются электролиты на основе серной, хромовой и фосфорных кислот.

Состав № 1

Берется 730 г/л фосфорной и не более 700 г/л серной кислоты. Добавляется триэтаноламин 4–6 г/л и совсем немного катапина (0,5–1,0). Раствор нагревают до температуры не менее 60 °C и не более 80 °C. Через изделие проводится ток плотностью от 20 до 50 А/дм2. Делать электрохимическое полирование нужно около пяти минут.

Состав для полирования

Состав № 2

Детали из хромоникельмолибденовой или хромоникелевой нержавеющей стали помещают в состав из ортофосфорной и серной кислот, взятых в соотношении 65 % и 15 % соответственно. Еще добавляется 12 % глицерина, 5 % хромового ангидрида и очищенная вода (оставшиеся 3 %). Процесс протекает при температуре от 45 до 70 °C и плотности тока около 7 А/дм2. Время выдержки зависит от ряда факторов. Сварные изделия достаточно полировать всего 10–12 минут, а после пескоструйной обработки нужно выдержать в растворе около получаса.

5 Плазменная полировка – сложно, но эффективно

Есть еще один метод обработки поверхности, основанный на процессах в металле при его погружении в раствор и одновременном воздействии высокого напряжения. В отличие от предыдущего метода используются только экологически чистые составы на основе солей аммония.

Плазменный метод обработки изделий

Сущность плазменной полировки нержавеющих сталей заключается в следующем. Изделие обязательно должно быть положительным анодом. При воздействии высоких напряжений более 200 В электролит начинает закипать прямо у поверхности детали, что приводит к образованию тонкой парогазовой оболочки (50–100 мкм). Электрический ток, когда проходит через эту пленку, способствует возникновению плазменных процессов. В местах микровыступов значительно возрастает напряженность электрического поля, что приводит к возникновению импульсных разрядов.

Закипание электролита у поверхности детали

Плазменная полировка удаляет с изделия тончайший слой с повышенным содержанием инородных включений. В результате поверхность имеет зеркальный блеск, обладает высокими адгезионными свойствами. Кроме того, этот метод объединяет в себе сразу три операции: обезжиривание, травление и активацию поверхности. Однако чтобы достичь желаемого результата, поверхность изделия должна быть тщательно подготовлена. Любые дефекты, риски, царапины и прочее после подобной обработки не устранятся, а, наоборот, станут еще более заметными. Поэтому предварительного грубого ручного полирования не избежать.

Химическая полировка

При химической полировке воздействие раствора и гальванических пар на металл и его поверхность вызывает образование пассивирующего слоя. Непосредственным результатом химической полировки является сглаживание микронеровностей и образование полировки с параллельным растворением верхнего слоя. Улучшение полировки связано с предотвращением травления металла в результате образования пассивирующей пленки на поверхности металла. Однако электрохимическая полировка приводит к лучшим показателям полировки по сравнению с химической.

Качество полированной поверхности зависит от соотношения скорости процесса образования слоя и его растворения. Преобладание первого приводит к окислению металла, а второе – к его травлению. Наивысшая степень полировки может быть обеспечена при минимальной толщине пассивирующей пленки, но достаточной для предотвращения воздействия травильного раствора на металл. Это возможно только тогда, когда скорость процесса формирования слоя равна скорости его химического растворения.Толщина пленки при химической полировке меньше, чем при электрохимической. Этим можно объяснить более низкую эффективность сглаживания микронеровностей и повышение скорости полировки металла.

Положительные результаты полировки нержавеющей стали типа 12Х18х20Т достигаются при использовании раствора в следующем соотношении: серная кислота – 34%, соляная кислота – 6,5%, азотная кислота – 4,5%, хлорид натрия – 0,5%, вода – 54. %, Краситель ZM Acid Black – 0,5%. Коррекция раствора заключается в периодическом добавлении воды и азотной кислоты.Обработку проводят в течение 3-10 минут при температуре 70–75 о С.

С увеличением содержания солей железа в растворе время обработки увеличивается до 15-20 минут. При химической полировке качество поверхности зависит от плотности загрузки заготовки в ванну. Перегрузка может вызвать неравномерную обработку поверхности, а иногда, в результате недостаточного доступа раствора для обработки поверхностей заготовки, травление поверхности и образование других дефектов.

После химической полировки детали промыть в проточной воде и просушить. Желательно проводить химическую пассивацию полированных изделий. При этом следует отметить, что по сравнению с механической полировкой химическая требует меньших трудозатрат и энергоемкости. Однако процесс химической полировки тесно связан со следующими недостатками:

  1. Сложность обработки
  2. Высокий процент брака
  3. Токсичность и пожароопасность
  4. Коррозия оборудования
  5. Переработка дорогих материалов

Буферная химическая полировка и радиочастотные испытания полости SRF 56 МГц (Технический отчет)

Беррилл, А. Буферная химическая полировка и радиочастотное тестирование полости SRF 56 МГц . США: Н. П., 2009. Интернет. DOI: 10,2172 / 950007.

Беррилл А. Химическая полировка буфера и радиочастотное тестирование полости SRF 56 МГц . Соединенные Штаты. https://doi.org/10.2172/950007

Беррилл, А.Чт. «Буферная химическая полировка и радиочастотное тестирование полости SRF 56 МГц». Соединенные Штаты. https://doi.org/10.2172/950007. https://www.osti.gov/servlets/purl/950007.

@article {osti_950007,
title = {Буферная химическая полировка и радиочастотное тестирование полости SRF 56 МГц},
author = {Burrill, A},
abstractNote = {Резонатор 56 МГц представляет собой уникальную проблему при подготовке его к ВЧ-тестированию перед созданием криомодуля.Эта проблема возникает из-за физических размеров и последующего веса полости, а также усложняется из-за коаксиальной геометрии и необходимости надлежащего химического травления и промывки под высоким давлением всей внутренней поверхности перед RF-испытанием. Насколько мне известно, это самый большой резонатор SRF, полностью состоящий из ниобия, который будет подвергнут химическому травлению и впоследствии испытан в вертикальном дьюаре при 4K, и эти процессы будут темой данной технической заметки.},
doi = {10.2172 / 950007},
url = {https: // www.osti.gov/biblio/950007}, журнал = {},
номер =,
объем =,
place = {United States},
год = {2009},
месяц = ​​{1}
}

Химическая полировка монокристаллических пластин PbTe и Pb 1 – x Sn x Te

  • 1

    Оливер М.Р., Химико-механическая планаризация полупроводниковых материалов, Нью-Йорк: Спрингер, 2004.

    Google Scholar

  • 2

    Гольдштейн Р.В. , Осипенко М.Н. Химико-механическое полирование: Часть 1. Основные соотношения: обзор, Вестн. Пермск. Univ. И мех., .2011. 3. С. 26–42.

  • 3

    Энгель А., Бергер Х. и Роеслер Х.-Дж., Структурные характеристики отрезанных и полированных поверхностей PbTe, Cryst. Res. Technol., 1982, т. 17. С. 857–864. https://doi.org/10.1002/crat.2170170711

    CAS Статья Google Scholar

  • 4

    Крокер, А.Дж. И Уилсон М., Микротвердость в PbTe и родственных сплавах, J. Mater. Sci., , 1978, т. 13, вып. 4. С. 833–842. https://doi.org/10.1007/BF00570520

    CAS Статья Google Scholar

  • 5

    Зломанов В.П., Гаськов А.М., Крылюк О.Н., Крылова И.В., Патент СССР 1343897, 1987.

  • 6

    Хитова Л., Трифонова Е.П. Химико-механическая полировка n -PbTe и n -Pb 1- x Sn x кристаллы Te, Cryst.Res. Technol., , 1984, т. 19. С. 105–108. https://doi.org/10.1002/crat.2170191128

    Статья Google Scholar

  • 7

    Штернберг, Ю., Еллин, Н., Включения растворителя в слоях PbSnTe, выращенных методом ЖПЭ, J. Cryst. Рост, 1981, т. 53, нет. 3. С. 535–541. https://doi.org/10.1016/0022-0248(81)

    -6

    CAS Статья Google Scholar

  • 8

    Меглей, Д.Ф., Дынту М.П., ​​Дону С.В. Влияние примеси индия на рост и структурное совершенство проволочных кристаллов теллурида свинца и олова. J. Phys. Наук, 2010, т. 9, вып. 2. С. 156–158.

    Google Scholar

  • 9

    Маланыч Г.П., Томашик В.Н., Стратийчук И.Б., Томашик З.Ф. Химическое травление PbTe и Pb 1 – x Sn x Монокристаллы Te в H 2 O 2 – Растворы HBr при различных исходных концентрациях HBr, Optoelektron.Полупроводн. Техн., 2015. 50. С. 94–101.

  • 10

    Маланыч Г.П., Томашик З.Ф., Томашик В.М., Стратийчук И.Б., Сафрюк Н.В., Кладько В.П. Химико-механическое полирование монокристаллов PbTe и Pb 1 – x Sn x Твердые растворы Te в H 2 O 2 –HBr – травители этиленгликоля, Наук. Visn. Черновицкая нац. Univ. Хим., 2013, no. 640. С. 72–78.

  • 11

    Томашик, З.Ф., Маланыч Г.П., Томашик В.Н., Стратийчук И.Б., Пащенко Г.А., Кравцова А.С. Полировка PbTe и Pb 1 – x Sn x Монокристаллы Te с H 2 O 2 –HBr – этиленгликоль бром-высвобождающие травители, Вопр. Хим. Хим. Технологии, 2012, № 4, с. 4. С. 120–125.

  • 12

    Люфт Б.Д., Перевощиков В.А., Возмилова Л.Н., Свердлин И.А., Марин К.Г., Физико-химические методы обработки поверхности полупроводников, химия, Москва. 1982 г.

  • 13

    Перевощиков В.А. А., Гусев В.К. Гидродинамические условия химической полировки полупроводниковых пластин. Прикл. Хим. (С.-Петербург), 1970, т. 43, нет. 6. С. 1238–1245.

  • 14

    Поп, С.С. и Шароди, И.С., Физическая электроника, (Физическая электроника), Львов: Евросвит, 2001.

  • (PDF) АЛЬТЕРНАТИВНАЯ ПРОЦЕДУРА ЭЛЕКТРОПОЛИРОВКИ: ХИМИЧЕСКАЯ ПОЛИРОВКА

    XSN

    X2 2 | Страница 1 5, 2 0 1 3

    1.Введение

    Система электрополировки сглаживает, полирует, удаляет заусенцы, очищает и оптимизирует микроскопическую поверхность металлического объекта

    . Процесс выборочно удаляет выступы на металлических поверхностях, придавая поверхности высокий блеск. В результате

    поверхность металла становится микроскопически невыразительной, не остается ни малейшего пятнышка на поверхности тома.

    В литературе электрополировка является наиболее часто используемым методом выравнивания поверхности [1-6].Сообщалось также о нескольких электролитах

    , таких как смесь хлорной кислоты и этанола [7-11] и смесь фосфорной кислоты, серной кислоты, воды (или оксида хрома

    ) [12, 13]. Интересно, что хлорная кислота является обычным ингредиентом в большинстве случаев, и

    дает лучшую гладкость по сравнению с растворами, которые не содержат хлорную кислоту [14].

    Несмотря на свою популярность, электрополировка (с использованием раствора, содержащего хлорную кислоту) имеет несколько практических недостатков

    , все из которых связаны с тем, что горячая хлорная кислота является опасным химическим веществом, требующим особого обращения.Например, во время электрополировки электролит нагревается, и горячая хлорная кислота

    известна своими чрезвычайно сильными окислительными свойствами и также может стать нестабильной. Для этого требуется постоянное охлаждение

    электролита во время полировки. Даже для хранения этих электролитов требуется специальный вытяжной шкаф с хлорной кислотой с автономными промывочными устройствами

    для предотвращения образования кристаллов металлического перхлората на стенках вытяжного шкафа

    и выхлопных каналах.Эти кристаллы очень нестабильны и чувствительны к ударам и могут воспламениться или взорваться при определенных условиях

    . Используя самодельные установки для электрополировки, можно одновременно электрополировать несколько алюминиевых подложек

    параллельно в электролите, но, опять же, это генерирует большее количество тепла и, следовательно, требует

    высокоэффективного отвода тепла из системы. Таким образом, крайне желательна альтернативная техника быстрой полировки, которая позволит избежать этих недостатков

    и в то же время создать шаблоны AAO сопоставимого качества.

    В этой работе мы вновь обращаем внимание на сравнение химической полировки и электрополировки на алюминиевом шаблоне

    , чтобы оптимизировать важный параметр, время было оценено для получения наименьшей шероховатости и

    поверхности с высокой яркостью с помощью измерителя шероховатости. Недавно Yu et al. [15] исследовали влияние параметров электрополировки

    на шероховатость поверхности промышленно чистого алюминия с использованием факторного расчета.Тем не менее,

    мало сообщается об исследованиях использования измерителя шероховатости для оценки алюминиевой поверхности. Этот метод

    редко используется при разработке наноструктур, хотя он позволяет параллельно обрабатывать большое количество алюминиевых подложек

    с произвольными площадями и не обязательно требует хлорной кислоты. В этом отчете химический процесс полировки

    характеризуется использованием смеси азотной и фосфорной кислот.Результаты и обсуждения

    будут представлены в разделе 3.

    2. Экспериментальная

    2.1 Подготовка образца

    Образцы алюминия были вырезаны из неполированного алюминиевого листа высокой чистоты (99,997%), толщиной 0,33 мм, на прямоугольную форму

    , имеющую ширина 2 см и длина 16 см. Образцы с большей площадью (10 см × 10 см) также были изучены, и

    не наблюдалось значительной разницы. После резки образцы сначала обезжиривали в этаноле в течение 200 с, затем

    промывали в деионизированной воде и сушили на воздухе.Затем эти образцы были отожжены при 673 К в течение 2 часов в трубчатой ​​печи с регулируемым карбидом кремния

    и затем охлаждены в течение 22 часов. Отжиг необходим для улучшения однородности

    алюминиевой подложки для хорошо упорядоченного роста пор за счет увеличения размера зерна, что сводит к минимуму граничную область зерна

    , которая рассматривается как дефект, и устраняет остаточные напряжения, возникающие в результате прокатки. Эти неполированные образцы

    были подвергнуты предлагаемой стадии электрополировки и химической полировки.

    2.2 Электрополировка

    Электрополировка проводилась под напряжением / гальваностатом с постоянным смещением при напряжении 15 В. При электрополировке

    в качестве рабочего электрода использовался образец с открытой площадью 1 x 1 см. Раствор для электрополировки

    состоял из смеси хлорной кислоты и этанола (аналитический реагент) с объемным соотношением 1: 5. Температуру

    поддерживали на уровне 100 ° С за счет циркуляции термостатированной воды через электрохимическую ячейку, а время электрополировки

    меняли от 3 до 9 минут.В этих условиях плотность тока электрополировки составляет ~ 0,04 А / см, что приводит к выделению значительного количества тепла.

    2.3 Химическая полировка

    Химическая полировка проводилась смесью, состоящей из 15 частей 68% азотной кислоты и 85 частей 85% фосфорной кислоты

    . Этот метод полностью исключает хлорную кислоту и связанные с ней опасности. Травление проводят в течение

    раз (3-9 мин для диапазона температур 10 ° С.После травления образцы нейтрализуют в 1 М гидроксиде натрия

    в течение 20 мин. Образцы, полученные в обоих случаях, затем сравниваются, чтобы определить оптимальное условие

    критического параметра времени.

    Плюсы и минусы полировальной одежды

    Полированные поверхности машин могут улучшить производительность оборудования за счет уменьшения трения и повышения эффективности. Существует множество способов полировки поверхностей станков, причем результат зависит от желаемого результата.Что касается смазочных материалов, можно использовать присадки для химической полировки этих поверхностей в процессе обкатки. Однако проблемы могут возникнуть, если вы не понимаете, как правильно полировать поверхности или как влияет выбор смазки в уравнение.

    Что такое полировальная одежда?

    ASM International определяет износ при полировке как взаимодействие между двумя твердыми телами, которые удаляют материал и создают полированное покрытие на одном или обоих из них. Если вы думаете о полированной поверхности, вы можете представить что-то, что отражает свет или кажется очень ярким.

    Когда я был ребенком, я помню, как банки с лаком для серебра использовали на сервировочных подносах и посуде, чтобы восстановить их первоначальный блеск. Эти полировальные составы обычно делятся на две категории: химические составы и абразивные составы. У каждого есть цель и причина использования.

    46% профессионалов в области смазки говорят, что абразивный износ является наиболее распространенным видом износа оборудования на их заводе, согласно недавнему исследованию MachineryLubrication.com

    Абразивная полировка

    Абразивные составы часто представляют собой пасты с примешанными к ним твердыми частицами. После того, как состав нанесен на поверхность, его натирают тканью или другой твердой поверхностью. Во время этого действия абразивные материалы режут и надрезают поверхности, в результате получается полированная поверхность.

    Это обычная практика для клапанов двигателя, поскольку полировка может улучшить производительность и предотвратить накопление углерода. Другой термин для этого типа полировки – механическая полировка, поскольку для перемещения деталей вместе требуется механическое усилие.Иногда эти абразивные составы называют составами для шлифования или притирки.

    Эта форма абразивного износа возникает внутри машин, когда мелкие частицы взвешиваются в смазочном материале и застревают между движущимися компонентами. Эти частицы в масле могут действовать как полировальная паста и начинать полировку деталей, с которыми они соприкасаются. Вы можете наблюдать этот вид полировального износа в большинстве систем, хотя он особенно распространен в зубчатых передачах и гидравлике.

    Химическая полировка

    Химическая полировка происходит, когда химическое вещество является достаточно коррозионным, чтобы удалить поверхностный слой металла, обнажая лежащий под ним металл, который обычно является отражающим и очень полированным.Этот тип полировки больше всего похож на упомянутую ранее полировку серебра.

    В этом механизме на поверхность наносится умеренно коррозионный состав. Затем соединение вступает в реакцию с материалом поверхности, образуя мягкую пленку на металле. Когда лак удаляется, он уносит с собой эту мягкую пленку, оставляя после себя неокисленную и часто ярко отполированную поверхность.

    Плюсы полировальной одежды

    Полировочный износ может быть использован в ваших интересах. Когда детали машины сильно отполированы, сопротивление или трение между деталями уменьшается.Это поможет повысить эффективность оборудования за счет снижения потребляемой мощности, расхода топлива и, возможно, даже рабочих температур.

    Поверхности машин часто бывают шероховатыми с микроскопическими выступами, известными как неровности. Эти неровности в значительной степени способствуют трению между движущимися частями. Чем больше неровности, тем больше будет возникать трение, которое необходимо преодолеть во время работы.

    Хорошим примером этого может быть трение двух кусочков наждачной бумаги друг о друга.Каждая крупинка на бумаге представляет собой неровность. При трении друг о друга отдельные частицы песка соприкасаются друг с другом, и для их прохождения требуется большее усилие. Когда детали машины отшлифованы, это похоже на уменьшение или удаление зерен с бумаги. Меньшая или меньшая зернистость означает меньшее усилие и меньшее повреждение поверхности при движении этих частей относительно друг друга.

    Что касается смазки, то для защиты более полированных поверхностей машин требуется меньшая смазочная пленка.Цель хорошо смазанной машины – получить смазочную пленку, размер которой превышает размер неровностей на поверхности. Если поверхность очень шероховатая, пленка должна быть больше. Обычно это достигается за счет использования смазочных материалов с более высокой вязкостью.

    Чем выше вязкость, тем больше вязкое сопротивление в машине и тем больше топлива или энергии необходимо потреблять для перемешивания смазки. Если детали машины хорошо отполированы и имеют меньшие неровности, смазочная пленка может быть меньше, и, следовательно, можно использовать смазку с более низкой вязкостью.Это означает меньшее вязкое сопротивление и лучшую энергоэффективность.

    Минусы полировальной одежды

    Хотя полировка может быть полезной во многих отношениях, она также может быть негативным процессом, если происходит непреднамеренно. Непреднамеренная полировка может иметь место, когда концентрация твердых загрязняющих веществ достигает определенной точки как по размеру, так и по количеству твердых частиц.

    Во время работы машины эта смесь масла и частиц перемещается по системе.Эти частицы начинают врезаться в поверхность станка, оставляя после себя небольшие линейные царапины, которые в конечном итоге приводят к полированной поверхности.

    Другой пример того, как полировка может произойти непреднамеренно, – это неправильный выбор пакета присадок для единицы оборудования. Многие трансмиссионные масла основаны на добавлении противозадирных присадок, которые помогают смазывать движущиеся детали в режимах граничной смазки. Некоторые из этих противозадирных присадок являются химически агрессивными и фактически разъедают или рассыпают детали машин, вызывая химическую полировку.

    Когда пакет присадок правильно подобран для машины, эта химическая реакция будет мягкой, и пленка мягкого металла, образованная в процессе полировки, может быть полезной для снижения износа машины в условиях граничной смазки.

    Когда пакет присадок не подобран правильно, химический износ становится слишком сильным, удаляется больше металла с поверхности и, в конечном итоге, ухудшается профиль поверхности машины. По мере изменения профиля поверхности детали также не стыкуются друг с другом, что в некоторых случаях может привести к катастрофическому отказу.

    Машины, наиболее подверженные агрессивной химической полировке, – это машины, в которых используется мягкий металл или более мягкий металлический сплав. Хорошим примером может служить червячный редуктор. Часто червяк делают из стали, а червячное колесо – из латуни или медного сплава.

    Химически агрессивные противозадирные присадки разрушают мягкую медь. Этот процесс полировки обычно выходит за рамки мягкой полировки поверхности и превращается в серьезную химическую коррозию, что в конечном итоге приводит к поломке машины.

    Профилактика

    Чтобы гарантировать, что масло, которое вы используете, не вызовет серьезную химическую полировку, проверьте технические данные смазочного материала на предмет результатов теста ASTM D130, известного как испытание на коррозию медной ленты. То, как смазка работает в этом тесте, покажет вам, насколько жидкость и присадки вызывают коррозию более мягких металлов.

    Тест берет полоску только что отполированной меди и подвергает ее воздействию жидкости-кандидата. После нагрева полоса исследуется на предмет коррозии.Результаты представлены по шкале от 1A (практически нет коррозии) до 4C (сильная коррозия). Если в вашем оборудовании используются сплавы мягких металлов (червячные передачи, некоторые золотники гидрораспределителей и т. Д.), Выберите смазку с рейтингом 1A. Если в машине нет более мягких металлов, вы можете выбрать более агрессивную смазку и при этом снизить риск экстремальной химической полировки.

    Износ полировки можно обнаружить до того, как он станет проблемой. Пожалуй, один из самых простых способов определить, идет ли полировка, – это выполнить визуальный осмотр деталей машины.Эти проверки можно проводить с помощью бороскопа. Проверьте сопрягаемые поверхности на предмет отражения света, что обычно является признаком износа при полировке.

    Если вы не можете визуально осмотреть поверхности машины, изучите отчеты об анализе масла. Изучите обломки износа и определите, являются ли тенденции линейными, поддерживающими нормальный характер износа, или машина начинает производить больше мусора, чем в прошлом. Хотя из отчетов может быть трудно сделать вывод о том, является ли механизм износа полирующим износом, это даст вам некоторое представление о потенциальной проблеме, прежде чем возникнет необходимость в замене оборудования или восстановлении.

    К счастью, этого режима износа можно избежать, если ваша смазка чистая. Фильтрация масла уменьшит количество частиц, которые приводят к полировке, и уменьшит или задержит износ полировки. Чтобы препятствовать химической полировке, выберите подходящую смазку и пакет присадок. Если вы не знаете, какую смазку выбрать, обратитесь к производителю оборудования, поставщику смазки или консультанту, чтобы они помогли вам в этом процессе.

    Использование неправильной смазки может привести к плачевным результатам, в то время как правильная смазка может обеспечить годы бесперебойной службы.Наконец, имейте в виду, что хотя износ при полировке может иметь как хорошие, так и плохие последствия, обычно лучше избегать любого режима износа, так как это продлит срок службы вашего оборудования и сократит время простоя.

    Кремниевые пластины с оптически зеркальными поверхностями, сформированными химической полировкой – Государственный университет Аризоны

    TY – JOUR

    T1 – Кремниевые пластины с оптически зеркальными поверхностями, сформированными химической полировкой

    AU – Yu, Zhengshan

    AU – Wheelwright, Brian M.

    AU – Manzoor, Salman

    AU – Holman, Zachary

    N1 – Авторское право издателя: © Springer Science + Business Media, Нью-Йорк, 2016 г. Авторские права: Авторские права 2016 Elsevier B.V., Все права защищены.

    PY – 2016/10/1

    Y1 – 2016/10/1

    N2 – В этом письме исследуется химическая полировка смесью плавиковой, азотной и уксусной кислот (HNA) в качестве альтернативы химико-механической полировке ( CMP) для получения гладких поверхностей кремниевых солнечных пластин с суспензионной огранкой и алмазной огранкой.После протравливания 30 мкм кремния с каждой стороны, пластины после резки кажутся невооруженным глазом зеркальными. Количественный анализ зеркальности пластин, отполированных методом HNA, показывает, что 97% света, отраженного от пластин, вырезанных методом суспензии, попадает в пределах ± 10 мрад от зеркального луча и распределяется изотропно. Напротив, HNA-полированные пластины с алмазной огранкой сохраняют историю процесса распиловки пластин: отраженный свет анизотропен с 99,4% света в пределах ± 10 мрад от зеркального луча в направлении резки, но только 89.1% в пределах ± 10 мрад в перпендикулярном направлении. Топографические характеристики с помощью измерений оптической профилометрии и атомно-силовой микроскопии показывают, что полированные методом суспензионной резки пластины, отполированные методом HNA, пространственно однородны с шероховатостью поверхности 45 нм. Пластины алмазной огранки имеют шероховатость всего 18 нм, но также имеют остаточные бороздки размером в десятки микрометров – они ответственны за анизотропное рассеяние света. Полированные HNA пластины являются подходящей альтернативой пластинам CMP для высокоэффективных солнечных элементов, включая элементы с встречно-штыревым обратным контактом и тандемные элементы, для которых требуются полированные с одной стороны пластины, а также для других оптических приложений, таких как мониторинг процесса с помощью методов определения характеристик, которые требуются плоские подложки.

    AB – В этом письме исследуется химическая полировка смесью фтористоводородной, азотной и уксусной кислот (HNA) в качестве альтернативы химико-механической полировке (CMP) для получения гладких поверхностей на кремниевых солнечных пластинах с суспензионной и алмазной огранкой. После протравливания 30 мкм кремния с каждой стороны, пластины после резки кажутся невооруженным глазом зеркальными. Количественный анализ зеркальности пластин, отполированных методом HNA, показывает, что 97% света, отраженного от пластин, вырезанных методом суспензии, попадает в пределах ± 10 мрад от зеркального луча и распределяется изотропно.Напротив, HNA-полированные пластины с алмазной огранкой сохраняют историю процесса распиловки пластин: отраженный свет является анизотропным: 99,4% света в пределах ± 10 мрад от зеркального луча в направлении резки, но только 89,1% в пределах ± 10 мрад в перпендикулярное направление. Топографические характеристики с помощью измерений оптической профилометрии и атомно-силовой микроскопии показывают, что полированные методом суспензионной резки пластины, отполированные методом HNA, пространственно однородны с шероховатостью поверхности 45 нм. Пластины алмазной огранки имеют шероховатость всего 18 нм, но также имеют остаточные бороздки размером в десятки микрометров – они ответственны за анизотропное рассеяние света.Полированные HNA пластины являются подходящей альтернативой пластинам CMP для высокоэффективных солнечных элементов, включая элементы с встречно-штыревым обратным контактом и тандемные элементы, для которых требуются полированные с одной стороны пластины, а также для других оптических приложений, таких как мониторинг процесса с помощью методов определения характеристик, которые требуются плоские подложки.

    UR – http://www.scopus.com/inward/record.url?scp=84988023661&partnerID=8YFLogxK

    UR – http://www.scopus.com/inward/citedby.url?scp=84988023661&partnerLogx=8Y

    У2 – 10.1007 / s10854-016-5108-y

    DO – 10.1007 / s10854-016-5108-y

    M3 – артикул

    AN – SCOPUS: 84988023661

    VL – 27

    SP – 10270

    EP – 10270

    EP – 102

    JO – Журнал материаловедения: материалы в медицине

    JF – Журнал материаловедения: материалы в медицине

    SN – 0957-4530

    IS – 10

    ER –

    Amazon.com: CP (Химическая полировка) Плоский напильник, 150 мм: Музыкальные инструменты


    В настоящее время недоступен.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *