Роторные компрессоры – Роторные компрессоры

alexxlab | 28.04.2020 | 0 | Разное

Содержание

Роторные компрессоры

Компрессоры используются для того, чтобы для различных газов (в том числе воздух, хладагенты, природный газ и специальные газы: аммиак, кислород, азот и др.) получить давление выше, чем нормальное атмосферное давление.

Роторные компрессоры являются компрессорам объемного типа. Объемный компрессор создает уменьшение объема газа для увеличения его давления.

Роторные компрессоры получили свое название от вращающегося рабочего элемента. Они сжимают газы при помощи кулачковых роторов, жидкости, винтов или пластин. В ответ на запросы рынка усилиями многих компаний-производителей появились на свет компактные и эффективные компрессорные машины.

К роторным компрессорам относятся компрессоров следующих типов: винтовой, кулачковый (Рутс компрессор), пластинчатый, спиральный и жидкостно-кольцевой.

За исключением различий в конструктивном исполнении, компрессоры этого типа имеют несколько общих особенностей. Наиболее важная особенность, которая отличает их от поршневых компрессоров, – отсутствие большого количества клапанов. Роторные компрессоры имеют меньший вес, чем поршневые, имеют простое конструктивное решение, могут быть с одним или несколькими роторами. Дизайн ротора отличает типы друг от друга, и также режим работы и размер являются уникальными для каждого типа компрессоров.

Роторные компрессоры часто представляют собой одинарный агрегат с приводом. Кроме того встречаются установки с последовательным расположением, в комплекте или без промежуточного редуктора.

Большинство компрессоров роторного типа комплектуют электродвигателем, однако переносные компрессоры могут комплектоваться также двигателем внутреннего сгорания.

Роторный винтовой компрессор

рис 1. Винтовой компрессор

Винтовой компрессор – это широко используемое средство для сжатия воздуха, технологических газов и хладагента. Эффективная работа винтовых компрессоров зависит в основном от правильного дизайна ротора. Данный тип компрессоров часто используется в промышленности. В последние десятилетия данный тип компрессоров стал широко популярен в газовой промышленности при работе с низким давлением и высокой производительностью. Давление на всасывании может быть очень низким, а на нагнетании достигать 400psig.

Винтовой компрессор имеет показатели, близкие к поршневым и центробежным компрессорам. Так, например, большая винтовая установка, рассчитанная на 40000 cfm – это типичная зона применения центробежных компрессоров, а небольшие установки для автомобильного кондиционирования воздуха – это типичная область применения поршневых компрессоров.

Конструктивное устройство:

Рабочий элемент компрессора – два винтовых ротора, которые вращаются по направлению друг к другу: когда левый ротор поворачивается по часовой стрелке, правый ротор вращается против часовой стрелки. Роторы и корпус разделены небольшим зазором. Оба ротора могут крепиться к валу привода, который приводит компрессор в рабочее состояние. В компрессоре есть впускное и выпускное отверстие для рабочей среды. Винтовые компрессоры могут иметь различные материальные исполнения. Термическая обработка роторов обычно не требуется.

Принцип работы

Роторный винтовой компрессор, показанный на рисунке 1, состоит из двух винтов или роторов в зацеплении, которые удерживают газ между собой и корпусом компрессора. Двигатель приводит в движение ведущий ротор, который, в свою очередь, приводит в движение ведомый ротор. Оба ротора расположены в корпусе, в котором также имеются входное и выходное отверстие. Газ поступает в компрессор через входное отверстие и заполняет пустоты между роторами. Когда роторы находятся в движении, газ сжимается роторами, тем самым уменьшая его объем. В процессе работы компрессора между роторами нет прямого контакта, что, в свою очередь означает отсутствие износа поверхности роторов, увеличение надежности всего оборудования и равномерную подачу газа.

Описание типа

Компрессоры данного типа могут быть безмасляными или маслозаполненными. В маслозаполненном компрессоре винтового типа смазка впрыскивается в газ, который задерживается внутри корпуса. В этом случае смазка также используется для охлаждения компрессора. Газ удаляется из сжимаемой газосмазывающей смеси в сепараторе. Роторные винтовые компрессоры рециркулируют смесь газа с маслом от 1 до 8 раз в минуту для охлаждения газа и последующего их разделения. Так как винтовые компрессоры используют закрытую смазочную систему, требуется небольшое количество масла. Вязкость масла подбирается в зависимости от удельной теплоемкости газа.

В компрессорах сухого типа роторы движутся без смазки (или хладагента). Тепло от сжатия удаляется из компрессора, ограничивая возможность его работы до одной ступени.

Безмаслянные винтовые компрессоры обычно используются для специальных условий. Из-за отсутствия масла не требуется много ступеней как в компрессорах маслозаполненного типа чтобы достичь такого же высокого давления. Некоторые безмаслянные компрессоры используют воду в качестве охладителя. Для масла и воздуха используются отдельные отверстия.

Большинство промышленных воздушных компрессоров винтового типа имеют двигатели мощностью от 30 до 200 лс. Эти компрессоры используют от одного до трех винтовых роторов, которые удерживают среду внутри камеры, которая уменьшается в размере для увеличения давления. Клапаны открываются при остановке для сброса внутреннего давления и делают пуск более плавным.

Промышленный роторный винтовой компрессор может работать круглосуточно 7 дней в неделю и обычно работает дольше и эффективнее, если используется именно таким образом. Если винтовой компрессор подобран правильно, он может быть одним из энергоэффективных типов компрессоров.

Обычно маслозаполненный компрессор укомплектован клапаном минимального давления, который не позволяет воздуху попасть в пневмосистему, пока не будет достигнуто минимальное давление для смазки компрессора. Масляный фильтр удаляет загрязняющие вещества в масле, и также есть второй масляный фильтр, который очищает от крупных загрязнений. На компрессор монтируют перепускной клапан для поддержания давления, когда компрессор на холостом ходу.

У безмасляного компрессора несколько другие компоненты. Обычно это две винтовые пары, воздух охлаждается в промежуточном радиаторе между ними и шестерни для обоих винтовых пар расположены в корпусе редуктора и редуктор смазывается. Масляное уплотнение и повышенное давление удерживают масло от попадания из редуктора на винты.

В роторном винтовом компрессоре смазывающее вещество впрыскивается в корпус компрессора. Вращающиеся роторы соприкасаются со смесью газов и смазывающего вещества. В дополнение к тому, что тонкая пленка смазывающего вещества предотвращает контакт металл по металлу, смазывающее вещество также несет функцию уплотнителя, предотвращая рекомпрессию газа, которая возникает, когда горячий газ под высоким давлением попадает в уплотнение между роторами и сжимается снова. Рекомпрессия может привести к тому, что температура нагнетания газа превысит расчетную, что в конечном итоге приведет к потери надежности установки. Смазывающее вещество также выступает в качестве охладителя, удаляя тепло во время процесса сжатия газа.

Основные преимущества роторных компрессоров

  • все рабочие части движутся и могут работать при больших скоростях;
  • контакта между вращающимися частями практически нет, что делает их очень надежными;
  • несложное техническое обслуживание;
  • низкие затраты на техническое обслуживание и эксплуатацию;
  • работа при низком давлении всасывания;
  • компактность и небольшой вес;
  • долгий срок службы.

Области применения:

Винтовые компрессоры обычно используют для непрерывной работы в различных промышленностях и могут быть как стационарными, так и передвижными. Их мощность может быть от 3 лс (2,2кВт) до более 1200 лс (890кВт), а давление от низкого до более 1,200 psi (8.3 MPa).

Винтовые компрессоры работают с большим количеством сред, среди которых могут быть газы, пары или мультифазные смеси с учетом, что фазы внутри машины могут меняться. Обычно, компрессоры для хладагента и технологических газов, которые работают продолжительное время, имеют высокую эффективность, в то время как для воздушных компрессоров, особенно для мобильных, эффективность может быть менее важна, чем размер и стоимость.

Винтовые компрессоры идеально подходят для большинства применений, где требуется сжатие:

  • дожатие топливного газа;
  • дожатие газа из буровой скважины;
  • улавливание паров;
  • сжатие газа из органических отходов и газа вторичной переработки;
  • сжатие коррозионных и или грязных технологических газов;
  • воздух
  • холодильное оборудование
  • и др.

Роторный компрессор с кулачковыми роторами

рис 2. Компрессор с кулачковыми роторами

Описание типа и конструктивное устройство:

Схематическая диаграмма роторного компрессора с кулачковыми роторами, представлена на рис. 2. Обычно данный тип компрессоров используется там, где требуется большой объем. Эти машины очень надежны, так как вращающиеся части не соприкасаются друг с другом, необходимость подачи масла для их смазки исключается и потребность в техническом обслуживании невелика. Подаваемый воздух 100% безмасляный. Расход компрессора в большей степени зависит от рабочей скорости.

Установки большого размера (свыше 5000cfm) имеют прямое подсоединение к своим двигателям, установки меньшего размера имеют клиноременную передачу. В качестве приводов обычно выступают электродвигатели. Также компрессоры могут поставляться с голым валом, для подсоединения к приводу Заказчика. В комплект поставки могут входить звукопоглотитель, клапаны, фильтры, перепускной клапан и компенсаторы.

Основные части компрессора: роторы, корпус, распределительные шестерни, подшипники, уплотнения. Профиль кулачков роторов обычно эвольвентный, хотя может быть и циклоидальный. Зазор между роторами и корпусом делают обычно минимальный для предотвращения протечек. У ротора может быть два или три кулачка. Корпус обычно изготавливают из чугуна, конструкцию из алюминия поставляют для специальных условий. Обычно используется смазывание разбрызгиванием, однако на некоторых установках делают внешнюю систему смазки.

Принцип работы

Принцип работы компрессор аналогичен принципу роторного винтового компрессора, кроме того, что соприкасающиеся кулачковые роторы обычно не смазываются. Особенность данного типа компрессоров в том, что газ внутри не сжимается. Роторы могут монтироваться на параллельных валах внутри цилиндра. Комплект шестерен синхронизирует вращение роторов. Кулачки не соприкасаются друг с другом. Когда кулачковые рабочие колеса вращаются, газ поступает между ними и корпусом компрессора, где он сжимается из-за их вращения, а затем поступает в нагнетательную линию. При этом подшипники и распределительные шестерни смазываются.

Области применения:

Данный тип компрессоров предназначены для сжатия воздуха и нейтральных газовых смесей.

Сфера применения:

  • сельское хозяйство;
  • строительство;
  • химическое производство;
  • электроника;
  • металлургия;
  • системы водоснабжения
  • пищевая промышленность.
  • промышленные печи
  • фармацевтическая промышленность
  • центральная подача вакуума
  • дегазация
  • пневмотранспорт
  • фильтрация
  • места хранения органических отходов

Роторные компрессоры с кулачковыми роторами находят свое применение там, где требуется относительно постоянный расход при меняющемся давлении на нагнетании при транспортировке материалов, насыщении жидкости воздухом, добыче газа и улавливании паров, снабжении газом и воздухом низкого давления, обработке отработанной воды, рекультивации почв, на цементных заводах и пр.

Ротационно-пластинчатый компрессор

рис 3. Пластинчатый компрессор

Описание типа и конструктивное устройство:

Ротационно-пластинчатый компрессор схематически представлен на рисунке 3. Ротационно-пластинчатые компрессоры имеют в своем составе ротор с несколькими скользящими пластинами, которые эксцентрически монтируются в корпусе.

Компрессоры этого типа бывают сухого типа и маслонаполненные. Компрессоры с маслом наиболее эффективны и могут достигать 90%-й эффективности. Также они создают большее давление, чем сухой тип компрессора.

Компрессоры данного типа могут быть стационарными или переносными, иметь одну или несколько ступеней, могут иметь привод от электродвигателя или двигателя внутреннего сгорания. Ротационно-пластинчатый компрессор сухого типа используют при относительно низком давлении (2бар), в то время как маслонаполненные компрессоры имеют достаточный коэффициент полезного действия для достижения давления в 13 бар на одной ступени.

Наиболее часто используемый тип привода – электрический двигатель. На небольших установках (менее 100 лс) применяют клиноременную передачу.

Цилиндр изготавливают обычно из чугуна. Входные и выходные отверстия имеют фланцевое подсоединение. Для установок со смазкой пластины изготавливают из слоистого асбеста с вкраплениями фенолоальдегидных полимеров. Графит используется в установках без смазки. Ротор изготавливают из углеродистой стали. На больших установках ротор может быть изготовлен из чугуна, а вал из углеродистой стали.

Принцип работы

Лопасти ротора выдвигаются и скользят по внутренней поверхности цилиндра под действием центробежной силы. В результате из-за вращения объем камеры между двумя лопастями постоянно меняется. По мере вращения ротора, рабочая среда попадает в область большего объема, а затем подается на нагнетание уже в качестве сжатого газа из области меньшего объема.

Процесс смазки ротационно-пластинчатого компрессора происходит один раз за режим работы. Смазка впрыскивается в компрессор и выходит вместе со сжимаемым газом и обычно не рециркулирует. Смазывающее вещество создает тонкую пленку между корпусом компрессора и скользящими пластинами. Скольжение пластин по поверхности корпуса требует от смазывающего вещества, чтобы оно выдерживало высокое давление в компрессорной системе.

Области применения:

Ротационно-пластинчатые компрессоры используются при улавливании газов и для повышения давления газа, конкурируя с поршневыми компрессорами. Они уступают в эффективности, но они достаточно компактны, имеют меньший вес и не требуют подготовки для них специального фундамента. Данный тип компрессоров используется также для удаления паров. Ротационно-пластинчатые компрессоры доказали свою надежность в качестве сжимающего оборудования для природного газа и метана.

Ротационно-пластинчатые компрессоры применяют для:

  • центральной подачи вакуума
  • охлаждения
  • извлечения растворителей
  • пропитки (поверхности материала под воздействием вакуума пропитывающим веществом)
  • сушки (напр. медицинской продукции)
  • дегазации
  • герметизации солнечных модулей
  • упаковки продуктов питания
  • вакуумной формовки
  • герметизация лотков в пищевой промышленности
  • упаковки непищевой продукции
  • обработки заготовок
  • пневмотранспорта
  • полиграфической и целлюлозно-бумажной промышленности

Особое внимание необходимо уделять контролю за износом пластин, так как их износ может послужить причиной повреждения цилиндра.

Жидкостно-кольцевые компрессоры

Конструктивное устройство и описание типа

Жидкостно-кольцевой компрессор является уникальным видом компрессоров, так как в нем используется сжатие при помощи жидкостного кольца, которое действует как поршень. Одиночный ротор располагается эксцентрически внутри корпуса. Входное и выходное отверстие для газа располагается на роторе. Стандартное материальное исполнение – чугун для цилиндра и углеродистая сталь для вала, сталь для частей ротора. Конструктивно жидкостно-кольцевые компрессоры могут быть как одноступенчатыми, так и многоступенчатыми.

Принцип работы

Сжимающая жидкостная среда заполняет частично ротор и цилиндр, и образует кольцо при движении поршня. При движении поршня в корпусе образуется газовый карман. Газ сжимается в полостях, которые образуют поверхности жидкостного кольца и ротора. На стороне всасывания объем полостей увеличивается и происходит её заполнение газом, на нагнетании объем уменьшается, происходит сжатие газа и подача его в нагнетательную линию. В качестве сервисной жидкости обычно используют воду.

Основные преимущества

  • надежность;
  • возможность эксплуатации при минусовых температурах;
  • эффективная теплоотдача;
  • простое техническое обслуживание;
  • низкий уровень шума и почти полное отсутствие вибраций;
  • компрессоры могут работать почти со всеми газами и парами;
  • нет металлического контакта между вращающимися частями.

    Области применения:

    Данный тип компрессоров применяют для сжатия паров, опасных и токсических газов, а также горячих газов, в том числе с содержанием пыли или жидкости. После взаимодействия газа и рабочей жидкости, температура газа повышается незначительно, что дает почти изометрическое уплотнение. Жидкостно-кольцевые компрессоры используются там, где требуются надежная, безопасная работа и требуются специальные технологические условия.

    Сферы применения

    • производство пластмасс – регенерация технологических газов,
    • нефтехимическая промышленность – уплотнение горючих газов (паров бензина, водорода)
    • общий газовый перенос
    • удаление воздуха из глины
    • удаление нефтяных остатков
    • защита от коррозии водопроводных труб
    • удаление пыли в горнодобывающей промышленности
    • производство биогаза
    • сжатие анаэробных газов
    • очистка и утилизация сточных вод
    • разлив продукта на пивоваренных заводах
    • погрузочно-разгрузочные операции
    • системы очистки и удаления жира из частиц углеводородов
    • прочее

    Спиральные компрессоры

    Конструктивное устройство и описание типа

    Спиральный компрессор – это объемная машина с движением по орбите, в которой сжатие происходит при помощи двух спиральных элементов вложенных друг в друга.

    Хотя идея спирального компрессора известна уже давно спиральные компрессоры это достаточно новая технология. Первый патент на спиральный компрессор был выдан в 1905 году французскому инженеру Леону Круа, но только в 1970 году с развитием высокоточной механической обработки удалось сделать рабочий прототип. На сегодняшний день спиральные компрессоры находят свое применение, как в коммерческих, так и бытовых областях.

    Спиральные компрессоры полностью герметичны. Блок спиралей, муфта, противовесы, двигатель и подшипники смонтированы в сварном стальном корпусе. Большинство спиральных компрессоров для кондиционирования имеют вертикальную конструкцию. Кожух представляет собой цилиндрическую емкость, расположенную вертикально и разделенную на часть низкого давления и часть высокого давления. Нижняя часть кожуха служит в качестве резервуара для масла и жидкости. Спирали обычно изготавливают из заготовок из углеродистой стали. Особое внимание уделяется изготовлению спиралей, так как требуется их точная подгонка.

    Принцип работы

    Спиральный компрессор использует две спирали, одну зафиксированную, а другую движущуюся, соединенную с двигателем. Спирали вложены одна в другую, так что во время движения при их взаимодействии образуются полости для рабочей среды. Среда подвергается сжатию при движении по орбите подвижной спирали вокруг неподвижной спирали и постепенно нагнетается к центру. Когда полости перемещаются, они уменьшаются в объеме и сжимают газ.

    Основные преимущества

    Спиральная технология предлагает преимущества по ряду причин. Большие отверстия на всасе и нагнетании сокращают потери давления, возникающие в процессе всасывания и нагнетания. Также физическое разделение этих процессов сокращает передачу тепла к всасываемому газу. Преимущества спиральных компрессоров заключается в их небольших размерах и меньшем весе, чем у поршневых компрессоров среднего класса. Это эффективные устройства, работающие при различных коэффициентах сжатия. Также к преимуществам можно отнести относительно низкий уровень шума и вибраций, высокий уровень надежности и долгий срок эксплуатации, благодаря тому, что в сжатии участвует небольшое количество деталей и отсутствуют клапаны.

    Области применения

    Спиральные компрессоры изготавливают в разных размерах до 25т. Они нашли широкое применение в бытовых и коммерческих системах обогрева, вентиляции и кондиционирования воздуха. Они успешно используются для охлаждения молока в оптовой таре, в контейнерных перевозках, в морских контейнерах и продовольственных прилавках-витринах, в водяных охладителях. Спиральные компрессоры используются для производства сжатого воздуха и безмасляного сжатого воздуха.

    Горизонтальные герметичные спиральные компрессоры могут работать с природным газом, воздухом и гелием и имеют масляное охлаждение. Другая область применения для такого компрессора – это улавливание газовых паров на нефтяных месторождениях.

  • intech-gmbh.ru

    устройство, характеристики, принцип работы, типы

    Для нагнетания воздуха в различных системах проводится установка роторных компрессоров. Существует довольно большое количество разновидностей подобного оборудования, распространены роторные модели, к которым также относятся винтовые конструкции. Принцип работы подобного устройства был разработан более 120 лет назад. Изначально они не применялись активно, так как были дорогими в производстве и не могли прослужить в течение длительного периода. Усовершенствование технологии производства определило распространение подобных конструкций. Роторные модели устанавливаются в случае, когда нужно обеспечить высокую производительность системы. Отличительными особенностями можно назвать отсутствие гула и вибрации на момент эксплуатации. Рассмотрим особенности подобного оборудования подробнее.

    Принцип работы шестеренчатого компрессора

    Винтовой блок является важным элементом конструкции роторного компрессора. Срок службы подобного элемента составляет примерно 15-20 лет. Стоит учитывать, что ротор компрессора имеет особую форму, за счет которой и обеспечиваются определенные эксплуатационные характеристики.

    Принцип работы устройства определяет то, что на момент подачи воздуха не возникает вибрации или сильного шума. Основная часть компрессора роторного типа не имеет элементов, которые работают путем возвратно-поступательного движения. Поэтому конструкция может устанавливаться в непосредственном месте эксплуатации.

    Принцип действия характеризуется следующими особенностями:

    1. В качестве основы конструкции применяется корпус.
    2. Внутри механизма расположены две шестерни, которые находятся в зацеплении.
    3. У механизма есть подводящий и выводящий патрубок.

    Относится к ротационным компрессорам устройства, которые имеют шестерни, находящиеся в зацеплении. Стоит учитывать, что для существенного износа основных частей проводится добавление смазывающего вещества. Кроме этого, есть модели, которые также работают без смазки.

    Общее описание роторных компрессоров

    Основное предназначение заключается в создании давления, которое будет выше атмосферного. Рассматриваемый тип механизма относится к оборудованию объемного типа.

    Название роторный компрессор получил из-за особенности формы основных вращающихся элементов. Высокая потребность в них определяет то, что появилось просто огромное количество компактных моделей, которые характеризуются высокой эффективностью в применении. Также встречается компрессор роторно-поршневой, который существенно отличается от обычного варианта исполнения.

    В рассматриваемую группу устройств входят следующие механизмы:

    1. Кулачковые.
    2. Винтовые.
    3. Спиральные.
    4. Жидкостно-кольцевые.
    5. Пластинчатые.

    Все разновидности подобных устройств характеризуются большим количеством особенностей, к примеру, пластинчатый компрессор роторного не имеет много различных клапанов, которые существенно снижают показатель КПД. Кроме этого, роторные варианты исполнения имеют меньший вес в сравнении с поршневыми.

    В большинстве случаев компрессор роторно-лопастной представлен одинарным аппаратом с приводом. Некоторые варианты исполнения имеют промежуточный редуктор, который способен изменять передаваемое усилие.

    Сегодня компрессорные установки оснащаются электрическим двигателем. В некоторых случаях проводится установка двигателей внутреннего сгорания, которые характеризуются большей производительностью.

    Данный тип компрессоров встречается в самых различных случаях. Очень часто оно применяется для создания краскопульта, который требуется для равномерного нанесения специального красящего вещества на поверхность.

    Роторный винтовой компрессор

    Ротационный компрессор считается довольно распространенным устройством, которое применяется для сжатия воздуха и различных технологических газов. Во многом эффективность зависит от дизайна подвижных частей. Высокая надежность и другие свойства определяют то, что роторные компрессоры устанавливаются в промышленности. Давление на выходе может достигать высоких показателей, как и при всасывании.

    Конструкционными особенностями рассматриваемого механизма можно назвать следующие моменты:

    1. Основные элементы представлены двумя винтовыми роторами: один вращается по часовой стрелке, второй против.
    2. Между подвижным элементом и корпусом есть небольшой зазор.
    3. Оба ротора крепятся к валу, который предназначен для непосредственной передачи вращения.
    4. Роторный компрессор оснащается впускным и выпускным клапаном.

    При изготовлении основных частей могут применяться самые различные материалы, в большинстве случаев нержавеющая сталь и чугун.

    Принцип работы подобного механизма достаточно прост. Он следующий:

    1. От двигателя вращение передается ведущему элементу, который за счет зацепления передает вращение ведомому.
    2. Оба элемента расположены в герметичном корпусе со впускным и отводящим отверстием.

    Важным моментом назовем то, что роторные компрессоры подобного типа могут быть масляными и безмасляными. Среди их отличительных свойств следует отметить следующее:

    1. Масло существенно снижает степень износа конструкции, а также выступает в качестве охлаждения.
    2. Устройства, куда не подается масло, служат несколько меньше, однако они подают более качественную среду.

    В случае, если в системе есть масло требуется специальный фильтр, который проводит отделение смазывающего вещества от основной среды. Если она будет попадать в магистраль, то существенно снижается качество лакокрасочного покрытия.

    Кроме этого, выделяют довольно большое количество преимуществ у рассматриваемого механизма:

    1. Подвижные части могут работать при большой скорости.
    2. Контакта между двумя подвижными элементами практически нет. Именно поэтому износ относительно низкий даже при длительной эксплуатации устройства.
    3. Провести обслуживание можно своими руками.
    4. Относительно небольшие размеры и вес.
    5. Эксплуатационный заявленный срок составляет несколько десятков лет.
    6. Не требуется много средств для поддержания работоспособности.

    Вышеприведенные достоинства определяют широкое распространение подобных видов роторного компрессора.

    Они могут устанавливаться в быту или промышленности, обладать различными размерами и весом.

    Роторный компрессор с кулачковыми роторами

    Подобный вариант исполнения применяется в том случае, когда нужно передавать большой объем вещества за минимальный период. Среди особенностей отметим:

    1. Подвижные части не соприкасаются. Именно поэтому снижается вероятность сильного износа.
    2. Нет необходимости в добавлении масла, за счет чего существенно упрощается процесс обслуживания.
    3. Устройства с большим размером имеют электрический двигатель, который подключен напрямую к основному элементу. Меньшие варианты исполнения снабжаются клиноременной передачей.

    Встречается довольно большое количество разновидностей подобного устройства. Основными элементами можно назвать:

    1. Корпус.
    2. Ротор.
    3. Распределительные шестерни.
    4. Уплотнительные прокладки.
    5. Подшипники.

    Принцип действия устройства можно охарактеризовать следующим образом:

    1. Роторы не находятся в зацеплении на момент работы.
    2. Газ внутри не сжимается.
    3. Есть возможность проводить монтаж подвижных элементов на параллельных винтах.
    4. Кулачки не соприкасаются.
    5. Подшипники и распределительные части смазываются на момент работы.

    Область применения подобных устройств весьма обширна. Примером можно назвать различные промышленные установки, а также оборудование для нанесения лакокрасочных материалов.

    Ротационно-пластинчатый компрессор

    В этом случае ротор снабжается несколькими скользящими пластинами, которые монтируются эксцентрическим методом в литом корпусе. Кроме этого, выделяют следующие особенности подобных устройств:

    1. Маслозаполненные.
    2. Эффективность механизма достигает 90%.
    3. Могут применяться для генерирования повышенного давления в магистрали.
    4. Выделяют стационарные и переносные варианты исполнения.
    5. На одной ступени может создаваться давление более 13 бар.
    6. Вращение создается при помощи двигателя.
    7. Для подключения магистрали есть фланцы.
    8. Изготовление цилиндра проводится при применении чугуна.

    Высокая эффективность устройства можно связать с широким его распространением. Примером можно назвать системы охлаждения или центральной подачи вакуума.

    Жидкостно-кольцевые компрессоры

    Такие модели считаются универсальным устройством, у которого давление создается при помощи жидкостного кольца. Он действует по принципу поршня. В рассматриваемом случае есть только один ротор, размещенный в центральной части. В большинстве случаев при изготовлении применяется чугун, вал из углеродистой стали рассчитан на воздействие большой осевой нагрузки. Стоит учитывать, что выделяют два типа подобных приборов – одноступенчатые и многоступенчатые.

    Принцип действия этого механизма характеризуется следующими особенностями:

    1. Ротор и цилиндр частично заполняются при сжимании жидкостной среды, за счет чего образуется кольцо.
    2. При непосредственном движении поршня образуется газовый карман.
    3. Сервисная жидкость в большинстве случаев представлена обычной водой бытового предназначения.

    Встречаются подобные варианты исполнения не так часто, как другие. Но им свойственны следующие преимущества:

    1. Возможность эксплуатации при минусовой температуре.
    2. Надежность. Как показывает практика, механизм может прослужить в течение нескольких лет без возникновения неполадок и дефектов.
    3. Эффективный теплоотвод.
    4. Простое техническое обслуживание.
    5. Устройство может применяться для работы практически в любой среде.
    6. Между вращающимися элементами нет непосредственного контакта, за счет чего существенно снижается степень износа.

    При изготовлении основных элементов применяется сталь ил чугун. Оба материала характеризуются повышенной устойчивостью к воздействию влажности или других химических веществ.

    Спиральные компрессоры

    Меньше всего распространены спиральные конструкции, так как они представлены объемными машинами. Внутри находятся спирали, которые вложены друг в друга, за счет которых обеспечивается создание требуемого давления.

    Несмотря на то, что подобная технология получила широкое распространение, она применяется относительно недавно. Спиральные роторные компрессоры получили широкое распространение в промышленности и быту.

    Среди конструктивных особенностей отметим:

    1. Корпус герметичный, часто производится путем литья или сварки. За счет этого обеспечивается высокая степень эффективности спирального нагнетателя воздуха.
    2. Есть муфта и блок спиралей.
    3. В качестве источника вращения применяется двигатель.

    В большинстве случаев конструкция имеет вертикальную компоновку. Для хранения смазывающей жидкости создается специальный картер.

    Основные части винтового компрессора

    Роторный компрессор состоит из нескольких основных элементов, которые и обеспечивают подачу среды под большим давлением. Рассматривая конструктивные особенности отметим:

    1. Пара червячных зацепленных роторов, один из которых ведущий, второй ведомый.
    2. Корпус может изготавливаться самым различным образом, характеризуется высокой герметичностью.
    3. Объем конструкции зависит от формы ротора, а также их размеров.

    В производстве встречаются самые различные профили роторов. В целом можно сказать, что от этого во многом зависят основные эксплуатационные характеристики.

    В заключение отметим, что роторные компрессоры на сегодняшний день один из самых распространенных. При выборе уделяется внимание техническому состоянию, типу применяемых материалов при изготовлении, рабочему объему и многим другим моментам.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    stankiexpert.ru

    Ротационные компрессоры

    Ротационные компрессоры относятся к объёмному типу компрессоров и осуществляют нагнетание за счёт сжатия вещества с помощью вращающегося ротора. Иногда этот тип компрессоров называют роторным, но это ошибочно, возникла эта ошибка, скорее всего, из-за некорректного перевода иностранной технической литературы.

    Различают ротационные компрессоры с неподвижными пластинами, с вращающимися пластинами, двухроторные и с качающимся ротором.

     

    Компрессор с неподвижными пластинами

     

    Другое название данного компрессора – с катящимся ротором (ККР).Конструктивно такой компрессор представляет из себя вал двигателя на котором насажен цилиндрический ротор, но вал находится не в центре окружности, а эксцентрично,то есть смещён от центра. Вращается ротор внутри также цилиндрического корпуса. Между ротором и корпусом образуется зазор, величина которого при вращении из-за эксцентричности ротора изменяется. Где его величина минимальна находится нагнетательный патрубок, а где максимальна – всасывающий. Пространство между ними перекрывает подвижная пластина, плотно прижимающаяся пружиной к вращающемуся ротору,предотвращая перетекание рабочего вещества из зоны высокого давления в зону низкого. Наглядно это видно на рисунках:

    Приемущества этого вида компрессоров:

    -очень простая конструкция

    -немного движущихся деталей

    -надёжность

    -отсутствуют клапаны

    -меньшие пульсации давления, так как ротор движется непрерывно

    -отличные массогабаритные показатели

    -маленькие газодинамичесие потери на всасывании

    -невысокая цена, из-за массовой распространённости

    Недостатки:

    -перетекание газа из области всасывания в область нагнетания

    -наличие “горячей точки”, т.е. трения в месте соприкосновения ротора с корпусом.

     

    Компрессоры с подвижными пластинами

     

    Принцип действия этого типа компрессора такой же как и у предыдущего, с той лишь разницей, что пластины находятся на роторе и вращаются вместе с ним. Подробней это видно рисунке, для упрощения показано всего две пластины.

    Преимущества и недостатки этого типа такие же как и у первого типа, за исключением:

    -возможность развивать большее давление за счёт большего количества пластин

    -больше точек трения

    -более сложное изготовление

     

    Ротационные компрессоры с двумя роторами

     

    Применяет такие компрессоры компания Toshiba. Для чего-же,собственно, понадобилось усложнять конструкцию добавлением ещё одного ротора?

    Представим однороторный компрессор, ротор на его валу расположен эксцентрично, то есть смещён геометрический центр и ,соответственно, центр тяжести. Такую конструкцию, например применяют в телефонах для виброзвонка – двигатель с грузиком, смещённым относительно центра. Можно вспомнить и лопасть вентилятора с одним винтом – при вращении идут биения и вибрации. Для уравновешивания и придумали добавить ещё один ротор.

    Как следствие этого:

    -уменьшенный уровень вибраций и шума

    -повышение надёжности и долговечности (не только самого компрессора, но и всей конструкции холодильной машины)

    -возможность снижения производительности до 15 % от номинальной

    Последний пункт важен для инверторных кондиционеров, так даёт возможность не выключать компрессор, работая на малых оборотах, при этом экономится электроэнергия.

     

    Компрессор с качающимся ротором

     

    Данный вид компрессора использует корпорация Daikin, в её терминологии SWING. Основной причиной разработки этого компрессора послужил переход с хладагента R22 на другие виды хладагентов. При использовании фреона R22 для смазки применяется минеральное масло, а в составе самого фреона присутствует хлор, поэтому при работе компрессора с этим видом хладагента на поверхностях трущихся деталей образуется защитная ферро-хлоридная плёнка. Эта плёнка значительно снижает трение и риск коррозии. При использовании R410a и R407c эта плёнка отсутствует.

    Следующий неприятный момент при использовании новых хладагентов – потери давления. Эти потери происходят из-за перетекания газа из одной зоны в другую, по исследованиям 70 % перетекания между ротором и цилиндром корпуса, а 30 % между цилиндром и торцом пластины. Эти потери зависят от наличия масляной плёнки и плотности прилегания ротора и пластины,которую, в свою очередь, нельзя сильно уменьшать, иначе увеличится сила трения.

    Фирма Дайкин разработала и запатентовала ротационные компрессоры с качающимся ротором. В этом компрессоре пластина и ротор выполнены в виде ондной детали, которая совершает колебательные и возвратно-поступательные движения, из-за чего компрессор и получил название “с качающимся ротором”, в англоязычной терминологии SWING (качаться-англ.)

    В результате этого уменьшается трение между ротором и цилиндром корпуса, а также исключаются потери на трение и перетекания между пластиной и ротором.

    Схематически это выглядит так:

    Основная область применения ротационных компрессоров холодильные машины малой производительности – от полутора до десяти киловатт. На данный момент в 90 % кондиционеров применяют компрессоры данного типа в герметичном исполнении.

    masterxoloda.ru

    2.4.5. Роторные компрессоры

    Объемные компрессоры с вращательным движением рабочего органа, сжимающие газ, называются роторными. Наиболее распространены следующие конструктивные типы роторных компрессоров: ротационные пластинчатые; ротационные пластинчатые с катящимся поршнем; жидкостно-кольцевые.

    Ротационные пластинчатые компрессоры (рис. 2.31) выпускаются со стальными пластинами и разгрузочными кольцами, уменьшающими износ пластин, а также с пластинами из несмазываемых антифрикционных материалов. При эксплуатации пластинчатых компрессоров необходима установка нагнетательного или обратного клапана.

    Современные жидкостно-кольцевые компрессоры (рис. 2.32) и вакуумные установки поставляются полностью укомплектованными в моноблочном без фундаментном исполнении, единичной производительностью 150–400 м/мин, давлением нагнетания 0,15–0,25 МПа.

    Достоинства жидкостно-кольцевых компрессоров: простота конструкции и эксплуатации, практически изотермический процесс сжатия, возможность откачивания и сжатия токсичных, взрывоопасных, легко разлагающихся, полимеризующихся и воспламеняющихся газов, паров и жидкогазовых смесей, в том числе агрессивных и загрязненных механическими примесями.

    1

    2

    3

    4

    6

    5

    Рис. 2.31. Ротационный пластинчатый компрессор: 1 – корпус; 2 – ротор; 3 – пластина;

    4 – рубашка; 5,6 – всасывающий и нагнетательный патрубки

    1

    2

    Р

    3

    4

    5

    ис. 2.32. Жидкостно-кольцевой компрессор: 1 – колесо; 2 – корпус;

    3 – окно всасывания; 4 – окно нагнетания; 5 – жидкость

    Компрессор типа Рутс (рис. 2.33) представляет собой бесклапанную машину объемного действия с двумя роторами, двумя или тремя лопастями. Два идентичных ротора (обычно симметричные) вращаются в противоположных направлениях внутри корпуса, составленного из двух цилиндров. Зазоры между вращающимися роторами (0,1–0,2 мм) устанавливаются с помощью синхронизирующих шестерен, расположенных снаружи корпуса.

    Рис. 2.33. Газодувка типа Рутс

    Сжатие происходит обратным потоком газа из области нагнетания в тот момент, когда лопасть ротора соединяет отсеченную порцию газа с областью нагнетания.

    Широкое применение компрессоров типа Рутс в ряде отраслей промышленности объясняется простотой их конструкции и эксплуатации, отсутствием трущихся элементов и смазки в проточной части, уравновешенностью, долговечностью.

    Компрессоры типа Рутс выпускаются производительностью от нескольких литров в минуту до 2000 м/мин с давлением нагнетания до 0,15 МПа.

    За полный оборот в нагнетательную полость теоретически переносится в двухлопастном роторе четыре порции газа, в трехлопастном – шесть порций.

    Теоретическая производительность компрессора с двухлопастными роторами

    ,

    ,

    где L– длина ротора;F – площадь поперечного сечения ротора.

    При введении k – коэффициента, учитывающего полезное использование площади :

    ,

    где k = 0,53–59 – для двухлопастных,k =0,49–0,53 – для трехлопастных компрессоров.

    Действительная производительность компрессора

    ,

    где – коэффициент производительности (=0,65–0,85).

    С целью уменьшения виброакустической активности окружная скорость ротора компрессора не должна превышать 40 м/с. Отношение длины к радиусу цилиндра =1,6 – 3,0.

    Мощность на валу компрессора

    ,

    =0,87–0,94 – учитывает потери на трение в подшипниках, торцевых частей ротора о крышку, в шестернях и т.д.

    Конструкция винтового компрессора запатентована в 1934 г. Надежность в работе, малая удельная металлоемкость и габаритные размеры предопределили их широкое распространение. Винтовые компрессоры конкурируют с другими типами объемных компрессорных машин. Отсутствие клапанов и неуравновешенных механических сил обеспечивает винтовым компрессорам возможность работать с высокими частотами вращения, т.е. получать большую производительность при сравнительно небольших внешних габаритах.

    Рабочими органами винтовых компрессоров являются роторы (1–3) с нарезанными на них винтовыми зубьями. Наибольшее распространение получили двухроторные машины. Роторы вращаются в корпусе, выполняющем функции цилиндра (рис. 2.34).

    Рис. 2.34. Винтовой компрессор: 1 – ведомый вал; 2 – ведущий вал;

    3 – шестерни синхронизации; 4 – корпус; 5 – опорные подшипники;

    6 – упорные подшипники; 7 – узел уплотнения

    Роторы современных винтовых компрессоров представляют собой косозубые шестерни с малым числом зубьев специального профиля. Каждая пара зубьев образует винтовой канал, заполняемый газом. Ведущий ротор имеет выпуклые широкие зубья и соединен с двигателем. Ведомый ротор имеет зубья вогнутые и тонкие.

    Винты постоянного сечения помещаются в цилиндрических расточках корпуса. Расточки пересекаются между собой, образуя в поперечном сечении фигуру в виде восьмерки. По диагонали эти полости соединены с камерами всасывания и нагнетания через специальные всасывающие и нагнетательные полости (окна). Окно всасывания имеет форму кольцевого сектора и расположено с торца винтов, окно нагнетания располагается сбоку или с торца винтов. В области сжатия газа окружные скорости винтов направлены навстречу друг другу и зубья винтов сходятся. С противоположной стороны под винтами окружные скорости направлены друг от друга и зубья винтов расходятся, благодаря чему происходит всасывание газа (область всасывания).

    Принцип действия винтового компрессора состоит в следующем. Из патрубка всасывания через окно газ поступает в пространство между зубьями, называемое впадинами или полостями, которые при вращении винтов постепенно заполняются газом, начиная с торца всасывания. После поворота винта на некоторый угол парная полость, пройдя окно всасывания, разъединяется с окном всасывания.

    На этом процесс всасывания заканчивается. Объемы газа, заполнившего впадины ведущего и ведомого винтов, изолированные друг от друга и ограниченные поверхностями роторов и корпусом, разъединяются с камерой всасывания, но еще не соединяются с камерой нагнетания. При вращении винтов газ,заполнивший впадины, перемещается на некоторый угол, а затем начинается его сжатие. По мере входа зуба ведомого винта во впадину ведущего объем, занима­емый газом, уменьшается и газ сжимается.

    Процесс сжатия газа в полости (называемой парной) продолжается до тех пор, пока все уменьшающийся изолированный объем парной полости со сжатым газом не подойдет к кромке окна нагнетания. В этот момент процесс внутреннего сжатия в компрессоре заканчи­вается. Таким образом, внутреннее сжатие газа в компрессоре для данных винтов зависит от расположения окна нагнетания. При дальнейшем вращении винтов, после соединения полости со сжатым газом с камерой нагнетания происходит процесс выталкивания газа.

    Давление внутреннего сжатия газа может не совпадать с дав­лением нагнетания, т.е. давлением газа, подаваемого потребителю: если оно меньше давления нагнетания, то происходит внешнее дожатие газа до давления нагнетания; если оно выше, то происходит некоторое падение давления сжимаемого газа.

    Величина давления внутреннего сжатия в винтовом компрессоре зависит от размеров окна на­гнетания. Образующиеся между винтами парные полости должны быть изолированы от таких же полостей, расположенных впереди или после них, те в свою очередь от соседних. Это достигается выбором соответствующего профиля зубьев винтов. Практически из-за неизбежных зазоров между зубьями (даже при теоретически герметичном зацеплении) и зазоров между винтами и корпусом по цилиндрическим поверхностям и с торцов имеется соединение соседних парных полостей. Величину этих зазоров делают по возможности небольшой.

    Процессы всасывания, сжатия и выталкивания газа в винто­вом компрессоре чередуются для каждой отдельно взятой парной полости. Но благодаря непрерывному следованию с большой скоростью полостей друг за другом обеспечивается практически непрерывная подача газа.

    Винтовые компрессоры делятся на две группы: машины сухого и мокрого сжатия (маслозаполненные). Винтовые компрессоры сухого сжатия подают сухой газ,не содержащий масла. Винты вращаются в корпусе без контакта с корпусом и между собой, что обеспечивается наличием шестерен синхронизации. Впрыск масла в рабочее пространство позволяет получать степень повы­шения давлений доI5–20 в одноступенчатой машине против 4–5 в компрессоре сухого сжатия.

    Зазоры в маслозаполненном компрессоре в 2 раза меньше, чем в компрессоре сухого сжатия, в связи с менее напряженным темпе­ратурным режимом. Кроме того, масло, заполняя зазоры, способству­ет уменьшению внутренних перетечек. Частота вращения роторов маслозаполненного компрессора ниже, чем компрессора сухого сжатия.

    studfiles.net

    Принцип работы роторно-пластинчатого компрессора | НПП Ковинт

    В данной статье мы рассказываем о принципе работы роторно-пластинчатого компрессора на основе компрессоров Hydrovane HV PEAS горизонтального типа.

    Общее описание

    Роторно-пластинчатые компрессоры относятся к компрессорам объемного действия, т.е. сжатие газа происходит за счет изменения объема полости сжатия. 

    Схема основных элементов

    Основные элементы роторно-пластинчатого компрессора изображены на рисунке ниже.

     

    Роторно-пластинчатый компрессор

    где:

    «A» — точка входа воздуха в компрессор

    «H» — впускной клапан

    «B» — блок сжатия роторно-пластинчатого компрессора

    «С» — масляный перепускной клапан

    «D» — узел выхода воздушно-масляной смеси из блока сжатия

    «G» — масло компрессора в статоре

    «Е» — сепаратор тонкой очистки сжатого воздуха от масла

    «F» — воздушно-масляный радиатор для охлаждения сжатого воздуха и масла

    Контуры движения воздуха и масла

    В компрессоре существует два контура движения. Это масляный контур (движение масла внутри компрессора) и воздушный контур (движение воздуха в компрессоре).

    Синими стрелками изображено направление движения воздуха.

    Красными стрелками изображено направление движения масла.

    Контур красного цвета в нижней части рисунка — это масляный контур компрессора. В него входят термостатический клапан и масляный фильтр.

    Принцип работы

    При включении компрессора сжатый воздух поступает через воздушный фильтр, входное отверстие в торцевой крышке блока сжатия и всасывающий клапан (А).

    Далее воздух поступает в блок сжатия (В).

    В блоке сжатия (B) воздух сжимается за счет изменения объема камеры сжатия. Камера образуется с помощью статора, ротора и пластин, которые установлены в пазах ротора.

    Масляный перепускной клапан (С) предназначен для предотвращения гидравлического удара и выброса излишков масла из камеры сжатия, которые могут остаться после остановки компрессора и, соответственно, перед его запуском.

    Воздушно-масляная смесь выходит из блока сжатия (D) и двигается в его нижнюю часть. При выходе из блока сжатия масло отделяется от сжатого воздуха с помощью первичного маслоотделителя.

    Масло по стенкам стекает в нижнюю часть блока сжатия (масло показано красным цветом).

    Сжатый и предварительно очищенный воздух двигается в сепаратор тонкой очистки (Е), где происходит финальное отделение масла из сжатого воздуха до 3 мг/м3.

    Очищенный воздух проходит через клапан поддержания давления (на рисунке цифрой не обозначен) и поступает в воздушно-масляный радиатор (F), где происходит охлаждение.

    Далее сжатый воздух поступает в трубопровод к потребителю.

    Циркуляция масла

    Циркуляция масла происходит за счет разности давлений в разных точках внутри блока сжатия. Имеется два круга циркуляции масла — большой и малый.

    Малый круг: масло двигается минуя воздушно-масляный радиатор (F) в случае первичного запуска компрессора, когда масло еще холодное.

    Большой круг: масло двигается через воздушно-масляный радиатор (F) в том случае, когда температура масла достигает рабочих режимов (примерно 60-65 С). 

    Видеобзор

    Для наглядности мы записали небольшое видео с нашими комментариями по принципу работы роторно-пластинчатых компрессоров.

    Все важные элементы разобраны в этом видео более подробно. Так же есть более подробное описание принципа работы роторно-пластинчатого компрессора.

     

     

    Также мы публикуем симулятор Hydrovane, с помощью которого можно самостоятельно изучить потоки сжатого воздуха и циркуляции масла внутри компрессора в зависимости от потребления сжатого воздуха.

    Для удобства просмотра рекомендую использовать браузеры Opera или Google Chrome (также потребуется последняя версия Addobe Flash Player). И не забудьте включить звук…

     

     

    Все вопросы, связанные с принципом работы роторно-пластинчатых компрессоров, вы можете задать по электронной почте:

    [email protected]

    или оставив комментарий через форму ниже. Мы ответим в течение одного рабочего дня.

     

    С уважением,

    Константин Широких

     

    covint.ru

    Роторный компрессор

    Компрессор – это устройство, предназначенное для сжатия и подачи газа, в том числе воздуха, в различные пневматические системы. Сжатый до определенного давления воздух позволяет осуществить работу множества агрегатов без применения механической силы. Сжатие газа в основном используется для его перегона в трубопроводах либо заполнения некого резервуара для дальнейшего использования, например, при дайвинге в кислородных баллонах.

    Существуют два основных типа компрессоровпоршневой и роторный. В данной статье мы рассмотрим именно роторный тип, который также называют винтовым. Такие компрессоры получили широкое распространение на промышленных и других крупных объектах (больницы, торговые центры и т.д.). Компрессорное оборудование роторного типа увеличивает давление воздуха при помощи специальной системы, состоящей из двух роторов – ведущего и ведомого винтов. Эти винты расположены параллельно друг другу таким образом, что их движущиеся зубцы едва ли не полностью соприкасаются друг с другом. Между ними образуется маленький зазор, через который проходит воздух и сжимается посредством вращения роторов.

    Чтобы избежать перегрева соприкасающихся частей роторов, которые нагреваются от трения на высокой скорости, используется масляное, водяное или воздушное охлаждение. Применение масла в качестве смазки – наиболее эффективный способ охлаждения, но приводит к тому, что на выходе сжатый воздух будет содержать в себе загрязняющие частицы. Для некоторых целей такой тип роторного компрессора не подходит. Поэтому были разработаны водяная и воздушная системы. Они обеспечивают на выходе практически чистый воздух.

    Схема работы роторного компрессора

    Для достижения максимальной очистки воздуха существуют фильтры и осушители. Если фильтр предназначен только для очищения воздуха от мельчайших загрязняющих частиц, то осушитель позволяет отделить влагу от воздуха.

    Наша компания реализует поршневые и роторные компрессоры мировых брендов по оптовым ценам. Ознакомиться с перечнем товаров можно в каталоге нашего сайта. Понравившуюся модель компрессора можно приобрести напрямую со склада вблизи нашего офиса, расположенного по адресу: г. Ростов-на-Дону, ул. Пескова, 1/169а.

    www.compressor-rnd.ru

    Роторный компрессор. Как он работает


    Классификация и принцип работы роторного компрессора

    В роторных компрессорах сжатие воздуха осуществляется за счёт уменьшения объёма рабочей зоны. Этот тип компрессоров подразделяется на:

     

    • ротационно-пластинчатые (одновальные)
    • с качающимся ротором (одновальные)
    • жидкостно-кольцевые (одновальные)
    • двухроторные нагнетатели типа Руте (двухвальные)
    • витнтовые (двухвальные и трёхвальные)

     

    Также роторные компрессоры по характеру сжатия воздуха можно отнести к трём группам:

     

    • воздух сжимается за счёт непрерывного изменения геометрического объёма полостей сжатия (ротационно-пластинчатые).
    • воздух сжимается в результате обратного течения воздуха из нагнетательного трубопровода в камеру сжатия компрессора в момент её соединения с нагнетательным трубопроводом. Перенос воздуха осуществяется при вращении роторов из всасывающего трубопровода в нагнетательный.
    • воздух сжимается с использованием обоих принципов – частично происходит сжатие за счёт изменения геометрического объёма камеры сжатия и сжатие до заданного давления обратным потоком газа их нагнетательной полости.


     

    По кинематическо схеме роторные компрессоры делятся на однороторные (ротационно-пластинчатые, с качающимся ротором и жидкостно-кольцевые) и многороторные (винтовые).

    Компрессор с качающимся ротором состоит из цилиндрического корпуса, в котором эксцентрично расположен цилиндрический ротор, жестко соединенный с шибером, размещенным в пазу цилиндра. Уплотнение шибера достигается полуцилиндрическими направляющими, с помощью которых создается возможность поступательного движения шибера. В цилиндре ротора расположен вал с эксцентриками, которые соприкасаются с внутренней поверхностью цилиндра ротора через шарикоподшипники. При вращении вала ротор совершает планетарное движение относительно оси вала, проходя около стенки цилиндра с небольшим зазором. Шибер совершает качательно-поступательное движение в направляющих, поворачивая их в гнездах.

     

    Для избежания перетечки воздуха из нагнетательной полости во всасывающую, когда шибер полностью входит в паз цилиндра, компрессор снабжен нагнетательным клапаном. При вращении вала по часовой стрелке ротор сжимает воздух, находящийся в цилиндре с левой стороны. В это время в свободное пространство, образовавшееся с правой стороны ротора, из всасывающего патрубка поступает газ. В полости с левой стороны ротора воздух сжимается до открытия нагнетательного клапана, после чего выталкивается в нагнетательный трубопровод. Сжатие воздуха происходит так же, как в поршневом компрессоре с самодействующими клапанами, т. е. конечное давление сжатия зависит от противодавления в нагнетательном трубопроводе.

     

    При вращении эксцентрика ротор касается почти непрерывно своей образующей внутренней поверхности цилиндра компрессора, отделяя всасывающее отверстие от нагнетательного (зазор между ротором и цилиндром 0,1—0,15 мм). При вращении по часовой стрелке происходит одновременно с правой стороны ротора всасывание воздуха, а с левой — сжатие и нагнетание, всасывающий клапан отсутствует, всасывающее отверстие перекрывается ротором. Сжатие воздуха с левой стороны ротора начинается тогда, когда его образующая перейдет через нижнюю кромку всасывающего отверстия. Нагнетание заканчивается, когда ротор достигнет кромки нагнетательного окна. При дальнейшем движении ротора по образующей цилиндра нагнетательный клапан закрывается и начинается расширение воздуха, заключенного в мертвом пространстве.

    inex.by

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *