Самодельная ик паяльная станция своими руками: как создать своими руками, пошаговая инструкция

alexxlab | 09.06.2018 | 0 | Разное

Содержание

как создать своими руками, пошаговая инструкция

Уже давно я задумался над тем, паяльную станцию своими руками и чинить на ней свои старые видеокарты, приставки и ноутбуки. Для нагрева можно использовать старую галогеновую грелку, ножку от старой настольной лампы можно использовать для удержания и перемещения верхнего нагревателя, платы будут лежать на алюминиевых поручнях, спираль от душа будет держать термопары, а плата Ардуино будет следить за температурой.

Сперва разберемся с тем, что такое паяльная станция. Современные чипы на интегральных схемах (ЦПУ, ГПУ и т.д.) не имеют ножек, зато имеют массив шариков (BGA, Ball grid array). Для того чтобы припаять\отпаять такой чип, нужно иметь устройство, которое нагреет всю IC до температуры в 220 градусов и при этом не расплавит плату, а также не подвергнет IC термическому шоку. Именно поэтому нам нужен контроллер температуры. Такие аппараты стоят в диапазоне $400-1200. Это проект должен уложиться примерно в $130. Про BGA и паяльные станции вы можете почитать на Википедии, а мы начнём работать!

Материалы:

  • Четырёхламповый галогеновый нагреватель ~1800w (в качестве нижнего подогрева)
  • 450w керамический ИК (верхний нагреватель)
  • Алюминиевые рейки для занавесок
  • Спиральный кабель для душа
  • Прочная толстая проволока
  • Ножка от настольной лампы
  • Плата Ардуино ATmega2560
  • 2 платы SSR 25-DA2x Adafruit MAX31855K (или сделайте сами, как сделал я)
  • 2 термопары типа K
  • Блок питания постоянного тока 220 на 5v, 0. 5A
  • Буквенный модуль LCD 2004
  • 5v пищалка

Шаг 1: Нижний нагреватель: отражатель, лампы, корпус

Найдите галогеновый нагреватель, откройте его и выньте отражатель и 4 лампы. Будьте аккуратны, не сломайте лампы. Здесь вы можете приложить воображение и создать свой корпус, который будет держать лампы и отражатель. Например, вы можете взять старый корпус ПК и поместить лампы, отражатель и провода внутрь него. Я использовал металлические листы толщиной 1 мм и сделал из них корпуса для нижнего и верхнего нагревателя, а также корпус для контроллера Ардуино. Как я и сказал прежде — вы можете быть креативными и придумать для корпуса что-то своё.

Используемый мною нагреватель был на 1800W (4 лампы на 450w параллельно). Используйте провода из нагревателя и параллельно соедините лампы. Вы можете встроить штекер для переменного тока, как сделал это я, или соединить кабель напрямую от нижнего нагревателя к контроллеру.

Шаг 2: Нижний нагреватель: система крепления плат

После создания корпуса нижнего нагревателя, измерьте бОльшую длину его окна и отрежьте два куска алюминиевой рейки такой же длины. Вам также нужно будет отрезать еще 6 кусков, каждая размером в половину от меньшей стороны окна нагревателя. Просверлите отверстия по двум концам больших кусков реек, а также на одном конце каждой из 6 небольших реек и на длинной части окна. Перед тем, как прикручивать части к корпусу, нужно создать механизм крепления на гайках, по типу такого, который я сделал на фотографиях. Это нужно для того, чтобы меньшие рейки могли скользить по бОльшим рейкам.

После того, как вы проденете гайки в рейки и скрутите всё вместе, используйте шуруповёрт для перемещения и закрепления шурупов, чтобы система крепления подходила под размер и форму вашей платы.

Шаг 3: Нижний нагреватель: держатели термопары

Для изготовления держателей термопары, замерьте диагональ окна нижнего нагревателя и отрежьте два куска спирального кабеля для душа такой же длины. Раскрутите жесткий провод и отрежьте два куска, каждый на 6 см длиннее, чем спиральный кабель от душа. Пропустите жесткий провод и термопару через спиральный кабель и загните оба конца провода так, как это сделал я на картинках.

Оставьте один конец длиннее другого для того, чтобы закрутить его одним из винтов рейки.

Шаг 4: Верхний нагреватель: керамическая пластина

Для изготовления верхнего нагревателя я использовал керамический инфракрасный нагреватель на 450W. Вы можете найти такие на Алиэкспресс. Хитрость заключается в том, что нужно создать для нагревателя хороший кейс с правильным током воздуха. Далее приступаем к держателю нагревателя.

Шаг 5: Верхний нагреватель: держатель

Найдите старую настольную лампу на ножке и разберите её. Для того чтобы правильно разрезать лампу, нужно точно всё рассчитать, так как верхний инфракрасный нагреватель должен достигать всех углов нижнего нагревателя. Итак, сначала прикрепите корпус верхнего нагревателя, сделайте разрез по оси X, произведите правильные расчёты и, наконец, сделайте разрез по оси Z.

Шаг 6: ПИД-регулятор на Ардуино

Найдите правильные материалы и создайте прочный и безопасный кейс для Ардуино и других принадлежностей.

Можно просто отрезать и с прикрепить провода, соединяющие контроллер (верхнее/нижнее питание, контролер питания, термопары), используя паяльник или раздобыть коннекторы и сделать всё аккуратно. Я не знал точно, сколько тепла будет излучать SSR, поэтому добавил на корпус вентилятор. Будете вы устанавливать вентилятор, или нет, но вам обязательно нужно нанести на SSR термопасту. Код прост и из него понятно, как соединить кнопки, SSR, экран и термопары, так что соединить все вместе будет просто. Как управлять устройством: для значений P, I и D нет автонастройки, так что эти значения нужно будет вбить вручную в зависимости от ваших настроек. Есть 4 профиля, в каждом из них можно установить количество шагов, значения Ramp (C/s), dwel(время ожидания между шагами), порог нижнего нагревателя, целевую температуру для каждого шага и значения P,I,D для верхнего и нижнего нагревателей. Если вы, например, выставите 3 шага, 80, 180 и 230 градусов с порогом нижнего нагревателя 180, то ваша плата будет прогрета снизу только до 180 градусов, дальше температура снизу будет держаться на 180 градусах, а верхний нагреватель разогреется до 230 градусов.

Код до сих пор нуждается во множестве улучшений, но из него вы можете понять, как все должно работать. Это руководство описано не в деталях, ведь в нём присутствует множество самодельных элементов, и каждая сборка будет отличаться от других. Я надеюсь, что вы вдохновитесь этой инструкцией и сделаете по ней свою ИК паяльную станцию.

Код на Дропбоксе: Ссылка

устройство, принцип работы, примеры создания

С появлением микропроцессорной техники возникла необходимость при ремонте сталкиваться с перепайкой BGA микросхем, что привычными методами сделать или крайне сложно, или, чаще, невозможно. Даже фен не всегда поможет справиться с поставленной задачей. Именно поэтому изготовление инфракрасной паяльной станции своими руками будет наилучшей альтернативой и порой единственным актуальным решением.

ИК станция для пайки

Микросхемы BGA (Ball grid array) присутствуют практически в любом современном «умном» устройстве: телефоны, компьютеры, телевизоры, принтеры. В процессе эксплуатации они могут выходить из строя, что требует замены неисправной части на новую. Но такую процедуру осуществить без специального оборудования — задача крайне сложная.

Проблема заключается в том, что производители изобретают всё новые и новые методы для монтажа электронных деталей. И обычный паяльник или фен не всегда смогут помочь в решении такой проблемы. Ведь контактные шарики способствуют высокой теплоотдаче на плату, в результате чего они не могут расплавиться.

Если пытаться поднять температуру до необходимой для их плавления, то появляется риск перегреть микросхему, в результате чего она может выйти из строя. Вследствие перегрева не исключена и возможность повреждения близлежащих деталей. Особенно если их корпусы выполнены из легкоплавких материалов.

Отличным решением может выступить инфракрасная станция. Она позволяет производить замену даже крупных GPU контроллеров. А с широким распространением компьютеров, ноутбуков, материнских плат, видеоадаптеров и другой сложной техники такие работы при ремонте выполняются достаточно часто. И если раньше для замены крупных микросхем можно было использовать термовоздушные станции, то сейчас, когда производители используют бесконтактные методы пайки, единственным оптимальным решением является ИК станция, способная качественно справиться с заменой любой микропроцессорной детали.

Принцип действия

Основными проблемами при перепайке микросхем и контроллеров является или недогрев до температуры плавления контактного материала, или перегрев заменяемой части и её выход из строя.

Так пришла идея нагревать до температуры 100–150 градусов Цельсия непосредственно саму плату. После чего уже производить пайку деталей. Это позволяет качественно снизить теплоотток на текстолит платы, что даёт возможность понижать и «верхние» температуры. А значит, и сама деталь будет меньше подвергаться перегреву.

Производить нагрев можно и термофеном, но использовать инфракрасный паяльник предпочтительнее. Ведь ИК станция позволяет делать это контролируемо, то есть следить и поддерживать «низ» и «верх» температур или использовать рекомендуемый термопрофиль пайки.

Конструктивные особенности

Любые ИК паяльные станции состоят из трёх основных частей. Выглядит всё довольно просто, хотя каждая из них является самостоятельным сложным механизмом, объединённым с общей установкой. Так, любая станция включает в себя:

  1. Контроллер управления, регулирующий весь процесс нагрева;
  2. Нижнюю подогревающую часть;
  3. Верхний подогреватель.

В зависимости от модели и производителя, ИК паяльники могут отличаться лишь техническими характеристиками. Одни делают работу проще, другие, напротив, требуют от пользователя дополнительного внимания и трудозатрат.

Влияет это и на стоимость оборудования. Поэтому, выбирая станцию требуется обращать внимание не только на цену, но и на технические данные, чтобы не переплачивать за ненужный функционал.

Изготовление своими руками

Производствам или лицам, занимающимся ремонтом сложной электронной аппаратуры, вполне можно приобрести для работы заводскую паяльную ИК станцию. А вот любителям или тем, кому такая установка нужна изредка, можно создать её своими руками. И в пользу этого, в первую очередь, говорит цена. Даже приборы китайского производства имеют стоимость от 1 тыс. долларов. Качественные же модели европейских марок от 2 тыс. долларов и выше. Позволить себе столь дорогое удовольствие сможет далеко не каждый.

Касательно самодельной инфракрасной паяльной станции всё выглядит значительно оптимистичнее. По средним расчётам, такой аналог ИК паяльника обойдётся в пределах 80 долларов, что выглядит несравнимо более приемлемо цен на заводские приборы.

Любой человек, занимающийся ремонтом сложной техники, имеет достаточно знаний, чтобы придумать и сконструировать ИК станцию самостоятельно. В связи с этим электронная часть, внешний вид и некоторые возможности могут отличаться. А вот основная конструкция останется в любой модели одинаковой. Именно поэтому не существует единой идеальной схемы, которую можно привести в качестве единственного верного решения. Но для того чтобы понять сам принцип создания ИК паяльника, подойдёт любая модель. А уже основываясь на личных знаниях и предпочтениях, можно убрать или добавить те или иные части.

Первый вариант

В этом варианте будет использоваться двухканальный контроллер.

  1. Первый канал задействован для платинового терморезистора Pt 100 или обычной термопары.
  2. Второй канал будет использоваться исключительно термопарой. Каналы контроллера могут работать в автоматическом или ручном режиме.

Температура может поддерживаться в пределах от 10 до 255 градусов Цельсия. Термопары или датчик и термопара посредством обратной связи контролируют эти параметры в автоматическом режиме. В ручном режиме будет регулироваться мощность на каждом из каналов от 0 до 99 процентов.

Память контроллера будет содержать 14 различных термопрофилей для работы с BGA микросхемами. Семь из них предназначены для свинецсодержащих сплавов, а другие семь для припоя без содержания свинца.

В случае со слабыми нагревателями верхний может не успевать за термопрофилем. В таком случае контроллер поставит выполнение на паузу и будет дожидаться, пока наберётся необходимая температура.

Также контроллер очень удобно выполняет термопрофиль на основании температуры преднагрева всей платы. Если по той или иной причине снять чип не получилось, то можно повторно запустить его с более высокой температурой.

Силовой блок, изображённый на схеме, имеет транзисторный ключ для верхнего нагрева и семисторный для нижнего. Хотя приемлемо использование двух транзисторных или симисторных. Участок, отмеченный красным пунктиром, можно не собирать, если рассчитывается использование двух термопар.

Для теплоотвода от ключей можно использовать радиатор с активным охлаждением от любой техники. Главное, чтобы он подходил под конструкцию моделируемого аппарата. Нижний нагреватель будет состоять из девяти галогеновых ламп номиналом 1500 Вт 220–240в R7S 254 мм. Должно получиться три части по три лампы, соединённых последовательно. Провода лучше использовать высокотемпературные силиконовые на 220 вольт.

Корпус собирается из стеклотекстолита или любого другого похожего материала и усиливается алюминиевыми уголками. А также придётся купить и вакуумный насос. Для более эстетичного внешнего вида можно использовать ИК стекло на нижней панели. Но здесь существует сразу несколько отрицательных моментов: слишком медленный нагрев и остывание, и вся конструкция в процессе работы чересчур нагревается. Хотя наличие стекла не только делает прибор более привлекательным, но и удобным, так как платы можно класть прямо на него.

Стойка выполняется из алюминиевого швеллера для стоек. Подготавливаются вакуумный пинцет и трубка для него, термопара и стойки. Верхний нагреватель рекомендуется сделать из ELSTEIN SHTS/100 800W. Когда все детали готовы, их нужно разместить в корпусе и можно переходить к настройке.

Нагреватели устанавливаются на расстоянии 5–6 сантиметров от плат. Если температурный выбег больше трёх градусов, то стоит понизить мощность верхнего нагревателя.

Второе решение

В качестве второго варианта можно предложить конструкцию, отличающуюся лишь внутренними составляющими. И сначала стоит подготовить все необходимые комплектующие:

  • Верхний нагреватель – ИК головка на 450 Вт;
  • Нижний нагреватель – четырёхламповый галогеновый обогреватель 1800 Вт;
  • Уголки из алюминия;
  • Материал для корпуса – стеклотекстолит, корпус от старой аппаратуры, ПК или другое подобное;
  • Стальная проволока;
  • Спиральный шланг для душа;
  • Ножка от настольной лампы;
  • Плата Arduino Atmega 2560;
  • Две термопары;
  • Два твердотельных реле;
  • Блок питания с 220 вольт на 5 вольт. Подойдёт от зарядного устройства для телефона;
  • Зуммер на пять вольт;
  • Символьный дисплей;
  • Гайки, винтики, провода и другая необходимая мелочь.

Главное, сразу определиться с видом корпуса. Естественно, что много зависит от наличия подходящего материала. Поэтому именно от этого стоит отталкиваться, когда приходит время располагать комплектующие внутри.

Теперь нужно взять галогеновый обогреватель. Возможно получится найти уже старый, так как его необходимо разобрать и извлечь рефлекторы и галогеновые лампы. Сами лампы разбирать не нужно. Теперь всё это потребуется поместить в заготовленный корпус. Используется всего 4 лампы по 450 ватт, подключаемых параллельно. Провода предпочтительнее использовать те же, которыми они уже были подключены. Если по каким-либо причинам использовать их возможности нет, то придётся купить дополнительно термостойкие.

Сразу придётся подумать и о системе удержания плат. Конкретные рекомендации давать здесь сложно. Ведь всё зависит от корпуса. Но хорошо бы использовать алюминиевые профили, в которые не жёстко вставляются болты с гайками таким образом, чтобы впоследствии можно было ими зажимать печатные платы и, одновременно, была возможность регулировки под разные размеры плат. Термопары, контролирующие заданную температурную схему в нижнем нагревателе, лучше пропустить в душевой шланг. Это даст подвижность и удобство в процессе работы и монтажа.

Роль верхнего нагревателя будет исполнять керамический мощностью 450 ватт. Такой можно купить как запчасть для ИК станций. Здесь же нужно позаботиться и о корпусе, так как именно он обеспечивает правильный и качественный нагрев. Сделать его можно из тонкого листового железа, согнув нужным образом, в зависимости от формы и размера нагревателя.

Теперь нужно подумать и о креплении верхнего нагревателя. Так как он должен быть подвижным, причём перемещаться не только вверх или вниз, но и под разными углами. Отлично подойдёт стойка от настольной лампы. Закрепить её можно любым удобным способом.

Пришло время заняться контроллером. Для него тоже понадобиться отдельный корпус. Если есть подходящий уже готовый, то можно использовать его. В противном случае придётся его сделать самостоятельно всё из того же тонкого металла. Твердотельные реле нуждаются в охлаждении, поэтому стоит установить к ним радиатор и вентилятор.

Так как автоматической настройки в контроллере нет, то значения P, I и D придётся вводить вручную. Здесь есть четыре профиля, для каждого отдельно устанавливается количество шагов, скорость роста температуры, время и шаг ожидания, нижний порог, целевая температура и значения для верхнего и нижнего нагревателя.

Изготовление инфракрасной паяльной станции своими руками

Ремонт ноутбуков и видеокарт, реболлинг (демонтаж и монтаж чипа с восстановлением шариков припоя) без инфракрасной паяльной станции, как правило, не обходится. Сервисные центры за такую работу либо не берутся, либо взимают довольно большие деньги за такой ремонт. Между тем подобные поломки – явление довольно частое.

ИК паяльная станция

ИК станция заводского исполнения – устройство довольно дорогое, поэтому экономичнее сделать ее своими руками. Инфракрасную паяльную станцию можно сделать за один, максимум два дня, предварительно заказав через интернет и получив по почте комплектующие детали к ней.

Немного теории

При нормальной температуре пик электромагнитного излучения происходит в инфракрасной области. Вещи, которые горят, излучают как более интенсивное, так и более энергичное (более короткое) инфракрасное излучение. Когда становится очень жарко, они начинают светиться красным. Чем они горячее становятся, тем приобретают больше оранжевого и желтого цветов, затем синего.

Многие органические молекулы интенсивно поглощают инфракрасное излучение, это заставляет объект нагреваться. Тепло – это кинетическая энергия поступательного движения атомов и молекул. Излучаемый атомом свет имеет длину волны. В итоге нагретое тело тоже излучает свет, и чем сильнее нагрето тело, тем короче волна излучаемого света.

Для информации. Согласно закону смещения Вина, бывает так, что тепловое излучение объектов вблизи комнатной температуры находится в инфракрасной области. Сюда относятся лампочки и даже люди.

Итак, инфракрасное излучение – это не тепло, и оно (непосредственно) не вызывает тепло. Оно испускается теплом объекта при определенном диапазоне температур.

Инфракрасное излучение

Зрительные оттенки света обуславливаются длиной волны и ее направленностью, начиная с инфракрасного, потом красного, оранжевого, желтого…. фиолетового и кончая длиной волны ультрафиолетового излучения. И обратно тоже. Облучение тела светом вызывает усиление движения его молекул, любым светом, но инфракрасным, как самым длинноволновым, эффективнее всего.

ИК паяльная станция своими руками – это инфракрасный обогреватель, отдающий тепло в окружающую среду посредством инфракрасного излучения.

Инфракрасная паяльная станция своими руками

Нижний подогрев

Корпус подогрева можно изготовить из старого советского чемодана, сделанного из алюминия, или из системного блока компьютера. Но чемоданчик подойдет лучше, потому что его рабочее положение – горизонтальное. В крайнем случае, можно присмотреть подобный корпус на ближайшей барахолке.

В корпусе необходимо прорезать болгаркой отверстие для керамических нагревателей. Из алюминиевой вырезки сделать подложку для нагревателей с ножками из обычных болтов с гайками. На подложке вся конструкция и будет держаться.

Нижний подогрев состоит из четырех керамических нагревателей, купленных на AliExpress. Цена на них приемлемая, продавец обеспечивает быструю доставку.

Каждый нагреватель (размерами: длина – 24 см, ширина – 6 см) имеет мощность по 600 Вт. Четыре нагревателя составляют нагревательную панель 24х24 см2. Этого достаточно для того, чтобы нагреть материнскую плату компьютера, не говоря уже о материнской плате ноутбука, размеры которой еще меньше. Помещаются на такой подогрев даже большие топовые видеокарты. Для сравнения, у стандартной заводской китайской станции такой подогрев площадью 150х150 см2, при этом стоит она недешево.

Снизу нижнего подогрева каждый нагреватель подключается к клеммной колодке желательно еще советского производства. Колодка сделана из специального материала, который не плавится при высоких температурах. Подключение нагревателей последовательно-параллельное:

  • первый и третий соединены последовательно;
  • второй и четвертый – тоже последовательно;
  • первый и третий со вторым и четвертым – параллельно.

Такая схема применяется для того, чтобы немножко разгрузить проводку. Если подключить все нагреватели параллельно, то итоговая нагрузка будет составлять 2850 Вт:

  • нижний подогрев – 600х4=2400 Вт;
  • верхний нагреватель при максимальной нагрузке – 450 Вт.

Если в комнате работает еще электротехника (несколько лампочек, компьютер, паяльник, чайник), то защитный автомат на 16 ампер выбьет.

Высчитывается последовательное сопротивление нагрузки по специальной формуле. В итоге нижний подогрев представляет собой нагрузку 1210 Вт. Несложно посчитать, что вся ИК станция будет потреблять 1660 Вт. Для такого оборудования это немного. По времени плата греется нижним подогревом до 100 0 примерно 10 минут.

Сверху, когда выполняется работа, на корпус с нагревателем можно поставить металлическую решетку от холодильника. Но лучше использовать стеклокерамику по размеру корпуса, и сделать удобный термостол для ремонта платы.

Верхний подогрев

Верхний подогрев можно сделать из советского фотоувеличителя УПА-60. Модель подходит для самодельной паяльной станции. Керамический нагреватель размерами 80х8 см идеально крепится к фотоувеличителю. При этом можно регулировать высоту нагревателя и двигатель в любую сторону. Штатив удобно прикрепить к самому столу, а нижний подогрев двигать при необходимости. Размеров нагревателей достаточно, чтобы прогревать большие чипы и сокеты для процессорных разъемов.

Фотоувеличитель УПА-60

Все б/у детали можно купить в интернете через доску объявлений, керамический нагреватель – на AliExpress.

Блок управления

Готовый пластиковый бокс можно приобрести в специальном магазине для самостоятельного изготовления электроники, или сделать корпус из обычного компьютерного блока питания. На панели управления размещают:

  • PID контроллер REX-C100;
  • выключатели для нижнего и верхнего подогрева;
  • диммер 2 кВт.

Надо отметить, что внутренних проводов в корпусе довольно много, поэтому бокс нужно выбирать немаленьких размеров.

Отверстия для вывода элементов управления на лицевую панель вырезаются электролобзиком со специальной пилочкой по металлу. Обычно это трудностей не вызывает при наличии практики с подобным инструментом.

PID контроллер REX-C100

PID контроллер REX-C100 можно также заказать на AliExpress. В комплекте с ним продавец поставляет твердотельное реле и термопару. То есть контроллер считывает, какой температуры достигает керамический нагреватель. Пока температура не достигнет нужной величины, твердотельное реле находится в открытом состоянии и пропускает электрический ток на керамический нагреватель.

При достижении устройством необходимой температуры срабатывает твердотельное реле и отключает подачу тока на керамический нагреватель. Диммер управляется вручную. Обычно его устанавливают на максимуме, чтобы быстрее подогревался верх.

Тестер

Данный прибор нужен для работы, чтобы считывать информацию о температуре, которая возле чипа. К нему подключена обычная термопара, конец которой ставят возле чипа. На дисплее тестера будет отображена температура непосредственно возле чипа.

Важно! Провод от термопары заматывают термостойким скотчем, потому что оплетка проводов горит при высокой температуре.

Тестер для ИК станции своими руками

В итоге собранная на скорую руку самодельная ИК паяльная станция порядка десяти раз будет дешевле стоить, нежели готовое изделие. Устройство можно дорабатывать и постепенно улучшать.

Работа на практике

Работа устройства будет описана на примере починки платы от ноутбука. Одной из неисправностей платы является поломка видеочипа. Бывает достаточно прогреть его термофеном, и изображение на экране появляется. Скорее всего, в этом случае происходит отвал кристалла от текстолита. Менять чип довольно дорого. Но если прогреть его, то срок службы ноутбука этим можно продлить. На примере такого банального прогрева и может применяться самодельная инфракрасная паяльная станция.

Для начала плату подготавливают к прогреву, снимают детали:

  • пленки, потому что они при высокой температуре начинают плавиться;
  • процессор;
  • память.

Компаунд лучше снимать пинцетом после предварительного подогрева термофеном. Фен ставят при этом на температуру 1800, средний поток воздуха.

Важно! Всю окружающую область вокруг чипа необходимо обклеить фольгой, чтобы не греть элементы платы. На всякий случай следует закрыть и пластиковые разъемы для памяти.

Далее по периметру чипа наносят флюс RMA-223, тоже китайский. Купленный на AliExpress для таких целей подходит. Для удобства его перезаправляют в обычный шприц.

Для информации. Использование флюсов облегчает процесс пайки и предотвращает окисление металла спаиваемых элементов.

Плату в таком виде устанавливают на решетку нижнего подогрева паяльной станции. Возле чипа располагают термопару. Другая термопара находится вблизи с нагревателями, её задача считывать температуру их нагрева. Включают нижний подогрев на блоке управления. На тестере и PID контроллере появляются рабочие параметры.

Когда низ прогреется, нужно дождаться, чтобы температура вокруг чипа была не менее 1000, в зависимости от материала припоя. Если припой бессвинцовый, то желательно прогреть до 1100.

ИК станция своими руками

Расстояние между чипом и верхним нагревателем должно быть около 5 см. Центр чипа должен быть строго под центром верхнего нагревателя, потому что максимальная температура идет от центра в стороны. Верхний нагреватель включают, когда температура возле чипа поднимется до 1100. Низ обычно прогревается 10 минут, затем включается верх, который должен нагреться до 2300. На PID контроллере верхнее значение показывает текущую температуру, нижнее – температуру, которую необходимо достичь.

При достижении нужной температуры включают верхний нагреватель, который управляется диммером. Когда температура подойдёт ближе к 2300, мощность диммером нужно уменьшить. Это делается для того, чтобы нагрев слишком быстрый не был. Рекомендуется выдержать минуту при температуре 2300 и затем выключить устройство. Температура пойдет на спад.

Важно! Нагрев чипа должен происходить плавно, так же как и его остывание. Резких перепадов температур не должно быть.

Когда плата остынет, собирают ноутбук и включают. Должно все заработать. По такому же принципу можно сделать инфракрасный паяльник своими руками.

Инфракрасная паяльная станция своими руками подключается к домашней розетке. При этом с проводкой ничего страшного не происходит, поскольку мощность её небольшая. По затратам ИК паяльная станция своими руками обходится совсем недорого. Комплектующие детали можно заказать через интернет на AliExpress.

Видео

Оцените статью:

ИК паяльная станция, самодельные конструкции. Устройство и сборка своими руками инфракрасной паяльной станции Инфракрасная паяльная станция с мк управлением строим

Ремонт ноутбуков и видеокарт, реболлинг (демонтаж и монтаж чипа с восстановлением шариков припоя) без инфракрасной паяльной станции, как правило, не обходится. Сервисные центры за такую работу либо не берутся, либо взимают довольно большие деньги за такой ремонт. Между тем подобные поломки – явление довольно частое.

ИК станция заводского исполнения – устройство довольно дорогое, поэтому экономичнее сделать ее своими руками. Инфракрасную паяльную станцию можно сделать за один, максимум два дня, предварительно заказав через интернет и получив по почте комплектующие детали к ней.

Немного теории

При нормальной температуре пик электромагнитного излучения происходит в инфракрасной области. Вещи, которые горят, излучают как более интенсивное, так и более энергичное (более короткое) инфракрасное излучение. Когда становится очень жарко, они начинают светиться красным. Чем они горячее становятся, тем приобретают больше оранжевого и желтого цветов, затем синего.

Многие органические молекулы интенсивно поглощают инфракрасное излучение, это заставляет объект нагреваться. Тепло – это кинетическая энергия поступательного движения атомов и молекул. Излучаемый атомом свет имеет длину волны. В итоге нагретое тело тоже излучает свет, и чем сильнее нагрето тело, тем короче волна излучаемого света.

Для информации. Согласно закону смещения Вина, бывает так, что тепловое излучение объектов вблизи комнатной температуры находится в инфракрасной области. Сюда относятся лампочки и даже люди.

Итак, инфракрасное излучение – это не тепло, и оно (непосредственно) не вызывает тепло. Оно испускается теплом объекта при определенном диапазоне температур.

Зрительные оттенки света обуславливаются длиной волны и ее направленностью, начиная с инфракрасного, потом красного, оранжевого, желтого…. фиолетового и кончая длиной волны ультрафиолетового излучения. И обратно тоже. Облучение тела светом вызывает усиление движения его молекул, любым светом, но инфракрасным, как самым длинноволновым, эффективнее всего.

ИК паяльная станция своими руками – это инфракрасный обогреватель, отдающий тепло в окружающую среду посредством инфракрасного излучения.

Инфракрасная паяльная станция своими руками

Нижний подогрев

Корпус подогрева можно изготовить из старого советского чемодана, сделанного из алюминия, или из системного блока компьютера. Но чемоданчик подойдет лучше, потому что его рабочее положение – горизонтальное. В крайнем случае, можно присмотреть подобный корпус на ближайшей барахолке.

В корпусе необходимо прорезать болгаркой отверстие для керамических нагревателей. Из алюминиевой вырезки сделать подложку для нагревателей с ножками из обычных болтов с гайками. На подложке вся конструкция и будет держаться.

Нижний подогрев состоит из четырех керамических нагревателей, купленных на AliExpress. Цена на них приемлемая, продавец обеспечивает быструю доставку.

Каждый нагреватель (размерами: длина – 24 см, ширина – 6 см) имеет мощность по 600 Вт. Четыре нагревателя составляют нагревательную панель 24х24 см2. Этого достаточно для того, чтобы нагреть материнскую плату компьютера, не говоря уже о материнской плате ноутбука, размеры которой еще меньше. Помещаются на такой подогрев даже большие топовые видеокарты. Для сравнения, у стандартной заводской китайской станции такой подогрев площадью 150х150 см2, при этом стоит она недешево.

Снизу нижнего подогрева каждый нагреватель подключается к клеммной колодке желательно еще советского производства. Колодка сделана из специального материала, который не плавится при высоких температурах. Подключение нагревателей последовательно-параллельное:

  • первый и третий соединены последовательно;
  • второй и четвертый – тоже последовательно;
  • первый и третий со вторым и четвертым – параллельно.

Такая схема применяется для того, чтобы немножко разгрузить проводку. Если подключить все нагреватели параллельно, то итоговая нагрузка будет составлять 2850 Вт:

  • нижний подогрев – 600х4=2400 Вт;
  • верхний нагреватель при максимальной нагрузке – 450 Вт.

Если в комнате работает еще электротехника (несколько лампочек, компьютер, паяльник, чайник), то защитный автомат на 16 ампер выбьет.

Высчитывается последовательное сопротивление нагрузки по специальной формуле. В итоге нижний подогрев представляет собой нагрузку 1210 Вт. Несложно посчитать, что вся ИК станция будет потреблять 1660 Вт. Для такого оборудования это немного. По времени плата греется нижним подогревом до 100 0 примерно 10 минут.

Сверху, когда выполняется работа, на корпус с нагревателем можно поставить металлическую решетку от холодильника. Но лучше использовать стеклокерамику по размеру корпуса, и сделать удобный термостол для ремонта платы.

Верхний подогрев

Верхний подогрев можно сделать из советского фотоувеличителя УПА-60. Модель подходит для самодельной паяльной станции. Керамический нагреватель размерами 80х8 см идеально крепится к фотоувеличителю. При этом можно регулировать высоту нагревателя и двигатель в любую сторону. Штатив удобно прикрепить к самому столу, а нижний подогрев двигать при необходимости. Размеров нагревателей достаточно, чтобы прогревать большие чипы и сокеты для процессорных разъемов.

Все б/у детали можно купить в интернете через доску объявлений, керамический нагреватель – на AliExpress.

Блок управления

Готовый пластиковый бокс можно приобрести в специальном магазине для самостоятельного изготовления электроники, или сделать корпус из обычного компьютерного блока питания. На панели управления размещают:

  • выключатели для нижнего и верхнего подогрева;
  • диммер 2 кВт.

Надо отметить, что внутренних проводов в корпусе довольно много, поэтому бокс нужно выбирать немаленьких размеров.

Отверстия для вывода элементов управления на лицевую панель вырезаются электролобзиком со специальной пилочкой по металлу. Обычно это трудностей не вызывает при наличии практики с подобным инструментом.

PID контроллер REX-C100 можно также заказать на AliExpress. В комплекте с ним продавец поставляет твердотельное реле и термопару. То есть контроллер считывает, какой температуры достигает керамический нагреватель. Пока температура не достигнет нужной величины, твердотельное реле находится в открытом состоянии и пропускает электрический ток на керамический нагреватель.

При достижении устройством необходимой температуры срабатывает твердотельное реле и отключает подачу тока на керамический нагреватель. Диммер управляется вручную. Обычно его устанавливают на максимуме, чтобы быстрее подогревался верх.

Тестер

Данный прибор нужен для работы, чтобы считывать информацию о температуре, которая возле чипа. К нему подключена обычная термопара, конец которой ставят возле чипа. На дисплее тестера будет отображена температура непосредственно возле чипа.

Важно! Провод от термопары заматывают термостойким скотчем, потому что оплетка проводов горит при высокой температуре.

В итоге собранная на скорую руку самодельная ИК паяльная станция порядка десяти раз будет дешевле стоить, нежели готовое изделие. Устройство можно дорабатывать и постепенно улучшать.

Работа на практике

Работа устройства будет описана на примере починки платы от ноутбука. Одной из неисправностей платы является поломка видеочипа. Бывает достаточно прогреть его термофеном, и изображение на экране появляется. Скорее всего, в этом случае происходит отвал кристалла от текстолита. Менять чип довольно дорого. Но если прогреть его, то срок службы ноутбука этим можно продлить. На примере такого банального прогрева и может применяться самодельная инфракрасная паяльная станция.

Для начала плату подготавливают к прогреву, снимают детали:

  • пленки, потому что они при высокой температуре начинают плавиться;
  • процессор;
  • память.

Компаунд лучше снимать пинцетом после предварительного подогрева термофеном. Фен ставят при этом на температуру 1800, средний поток воздуха.

Важно! Всю окружающую область вокруг чипа необходимо обклеить фольгой, чтобы не греть элементы платы. На всякий случай следует закрыть и пластиковые разъемы для памяти.

Для информации. Использование флюсов облегчает процесс пайки и предотвращает окисление металла спаиваемых элементов.

Плату в таком виде устанавливают на решетку нижнего подогрева паяльной станции. Возле чипа располагают термопару. Другая термопара находится вблизи с нагревателями, её задача считывать температуру их нагрева. Включают нижний подогрев на блоке управления. На тестере и PID контроллере появляются рабочие параметры.

Когда низ прогреется, нужно дождаться, чтобы температура вокруг чипа была не менее 1000, в зависимости от материала припоя. Если припой бессвинцовый, то желательно прогреть до 1100.

Расстояние между чипом и верхним нагревателем должно быть около 5 см. Центр чипа должен быть строго под центром верхнего нагревателя, потому что максимальная температура идет от центра в стороны. Верхний нагреватель включают, когда температура возле чипа поднимется до 1100. Низ обычно прогревается 10 минут, затем включается верх, который должен нагреться до 2300. На PID контроллере верхнее значение показывает текущую температуру, нижнее – температуру, которую необходимо достичь.

При достижении нужной температуры включают верхний нагреватель, который управляется диммером. Когда температура подойдёт ближе к 2300, мощность диммером нужно уменьшить. Это делается для того, чтобы нагрев слишком быстрый не был. Рекомендуется выдержать минуту при температуре 2300 и затем выключить устройство. Температура пойдет на спад.

Несмотря на то что с каждым годом в мире появляется все новая и новая техника, более «продвинутая» по своим техническим характеристикам, это не говорит о том, что служить она будет вечно. Рано или поздно любой механизм приходит в неисправность. И уж какой бы надежной деталь ни была, это не застраховывает ее от возможного выхода из строя. А при ремонте подобной техники основным инструментом является паяльник. Сегодня мы рассмотрим, чем особенна инфракрасная паяльная станция, и что она может делать.

Характеристика конструкции

В качестве основного нагревательного элемента в конструкции данного механизма может использоваться кварцевый либо керамической излучатель. При этом оба типа устройств обеспечивают быструю и эффективную пайку металла. Кстати, сам уровень нагрева данного инструмента на инфракрасных паяльниках можно варьировать в той или иной степени. Таким образом, благодаря наличию специального регулятора можно подобрать максимально подходящий температурный режим для конкретного типа металла, на котором будет производиться соединение (пайка).

Следует отметить, что наиболее популярным видом паяльного оборудования являются инфракрасные станции с таким типом нагрева, в котором задействуется сфокусированный пучок Зачастую конструкция таких устройств состоит из двух частей, которые в совокупности дают локальный нагрев платы либо других составляющих элементов. Вследствие этого можно получить весьма качественное соединение, при этом затратив на пайку минимальный отрезок времени.

Разновидности

Как мы уже отметили выше, инфракрасная паяльная станция может быть кварцевой либо же керамической. Для того чтобы разобраться в особенностях каждой из них, рассмотрим оба типа более подробно.

Керамические

Керамическая инфракрасная паяльная станция (Achi ir6000 в том числе) благодаря своей простой конструкции отличается высокой надежностью, прочностью и долговечностью. При этом на разогрев всего устройства до рабочей температуры пайки нужно потратить не более 10 минут. В таких станциях зачастую используется плоский либо полый излучатель. Последний тип имеет намного больший нагрев рабочей поверхности излучателя, вследствие чего быстро совершает пайку и накаляется до нужной температуры. Однако стоимость таких устройств позволяет применять их далеко не всем, кто занимается ремонтом электронной цифровой техники.

Кварцевые

Кварцевая инфракрасная паяльная станция, несмотря на свою повышенную хрупкость, владеет высокой скоростью нагрева. Уже за 30 секунд излучатель накаливается до своей рабочей температуры.

Промышленная либо самодельная инфракрасная паяльная станция используется зачастую при прерывающихся процессах, где есть частые включения и выключения устройства. Керамические же механизмы более уязвимы к частым включениям и могут моментально выйти из строя, если не соблюдать правила эксплуатации.

Купить паяльную станцию ИК-650 ПРО в рассрочку/по частям

ИК-650 ПРО – это не мечта, а реальность. Реализуя программу доступности качественной технологии пайки, ТЕРМОПРО постарался раздробить приобретение ремонтной станции BGA на несколько маленьких и вполне осуществимых шагов.

Вариант №1

Купите ИК-650 в рассрочку – заплатите 50%, а остальное будет зарабатывать ваша новая инфракрасная паяльная станция, а мы немного подождем.

Условия простые:

  • Желание и возможность честно и вовремя выполнять свои обязательства по договору поставки.
  • Организационно правовая форма предприятия – ИП или ООО.
  • Регистрация бизнеса не менее шести месяцев.
  • Подтвержденное наличие сервисной точки или другого помещения.
  • Отсутствие недоимок по налогам, судебных взысканий и решения о банкротстве или ликвидации.
  • Предоплата 50%, а остальное в рассрочку на 6 месяцев равными долями без %.

Перед принятием решения просим вас еще раз правильно оценить свои возможности. Помните простое правило окупаемости – у вас должно быть гарантировано не менее 10 перепаек BGA в месяц плюс доходы от других видов сервисных работ.

Вариант №2

ИК-650 ПРО это модульное оборудование – начните с приобретения термостола НП 34-24 ПРО с регулятором ТП 2-10 КД ПРО, и сразу получите огромное преимущество: вам станет доступен равномерный подогрев плат без деформации, а температура BGA теперь будет под вашим контролем. Начните зарабатывать и вы быстро приобретете остальные блоки.

Программное приложение «ТЕРМОПРО-ЦЕНТР»

Инфракрасная паяльная станция ТЕРМОПРО ИК-650 ПРО действительно хорошо работает. Во многом это заслуга многофункционального программного приложения «ТЕРМОПРО-ЦЕНТР». Основное отличие ИК-650 ПРО от других инфракрасных паяльных станций – это сказочные возможности пайки в совсем не сказочных окружающих условиях.

«ТЕРМОПРО-ЦЕНТР» обеспечивает автоматическое термопрофилирование пайки BGA с обратной связью по температуре на печатной плате. Алгоритмы пайки BGA, с несколькими степенями защиты, построены таким образом, чтобы ничего не перегреть, даже при ошибках оператора.

Приложение «Термопро-Центр» решает задачу сохранить высокую надежность и простоту в эксплуатации, а также гарантировать повторяемость процесса пайки с максимальной точностью при оптимальной гибкости технологического оборудования.

Программный пакет «ТермоПро-Центр» содержит ответ почти на любую технологическую ситуацию, реализовано максимально возможное число «зашитых» функций с помощью инструментов ТермоПро.

Программа, вооруженная оборудованием без преувеличения является мощным не только производственным, но и исследовательским инструментом. Инструментарий, заложенный в ней можно использовать как для реализации термодинамического процесса пайки, так и для его фиксации, визуализации, анализа и адаптации под окружающие условия.

Для мелкосерийного и единичного монтажа плат инфракрасная паяльная станция ИК-650 ПРО обеспечивает двойное преимущество. Вы получаете в свои руки не только возможность пайки BGA и других сложных микросхем, но и отличный инструмент для групповой пайки SMD – компонентов на печатные платы по термопрофилю. Качество пайки обеспечивается на уровне камерных и конвейерных печей оплавления, да еще и в режиме обратной связи по температуре платы. (можно паять сразу практически без настройки, естественно немного потренировавшись).

Скачайте приложение «Термопро-Центр» и другую полезную информацию
Комплект поставки инфракрасной паяльной станции ИК-650 ПРО

НАИМЕНОВАНИЕ МОДУЛЯ

НАЗНАЧЕНИЕ МОДУЛЯ

ТЕРМОПРО — ЦЕНТРмногофункциональное программное приложение для управления ИК станцией ИК-650 ПРО
1,2ИКВ-65 ПРОверхний нагреватель ИК станции на подвижном штативе
3лазерлазерный указатель для прицеливания в центр перед пайкой BGA
4диафрагмысменные диафрагмы для верхнего нагревателя ИК станции ограничивают зону нагрева печатной платы (отверстия 30х30, 40х40, 50х50, 60х60 мм).
5ИК 1-10 КД ПРОтерморегулятор обеспечивает управление температурой верхнего нагревателя ИК станции и контроль температуры печатной платы
6ПДШ-300шарнирный прижим для установки термодатчика на печатную плату
7ТД-1000 (3 шт.)внешний термодатчик для контроля температуры печатной платы при пайке BGA
8НП 34-24 ПРОдвух зонный широкоформатный термостол для равномерного подогрева печатных плат. ИК станция ИК-650 ПРО может комплектоваться и другим термостолами серии НП и ИКТ в зависимости от задачи
9ТП 2-10 АБ ПРОдвухканальный терморегулятор обеспечивает управление температурами зон термостола НП 34-24 ПРО (терморегулятор может быть заменен на ТП 2-10 КД ПРО, со встроенным каналом измерения температуры платы)
10ФСМ-15, ФСК-15 (по 10 шт. )

Вы можете подобрать индивидуальную комплектацию ИК станции дооснастив ее:

    видеокамерой,

    видеоустановщиком,

    термостолом другого размера,

    3-х канальным измерителем температуры,

    рамочным держателем плат

Схема подключения инфракрасной паяльной станции ИК-650 ПРО

Другие системы подогрева плат для ИК Станции

Инфракрасная паяльная станция может комплектоваться разными подогревателями плат под ваши задачи.

Инфракрасная станция, комплектующаяся нижним подогревом – превосходное оборудование для ремонта телевизоров, ноутбуков, компьютеров, разумеется, повсеместно используется как оборудования для ремонта электроники, а так же – это современное оборудование для ремонта автомобильных блоков, станков с ЧПУ.

Дополнительные приборы и принадлежности для ИК Станции

Прибор расширяет возможности инфракрасной паяльной станции ИК-650 ПРО по контролю за температурой платы. ТЕРМОСКОП сертифицирован как средство измерения военного назначения. (производство ТЕРМОПРО)

Трафареты BGA

Набор для ребола BGA — необходимое дополнение к инфракрасной паяльной станции. В набор входит оправка и 130 трафаретов BGA (производство Китай)


Фиксатор для трафаретов BGA прямого нагрева. Фиксирует трафареты от 8 x 8 мм до 50 x 50 мм. Зажимной ключ в комплекте.

Держатель удобен для пайки BGA на малогабаритных и среднеразмерных платах (производство ТЕРМОПРО)

ПК-40, ПК-50, ПК-60 3D концентраторы ИК лучей

Инфракрасная паяльная станция может иметь еще лучшие эксплуатационные характеристики если вместо плоских диафрагм применять 3D концентраторы. (производство ТЕРМОПРО, изделие запатентовано )

  • Улучшается равномерность теплового поля в зоне пайки BGA
  • Уменьшается размер теплового пятна в зоне пайки BGA
  • Улучшается обзор зоны пайки BGA

Дополнительные диафрагмы 45° к верхнему нагревателю ИК станции, (производство ТЕРМОПРО)

При работе на инфракрасной паяльной станции довольно часто требуется акуратно нанести флюс или паяльную пасту. Цифровые программируемые дозаторы паяльной пасты и жидкостей серии ND-35 предназначены для точной выдачи мелкими порциями флюса, паяльной пасты, теплопроводящей пасты или герметиков. Имеются модели с вакуумным пинцетом (производство ТЕРМОПРО).

USB микроскоп eScope DP-M15-200

При работе на инфракрасной паяльной станции требуется визуальный контроль зоны пайки BGA. Цифровой USB микроскоп eScope DP-M15-200 с матрицей 5Мп, увеличением до 200 крат, LED подсветкой и встроенным поляризационным фильтром облегчает наблюдение. Металлическая подставка в комплекте. Поляризационный фильтр устраняет блики, отражения и позволяет получить более резкое и контрастное изображение при наблюдении таких сложных объектов как BGA в момент оплавления. (производство Китай, возможна поставка других моделей)

Магнитные держатели печатных плат быстро устанавливаются на любые термостолы серии НП и обеспечивают удобную и быструю фиксацию печатных плат над нагревательной поверхностью.

АСЦ и ТЕРМОПРО желают вам Здоровья!

Если нет технической возможности отвести на улицу вредные продукты пайки, то рекомендуем воспользоваться локальным дымоуловителем, например — г. Москва курсы по обучению работе на инфракрасной паяльной станции при ремонте ноутбуков, игровых приставок, сотовых телефонов.

ТЕРМОПРО осуществляет гарантийную и техническую поддержку всего парка станций ИК-650 ПРО и термостолов в пределах срока службы, даже если они куплены на вторичном рынке.Не ПОДДЕРЖИВАЕТCЯ, не ремонтируется, не обеспечивается расходниками только ОБРЕМЕНЕННОЕ ОБОРУДОВАНИЕ ИЗ “ЧЕРНОГО СПИСКА” – оно заблокировано производителемВ 2019 году участились случаи мошеннических попыток продажи обремененного оборудования и оборудования, которое автоматически заблокируется в ближайшее время. Также может предлагаться заблокированное оборудование разобранное на запчасти.

Не становитесь жертвой мошенников! Не покупайте не проверенное Б/У оборудование и запчасти на вторичке! Обращайтесь за запчастями к производителю!

ТЕРМОПРО не несет никакой ответствености перед лицами купившими обремененное оборудование.
Как не стать жертвой мошенников?

ТЕРМОПРО оказывает всем обратившимся возможную помощь. Для этого рекомендуется перед покупкой произвести следующие действия:

1. Узнать, кто был первым хозяином оборудования, в каком городе и год выпуска оборудования.
2. Запросить у продавца серийные номера (они наклеены на днище терморегуляторов).
3. Сообщить серийные номера в ТЕРМОПРО для авторизации на отсутствие приборов в ЧЕРНОМ СПИСКЕ.
4. Перед оплатой обязательно следует подключить терморегуляторы к компьютеру и при помощи приложения Термопро-Центр сверить наклеенные серийные номера (их иногда переклеивают) с электронными (для этого обратитесь в ТЕРМОПРО и мы расскажем как это сделать). Если номера не совпадают – лучше отказаться от покупки (что-то здесь не чисто).
5. Обязательно проверьте полную работоспособность оборудования как в автономном режиме, так и под управлением приложения “Термопро-Центр”. При этом ни на дисплее оборудования ни на экране компьютера не должно появлятся сообщений об ошибках и других предупреждений. Выход нагревателей на режим должен происходить быстро, плавно, без скачков, а при стабилизации температуры она должна держаться в пределах +-2 градуса от установленной.


При выполнении реболлинга и пайки BGA микросхем рекомендуется использовать именно инфракрасные паяльные станции. Для них характерно избирательное тепловое воздействие: сначала нагреваются металлические элементы микросхемы и лишь потом неметаллические. Этот процесс напрямую связан с длинной волны (равной примерно 2-8мкм) и позволяет избежать механических повреждений компонентов, так как благодаря концентрации инфракрасного излучения в нужной точке обеспечивается равномерность нагрева и исключается перегрев. Современная ИК паяльная станция, купить которую на сегодняшний день не представляет особого труда, поможет справиться даже с самым сложным случаем пайки печатных плат.

Если вам необходимо качественное, надежное и современное решение для пайки BGA – рекомендуем Вам обратить внимание на инфракрасные паяльные станции, представленные в нашем интернет-магазине. Благодаря идеальному соотношению цены и производительности наши ИК паяльные станции пользуются высокой популярностью и являются экономически выгодным готовым решением для бережного ремонта, подходящим как для специалистов, так и для любителей.

В интернет-магазине «Суперайс» собраны как бюджетные варианты торговых марок YIHUA и Ly, так и более дорогие паяльно-ремонтные комплексы, такие как паяльные станции ACHI IR6500 и Dinghua DH-A01R.

Купить ИК паяльную станцию можно оптом и в розницу для своих предприятий, лабораторий и личных нужд! Заказ Вы можете оплатить при получении, и мы бесплатно доставим Вам ИК паяльную станцию в любой город России: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Воронеж, Владивосток, Хабаровск, Краснодар, Брянск, Ростов-на-Дону, Нижний Новгород, Челябинск, Казань, Красноярск, Омск, Самара, Волгоград, Барнаул и в другие города!

Рано или поздно перед радиомехаником, занимающимся ремонтом современной электронной техники встаёт вопрос покупки инфракрасной паяльной станции. Необходимость назрела в связи с тем что современные элементы массово “откидывают копыта” короче говоря, производители как и мелочевки так и больших интегральных схем отказываются от гибких выводов в пользу пятачков. Процесс этот идёт уже достаточно давно.


Такие корпуса микросхем называются BGA – Ball grid array, проще говоря – массив шариков. Такие микросхемы монтируются и демонтируются бесконтактным способом пайки.

Раньше, для не особо крупных микросхем можно было обходиться термовоздушной паяльной станцией. А вот крупные графические контроллеры GPU термовоздушкой уже не снимешь и не посадишь. Разве что прогреть, но прогрев длительного результата не даёт.
В общем, ближе к теме.. Готовые профессиональные инфракрасные станции имеют запредельные цены, а недорогие 1000 – 2000 зелёных недостаточный функционал, короче допиливать всё равно придётся. Лично по мне, инфракрасная паяльная станция – это тот инструмент, который можно собрать самому и под свои нужды. Да, не спорю, есть затраты по времени. Но если подойти к сборке ИК станции методично, то будет и необходимый результат и творческая удовлетворённость. Итак, я для себя наметил, что буду работать с платами размером 250х250 мм. Для пайки телевизионных Main и компьютерных видеоадаптеров, возможно планшетных ПК.

Итак, начал я с нечистого листа и дверцы от старой антресоли, прикрутив к этому будущему основанию 4 ножки от древней пишущей машинки.


Основа при помощи приблизительных расчётов получилась 400х390 мм. Дальше необходимо было примерно рассчитать компоновку исходя из размеров нагревателей, ПИД-регуляторов. Таким нехитрым “фломастерным” способом я определил высоту своей будущей инфракрасной паяльной станции и угол скоса передней панели:


Далее уже берёмся за скелет. Тут всё просто – изгибаем алюминиевые уголки согласно конструкции нашей будущей паяльной станции, закрепляем, связываем. Идём в гараж и с головой закапываемся в корпуса от DVD и видиков. Хорошо делаю, что не выбрасываю – знаю, что пригодятся. Глядишь, дом из них построю:) Вон из пивных банок строят, из пробок и даже палочек от мороженого!

Короче говоря, на облицовку лучше не придумаешь, чем крышки от аппаратуры. Листовой металл стоит не дёшево.


Бежим по магазинам в поисках антипригарного противня. Противень необходимо подобрать согласно размерам ИК-излучателей и их количеству. Я ходил по магазинам с небольшой рулеткой и измерял стороны дна и глубину. На вопросы продавцов типа – “Зачем вам пироги строго заданных размеров?” Отвечал, что неподходящие размеры пирога нарушают общую гармонию восприятия, что не соответствует моим моральным и этическим принципам.


Урааа! Первая посылочка, а в ней особо важные запчастюлины: ПИД-ы (страшное слово-то какое) Расшифровка тоже не простая: Пропорционально-Интегрально-Дифференциальный регулятор. В общем, разбираемся с их настройкой и работой.


Далее жестянка. Здесь как раз и пришлось попотеть с крышками от DVD-юков дабы всё получилось ровно и солидно, для себя делаем. После подгонки всех стенок необходимо вырезать нужные отверстия под ПИД-ы на передней, под кулер на задней стенке и в покраску – в гараж. В итоге – промежуточный вариант нашей ИК паяльной станции стал выглядеть таким образом:


После тестирования регулятора REX C-100 предназначенного для преднагрева (нижнего нагревателя) выяснилось, что он не совсем подходит для моей конструкции паяльной станции, потому как не рассчитан на работу с твердотельными реле, которыми он и должен управлять. Пришлось его доработать под свою концепцию.


Урааа! Пришла посылка из Китая. Теперь в ней уже было самое основное богатство для постройки нашей инфракрасной паяльной станции. А именно – это 3 нижних ИК излучателя 60х240 мм, верхний 80х80 мм. и пара твердотельных реле на 40А Можно было и на 25 ампер взять, но всегда стараюсь всё сделать с запасом, да и ценой они не сильно отличались..


Глаза боятся, а руки делают. Стараюсь не забывать эту старую истину, также как и про курицу, та что по зёрнышку…Что имеем в итоге – После установки излучателей в противень, установки твердотелок на радиатор, обдуваемый кулером и соединении всего, получилось уже что-то более-менее похожее на инфракрасную паяльную станцию.


Когда дело с преднагревом начало подходить к концу и были сделаны первые тесты на нагрев, удержание температуры и гистерезис, можно было смело приступать к верхнему инфракрасному излучателю. Работы с ним оказалось больше, чем я предполагал изначально. Было рассмотрено несколько конструктивных решений, но всё же более удачным на практике оказался последний вариант, который я и воплотил.


Сделать столик для удержания платы – очередная задача, требующая нагрева черепной коробки. Необходимо чтобы выполнялось несколько условий – равномерное удержание печатной платы, чтобы плата при нагреве не прогибалась. Кроме этого была возможность сдвигать влево-вправо уже зажатую плату. Зажим платы должен быть, как и крепкий, так и давать небольшую слабину, так как плата при нагреве расширяется. Ну и так же у столика должна быть возможность закрепить платы разных размеров. Не до конца еще доделанный столик: (нет прищепок для платы)


Вот и настало время тестов, отладок, подгонки термопрофилей под разные виды микросхем, и паяльных сплавов. За осень 2014 было восстановлено приличное количество компьютерных видеокарт и телевизионных Main-board


Не смотря на то, что паяльная станция кажется завершённой и прекрасно себя зарекомендовала, на самом деле не хватает еще нескольких важных вещей: Во-первых это лампа, ну или фонарик на гибкой ножке, Во-вторых обдув платы после пайки, в-третьих я хотел изначально сделать селектор для нижних нагревателей..

Конечно же, я написал не всё что хотел, потому как, при сборке было много мелочей, проблем и тупиков. Но зато я записал на видео весь процесс конструирования и теперь это полноценный обучающий видеокурс:

Маленькая паяльная станция своими руками v2 / Хабр

Привет.

Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.


Основные функции:

1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которыми осуществляется переключение кнопкой Solder. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно. Для точного поддержания температуры используется PID регулятор.

Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

struct {
  static const byte   termistor   =  A2;  // пин термистора
  static const byte   pwm         =  10;  // пин нагревателя
  static const byte   use         =  15;  // A1 пин датчика движения паяльника
  int                 mode[4]     =  {0, 150, 250, 300}; // режимы паяльника
  byte                set_solder  =  0; // режим паяльника (по сути главная функция)
  static const double PID_k[3]    =  {50, 5, 5};    // KP KI KD
  static const byte   PID_cycle   =  air.PID_cycle; // Цикл для ПИД. Участвует в расчетах, а также управляет частотой расчетов ПИД
  double PID_in;  // входящее значение
  double PID_set; // требуемое значение
  double PID_out; // выходное значения для управляемого элемента
  //unsigned long time;
  unsigned long srednee;
} sol;

2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), PID регулятор, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

struct {
  static const byte   termistor     =  A3; // пин термистора
  static const byte   heat          =  A0; // пин нагревателя
  static const byte   fan           =  11; // пин вентилятора
  int                 mode_heat[5]  =  {0, 300, 450, 600, 700}; // быстрые режимы нагревателя
  byte                set_air       =  0; // режимы фена (нагреватель + вентилятор) по сути главная функция
  static const double PID_k[3]      =  {10, 2, 10}; // KP KI KD
  static const byte   PID_cycle     =  200; // Цикл для ПИД. Участвует в расчетах, а также управляет частотой расчетов ПИД
  double PID_in;  // входящее значение
  double PID_set; // требуемое значение
  double PID_out; // выходное значения для управляемого элемента
  unsigned long time;
  unsigned long srednee;
  boolean OFF = 0;
} air;

Нюансы:
  1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
  2. Кнопка отключения отключает сразу все что было включено.
  3. Можно одновременно включать и паяльник и фен.
  4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
  5. Нельзя отключать паяльную станцию от сети 220В пока не остынет фен.
  6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426. Какой в этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
  7. Защиты от КЗ нет, поэтому рекомендую установить предохранители.
  8. Стабилизатор на 5В для питания Arduino используйте любой доступный с учетом напряжения питания вашего БП и нагрева в случае линейного стабилизатор. Так как у меня напряжение 20В установил 7805.
  9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.

Основные узлы и состав:

1. Основная плата:

— Arduino Pro mini,
— сенсорные кнопки,
— дисплей от телефона Nokia 1202.

2. Плата усилителей:

— усилитель терморезистора паяльника,
— полевой транзистор нагрева паяльника,
— усилитель термопары фена,
— полевой транзистор включения вентилятора фена.

3. Плата симисторного модуля

— оптосимистор MOC3063,
— симистор со снабберной цепочкой.

4. Блок питания:

— блок питания от ноутбука 19В 3.5А,
— выключатель,
— стабилизатор для питания Arduino.

5. Корпус.

А теперь подробнее по узлам.

1. Основная плата


Обратите внимание наименование сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена. В самом начале регулировка оборотов была реализована, но так как напряжение моего БП 20В (увеличил на 1В добавлением переменного резистора), а вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включены в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

Основная плата двухстороннего печатного монтажа. Металлизацию оставлял по максимуму, чтобы уменьшить влияние помех, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности. Без него кнопка будет срабатывать просто при приближении пальца. Но так как у меня сделана сплошная металлизация этот конденсатор не требуется). Сделан вырез под дисплей.

Фото платы без деталей



На верхней стороне находятся площадки сенсорных кнопок, наклеена лицевая панель, припаивается дисплей. Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603.Изготовление лицевой панелиЛицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

Распечатал, вырезал по контуру, а также окно для дисплея.

Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке. За счет выреза в плате дисплей получился вровень с основной платой.


На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.
2. Плата усилителей


Небольшое исправлениеКак правильно заметил easyJet в схеме дифференциального усилителя была ошибка, отсутствовал резистор R11 (выделил цветом). Но ошибка не критичная, влияет при равенстве сопротивления R3 и терморезистора в паяльнике, то есть при комнатной температуре. В случае исправления потребуется калибровка температуры паяльника. В своей паяльной станции решил оставить как есть.

Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

  1. Для увеличения «полезного» диапазона выходного сигнала при низкоомном терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезистор сопротивлением 100 кОм при 25 градусах) применен резистивный мост и дифференциальный усилитель. Для уменьшения наводок параллельно терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
  2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок если ардуина например отключится, заземляет затвор полевого транзистора. Резисторы по 220 Ом для ограничения тока заряда затвора.

Схема фена состоит из неинвертирующего усилителя и полевого транзистора.
  1. Усилитель: типовая схема. Для уменьшения наводок параллельно термопаре и в цепи обратной связи стоят конденсаторы.
  2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом — 1206.
Настройка не требуется.

Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не Rail-to-Rail операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3. 5-4 В при 5В питания и максимальная температура (при указанных на схеме номиналах) будет ограничена в районе 426 градусов. Рекомендую использовать например MCP6001. Но нужно обратить внимание что в зависимости от букв в конце отличается распиновка:

3. Плата симисторного модуля

Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, а нагрузка — нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительных цепей контроля ноля.

Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано snubberless.

4. Блок питания

Выбор был сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.
5. Корпус

Корпус проектировался под мой БП, с учетом размеров плат и последующей печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов. А гнуть самому красиво не получится.

Разъемы:

1. Фен — «авиационный» GX16-8.

2. Паяльник — «авиационный» GX12-6.


Исходники лежат тут.
На этом все.

P.S. Первую версию я сохранил в черновиках на память.

Самодельная ик паяльная станция

28.12.2012 Электронная техника

Довольно часто в собственных видеороликах канал Sovering TVi говорил о том, что планирует собрать инфракрасную паяльную станцию. Уже фактически последний этап перед тем, как ее будем собирать совсем.

Радиодетали, паяльные станции ИК  и другие в этом китайском магазине. Плагин на Google Хром для экономии в нём: 7 процентов с приобретений возвращается вам.
Перед тем, как все собирать, прикупил сопутствующие материалы — термопара, для измерения температуры. Вакуумный пинцет также прикупил, обзор попозже. Он уже имеется готовый, необходимо смонтировать, не было времени.

Димеры, эти 2 димера, также обзорчик делал, кому весьма интересно имеете возможность взглянуть на канале. Еще прикупил такие трафареты.

Приобрел универсальные, так до тех пор пока обучаться пробовать, исходя из этого такие. В наборе еще была такая, также обзор чуть попозже, материал уже имеется необходимо обработать и сделать.
Верхний нагреватель сделал из блока питания ветхого, таковой мелкий валялся. Его раскрутилась, дабы продемонстрировать вам, что в. Все припаял, спаял, скрутил. Ко мне поставим где-нибудь диммер, дабы возможно было не выносить на переднюю панель, а руководить напрямую. Раздельно управляться с кнопкой с отдельным шнуром питания. Нижний нагреватель со своим едой и также позже, в случае если что-то не понравится, переделывать. До тех пор пока все так выглядит.

Также и коробку переделывать.
Он будет прикручивается ко мне и штанга. Такая ножка. Дроссель, правильнее блок питания для лампочки подсветки.

Подсветку обычную, тоненькую. Блок питания для нее, еще дополнительный свет. Про диммеры поведал, кнопочку включения питания для нижнего нагревателя какую-то из этих. Уголки, на которых ляжет верхний лист, снимем верхний лист посмотрим, что внутри, из чего его собрал.

Эту штучку открутим.
Продолжение с 4 60 секунд про самодельную рабочую ИК паяльную станцию.

Вторая часть

Случайные записи:

ИК паяльная станция своими руками — Часть 1(Обзор)


Похожие статьи, которые вам понравятся:
  • Обзор паяльной станции huayu h898+ 700w smd

    Электроника за маленький период развивалась. И, к счастью, продолжает это в том же направлении. Создатель блога застал то время ламповых телевизоров….

  • Зелёная all-in-one рабочая станция от нр

    Осмотрительнее, тут вы имеете возможность влюбиться! В первый раз миру представлен компьютер, что может гордиться не только характеристиками и своим…

  • Док станция для телефона руками

    Канал «Volodymir Evdokimov» продемонстрировал авторскую разработку док станции. Материал: американский орех, акриловое оргстекло. Потому, что будем…

  • Зарядная станция: всегда с собой

    Зарядные станции для электромобилей требуют особой электроники и исходя из этого обходятся дорого. Маленькое берлинское предприятие трудится над совсем…

инфракрасная паяльная станция своими руками – Инструкции

Иногда бывает недостаточно хорошо владеть паяльником или паяльным феном. Для пайки bga микросхем нужна инфракрасная паяльная станция, но это очень дорогое профессиональное оборудование, которое не всем по карману. В этой инструкции я расскажу о том, как инфракрасная паяльная станция своими руками легко доступна к постройке заинтересованным человеком.

Коротко о том, что такое ик паяльная станция: это такой инструмент, позволяющий припаивать микросхемы с выводами не в виде отдельных ножек, а в виде массива шариков припоя. Это центральные процессоры ноутбуков, чипы в телефонах и видеокартах и многое другое. В заводском исполнении такая станция стоит от 400 до 1500 долларов в среднем.

Шаг 1. Инфракрасная паяльная станция своими руками. Ингредиенты.

Нам понадобятся:

Шаг 2. Нижний нагреватель: рефлектор, лампы и корпус.

Найдите старый галогеновый обогреватель, вскройте его и возьмите рефлекторы и четыре галогеновые лампы. Будьте осторожны, не разбейте лампы! Теперь вам нужно приложить воображение и придумать, какой корпус будет у нижнего нагревателя. Вы можете использовать корпус от старого ПК или сделать как я. Я взял алюминиевые уголки толщиной 1 мм. Они отлично вместили в себя рефлекторы и лампы, а так-же обеспечили требуемую жесткость конструкции.

Этот обогреватель вмещает в себя 4 штуки 450 ваттных лампы, подключенных в параллель. Используйте штатную проводку обогревателя чтобы подключить их уже в новом корпусе.

Шаг 3. Нижний нагреватель: система удержания печатных плат.

После того, как вы закончите корпус для нижнего нагревателя, вам будет необходимо установить систему крепления печатных плат. Состоит она, в моём случае, из отрезков профиля, использовавшегося как держатель занавесок. Нужно отрезать шесть кусков этого профиля, с примерными размерами как на фото. В качестве удерживающего элемента используются импровизированные гайки, сделанные из металлической перфорированной ленты, которую можно купить в хозяйственных магазинах. Такая система крепления позволяет в достаточно широких пределах закреплять и перемещать печатные платы разнообразных размеров, используя лишь отвертку для откручивания-закручивания гаек.

Шаг 4. Нижний нагреватель. Держатели термопар.
крепление гибкого шланга
продеваем стальную проволоку
моток стальной проволоки
шланг от душа

Для того, чтоб наша инфракрасная паяльная станция, сделанная своими руками, функционировала должным образом, она должна поддерживать заданный температурный профиль нагревания и охлаждения. Иначе это может привести к растрескиванию печатных плат, перегреву микросхем и прочим не менее неприятным последствиям. Для контроля профиля нагрева служат две термопары, которые должны контролировать температуру снизу и сверху паяемой платы.

Чтобы термопары были достаточно подвижными и удобными к расположению я придумал отличный способ их крепления. Для этого нам понадобится пара гибких душевых шлангов, немного отожженной стальной проволоки (она гибкая и сохраняет форму после изгиба, в отличие от не отожженной). В гибкий шланг нужно продеть кусок стальной проволоки и провода для термопары. Затем один конец гибкого шланга нужно прикрутить к корпусу нашего нижнего нагревателя.

Шаг 5. Верхний нагреватель.
подключение ик головки паяльной станции
ик головка паяльной станции и корпус

В качестве верхнего нагревателя я использовал керамический нагреватель мощностью 450 ватт. Вы можете купить такой на алиэкспрессе в разделе запасных частей для паяльных станций.

К этому нагревателю из тонкого листового железа нужно согнуть корпус, примерно такой как у меня на фото. Корпус очень важен для организации хорошего и правильного потока воздуха.

PS: Процесс нахождения констант P, I и D это неприятная процедура в данном случае, потому как керамический нагреватель нагревается и остывает довольно долго.

Шаг 6. Верхний нагреватель: держатель.
настольная лампа
крепим головку
крепление ик головки
посадочное место конструкции ик головки

Найдите у себя или купите б\у настольную лампу примерно такого вида. От нее нам понадобится механизм ноги.

Учитывая то, что ик головка инфракрасной паяльной станции должна доставать до любого угла нашего нижнего обогревателя, сначала следует прикрепить ик головку к держателю. А затем уже выяснить из какого положения крепления она легко перемещается по всей поверхности нижнего нагревателя инфракрасной паяльной станции.  Крепление держателя к нижнему нагревателю можно выполнить из кусочка пвх трубки, приверченной с помощью хомута к корпусу.

Шаг 7. Arduino PID контроллер.

Теперь вам нужно или найти готовый или сделать самостоятельно из листового металла корпус для контроллера инфракрасной паяльной станции. В этом корпусе поместятся: 2 твердотельных реле, Arduino ATmega2560, дисплей, блок питания для ардуино а так-же разнообразные кнопки и и разъемы.

Так как я не знал, насколько сильно будут греться твердотельные реле, я приделал им по радиатору. Для обдува радиаторов и внутренностей контроллера я поставил на задней стенке контроллера вентилятор.

В ниже преложенном коде всё очень подробно объяснено что и как с чем соединяется. Монтаж очень простой.

Как пользоваться контроллером: Тут нет автонастройки значений P, I и D, так что вам придется задать их именно для вашей инфракрасной паяльной станции. Есть 4 профиля. В каждом из них Вы устанавливаете количество шагов, скорость роста температуры (C / S), dwel (время на шаг ожидания), нижний порог нагревания, целевая температура на каждом шагу и P, I и D значения для нижнего и верхнего нагревателя.  Если вы установите, например 3 шага, 80,180 и 230 ° для нижнего нагревателя с порогом 180, Ваша плата не будет нагреваться только от нижнего нагревателя до 180 °, она нагреется со 180 от нижнего и продолжит греться до  230 с верхнего нагревателя.

Скетч вы можете скачать по ссылке ниже.

//www.dropbox.com/s/5inxb76xgkeun43/Arduino%20Rework%20Station.rar?dl=0

Я специально не стал объяснять создание такой штуки, как инфракрасная паяльная станция своими руками очень детально, потому-что ваша конструкция почти наверняка будет отличаться от моей. Даю свою инструкцию лишь как пример самостоятельной постройки ик паяльной станции.

Как обычно говорят, жмите лайки и репостите запись в соц сетях если вам понравилась моя инструкция.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

E-mail

как создать своими руками, пошаговая инструкция

Уже давно я задумался над тем, паяльную станцию ​​своими руками и чинить на свои старые видеокарты, приставки и ноутбуки. Для установки можно использовать старую галогеновую грелку, ножку от старой настольной лампы можно использовать для удержания и перемещения переносного устройства, платы будут лежать на алюминиевых поручнях, спираль от душа будет держать термопары, плату Ардуино будет следить за температурой.

Сперва разберемся с тем, что такое паяльная станция.Современные чипы на интегральных схемах (ЦПУ, ГПУ и т.д.) не имеют ножек, зато массив шариков (BGA, Ball grid array). Для того, чтобы припаять \ отпаять такой чип, нужно иметь устройство, которое нагревает всю IC до температуры в 220 градусов, а также не подвергнет IC термическому шоку. Именно поэтому нам нужен контроллер температуры. Такие аппараты стоят в диапазоне 400-1200 $. Это проект должен уложиться примерно в 130 долларов. Про BGA и паяльные станции вы почитать на Википедии, а мы начнём работать!

Материалы:

  • Четырёхламповый галогеновый нагреватель ~ 1800w (в качестве нижнего)
  • 450w керамический ИК (верхний нагреватель)
  • Алюминиевые рейки для занавесок
  • Спиральный кабель для душа
  • Прочная толстая проволока
  • Ножка от настольной лампы
  • Плата Ардуино ATmega2560
  • 2 платы SSR 25-DA2x Adafruit MAX31855K ​​(или сделайте сами, как сделал я)
  • 2 термопары типа K
  • Блок питания постоянного тока 220 на 5в, 0. 5A
  • Буквенный модуль LCD 2004
  • 5в пищалка

Шаг 1: Нижний нагреватель: отражатель, лампы, корпус

Найдите галогеновый нагреватель, откройте его и выньте отражатель и 4 лампы. Будьте аккуратны, не сломайте лампы. Здесь вы можете приложить воображение и создать свой корпус, который будет держать лампы и отражатель. Например, вы можете взять старый корпус ПК и провода лампы, отражатель и внутрь него. Я использовал металлические корпуса толщиной 1 мм и сделал из них для нижнего и верхнего нагревателя, а также корпус для контроллера Ардуино.Как я и сказал прежде – вы должны быть креативными и придумать для корпуса что-то своё.

Используемый мною нагреватель был на 1800 Вт (4 лампы на 450 Вт). Используйте провода из нагревателя и соедините лампы. Вы можете встроить штекер для переменного тока, как сделал это я, или соединить кабель напрямую от нижнего нагревателя к контроллеру.

Шаг 2: Нижний нагреватель: система крепления плат

После создания корпуса нижнего нагревателя, измерьте бОльшую длину его окна и отрежьте два куска алюминиевой рейки такой же длины. Вам также нужно будет отрезать еще 6 кусков, каждую половину меньшей стороны окна нагревателя. Просверлите отверстия по двум концам больших кусков реек, а также на одном конце каждой из 6 небольших реек и на длинной части окна. Перед тем, как прикручивать части к корпусу, нужно создать механизм крепления на гайках, для такого типа, который сделал на фотографиях. Это нужно для того, чтобы меньшие рейки могли скользить по бОльшим рейкам.

После того, как вы проденете гайки в рейки и скрутите всё вместе, используйте шуруповёрт для перемещения и закрепления шурупов, чтобы система подходила под размер и форму вашей платы.

Шаг 3: Нижний нагреватель: держатели термопары

Для изготовления держателей термопары, замерьте диагональ окна нижнего нагревателя и отрежьте два куска спирального кабеля для душа такой же длины. Раскрутите жесткий провод и отрежьте два куска, каждый на 6 см, чем спиральный кабель от длиннее душа. Пропустите жесткий провод и термопару через спиральный кабель и загните оба конца провода так, как это сделал я на картинках. Оставьте один конец длиннее другого для того, чтобы закрутить его одним из винтовки рейки.

Шаг 4: Верхний нагреватель: керамическая пластина

Для изготовления верхнего нагревателя я использовал керамический инфракрасный нагреватель на 450W. Вы можете найти такие на Алиэкспресс. Хитрость заключается в том, что нужно создать для нагревателя хороший кейс с правильным током воздуха. Далее приступаем к держателю нагревателя.

Шаг 5: Верхний нагреватель: держатель

Найдите старую настольную лампу на ножке и разберите её. Чтобы правильно разрезать лампу, нужно точно всё рассчитать, так как верхний инфракрасный нагреватель должен достигать всех углов нижнего нагревателя.Итак, сначала прикрепите корпус верхнего нагревателя, сделайте разрез по оси X, произведите правильные расчёты и, наконец, сделайте разрез по оси Z.

Шаг 6: ПИД-регулятор на Ардуино

Найдите правильные материалы и создайте прочный и безопасный кейс для Ардуино и других принадлежностей.

Можно просто отрезать и прикрепить провода, соединяющие контроллер (верхнее / нижнее питание, контролер питания, термопары), используя паяльник или раздобыть коннекторы и сделать всё аккуратно.Я не знал точно, сколько тепла будет излучать SSR, поэтому на корпус вентилятор. Будете вы устанавливать вентилятор, или нет, но вам обязательно нужно нанести на ССР термопасту. Код прост и из него понятно, как соединить, SSR, экран и термопары, так что соединить все вместе будет просто. Как установить: для значений P, I и D нет автонастройки, так что эти значения нужно будет вбить вручную в зависимости от ваших настроек. Есть 4 профиля, в каждом из них можно установить количество шагов, значения Ramp (C / s), dwel (время ожидания между шагами), порог ожидания нижнего нагревателя, целевую температуру для шага и значения P, I, D для верхнего и нижнего нагревателя .Если вы, например, выставите 3 шага, 80, 180 и 230 градусов с порогом нижнего нагревателя 180, то ваша плата будет прогрета снизу только до 180 градусов, дальше температура снизу будет держаться на 180 градусах, а верхний нагреватель разогреется до 230 градусов. Код до сих пор нуждается во множестве улучшений. Это описание не в деталях, в нём присутствует множество самодельных элементов, и каждая сборка будет отличаться от других.Я надеюсь, что вы вдохновитесь этой инструкцией и по ней свою ИК паяльную станцию.

Код на Дропбоксе: Ссылка

Инфракрасная паяльная станция своими руками: устройство, пайка

Описание процесса ИК пайки

Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

  • Нижний нагреватель.
  • Верхний нагреватель, отвечающий за воздействие на материалы.
  • Конструкция держателя платы, размещенная на столе.
  • Контроллер температуры, состоящий из программируемого элемента и термопары.

Длина волны, напрямую зависит от температурных показателей источника энергии. Материалы в представлении подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность.Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки систем:

  • Разная сила энергии компонентами ведет за собой неравномерный прогрев.
  • Каждая плата включает различных характеристик, требующих подбора температур, в случае повреждения, повреждения, выходят из строя.
  • Наличие «мертвой зоны», где инфракрасная энергия не требуется необходимого объекта.
  • Обязательное условие защиты остальных элементов от испарения флюсов.

Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх деталей, используется температура не достаточно, поэтому подразумевает нижнюю часть. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.



Инфракрасная паяльная станция своими руками

Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом.Для экономии средств, выполнения нужных операций с помощью контроллеров BGA, возможно изготовить инфракрасную паяльную станцию ​​своими руками. Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа. Контроллер и верхний нагреватель приобретается на рынке или из старых запасных частей.

Инструменты для изготовления инфракрасного паяльника

Термостол потребует отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла.При изготовлении инфракрасной паяльной станции своими руками стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей. Обязательно корпус снабжается местом для термопары, передает информацию на контролер для предотвращения резких перепадов температуры, избыточного сообщения материала.

Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производит второй термопарой.Устанавливается с помощью нагревателя, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола. Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

Принципиальная схема контроллера для инфракрасной паяльной станции своими руками

Изготовление паяльной лампы своими руками в первую очередь потребует корпус.Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска, отладки устройства.

Нижний подогрев

Нижний подогрев может быть изготовлен способами, но лучшее использование галогеновых ламп. Рациональным решением является установка своими руками ламповой мощностью от 1 кВт. По бокам устанавливаются порожки, которые фиксируют плату.Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

Нижний подогрев

Верхний подогрев

Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки используйте керамические нагревательные элементы. Для инфракрасной паяльной станции, изготовленной своими руками оптимальным является использование нагревателя ELSTEIN.Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей. Не рекомендуется экономить на покупке верхнего нагревателя – обогревателя при сборке паяльной руки, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

Верхний подогрев

Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно инфракрасной установки по высоте и широте для комфортной работы на изготовленной своими руками станции.К штативу крепится термопара для контроля температуры.

Блок управления

Корпус контроллера подбирается по размерам в соответствии с установленными деталями. Подходящим может оказаться кусок листового метала, который без труда отрезать ножницами по металлу. Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер. В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA своими руками.

Блок управления

Детали для самодельного прибора

Перед сборкой любого оборудования своими руками необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

  • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
  • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
  • Шланг от душевой лейки для проводов, алюминиевые уголки.
  • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
  • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
  • Винты, разъемы и дополнительные периферии.

Инфракрасная паяльная станция своими руками на основе Arduino

В процессе сборки понадобятся чертежи, необходимые элементарные знания в электронике.

Общие характеристики и принцип работы паяльной станции


Внешний вид промышленной воздушной паяльной станции: 1 – блок управления, 2 – паяльник, 3 – фен, 4 – ручка для переноски, 5 – регуляторы для фена и нагревателя
Анатомия паяльной станции достаточно проста и максимально отвечать условиям: аккуратная, «умная» пайка элементов. Сердце прибора – блок питания, внутри которого находится трансформатор, выдающий напряжение двух вариантов 12 или 24 Вольта.Без этого элемента все системы станции были бы бесполезны. Трансформатор отвечает за регулировку температуры. Блок питания снабжён терморегулятором и специальными кнопками запуска прибора.

Для справки! Устройство, которое нагревает печатную плату во время пайки, помогает избежать ее деформации.

С помощью блока управления также может быть реализована функция запоминания температуры и кнопок программирования.Мастера «прокачивают» прибор, используя процессор, через которую проходит способность измерять температуру в ходе пайки.


Вариация самодельного паяльника для микросхем

Разберём особенности работы термовоздушной паяльной станции: поток воздуха с помощью специальных спиралевидных или керамических элементов (они находятся прямо внутри трубки термофена) нагревается, а через специальные насадки направляется в точки пайки. Такая система позволяет нагреть равномерно, исключить точечную деформацию.

Комментарий

Андрей Винокуров

Электромонтер 5 разряда ООО «Петроком»

Задать вопрос

«Температура, которую могут обеспечить современные фены для пайки, в том числе и собранные своими руками, рассматривается от 100 до 800 ° C. Причём показатели эти могут настраиваться оператором.

«

В качестве ещё одного дополнительного элемента может выступать специальный инфракрасный нагреватель. Принцип его похож на работу термофена, он нагревает не место стыка, определенную площадь.Однако, в отличие от термофена, здесь отсутствует поток тёплого воздуха. Профессиональные паяльные станции могут оборудоваться специальными сопутствующими инструментами, оловоотсосами и вакуумными пинцетами.


Применение и устройство

Инфракрасный паяльник используется в основном при условиях отсутствия доступа к заменяемым компонентам. Применяется при замене мелких деталей, главным достоинством является отсутствие нагаров и прочих отложений, как при работе обычным паяльником, а также малая возможность повредить соседние элементы.Для домашнего использования возможно изготовить паяльник своими руками, используя прикуриватель от автомобиля.

Инфракрасная паяльная станция промышленного производства

Работа устройства происходит при питании 12 вольт, такое напряжение возможно получить путем использования преобразователя или не нужного блока питания для компьютера.

Изготовление

Перед сборкой паяльной станции, извлекается из корпуса прикуривателя нагревательный элемент.К контактам питания присоединяются провода питания, к центральному проводу возможно подвести медный провод с изоляцией. Сделать паяльник не выполнять большого труда, изолировать соединение на расстоянии от нагревательного элемента, возможно использовать термоусадочную трубку.

Термоусадочная трубка

Корпус производится из тугоплавкого материала. Возможно воспользоваться нерабочим паяльником или приобрести кусок стали. Необходимо следить за отсутствием соприкосновения проводов.Такие как температурные пороги, другие параметры не контролируются.

Как пользоваться паяльником

Проведение демонтажа радиодеталей таким не представляет трудностей. Время выхода устройства на рабочий режим составляет 30 секунд. Время демонтажа микросхемы с 200 ножками – от 15 до 30 секунд. В качестве нижнего подогрева лучше всего использовать утюг. Применение ИК-паяльника в комплексе с утюгом позволяет сильно ускорить выпаивание и смягчает его.В процессе работы требуется устройство держать на расстоянии 15 мм от прикуривателя.

При выполнении работ не следует жалеть канифоли. Большое ее количество облегчает выпайку компонентов радиоплат и ускоряет ее. Канифоль начинает кипеть при 250 ° C. Во время работы не следует допускать чрезмерного ее испарения и кипения.

При ремонте деликатных микросхем необходимо накрывать корпус. Не рекомендуется оставлять устройство включенным, т.к. оно работает на пределе возможности.

устройство, принцип работы, примеры создания

С появлением микропроцессорной техники возникла необходимость ремонтировать сталкиваться с перепайкой BGA микросхем, что привычными методами сделать или крайне сложно, или чаще, невозможно. Даже фен не всегда поможет справиться с поставленной задачей. Именно поэтому изготовление инфракрасной паяльной станции своими руками будет наилучшей альтернативой и порой единственным актуальным решением.

ИК станция для пайки

Микросхемы BGA (Шаровая сетка) присутствуют практически в любом современном «умном» устройстве: телефоны, компьютеры, телевизоры, принтеры. В процессе эксплуатации они могут выходить из строя, что требует замены неисправной части на новую. Но такую ​​осуществить без специального оборудования – крайне сложная.

Проблема заключается в том, что производители изобретают всё новые и новые методы для монтажа электронных деталей.И обычный паяльник или фен не всегда помогал в решении такой проблемы. Ведь контактные шарики способствуют высокой теплоотдаче на плате, в результате чего они не могут расплавиться.

Если пытаться поднять температуру необходимой для их плавления, то появляется риск перегреть микросхему, в результате чего она может выйти из строя. Вследствие перегрева не исключена и возможность повреждения близлежащих деталей. Особенно если их корпусы выполнены из легкоплавких материалов.

Отличным решением может выступить инфракрасная станция. Она позволяет производить замену даже крупных контроллеров ГПУ. А с широким распространением компьютеров, ноутбуков, материнских плат, видеоадаптеров и другой сложной техники такие работы при ремонте выполняются достаточно часто. И если раньше для замены микросхемов можно было использовать термовоздушные станции, то сейчас производители используют бесконтактные методы пайки, оптимальным решением является ИК станция, способная качественно справиться с заменой любой микропроцессорной детали.

Принцип действия

Основными проблемами при перепайке микросхем и контроллеров является проблема перегрева до температуры плавления контактного материала, или перегрев заменяемой части и её выхода из строя.

Так пришла идея нагревать до температуры 100–150 градусов Цельсия непосредственно саму плату. После чего уже произносить пайку деталей. Это позволяет качественно снизить теплоотток на текстолит плате, что даёт возможность понижать и «верхние» температуры. А значит, и сама деталь будет меньше подвергаться перегреву.

Производить нагрев можно и термофеном, но использоватьный паяльник предпочтительнее. Ведь ИК станция позволяет поддерживать это контролируемое, то есть поддерживать и поддерживать «низ» и «верх» температурой или использовать рекомендуемый термопрофиль пайки.

Конструктивные особенности

Любые ИК паяльные станции состоят из трёх основных частей. Выглядит всё довольно просто, каждая из них является самостоятельным сложным механизмом, объединённым с общей установкой.Так, любая станция включает в себя:

  1. Контроллер управления, регулирующий весь процесс сообщения;
  2. Нижнюю подогревающую часть;
  3. Верхний подогреватель.

В зависимости от модели и производителя, ИК паяльники могут отличаться лишь техническими характеристиками. Одни делают работу проще, другие, напротив, требуют от пользователя дополнительного внимания и трудозатрат.

Влияет это и на стоимость оборудования.Поэтому, выбирая станцию, требуется обращать внимание не только на цену, но и на технические данные, чтобы не переплачивать за ненужный функционал.

Изготовление своими руками

Производители или лица, занимающимся ремонтом сложной электронной аппаратуры, вполне можно приобрести для работы заводскую паяльную ИК станцию. А вот любителям или тем, кому такая установка нужна изредка, можно создать её своими руками. И в пользу этого, в первую очередь, говорит цена.Даже приборы китайского производства имеют стоимость от 1 тыс. Руб. долларов. Качественные же модели европейских марок от 2 тыс. долларов и выше. Позволить себе столь дорогое удовольствие далеко не каждый.

Касательно самодельной инфракрасной паяльной станции всё выглядит значительно оптимистичнее. По средним расчётам, такой аналог ИК паяльника обойдётся в пределах 80 долларов, что выглядит несравнимо более приемлемо цен на заводские приборы.

Любой человек, занимающийся ремонтом сложной техники, имеет достаточно знаний, чтобы придумать и сконструировать ИК станцию ​​самостоятельно.В связи с этим электронная часть, внешний вид и некоторые возможности могут отличаться. А вот основная конструкция останется в любой модели одинаковой . Именно поэтому существует единой идеальной схемы, которую можно привести в качестве единственного верного решения. Но для того чтобы понять принцип создания ИК паяльника, подойдёт любая модель. А уже настройки на личные знаниях и предпочтения, можно убрать или добавить или другие части.

Первый вариант

В этом номере будет установка двухканальный контроллер.

  1. Первый канал задействован для платинового терморезистора Pt 100 или обычная термопары.
  2. Второй канал будет Награждать термопарой. Каналы контроллера могут работать в автоматическом или ручном режиме.

Температура может поддерживаться в пределах от 10 до 255 градусов Цельсия. Термопары или датчик и термопара посредством обратной связи контролируют эти параметры в автоматическом режиме. В ручном режиме будет регулироваться мощность на каждом из каналов от 0 до 99 процентов.

Память контроллера будет содержать 14 различных термопрофилей для работы с BGA микросхемами. Семь из них предназначены для свинецсодержащих сплавов, а другие семь для припоя без свинца.

В случае со слабыми нагревателями верхний может не успевать за термопрофилем. В таком случае контроллер поставит выполнение на паузу и будет дожидаться, пока наберётся необходимая температура.

Модуль очень удобно термопрофиль на основании температуры грева всей платы. Если по той или иной причине снять чип не получилось, то можно запустить его с более высокой температурой.

Силовой блок, изображённый на схеме, транзисторный ключ для системы просмотра и семисторный для нижнего. Хотя приемлемо использование двух транзисторных или симисторных. Участок, отмеченный двухкратным красным пунктиром, можно не собирать, если используется использование термопар.

Для теплоотвода от ключей можно использовать радиатор с активным охлаждением от любой техники.Главное, чтобы он подходил под конструкцию моделируемого аппарата. Нижний нагреватель будет состоять из девяти галогеновых ламп номиналом 1500 Вт 220–240в R7S 254 мм. Должно быть три части по три лампы, соединенных последовательно. Провода лучше использовать высокотемпературные силиконовые на 220 вольт.

Корпус собирается из стеклотекстолита или любого другого похожего материала и усиливается алюминиевыми уголками. А также придётся купить и вакуумный насос. Для более эстетичного внешнего вида можно использовать ИК стекло на нижней панели.Но здесь существует сразу несколько отрицательных моментов: слишком медленный нагрев и остывание, и вся конструкция в процессе работы чересчур нагревается. Хотя наличие стекла не только делает прибор более привлекательным, но сегодня, как платы можно класть прямо на него.

Стойка выполнена из алюминиевого швеллера для стоек. Подготавливаются вакуумный пинцет и трубка для него, термопара и стойки. Верхний рекомендатель рекомендуется сделать из ELSTEIN SHTS / 100 800W. Когда все детали готовы, их нужно link в корпусе и можно перейти к настройке.

Нагреватели устанавливаются на расстоянии 5–6 сантиметров от плат. Если температурный выбег больше трёх градусов, то стоит понизить мощность верхнего нагревателя.

Второе решение

В качестве второго варианта можно предложить конструкцию, отличающуюся лишь внутренними составляющими. И сначала стоит подготовить все необходимые комплектующие:

  • Верхний нагреватель – головка ИК на 450 Вт;
  • Нижний нагреватель – четырёхламповый галогеновый обогреватель 1800 Вт;
  • Уголки из алюминия;
  • Материал для корпуса – стеклотекстолит, корпус от старой аппаратуры, ПК или другое подобное;
  • Стальная проволока;
  • Спиральный шланг для душа;
  • Ножка от настольной лампы;
  • Плата Arduino Atmega 2560;
  • Две термопары;
  • Два твердотельных реле;
  • Блок питания с 220 вольт на 5 вольт. Подойдёт от зарядного устройства для телефона;
  • Зуммер на пять вольт;
  • Символьный дисплей;
  • Гайки, винтики, провода и другая необходимая мелочь.

Главное, сразу определиться с видом корпуса. Естественно, что много зависит от наличия подходящего материала. Поэтому именно от этого стоит отталкиваться, когда приходит время располагать комплектующие внутри.

Теперь нужно взять галогеновый обогреватель. Возможно получится найти уже старый, так как его необходимо разобрать и извлечь рефлекторы и галогеновые лампы.Сами лампы разбирать не нужно. Теперь всё это потребуется в заготовленный корпус. Используется всего 4 лампы по 450 ватт, подключаемых параллельно. Провода предпочтительнее использовать те же, они уже были подключены. Если по каким-либо причинам использовать их возможности нет, то придётся купить термостойкие.

Сразу придётся подумать и о системе удержания плат. Конкретные рекомендации давать здесь сложно. Ведь всё зависит от корпуса. Чтобы можно было использовать алюминиевые профили, которые не жёстко вставляются болты с гайками таким образом, чтобы можно было зажимать печатные платы одновременно, возможность регулировки под разные размеры плат.Термопары, контролирующие заданную температурную схему в нижнем нагревателе, лучше пропустить в душевой шланг. Это даст подвижность и удобство в процессе работы и монтажа.

Роль верхнего нагревателя будет исполнять керамический мощностью 450 ватт. Такой можно купить как запчасть для ИК станций. Здесь же нужно позаботиться и о корпусе, так как он обеспечивает правильный и качественный нагрев. Сделать его можно из тонкого листового железа, согнув нужным образом, в зависимости от формы и размера нагревателя.

Теперь нужно подумать и о креплении верхнего нагревателя. Так как он должен быть подвижным, причём перемещаться не только вверх или вниз, но и под разными углами. Отлично подойдёт стойка от настольной лампы. Закрепить её можно любым способом.

Пришло время заняться контроллером. Для него тоже понадобиться отдельный корпус. Если есть подходящий уже готовый, то можно использовать его. В противном случае придётся его сделать самостоятельно из того же тонкого металла.Твердотельные реле нуждаются в охлаждении, поэтому стоит установить к ним радиатор и вентилятор.

Так как автоматическая настройка в контроллере нет, то значения P, I и D вводится вручную. Здесь есть четыре профиля, для каждого отдельного количества шагов, скорость роста температуры, время и шаг ожидания, нижний порог, целевая температура и значения для верхнего и нижнего нагревателя.

Изготовление инфракрасной паяльной станции своими руками

Ремонт ноутбуков и видеокарт, монтаж реболлинг (демонтаж и чипа с восстановлением шариков припоя) без инфракрасной паяльной станции, как правило, не обходится. Сервисные центры за такую ​​работу либо не берутся, либо взимают большие деньги за такой ремонт. Между тем подобные поломки – явление довольно частое.

ИК паяльная станция

ИК станция заводского исполнения – устройство довольно дорогое, поэтому экономичнее сделать ее своими руками. Инфракрасную паяльную станцию ​​можно сделать за один, максимум два дня, предварительно заказав через интернет и получив по почте комплектующие к ней.

Немного теории

При нормальной температуре пик электромагнитного излучения происходит в инфракрасной области.Вещи, которые горят, излучают как более интенсивное, так и более энергичное (более короткое) инфракрасное излучение. Когда становится очень жарко, они начинают светиться красным. Чем они становятся горячее, тем приобретают больше оранжевого и желтого цветов, затем синего.

Многие органические молекулы интенсивно поглощают инфракрасное излучение. Тепло – это кинетическая энергия движения движения атомов и молекул. Излучаемый атомом свет имеет длину волны.В результате нагретое тело тоже излучает свет, и чем сильнее нагрето, тем короче волна излучаемого света.

Для информации. Согласно закону с территории Вина, бывает так, что тепловое излучение объектов вблизи комнатной температуры находится в инфракрасной области. Сюда лампочки и даже люди.

Итак, инфракрасное излучение – это не тепло, и оно (оно) не вызывает тепло. Оно испускается теплом объекта при определенном диапазоне температур.

Инфракрасное излучение

Зрительные направки света обуславливаются длиной волны и ееленностью, начиная с инфракрасного, потом красного, оранжевого, желтого…. фиолетового и кончая длиной волны ультрафиолетового излучения. И обратно тоже. Облучение тела светом вызывает усиление движения его молекулы, любым светом, но инфракрасным, как самым длинноволновым, эффективнее всего.

ИК паяльная станция своими руками – это инфракрасный обогреватель, отдающий тепло в окружающей среде посредством инфракрасного излучения.

Инфракрасная паяльная станция своими руками

Нижний подогрев

Корпус подогрева можно изготовить из старого советского чемодана, сделанного из алюминия, или из системного блока компьютера. Но чемоданчик подойдет лучше, потому что его положение рабочее – горизонтальное. В крайнем случае, можно присмотреть подобный корпус на ближайшей барахолке.

В корпусе необходимо прорезать отверстие болгаркой для керамических нагревателей. Из алюминиевой вырезки сделать подложку для нагревателей с ножками из обычных болтов с гайками.На подложке вся конструкция и будет держаться.

Нижний подогрев состоит из четырех керамических нагревателей, купленных на AliExpress. Цена на них приемлемая, продавец обеспечивает быструю доставку.

Каждый нагреватель (размерами: длина – 24 см, ширина – 6 см) имеет мощность по 600 Вт. Четыре нагревателя нагревателя нагревательной панели 24х24 см2. Этого достаточно для того, чтобы нагреть материнскую плату компьютера, не говоря уже о материнской плате ноутбука, размеры которой еще меньше. Помещаются на такой подогрев даже большие топовые видеокарты. Для сравнения, у стандартной заводской китайской станции такойрев площадью 150х150 см2, при этом стоит она недешево.

Снизу подогрева каждый нагреватель подключается к клеммной колодке желательно еще советского производства. Колодка сделана из специального материала, который не плавится при высоких температурах. Подключение нагревателей последовательно-параллельное:

  • первый и третий соединены последовательно;
  • второй и четвертый – тоже последовательно;
  • первый и третий со вторым и четвертым – параллельным.

Такая схема применяется для того, чтобы немножко разгрузить проводку. Если подключить все нагреватели параллельно, то итоговая нагрузка будет составлять 2850 Вт:

  • нижний подогрев – 600х4 = 2400 Вт;
  • верхний нагреватель при максимальной нагрузке – 450 Вт.

Если в комнате работает еще электротехника (несколько лампочек, компьютер, паяльник, чайник), то защитный автомат на 16 ампер выбьет.

Высчитывается сопротивление нагрузки по специальной формуле.В итоге нижний подогрев представляет собой нагрузку 1210 Вт. Несложно посчитать, что вся ИК станция будет потреблять 1660 Вт. Для такого оборудования это немного. По времени плата греется нижним подогревом до 100 0 примерно 10 минут.

Сверху, когда выполняется работа, на корпус с нагревателем можно поставить металлическую от холодильника. Но лучше использовать стеклокерамику по размеру корпуса, и сделать удобный термостол для ремонта платы.

Верхний подогрев

Верхний подогрев можно сделать из советского фотоувеличителя УПА-60.Модель подходит для самодельной паяльной станции. Керамический нагреватель размерами 80х8 см идеально крепится к фотоувеличителю. При этом можно регулировать любую сторону нагревателя и двигатель в сторону. Штатив удобно прикрепить к самому столу, а нижний подогрев двигать при необходимости. Размеров нагревателей достаточно, чтобы прогревать большие чипы и сокеты для процессорных разъемов.

Фотоувеличитель УПА-60

Все б / у детали можно купить в интернете через доску объявлений, керамический нагреватель – на AliExpress.

Блок управления

Готовый пластиковый бокс можно приобрести в специальном магазине для самостоятельного изготовления электроники, или сделать корпус из обычного компьютерного блока питания. На панели управления размещают:

  • PID контроллер REX-C100;
  • выключатели для нижнего и верхнего подогрева;
  • диммер 2 кВт.

Надо отметить, что внутренних проводов в корпусе довольно много, поэтому нужно выбирать немаленьких размеров.

Отверстия для вывода элементов управления на лицевую панель вырезаются электролобзиком со специальной пилочкой по металлу. Обычно это трудностей не вызывает при наличии практики с подобным инструментом.

ПИД контроллер REX-C100

ПИД контроллер REX-C100 можно также заказать на AliExpress. В комплекте с ним продавец поставляет твердотельное реле и термопару. То есть контроллер считывает, какой температуры достигает керамический нагреватель. Пока температура не достигнет нужной величины, твердотельное реле находится в открытом состоянии и пропускает электрический ток на керамический нагреватель.

При достижении необходимого срабатывает твердотельное реле температуры и керамический отключает подачу тока на нагреватель. Диммер управляется вручную. Обычно его устанавливают на максимуме, чтобы быстрее подогревался верх.

Тестер

Данный прибор нужен для работы, чтобы считывать информацию о температуре, которая возле чипа. К нему подключена обычная термопара, конец которой ставят возле чипа. На дисплее тестера будет отображена температура непосредственно возле чипа.

Важно! Провод от термопары заматывают термостойким скотчем, потому что оплетка проводов горит при высокой температуре.

Тестер для ИК станции своими руками

В итоге собранная на скорую самодельная ИК паяльная станция порядка десяти раз будет дешевле стоить, нежели готовое изделие. Устройство можно дорабатывать и постепенно улучшать.

Работа на практике

Работа устройства будет описана на примере починки платы от ноутбука.Одной из неисправностей платы является поломка видеочипа. Появляется достаточно прогреть его термофеном, и изображение на экране появляется. Скорее всего, в этом случае происходит от кристалла от текстолита. Менять чип довольно дорого. Но если прогреть его, то срок службы ноутбука этим можно продлить. На примере такого банального прогрева и может быть самодельная инфракрасная паяльная станция.

Для начала подготавливают к прогреву, снимают детали:

  • пленки, потому что они при высокой температуре начинают плавиться;
  • процессор;
  • память.

Компаунд лучше снимать пинцетом после предварительного подогрева термофеном. Фен ставят при этом на температуру 1800, средний поток воздуха.

Важно! Всю карту области вокруг чипа необходимо обклеить фольгой, чтобы не греть элементы. На всякий случай следует закрыть и пластиковые разъемы для памяти.

Далее по периметру чипа наносят флюс RMA-223, тоже китайский. Купленный на AliExpress для таких целей подходит. Для удобства его перезаправляют в обычный шприц.

Для информации. Использование флюсов облегчает процесс пайки и предотвращает окисление металла спаиваемых элементов.

Плату в таком виде устанавливают на решетку нижнего подогрева паяльной станции. Возле чипа термопару. Другая термопара находится вблизи с нагревателями, ее температура считывать их температуру через нагреватели. Включают нижний подогрев на блоке управления. На тестере и контроллеры появляются рабочие параметры.

Когда низ прогреется, нужно дождаться, чтобы температура вокруг чипа была не менее 1000, в зависимости от материала.Если припой бессвинцовый, то желательно прогреть до 1100.

ИК станция своими руками

Расстояние между чипом и верхним нагревателем должно быть около 5 см. Центр чипа должен быть строго под верхнего нагревателя, потому что максимальная температура идет от центра в стороны. Верхний нагреватель включает, когда температура возле чипа поднимется до 1100. Низ обычно прогревается через 10 минут, затем включается верх, который должен нагреться до 2300. На контроллере PID верхнее значение показывает текущую температуру, нижнее – температуру, которую необходимо достичь.

При достижении нужной температуры включает верхний нагреватель, который управляется диммером. Когда температура подойдёт ближе к 2300, мощность диммером нужно уменьшить. Это делается для того, чтобы нагрев слишком быстрый не был. Рекомендуется выдержать минуту при температуре 2300 и затем выключить устройство. Температура пойдет на спад.

Важно! Нагрев чипа должен происходить плавно, так же как и его остывание. Резких перепадов температура не должно быть.

Когда плата остынет, собирают ноутбук и включают. Должно все заработать. По такому же принципу можно сделать инфракрасный паяльник своими руками.

Инфракрасная паяльная станция своими руками подключается к домашней розетке. При этом с проводкой ничего страшного не происходит, поскольку мощность её небольшая. По затратам ИК паяльная станция своими руками обходится совсем недорого. Комплектующие детали можно заказать через интернет на AliExpress.

Видео

Оцените статью:

Ик паяльная станция для домашнего ремонта.ИК паяльная станция, самодельные конструкции. Изготовление своими руками

В качестве нагревательных элементов инфракрасных паяльных станций могут использовать керамические или кварцевые инфракрасные излучатели. Использование инфракрасного нагревателя.

Широкое распространение среди паяльного оборудования получили паяльные станции, в которых производится сфокусированным пучком инфракрасного излучения. Такие паяльные станции состоят из двух нагревательных частей, которые обеспечивают локальный нагрев платы и, соответственно, высокое качество и скорость системы.

Инфракрасный излучатель, который размещен в верхней части, зачастую небольшого размера. Его задача – осуществить в нужный момент быстрый локальный нагрев определенной части платы до температуры плавления припоя.

Инфракрасные излучатели, которые размещаются внизу, подогревают до сравнительно невысокой температуры для подготовки к процессу пайки.Размеры и количество излучателей зависит от размеров платы.

Керамические инфракрасные излучатели

Керамические инфракрасные излучатели долговечны и довольно прочны. Скорость выхода на температурный режим составляет порядка 10 минут. Для паяльных установок используют плоские или полые высокие излучатели (более высокие температуры на поверхности и более высокие выходят на температурный режим, но при этом они дороже). Для использования более эффективного распределения лучей, используйте рефлекторы для ИК излучателей. Излучатели производятся только стандартных размеров. Керамические инфракрасные излучатели лучше всего использовать при долгосрочной работе паяльной станции.

Кварцевые инфракрасные излучатели

Кварцевые инфракрасные излучатели характеризуются быстрым выходом на температурный режим (около 30 секунд), но более хрупкие. Для изготовления инфракрасной паяльной станции можно подобрать как

Ремонт ноутбуков и видеокарт, реболлинг (демонтаж и монтаж чипа с восстановлением шариков припоя) без инфракрасной паяльной станции, как правило, не обходится.Сервисные центры за такую ​​работу либо не берутся, либо взимают большие деньги за такой ремонт. Между тем подобные поломки – явление довольно частое.

ИК станция заводского исполнения – устройство довольно дорогое, поэтому экономичнее сделать ее своими руками. Инфракрасную паяльную станцию ​​можно сделать за один, максимум два дня, предварительно заказав через интернет и получив по почте комплектующие к ней.

Немного теории

При нормальной температуре пик электромагнитного излучения происходит в инфракрасной области.Вещи, которые горят, излучают как более интенсивное, так и более энергичное (более короткое) инфракрасное излучение. Когда становится очень жарко, они начинают светиться красным. Чем они становятся горячее, тем приобретают больше оранжевого и желтого цветов, затем синего.

Многие органические молекулы интенсивно поглощают инфракрасное излучение. Тепло – это кинетическая энергия движения движения атомов и молекул. Излучаемый атомом свет имеет длину волны.В результате нагретое тело тоже излучает свет, и чем сильнее нагрето, тем короче волна излучаемого света.

Для информации. Согласно закону с территории Вина, бывает так, что тепловое излучение объектов вблизи комнатной температуры находится в инфракрасной области. Сюда лампочки и даже люди.

Итак, инфракрасное излучение – это не тепло, и оно (оно) не вызывает тепло. Оно испускается теплом объекта при определенном диапазоне температур.

Зрительные оттенки света обуславливаются длиной волны и ее направленностью, начиная с инфракрасного, потом красного, оранжевого, желтого….фиолетового и кончая длиной волны ультрафиолетового излучения. И обратно тоже. Облучение тела светом вызывает усиление движения его молекулы, любым светом, но инфракрасным, как самым длинноволновым, эффективнее всего.

ИК паяльная станция своими руками – это инфракрасный обогреватель, отдающий тепло в окружающей среде посредством инфракрасного излучения.

Инфракрасная паяльная станция своими руками

Нижний подогрев

Корпус подогрева можно изготовить из старого советского чемодана, сделанного из алюминия, или из системного блока компьютера.Но чемоданчик подойдет лучше, потому что его положение рабочее – горизонтальное. В крайнем случае, можно присмотреть подобный корпус на ближайшей барахолке.

В корпусе необходимо прорезать отверстие болгаркой для керамических нагревателей. Из алюминиевой вырезки сделать подложку для нагревателей с ножками из обычных болтов с гайками. На подложке вся конструкция и будет держаться.

Нижний подогрев состоит из четырех керамических нагревателей, купленных на AliExpress. Цена на них приемлемая, продавец обеспечивает быструю доставку.

Каждый нагреватель (размерами: длина – 24 см, ширина – 6 см) имеет мощность по 600 Вт. Четыре нагревателя нагревателя нагревательной панели 24х24 см2. Этого достаточно для того, чтобы нагреть материнскую плату компьютера, не говоря уже о материнской плате ноутбука, размеры которой еще меньше. Помещаются на такой подогрев даже большие топовые видеокарты. Для сравнения, у стандартной заводской китайской станции такойрев площадью 150х150 см2, при этом стоит она недешево.

Снизу подогрева каждый нагреватель подключается к клеммной колодке желательно еще советского производства.Колодка сделана из специального материала, который не плавится при высоких температурах. Подключение нагревателей последовательно-параллельное:

  • первый и третий соединены последовательно;
  • второй и четвертый – тоже последовательно;
  • первый и третий со вторым и четвертым – параллельным.

Такая схема применяется для того, чтобы немножко разгрузить проводку. Если подключить все нагреватели параллельно, то итоговая нагрузка будет составлять 2850 Вт:

  • нижний подогрев – 600х4 = 2400 Вт;
  • верхний нагреватель при максимальной нагрузке – 450 Вт.

Если в комнате работает еще электротехника (несколько лампочек, компьютер, паяльник, чайник), то защитный автомат на 16 ампер выбьет.

Высчитывается сопротивление нагрузки по специальной формуле. В итоге нижний подогрев представляет собой нагрузку 1210 Вт. Несложно посчитать, что вся ИК станция будет потреблять 1660 Вт. Для такого оборудования это немного. По времени плата греется нижним подогревом до 100 0 примерно 10 минут.

Сверху, когда выполняется работа, на корпус с нагревателем можно поставить металлическую от холодильника.Но лучше использовать стеклокерамику по размеру корпуса, и сделать удобный термостол для ремонта платы.

Верхний подогрев

Верхний подогрев можно сделать из советского фотоувеличителя УПА-60. Модель подходит для самодельной паяльной станции. Керамический нагреватель размерами 80х8 см идеально крепится к фотоувеличителю. При этом можно регулировать любую сторону нагревателя и двигатель в сторону. Штатив удобно прикрепить к самому столу, а нижний подогрев двигать при необходимости.Размеров нагревателей достаточно, чтобы прогревать большие чипы и сокеты для процессорных разъемов.

Все б / у детали можно купить в интернете через доску объявлений, керамический нагреватель – на AliExpress.

Блок управления

Готовый пластиковый бокс можно приобрести в специальном магазине для самостоятельного изготовления электроники, или сделать корпус из обычного компьютерного блока питания. На панели управления размещают:

  • выключатели для нижнего и верхнего подогрева;
  • диммер 2 кВт.

Надо отметить, что внутренние проводов в корпусе довольно много, поэтому нужно выбирать немаленьких размеров.

Отверстия для вывода элементов управления на лицевую панель вырезаются электролобзиком со специальной пилочкой по металлу. Обычно это трудностей не вызывает при наличии практики с подобным инструментом.

ПИД контроллер REX-C100 можно также заказать на AliExpress. В комплекте с ним продавец поставляет твердотельное реле и термопару.То есть контроллер считывает, какой температуры достигает керамический нагреватель. Пока температура не достигнет нужной величины, твердотельное реле находится в открытом состоянии и пропускает электрический ток на керамический нагреватель.

При достижении необходимого срабатывает твердотельное реле температуры и керамический отключает подачу тока на нагреватель. Диммер управляется вручную. Обычно его устанавливают на максимуме, чтобы быстрее подогревался верх.

Тестер

Данный прибор нужен для работы, чтобы считывать информацию о температуре, которая возле чипа.К нему подключена обычная термопара, конец которой ставят возле чипа. На дисплее тестера будет отображена температура непосредственно возле чипа.

Важно! Провод от термопары заматывают термостойким скотчем, потому что оплетка проводов горит при высокой температуре.

В итоге собранная на скорую самодельная ИК паяльная станция порядка десяти раз будет дешевле стоить, нежели готовое изделие. Устройство можно дорабатывать и постепенно улучшать.

Работа на практике

Работа устройства будет описана на примере починки платы от ноутбука. Одной из неисправностей платы является поломка видеочипа. Появляется достаточно прогреть его термофеном, и изображение на экране появляется. Скорее всего, в этом случае происходит от кристалла от текстолита. Менять чип довольно дорого. Но если прогреть его, то срок службы ноутбука этим можно продлить. На примере такого банального прогрева и может быть самодельная инфракрасная паяльная станция.

Для начала подготавливают к прогреву, снимают детали:

  • пленки, потому что они при высокой температуре начинают плавиться;
  • процессор;
  • память.

Компаунд лучше снимать пинцетом после предварительного подогрева термофеном. Фен ставят при этом на температуру 1800, средний поток воздуха.

Важно! Всю карту области вокруг чипа необходимо обклеить фольгой, чтобы не греть элементы.На всякий случай следует закрыть и пластиковые разъемы для памяти.

Для информации. Использование флюсов облегчает процесс пайки и предотвращает окисление металла спаиваемых элементов.

Плату в таком виде устанавливают на решетку нижнего подогрева паяльной станции. Возле чипа термопару. Другая термопара находится вблизи с нагревателями, ее температура считывать их температуру через нагреватели. Включают нижний подогрев на блоке управления. На тестере и контроллеры появляются рабочие параметры.

Когда низ прогреется, нужно дождаться, чтобы температура вокруг чипа была не менее 1000, в зависимости от материала. Если припой бессвинцовый, то желательно прогреть до 1100.

Расстояние между чипом и верхним нагревателем должно быть около 5 см. Центр чипа должен быть строго под верхнего нагревателя, потому что максимальная температура идет от центра в стороны. Верхний нагреватель включает, когда температура возле чипа поднимется до 1100. Низ обычно прогревается через 10 минут, затем включается верх, который должен нагреться до 2300.На PID-контроллере верхнее значение показывает текущую температуру, нижнее – температуру, которую необходимо достичь.

При достижении нужной температуры включает верхний нагреватель, который управляется диммером. Когда температура подойдёт ближе к 2300, мощность диммером нужно уменьшить. Это делается для того, чтобы нагрев слишком быстрый не был. Рекомендуется выдержать минуту при температуре 2300 и затем выключить устройство. Температура пойдет на спад.

  • Антистатическое исполнение
  • Надежная фиксация платы
  • Технические характеристики AOYUE 710

    • Напряжение 220-240В
    • Частота 50Гц
    • Мощность 600Вт
    • Температурный диапазон:
      • инфракрасная лампа – 100-450ºC
      • преднагреватель – 100-500ºC
    • Нагревательный элемент:
    • Мощность:
      • инфракрасная пушка – 200 Вт
      • Вт преднагреватель – 650
      • стойка – 12 В
    • Габариты станции: 220 × 70 × 250 мм
    • Габариты стойки: 140 × 55 × 180 мм
    • Вес 10 кг

    Комплектация AOYUE 710

    • Основной модуль AOYUE 710
    • Инфракрасная пушка (1 шт. )
    • Стенд для охлаждения (1 шт.)
    • Кабель питания (2 шт.)
    • Инструкция (1 шт.)

    Инфракрасная паяльная станция 3-в-1

    AOYUE 720

    Паяльная станция AOYUE 720 – комплексное решение по восстановлению плат мобильных телефонов, компьютеров, телекоммуникационного оборудования c BGA, microBGA, QFP, PLSS, SOIC и другими компонентами. AOYUE 720 используется для высококачественного монтажа и демонтажа BGA, uBGA, SMD, SMT соединения без перегрева.

    AOYUE 720 – многофункциональная система 3-в-1, включающая в себя инфракрасную галогенную лампу, инфракрасный преднагреватель и контактный паяльник.

    В этой паяльной станции сочетается одновременно совершенство профессиональной системы с простотой ручного инструмента.

    • Возможность пайки без применения свинца .
    • Технология инфракрасной пайки . Преимущества:
      • создание системы посредством излучения традиционного конвекционного подогрева потоком горячего воздуха
      • эффективное решение основной проблемы при работе с термофеном – возможность устранения ущерба компонентов в процессе роботы
      • равномерность локального инфракрасного сообщения имеющее значение при работе с BGA
      • предотвращение случайного сдувания компонентов с печатной платы
      • потребность в покупке разнообразных сменных насадок для фена под конкретную микросхему
      • возможность работы со сложнопрофильными компонентами.
    • Антистатическое исполнение станция дает возможность работать с компонентами, чувствительными к статическому электричеству.
    • Эргономичный дизайн панели позволяет легко управлять оборудованием с помощью цифрового, что делает работу более безопасной, а результаты более эффективными.
    • Встроенный экран и очки для пайки защищают от вредных световых лучей.
    • Надежная фиксация платы на рабочем столике позволяет избежать ее провисания и искривления.
    • Регулировка высоты держателя позволяет точно установить и зафиксировать диаметр и положение положения положения. Это особенно важно при восстановлении крупных BGA-микросхем.
    • Смещение окружающих компонентов исключено, благодаря локализации механического воздействия воздушного потока.
    • Совместное преднагревателя и паяльной станции обеспечивает соответствие режима пайки термопрофилю использование микросхемы и предотвращает перегрев последней.
    • Локальный инфракрасный нагреватель направляется и удерживается на протяжении всего времени пайки.
    • Станция управляется микропроцессором .
    • Программируемое время пайки, по истечении которого процесс автоматически завершается. Цифровая индикация времени пайки.
    • Цифровая и программируемая индикация пайки, преднагревателя и инфракрасной пушки. Установлен температурный диапазон для настройки и контроля температуры.
    • Кнопка «Сброс» позволяет сбросить параметры и возвращает к предыдущим установкам.
    • Контроль температуры в месте пайки с помощью датчика.
    • Бесконтактный инфракрасный температурный контроль во время пайки или демонтажа.
    • Возможность настройки температуры преднагреватиля для равномерного прогрева платы большего размера для исключения термодеформаций.
    • Температурный датчик в телескопической трубке: легко позиционируется и служит обратной связью для ПИД (пропорционально-интегрально-дифференциального) регулятора температуры.

    Технические характеристики AOYUE 720

    • Напряжение 220-240В
    • Частота 50Гц
    • Мощность 600Вт
    • Температурный диапазон:
      • паяльник – 200-480ºC
      • инфракрасная лампа – 0-480ºC
      • преднагреватель – 100-500ºC
    • Нагревательный элемент:
      • паяльник – керамический
      • инфракрасная пушка – инфракрасная галогенная лампа
      • преднагреватель – кварцевый инфракрасный
    • Мощность:
      • паяльник – 70Вт
      • инфракрасная лампа – 165Вт
      • преднагреватель – 400Вт
    • Потребляемое напряжение:
      • паяльник – 24 В
      • инфракрасная лампа – 15 В
      • преднагреватель – 220
    • Площадь области страницы 140 × 140 мм
    • Площадь ремонтного столика 260 × 190 мм
    • Габариты: 390 × 270 × 92 мм

    Комплектация AOYUE 720

    • Основной модуль AOYUE 720
    • Металлический держатель ИК-пушки (1 шт. )
    • ИК пушка (1 шт.)
    • ИК лампа (1 шт.)
    • Стенд для охлаждения (1 шт.)
    • Педальный переключатель (1 шт.)
    • Держатель печатных плат (1 шт.)
    • Паяльник и держатель паяльника
    • Сварочные защитные очки (1 шт.)
    • Жала для паяльника LF2B, LFK
    • Шестигранный ключ (1 шт.)
    • Механический вакуумный пинцет 939 (1 шт.)
    • Пинцет для микросхем (1 шт.)
    • Паяльный флюс (1 шт.)
    • Кабель питания (1 шт.)
    • Инструкция (1 шт.)

    ACHI Инфракрасные паяльные станции

    ACHI IR 6000 и IR PRO-SC

    В системе России установлена ​​фирма инфракрасные паяльные станции произведенные китайской фабрикой ACHI, это модели IR 6000 и IR PRO-SC.
    Данные ИК паяльные станции разработаны с учетом современных требований, предъявляемых к процессу поверхностного монтажа компонентов BGA.

    Данные ремонтные станции в первую очередь предназначены для монтажа, и демонтажа ИС (интегральных микросхем), чипов, микро чипов, выполненных в корпусе типа BGA, с поверхностно – монтируемых печатных плат ноутбуков, компьютеров, серверов, промышленных компьютеров, игровых приставок, мониторов.
    ИК станции ACHI – это оптимальное соотношение цены и качества работы на рынке России.
    Главные и основные ремонтные системы станций ACHI:

    Станцию ​​можно использовать для поверхностного монтажа, демонтажа различных типов компонентов: BGA, FCBGA, MLF, LFBGA, CGA, CCGA, PBGA, CSP, QFN, PGA,? BGA.
    . Ремонтная станция легко управляется, хорошо подойдет для профессионалов, и для начинающих специалистов.
    . Предустановки (профили) программы управления для свинцовой и бессвинцовой пайки чипов BGA.
    . Память на 10 термопрофилей, каждый профиль входит из шестнадцати сегментов.
    . В комплекте поставки ИК станции идет все нужное для работы программное обеспечение, которое позволяет прямо на мониторе компьютера управлять за процессом ремонта и контролировать большое количество термопрофилей, Высокоточные чувствительные термо сенсоры в реальном времени точно отслеживают за температурми в рабочих точках.
    . Благодаря компактному дизайну, модель станцию ​​можно связать в небольшой по площади мастерской.
    . Специальные держатели и направляющие позволяют закреплять печатные платы разного размера.
    . Максимальная рабочая температура до 400 ° С – позволяет осуществлять бессвинцовую пайку BGA микросхем.

    Паяльная станция
    ACHI IR 6000

    Паяльная станция
    ACHI IR PRO-SC

    Термо воздушная станция

    QUICK855PG

    Преимущества паяльной станции QUICK855PG

    1.На демонтаж чипа уходит всего 10 секунд времени.
    2. Есть блокировки кнопок от случайных разъемий.
    3. Высокая скорость и хорошее качество демонтажа.
    4. память на 10 термопрофилей.
    5. Вакуумный пинцет.
    6. Большой ЖК дисплей для удобного мониторинга значений и параметров воздушного потока, продолжительности работы системы.
    8. Цифровая калибровка температуры.
    9. Электромагнитное реле и педаль регулировки.
    10. Точность температурного сенсора обеспечивает поддержание температуры с отклонением ± 2 °.
    11. Низкое энергопотребление, автоматический переход в режим сна.
    12. Время продолжительности работы в диапазоне 1 – 999 сек.

    Термовоздушная паяльная станция QUICK855T

    1. Керамический нагревательный элемент. Высокие скорость и качество пайки.
    2. Контроль температуры с помощью термопары K типа. Термодатчик. ЖК-дисплей.
    3. Используется в модели QUICK855PG для компонентов SMD и BGA.
    4. Рукоятка проста и удобна в использовании.
    5. Компоненты помещаются на посадочное место для предварительного размещения.
    6. Два переключателя для регулировки мощности и температуры. Индикация температуры в процессе плавки.
    7. Встроенный термрметр для контроля температуры системы компонентов.
    8. Наличие внешнего вентилятора для охлаждения.

    Технические характеристики QUICK855PG:

    Технические характеристики

    QUICK855PG

    QUICK855T


    Инфракрасная паяльная станция

    BGA QUICK IR2005


    Это универсальное решение, паяльная ремонтная станция IR2005 от производителя QUICK является очень компактным, высокоточным для осуществления инфракрасной пайки, монтажа и демонтажа, а также контактной пайки и демонтажа при помощи паяльной станции с индукционным нагревом. Станция является законченным решением решение, как для производственных нужд, так и для ремонта современной электроники и устройств с высокой плотностью монтажа элементов на печатной плате (компьютеры, мобильные телефоны, периферия).
    Станция имеет как и многие другие, 10 термопрофилей, любой из которых при возникновении необходимости можно перепрограммировать.

    Станция имеет систему управления апертурой верхнего ИК-излучателя, что позволяет точно установить площадь основной прогрева, т.е. Осуществляет прогрев только нужного компонента или группы компонентов. Станция для высокотемпературной пайки (например, для пайки без использования свинца), а также для работы с платами, обладающими большой теплоемкостью.

    Основные функции:

    Программируемая система управления пайки, память на 10 режимов, пароль
    . Два инфракрасных излучателя: нижний (135 × 250 мм) и верхний (60 × 60 мм) с регулируемой по осям X и Y апертурой 20 ~ 60 мм
    .Высокая мощность ИК излучателей: верхний 120 Вт? 6 = 720 Вт, нижний 400 Вт? 2 = 800 Вт
    . Нагрев на длинах волн 2-8 мкм
    . Максимальный размер печатной платы для монтажа: 300мм? 300мм
    . Микропроцессорное управление и ультрамалоинерционные нагреватели максимальную термостабильность
    . Инфракрасный температурный датчик: 0… 300 ° C
    . Лазерный светодиодный указатель для подсветки точки в центре рабочей зоны
    . Встроенный модуль контактной пайки и выпаивания с микропроцессорным управлением и паяльником с индукционным нагревом мощностью 60 Вт
    .Универсальная рамка-держатель для миниатюрных и сложнопрофильных плат, в комплекте
    . Программное обеспечение IRSoft, в комплекте
    . Вентиляторы верхнего и нижнего охлаждения, в комплекте
    . Устройство прецизионной установки микросхем PL2005 (опция)
    . Камера RPC2005 для визуальной инспекции пайки с разрешением 480 линий, PAL, и светодиодной подсветкой с регулируемой яркостью (опция)

    БЫСТРЫЙ BGA2015

    Преимущества
    1.Комплекс из инфракрасной ремонтной паяльной станции IR2015 для BGA.
    2. Система позиционирования и установки микросхем PL2015
    Двухцветные оптические линзы. Наличие прокладки между шариковым выводом из припоя и платой.
    3. Камера визуализации RPC2015
    Камера для визуальной калибровки и инспекционной пайки позволяет следить за прцессом с разных углов.
    4. Програмное обеспечение IRsoft
    Производится запись, контроль и анализ всего рабочего процесса с выводом диаграмм на компьютер.

    Технические характеристики

    Инфракрасная ремонтная паяльная станция

    Модель IR2015
    Общая мощность 2800 Вт (макс.)
    Мощность нижнего ИК излучателя 500 Вт * 4 = 2000 Вт
    400 Вт * 4 = 1600 Вт (светодиодная подсветка)
    Мощность верхнего ИК излучателя 180 Вт * 4 = 720 Вт (светодиодная подсветка; нагрев на длине волн 2-8 мкм)
    Размеры верхнего ИК излучателя 60 * 60 мм
    Размеры нижнего ИК излучателя 267 * 280 мм
    Апертура верхнего ИК излучателя 20-60 мм (регулирование по осям X, Y)
    Вакуумный насос 12 В / 300 мА, 0. 05 МПа (макс.)
    Вентилятор верхнего охлаждения 12 В / 300 мА, 15CFM
    Лазерный светодиодный указатель 3 В / 30 мА
    Двигатель 24 В DC / 100 мА
    Рама-держатель с эластичным креплением для плат 93мм
    Макс. размер печатной платы 420 мм * 500 мм
    ЖК-дисплей 65.7 * 23,5 мм 16 * 2 знаков
    Связь с компьютером Через интерфейс RS-232C
    Инфракрасный температурный датчик 0-300 ℃ (Диапазон измерения)
    Термопара К типа Опция

    Система позиционирования и установки микросхем PL

    Камера визуализации RPC

    Основные составные части системы
    Инфракрасная система пайки

    Используется инфракрасная сенсорная технология для задания и контроля процесса пайки. Имеется инфракрасный температурный датчик, ЖК дисплей для вывода температур.

    Верхний ИК излучатель

    Верхний ИК излучатель мощностью 720 производит нагревание на длинах волн 2-8 мкм, что препятствует перегреву электронных компонентов. Нет необходимости в использовании насадок.

    Нижний ИК излучатель

    Нижний ИК-излучатель мощностью 1600 Вт осуществляет инфракрасную пайку компонентов 4 ряда. Большие размеры нижнего излучателя предохраняют печатную плату от неравномерного сообщения и деформации.

    Система светодиодной подсветки

    Верхняя светодиодная подсветка красным светом. Нижняя светодиодная подсветка белым светом. Лазерный светодиодный указатель для подсветки точки в центре зоны.

    Система позиционирования печатных плат

    Позиционирование по осям X, Y, Z.
    Позиционер с вращением на 360 °.

    Рама -держатель печатных плат

    Предлагается универсальная рама-держатель с эластичным креплением для плат.
    Предлагаются держатели с захватом снизу для плат различных форм и размеров.

    Немного истории о компании Ersa.

    История немецкой компании Ersa началась в 1921 году с получения Эрнстом Саксом (Ernst Sachs) патента на электрический паяльник молоткового типа, известного сейчас как паяльник- “топорик”. 200-ваттный паяльник и мощные паяльники для пайки оловянными припоями небольшой компании Ersa довольно быстро стали расходиться по всей Европе и применялись преимущественно на промышленных предприятиях.После второй мировой войны и участия в международной выставке в Ганновере в 1949 году Производство стало расти. В 1961 году компания Ersa предлагала первые машины-автоматы для пайки на немецком рынке, а в 1968 году предложила собственную автомата для пайки оловянно-свинцовыми припоями. К 1971 году начались разработки по механическому регулированию температуры жала электрических паяльников.

    В 1973 году вместе с другими предприятиями, компания Ersa организовала выставку “Productronica” в Мюнхене. Теперь это крупная специализированная выставка в мире в области электроники и электронной промышленности.
    В 1974 году на рынке стали востребованы паяльные станции с электронным управлением, в 1986 году компания Ersa приступила к созданию машин для пайки оплавлением припоя, в следующем, 1987 году, Ersa представила паяльную станцию ​​с микропроцессорным управлением. В целях обеспечения возможности объединить станцию ​​в единый агрегат и управлять им автоматически с компьютером.

    В 1993 году компания Ersa вошла в промышленную группу Kurtz.В 1997 году была представлена ​​машина для инфракрасной пайки IR 500 Rework Station. Затем её заменила более новая паяльная станция IR 650. С 1999 года компания предлагает систему визуальной диагностики пайки и неразрушающего контроля – ERSASCOPE, завоевавшую различные призы на выставках электроники. Продолжается развитие селективных автоматов для пайки. К автомату VERSAFLOW (разработка 1995 года) в добавился автомат MULTIFLOW.

    В 2004 году представлен термопинцет Chip Tool для микрокомпонентов поверхностного монтажа (SMD). Chip Tool позволяет припаивать и выпаивать SMD-компоненты типоразмеров 0201 и 0401!
    Продолжаются разработки паяльного оборудования для пайки бессвинцовыми припоями. Автоматическая линия VERSAFLOW Ultimate сочетает в себе 2 машины для селективной пайки и машину для инфракрасной бессвинцовой пайки.

    РЕМОНТНЫЕ ЦЕНТРЫ

    ERSA PL / IR 550A

    С ПРЕЦИЗИОННЫМ ВИДЕОПОЗИЦИОНИРОВАНИЕМ BGA


    Одно из главных и главных преимуществ данной паяльно ремонтной станции ERSA IR500A это возможность апгрейда, то есть расширение функциональных возможностей.

    Технологии можификации корпусов современных микросхем развивается, и изменяется, уже сегодня microBGA с шагом меннее 1,27мм далеко не экзотика.
    Соответственно, чем меньше шага шага выводов микросхемы, тем сложнее обеспечивает тонный монтаж, и точность установки микросхемы. Ручная установка (с помощью меток либо рамки) установка более легких BGA с пластиковым корпусом, имеющим свойство самопроизведения при пайке, исключена для микросхем со столь малым шагом расположения выводов, то же самое с тяжелыми керамическими чипами BGA. Как раз в таких ситуациях незаменим видеопозиционер станции PL550A.

    Суть процедуры видео позиционирования такова. Микросхема предоставляется на площадке, где она в конечном итоге должна быть смонтирована, далее она поднимается механизмом с вакуумной присоской над платой. Появившийся между платой и микросхемой вводится головка камеры, и с помощью зеркальной оптической системы на мониторе видны одновременно изображение контактной платы и контакты выводов BGA чипа. Позиционирование микросхемы на участке пайки производится с помощью серво приводов, таким образом можно добиться идеального совмещения изображений выводов с контактной площадкой.Далее микросхема автоматически опускается на место своего монтажа на плате. Следующий этап это сама пайка. Кстати в новой версии автоматического установщика PL550AU есть важное отличие: это конструкция держателя плат, который заранее приспособлен для установки дополнительного модуля системы видеоконтроля RPC.

    Ремонтная станция PL550AU можно с успехом использовать в любом комплекте оборудования предназначенного для работы с BGA / малым шагом (QFP). Но удобно ей пользоваться в тандеме с ремонтно-паяльной станцией ERSA марки IR550A, удобно тем, что перемещение платы, на которые уже точно позиционированы компоненты, производиться легко и особенно плавно (с помощью специальных рамок держателя перемещающегося на подшипниках), тем самым исключающаяся вероятность ущерба компонентов во время транспортировки платы в область рабочей зоны.

    Цена данной установки видео позиции PL550AU – лучшая на всем мировом рынке по продуктам топового уровня, функциональная мощность этого ремонтного центра в купе с IR550A просто не имеют аналогов данного ценового диапазона.

    Обзор составлен на основе статей из интернета. Собран, обработан и опубликован на сайте

    Рано или поздно перед радиомехаником, занимающимся ремонтом современной электронной техники встаёт вопрос покупки инфракрасной паяльной станции.Необходимость назрела в связи с тем, что современные элементы массово «откидывают копыта», короче говоря, производители как и мелочевки так и больших интегральных схем отказываются от гибких выводов в пользу пятачков. Процесс этот идёт уже достаточно давно.


    Такие корпуса микросхем называются BGA – Ball grid array, проще говоря – массив шариков. Такие микросхемы монтируются и демонтируются бесконтактным способом пайки.

    Раньше, для не особо крупных микросхем, можно было обойтись термовоздушной паяльной станцией.А вот крупные графические контроллеры GPU термовоздушкой уже не снимешь и не посадишь. Разве что прогреть, но прогрев длительного результата не даёт.
    В общем, ближе к теме .. Готовые профессиональные инфракрасные станции имеют запредельные цены, недорогие 1000 – 2000 зелёных недостаточный функционал, короче допиливать всё равно придётся. Лично по мне, инфракрасная паяльная станция – это тот инструмент, который можно собрать самому и под свои нужды. Да, не спорю, есть затраты по времени. Но если подойти к сборке ИК станции методично, то будет и необходимый результат и творческая удовлетворённость.Итак, я для себя наметил, что буду работать с платами размером 250х250 мм. Для пайки телевизионных Main и компьютерных видеоадаптеров, возможно планшетных ПК.

    Итак, начал я с нечистого листа и дверцы от старой антресоли, прикрутив к этому будущему основанию 4 ножки от древней пишущей машинки.


    Основа при помощи приблизительных расчётов получилась 400х390 мм. Дальше необходимо было примерно рассчитать компоновку исходя из размеров нагревателей, ПИД-регуляторов.Таким нехитрым «фломастерным» способом я определил высоту своей будущей инфракрасной паяльной станции и угол скоса передней панели:


    Далее уже берёмся за скелет. Тут всё просто – изгибаем алюминиевые уголки согласно конструкции нашей будущей паяльной станции, закрепляем, связываем. Идём в гараж и с головой закапываемся в корпус от DVD и видиков. Хорошо делаю, что не выбрасываю – знаю, что пригодятся. Глядишь, дом из них построю 🙂 Вон из пивных банок строят, из пробок и даже палочек от мороженого!

    Короче говоря, на облицовку лучше не придумаешь, чем крышки от аппаратуры. Листовой металл стоит не дёшево.


    Бежим по магазинам в поисках антипригарного противня. Противень необходимо подобрать размерам ИК-излучателей и их количество. Я ходил по магазину с небольшой рулеткой и измерял стороны дна и глубину. На вопросы продавцов типа – «Зачем вам пироги строго заданных размеров?» Отвечал, что неподходящие размеры нарушают общую гармонию восприятия, что не соответствует моральным и этическим принципам.


    Урааа! Первая посылочка, особенно важные запчастюлины: ПИД-ы (страшное слово-то какое) Расшифровка тоже не простая: Пропорционально-Интегрально-Дифференциальный регулятор.В общем, разбираемся с их настройкой и работой.


    Далее жестянка. Здесь как раз и пришлось попотеть с крышками от DVD-юков дабы всё получилось ровно и солидно, для себя делаем. После подгонки всех стенок необходимо вырезать нужные отверстия под ПИД-ы на передней, под кулер на задней стенке и в покраску – в гараж. В итоге – промежуточный вариант нашей ИК паяльной станции стал выглядеть таким образом:


    После тестирования регулятора REX C-100 предназначенного для моей преднагрева (нижнего нагревателя), он не совсем подходит для конструкции паяльной станции, потому что он не рассчитан на работу с твердотельными реле, он и должен управлять. Пришлось его доработать под свою концепцию.


    Урааа! Пришла посылка из Китая. Теперь в ней уже было самое богатство для постройки нашей инфракрасной паяльной станции. А именно – это 3 нижних ИК излучателя 60х240 мм, верхний 80х80 мм. и пара твердотельных реле на 40А Можно было и на 25 ампер взять, но всегда стараюсь всё сделать с запасом, да и ценой они не сильно отличались ..


    Глаза боятся, а руки делают. Стараюсь не забывать эту старую истину, также как и про курицу, та что по зёрнышку… Что имеет в итоге – После установки излучателей в противень, установки твердотелок на радиатор, обдуваемого кулером и соединении всего, получилось уже что-то более-менее похоже на инфракрасную паяльную станцию.


    Когда дело с преднагревом начало подходить к концу и были сделаны на нагрев, удержание температуры и гистерезис, можно было смело приступить к тесту верхнему инфракрасному излучателю. Работы с ним оказалось больше, чем я предполагал изначально. Был рассмотрено несколько конструктивных решений, но всё же более удачная практика последний вариант, который я и воплотил.


    Сделать столик для удержания – очередная задача, требуемая плата черепной коробки.Необходимо, чтобы выполнялось несколько условий – равномерное удержание печатной платы, чтобы плата при нагреве не прогибалась. Кроме этой возможности сдвигать влево-вправо уже зажатую плату. Зажим платы должен быть, как и крепкий, так и давать небольшую слабину, так как плата при нагреве расширяется. Ну и так же у столика должна быть возможность закрепить платы разных размеров. Не до конца еще доделанный столик: (нет прищепок для платы)


    Вот и настало время тестов, отладок, подгонки термопрофилей под разные виды микросхем, и паяльных сплавов.За осень 2014 было восстановлено приличное количество компьютерных видеокарт и телевизионных Материнская плата


    Не смотря на то, что паяльная станция кажется завершённой и прекрасно себя зарекомендовала, на самом деле не хватает еще нескольких важных вещей: Во-первых это лампа, ну или фонарик на гибкой ножке, Во-второй обдув платы после пайки, в-третьей я хотел изначально сделать селектор для нижних нагревателей . .

    Конечно же, я написал не всё что хотел, потому что при сборке было много мелочей, проблем и тупиков.Но зато я записал на видео весь процесс конструирования и теперь это полноценный обучающий видеокурс:

    Паяльник – это хорошо. Хорошо для DIP деталей, ну для тех для которых сверлят отверстия в платах. Спору нет, паяльник отлично подходит и для компонентов SMD, но для этого необходимо иметь черный пояс в этой дисциплине. А вот как, раз в год выпаять, а потом запаять многоногую smd микросхему без особых навыков и оборудования? Ну тогда читаем дальше…

    Меня всегда пугали многоногие smd микросхемы, в части монтажа, а не внешностью, в корпусах QFP и разные SO-шки, про BGA даже заикаться не буду.Был однажды неудачный опыт, сделал, и заложил в конструкцию контроллер в корпусе SO. В процессе отладки что-то пошло не так и мне пришлось его перепаивать. Первый демонтаж плата и контроллер условно выдержали, а вот после второго, плата и контроллер отправились в мусорный бак. В итоге поставил микросхему в корпусе и мои мучения закончились. Это все к чему, шарясь как-то по интернету, случайно попал в ветку форума forum.easyelectronics.ru, откуда перенаправился на radiokot.ru. После посещения радиокота я и загорелся идеей сделать «Прикуяльник» (® by radiokot.RU). Именно прикуриватель в качестве паяльника и будет инфракрасного излучения.

    Пошарив по закромам отыскал трансформатор от бесперебойника, который мне когда-то подарил. Этот трансформатор работал в режиме преобразования 12 – 220 В, значит заработает и в обратном направлении.

    Источник питания есть! А это уже пол дела. Осталось найти прикуриватель, и он был найден на местном рынке за символическую цену. Прикуриватель подойдет любой, хоть от мерседеса, хоть от жигуля.К стати, у запорожца, этого очень важного девайса, не было. Подключить излучатель к трансформатору решил через ШИМ регулятор, как в дальнейшем оказалось не зря. Выбрал схему на распространенной микросхеме NE555. По опыту других пользователей, она менее капризна.

    Микросхема NE555, в соответствии с даташитом, питается постоянным напряжением в диапазоне 4,5 – 16В. Так же можно рассмотреть чуть боле капризную схему на UC384x. они довольно часто встречаются в импульсных блоках питания, компьютерные не исключение.

    Печатную плату не делать, слишком большая честь для трех проводов. Собрал на макетке.

    Пришлось придумывать выпрямитель. Диодный мост собран на диодах шотки, которые были выдраны из сгоревшего компьютерного блока питания. На всякий случай все усажено на радиатор, мы ж не китайцы, нам не жалко. Сгоревшие компьютерные блоки питания превосходная вещь, источник корпусов и всяких деталюх с радиаторами!

    Подключил диодный мост к трансформатору и замерив напряжение холостого хода, немного взгрустнул.Нет, напряжение было достаточное, даже чересчур, 20 В на холостом ходу. Многовато для моего ШИМ регулятора. Знал бы, то сделал плату на UC3842, она начинает работать от 16В и выше. Но погрустил и ладно, добавил к питанию КРЕН8А (КР142ЕН8А, аналог L7808….), На нее же повесил и вентилятор охлаждения.

    У меня как всегда, минимум, а хочется максимум. Сделаю я наверно и нижний подогрев. Обойдемся бютжетнинько. Нижний подогрев будет на основе галогенного прожектора, станция ведь не для постоянного использования.Для галогенной лампы нужен регулятор мощности, иначе сожжет все на свете, проверено. Думал заказать в китае тиристорный регулятор, но время. Купить в городе, значит переплатить. По случаю зашел в местный магазинчик промтоваров, там есть много всякой ерунды. И заметил на прилавке осветительный димер. На фоне всех остальных электроинсталяционных изделий, он отличался невзрачным внешним видом и ценой. Заявленная мощность 600 Вт меня порадовала. Купил его всего за 35 грн (1,3 $).

    Посмотрим, что у него внутри.Не замысловатая конструкция, собранная на двух тиристорах BT136 соединенных паралленных. Отличное резервирование и запас по мощности. Но почему с такими деталями и всего 600 Вт?

    А вот теперь видно почему. Вот смотрю и думаю… Потенциал в нашей стране огромный, а вот руки…

    Пришлось помыть плату, все заново пропая, усилить силовые дорожки и поменять радиатор. На фотографии ниже видно под оранжевым тумблером, просматривается новый радиатор димера.

    Парочка фоток, как оно у меня разместилось в корпусе от компьютерного БП. Радиаторов конечно многовато, они несколько избыточны.

    Лицевая панель из куска поликарбоната (оргстекло). Белую защитную пленку не снимал, это придает ощущение, что оргстекло белое, а не прозрачное. И потрошки не просвечиваются.

    А на этой фотке уже установлена ​​верхняя крышка. И тут впервые появляется сам виновник торжества – собственно прикуяльник.

    Прикуриватель прикручен к сгоревшему паяльнику. Все внутренности паяльника демонтированы.

    Крепления нагревательного элемента к основанию выполнено через отожженную стальную проволоку, намотанной в виде спирали для улучшения теплоотвода. Раскачается он будь здоров и плавит изоляцию провода, так что прикручивать медный провод на прямую не стоит даже и пытаться.

    Нижний подогрев. Здесь особых конструктивных особенностей нет.В качестве нижнего подогрева выступает галогенный прожектор. Устойчивости прожектору придают три ножки с резиновым основанием. Как известно, конструкция на трех ножках никогда не будет качаться, доказано в геометрии – через три точки можно построить только одну плоскость. Стекло сверху накрыто медной фольгой с остатками текстолита, когда-то отодранной от старой платы. Установлена ​​лампа мощностью 150 Вт.

    Вот и паяльная станция готова.

    Немного поигравшись могу сделать несколько заключений.Самим прикуяльником можно выпаивать микросхемы и без нижнего подогрева, но это занимает немного больше времени. Демонтировать мелкие smd-шки (резисторы, конденсаторы) можно при помощи только нижнего подогрева, в том случае если сама плата больше вам не нужна. Дело в том, что здесь отсутствует термостабилизация и со временем плата начинает перегреваться, демонтаж большого количества элементов может растянутся на долго. Во время экспериментов, при демонтаже на нижнем подогреве, я перегрел плату, и она вздулась.Это вздутие сопровождалось хорошим хлопком, я как говорится, чуть не «письнул» от неожиданности. Для разовых работ лучше не придумаешь.

    И для того, чтобы показать, что это все-таки работает, предлагаю посмотреть следующие фотографии.

    В качестве жертвы была выбрана старючая материнка. На ней выбран чип, вокруг которого расположено большое количество мелких компонентов, что затрудняет работу привычным инструментом. На следующую фотографии чип отпаян.

    Хочу подвести черту под выше сказанным.Прикуяльник имеет право быть. Он конечно не претендует на звание «професиональный» инструмент, но со своими задачами справляется. И с сегодняшней архитектурой плат, любителю, он просто необходим.

    ИК паяльная станция с цифровым управлением.

    РадиоКот> Лаборатория> Цифровые устройства>

    ИК паяльная станция с цифровым управлением.

    2010

    В данной статье описывается, как самостоятельно изготовить инфракрасную паяльную станцию ​​с небольшими затратами.Устройство позволяет выполнять монтаж / демонтаж компонентов SMD и BGA на печатной плате. Данная паяльная станция рассчитана на работу с большими дешевыми платами (например, материнские платы за компьютер или ноутбуки), чего не позволяют делать “поделки” китайского производства, которые рассчитываются как правило, на работу с небольшими печатными платами и элементами.
    Так уж случилось, что сейчас происходит массовый переход на поверхностный монтаж.Всё бы ничего, паяльник еще справляется, но вот только не с BGA (взгляните хотя бы на материнскую плату вашего компьютера, чип есть, выводов нет: Вернее их не видно). Такие микросхемы паяются полным прогревом вместе с платой. Методов пайки существует не много, как правило, это горячий воздух или ИК излучение. У каждого метода есть свои достоинства и недостатки. В любом случае требуется прогрев платы, в чём и заключается сложность пайки таких микросхем “на коленке”. Связано это с тем, что при нагреве небольшого участка платы происходи расширения (выпучивание причиненного участка), что может привести к повреждению межслойных проводников и отрыву контактных площадок.Поэтому необходим прогрев всей платы (не до температуры пайки, но где-то на 2/3 от нее). Подробнее от процесса ручной пайки BGA можно прочитать на сайтех посвященных ремонту компьютерной техники.
    Это устройство будет полезно многим радиолюбителям занимающимся ремонтом аппаратуры, компьютерной и видео техники. А так же тем, кто просто собирает разные схемы из деталей, выпаянных из старых плат.
    Устройство позволяет монтировать / демонтировать и просто пропаивать BGA-компоненты, восстанавливая контакт, так же при помощи данного устройства, можно легко “потрошить” любые платы “на детали”, что помогает избавиться от “лишнего”.
    Теперь о самом устройстве и принцип его работы. Устройство состоит из самой установки и блока управления, который выполнен в отдельном корпусе. На установке имеется место крепления плат и два нагревателя. Верхний нагреватель имеет возможность улучшить положение относительно закрепленной платы. В качестве нижнего нагревательного элемента я использую конфорку для электроплиток мощностью 2 кВт и диаметром 220 мм. А в качестве верхнего 4 трубчатые галогеновые лампы по 150 Вт каждая и длинной по 78мм.Выглядит это примерно вот так:

    О конструкции корпуса смотрите отдельную инструкцию, там более-менее подробно описан процесс сборки и даны размеры заготовок. Материал преимущественно листовая сталь от старых компьютерных корпусов, в них применялась сталь толщиной порядка 1 мм, не то что в современном: В принципе для верхнего нагревателя подойдёт и 0,3-0,5 мм, а для нижнего желательно потолще, т.к. плитка штука не лёгкая. В качестве связующего звена использованы винты и гайки M3 c шайбами.Штатив выполнен из двух стальных реек снятых со старого матричного принтера (направляющие блока печатающей головки).
    Блок управления выполнен на МК ATmega16, тактируемого внутреннего RC-генератора, порядка 8 МГц. В качестве схемы в схеме применён широко распространённый строчный ЖК-модуль с контроллерами HD44780 (и совместыми). Рассмотрим принципиальную схему:

    Схема состоит из блока усилителей термопар, МК с дисплеем, клавиатурой и звуковым сигнализатором, схемы детектора нуля, силовой части и блока питания.Блок усилителей собран на ОУ DA1 и DA2, вместо LM358 можно использовать LM2904. Далее сигналы поступают на АЦП МК.
    МК имеет типую обвязку в виде клавиатуры и дисплея. LC-цепочка L1 C11 питает внутреннюю схему АЦП МК. Резистором R35 устанавливает контрастность дисплея. На плате выведены сигналы для внутрисхемного программирования (ISP). К МК так же подключен пьезокристаллический звуковой излучатель BQ1. Небольшое примечание по поводу подключения дисплея в зависимости от производителя в дисплеях могут быть поменяны местами контакты 1 и 2 (питание) и еще возможно установить гасящий резистор в цепи подсветки (вывод 15 дисплея).
    Схема детектора нуля имеет два варианта, что бы, так сказать, облегчить повторяемость. Выбор варианта зависит от применяемого блока питания, если блок питания трансформатор, то проще использовать схему выделенную пунктиром, а при использовании импульсного БП собирать схему на оптопаре U1. В моём блоке управления применён трансформаторный БП.
    Блок питания. Можно применить как импульсный БП с выходными напряжениями + 5В и + 12В, так и трансформаторный с интегральными стабилизаторами 7805 и 7812, включенных по типовой схеме.В трансформаторном БП делается доработка в виде дополнительного диода (VD6) сразу после диодного моста и перед фильтрующим конденсатором (см. Схему обведённую пунктиром). Блок питания должен обеспечивать ток порядка 1А по обоим каналам.
    Силовая часть состоит из двух одинаковых каналов на симисторах VS1 и VS2. Имеется два варианта управления ими, это через оптосимисторы (схема проведения пунктиром) и через импульсные трансформаторы (их указаны в схеме). Распиновка симисторов так же на схему.Допускается применение симисторов импортного производства. Симисторы необходимо установить на радиаторы т.к. выделяемая мощность составляет примерно 5-10 Вт. Неоновая лампа HL1 устанавливается вне блока управления поближе к нижнему нагревателю (в корпусе) и сигнализирует о включении нижнего подогрева. Для работы с оптосимисторами или трансформаторами прошивки РАЗЛИЧАЮТСЯ.
    Так же к силовой части можно отнести схему управления вентилятором, на фото выше этого вентилятора не видно, он выполнен в виде отдельного “фена” и предназначен для охлаждения места пайки, это позволяет сделать пайку более качественной.
    В данном используемом методе “беспомехового” регулирования мощности, есть путём “пропускания” полупериодов сетевого напряжения, количество пропускаемых полупериодов определяет мощность. Данный метод хорош тем, что он не даёт импульсных помех на электросеть, но при работе с лампами накаливания есть недостаток – это мерцание. В принципе это не критично и работа не мешает.
    В программе для автоматического регулирования температуры используется алгоритм ПИД-регулятора.
    Немного фотографий моего варианта блока управления:

    Кстати, на фотографиях печатной платы присутствует кварцевый резонатор, и разводка несколько отличается, это первый вариант и в нём присутствует порт RS-232 для соединения с компьютером.Он требовался для отладки программы в процесс её написания. Для работы самой программы точности тактового генератора не требуется, т.к. для отсчёта времени (секунд) используется частота сетевого напряжения, чего вполне достаточно.
    показывает на схеме и программу, можно подумать, что она еще на стадии разработки, что не далеко от истины, дело в том, что задумывалось больше чем реально сделано, но как показала практика текущих функций хватает для многих задач Доделать, требуется какое-то время поэксплуатировать устройство: Так же я надеюсь на Вас уважаемый читатель, что вы подскажете, каким образом можно улучшить функциональность и удобство работы с этим инструментом.
    Несколько фото того что получилось:

    Блок питания, оптосимисторы и выходные симисторы располагаются отдельно. Изначально на основной плате присутствовали транзисторы VT1 и VT2, теперь их нет т.к. удалось достать оптосимисторы. Решение с импульсными трансформаторами считаю не очень надёжным и красивым, т.к. есть некоторые сложности в их намотке – требуется хорошая изоляция первичной и вторичной обмоток, а также установлены ограничения по количеству намотанного на них изолятора.Но если достать оптосисмисторы не удаётся, всегда есть вариант с трансформаторами.
    ВНИМАНИЕ: при помощи выходных симисторов и их радиаторов (особенно применяемых болтовых TC122, которые имеют электрический контакт с радиатором) помните, что они находятся под высоким напряжением и их требуется располагать, так что бы они ГАРАНТИРОВАНО, не могли замкнуть на корпусе (если он металлический) и другие проводники схемы. Провода силовых цепей должны быть рассчитаны на ток порядка 10А.
    В моём случае в корпусе блока управления установлен вентилятор, в практике применения симисторов не такой сильный, как мне кажется при разработке, но всё же рекомендую установить, при длительной работе возможен перегрев.
    Вот фото процесса работы (верхний нагреватель выключен и сдвинут в сторону):

    На фото происходит пропайка видеочипа компьютерной видеокарты (частая их неисправность заключается в повреждении пайки из-за перегрева), фольга используется для ограничения площади воздействия верхнего нагревателя.
    Для нагревателей с блоком управления используются провода от старых утюгов, они в данном случае подходят наилучшим образом, т.к.имеют подходящее сечение проводников и термостойкую изоляцию.
    В конструкции применяются термопары K-типа от недорогих мультиметров, удалось достать отдельно небольшое количество у продавцов таких мультиметров, т.к. приборы оказались бракованными. Термопары при работе располагаются в зоне пайки и должны прижиматься к плате, для нижнего нагревателя снизу, для верхней части в зоне пайки. Прижим обеспечивается очень легко, гибкие и гибкие провода, термопар.
    Теперь о процесс сборки блока управления. После монтажа всех элементов на плате (включая МК) тщательно проверяет качество монтажа. Затем можно перейти к прошивке МК, для этого лучше и безопаснее использовать лабораторный (не штатный источник питания) или питать от компьютера через программатор. Для прошивки я использую программатор PonyProg (https://www.lancos.com/prog.html). Напомню, что при работе с PonyProg сначала нужно откалибровать программу, затем прочитать (!) Фьюзы, загрузить прошивку (HEX), загрузить данные в EEPROM (EEP) (для этого в окне проводника меняем тип файла), прошить (записать устройство), опять же открыть вкладку с фьюзами, установить их (как именно см.ниже), записать. Для удачной прошивки МК советую следовать этой последовательности.
    BootLock12 = 1 (галки нет)
    BootLock11 = 1 (галки нет)
    BootLock02 = 1 (галки нет)
    BootLock01 = 1 (галки нет)
    Lock2 = 0 (галка есть)
    Lock1 = 0 (галка есть)

    OCDEN = 1 (галки нет)
    JTAGEN = 1 (галки нет)
    SPIEN = 0 (галка есть)
    CKOPT = 1 (галки нет)
    EESAVE = 1 (галки нет)
    BOOTSZ1 = 1 (галки нет)
    BOOTSZ0 = 1 (галки нет)
    BOOTRST = 1 (галки нет)

    BODLEVEL = 0 (галка есть)
    BODEN = 0 (галка есть)
    SUT1 = 0 (галка есть)
    SUT0 = 0 (галка есть)
    CKSEL3 = 0 (галка есть)
    CKSEL2 = 1 (галки нет)
    CKSEL1 = 0 (галка есть)
    CKSEL0 = 0 (галка есть)

    Далее, проверяем работоспособность подачей питания, на дисплее должно отображаться приветствие (с коротким звуковым сигналом) и затем появиться сообщение об ошибке.Это нормально, так и должно быть. Далее следуйте Инструкции по настройке и эксплуатации паяльной станции (находится в приложении).
    Подробно о сборке моего варианта можно прочесть инструкции по сборке установки, но это лишь самый один из многих вариантов, поэтому имеет рекомендательный характер. Например, проще и быстрее для нижнего подогрева использовать готовый галогеновый прожектор, он конечно имеет более малую площадь, но за то ничего мастерить не нужно.Или наоборот использовать сверху и снизу кварцевые ИК-лучатели с высокой эффективностью, но с ними уже сложнее.
    Еще одно немаловажное замечание, при работе с галогенными лампами помните, что нельзя их включить со следами жира на колбе (от этого они могут расплавиться или взорваться), поэтому перед включением тщательно обезжириваем бензином или ацетоном. И еще при работе очень рекомендую обзавестись хорошими очками от солнца, они вам очень пригодятся! Удачи!

    Файлы:
    Печатная плата в формате SL 4.0.
    Прошивка МК с исходником.
    Инструкция по сборке (~ 5Мб).
    Инструкция по настройке.

    Вопросы, как обычно, складываем тут.


    Как вам эта статья?

    Заработало ли это устройство у вас?


    Эти статьи вам тоже могут пригодиться:

    Маленькая паяльная станция своими руками v2 / Хабр

    Привет.

    Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.


    Основные функции:

    1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которым осуществляется переключение кнопкой Припой. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно.Для точного поддержания температуры используется PID-регулятор.

    Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

      struct {
      статический константный байтовый термистор = A2; // пин термистора
      статический константный байт pwm = 10; // пин нагревателя
      static const byte use = 15; // А1 пин датчика движения паяльника
      int mode [4] = {0, 150, 250, 300}; // режимы паяльника
      байт set_solder = 0; // режим паяльника (по сути главная функция)
      static const double PID_k [3] = {50, 5, 5}; // КП КИ КД
      static const byte PID_cycle = air.PID_cycle; // Цикл для ПИД. Участвует в расчетах, а также управляет проверкой расчетов ПИД
      двойной PID_in; // входящее значение
      двойной PID_set; // желаемое значение
      двойной PID_out; // выходное значение для элемента элемента
      // беззнаковое долгое время;
      беззнаковое длинное среднее;
    } соль;  

    2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), регулятор PID, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

    Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

      struct {
      статический константный байтовый термистор = A3; // пин термистора
      static const byte heat = A0; // пин нагревателя
      static const byte fan = 11; // пин вентилятора
      int mode_heat [5] = {0, 300, 450, 600, 700}; // быстрые режимы нагревателя
      byte set_air = 0; // режимы фена (нагреватель + вентилятор) по сути главная функция
      static const double PID_k [3] = {10, 2, 10}; // КП КИ КД
      статический константный байт PID_cycle = 200; // Цикл для ПИД.Участвует в расчетах, а также управляет проверкой расчетов ПИД
      двойной PID_in; // входящее значение
      двойной PID_set; // желаемое значение
      двойной PID_out; // выходное значение для элемента элемента
      без подписи долгое время;
      беззнаковое длинное среднее;
      логическое OFF = 0;
    } воздуха;  

    Нюансы:
    1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
    2. Кнопка отключения отключает сразу все что было включено.
    3. Можно одновременно и паяльник и фен.
    4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
    5. Нельзя отключить паяльную станцию ​​от сети 220В пока не остынет фен.
    6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426.Какой в ​​этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
    7. Защиты от КЗ нет, рекомендую установить предохранители.
    8. Стабилизатор на 5В для питания Arduino використов любой доступный с учетом напряжения питания вашего БП.Так как у меня напряжение 20В установил 7805.
    9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.

    Основные узлы и состав:

    1. Основная плата:

    – Arduino Pro mini,
    – сенсорные кнопки,
    – дисплей от телефона Nokia 1202.

    2. Плата усилителей:

    – усилитель терморезистора паяльника,
    – полевой транзистор системы паяльника,
    – усилитель термопары фена,
    – полевой транзистор включения вентилятора фена.

    3. Плата симисторного модуля

    – оптосимистор MOC3063,
    – симистор со снабберной цепочкой.

    4. Блок питания:

    – блок питания от ноутбука 19В 3.5А,
    – выключатель,
    – стабилизатор для питания Arduino.

    5. Корпус.

    А теперь подробнее по узлам.

    1. Основная плата


    Обратите внимание на название сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена.В самом начале регулировка оборотов была реализована, но так напряжение как моего БП 20В (увеличил на 1В добавлением переменного резистора), вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включен в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

    Основная плата двухстороннего печатного монтажа.Чтобы уменьшить влияние, необходимо уменьшить эффект сжатия, чтобы уменьшить влияние, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности). не требуется). Сделан вырез под дисплей.

    Фото платы без деталей



    На верхней стороне находятся площадки сенсорных, наклеена лицевая панель, припаивается дисплей.Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603. Изготовление лицевой панели Лицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

    Распечатал, вырезал по контуру, а также окно для дисплея.

    Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке.За счет выреза в плате дисплей получился вровень с основной платой.


    На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.
    2. Плата усилителей


    Небольшое исправление Как правильно заметил easyJet в схеме дифференциального усилителя была ошибка, отсутствовал резистор R11 (выделил цветом). Но ошибка не критичная, влияет при равенстве сопротивления R3 и терморезистора в паяльнике, то есть при комнатной температуре.В случае исправления требуется калибровка температуры паяльника. В своей паяльной станции решил оставить как есть.

    Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

    1. Для увеличения «полезного» диапазона выходного сигнала при низконом терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезисторлением сопротивлением 100 кОм при 25усах) резистивный мост и дифференциальный усилитель .Для уменьшения наводок терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
    2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок, если ардуина например отключится, заземляет затвор полевого транзистора.Резисторы по 220 Ом для ограничения тока заряда затвора.

    Схема фена состоит из неинвертирующего усилителя и полевого транзистора.
    1. Усилитель: типовая схема. Для уменьшения параллельной термопаре и обратной связи стоят конденсаторы.
    2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

    Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом – 1206.
    Настройка не требуется.

    Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не железнодорожный операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3,5-4 В при 5В питания и максимальной температуре (при указанной на схеме номиналах) будет ограничена в районе 426 градусов.Рекомендую использовать например MCP6001. Но нужно обратить внимание в зависимости от букв в конце отличается распиновка:

    3. Плата симисторного модуля

    Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, нагрузка – нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительные цепей контроля ноля.

    Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано демпфирование.

    4. Блок питания

    Выбор сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.
    5. Корпус

    Корпус проектировался под мой БП, с учетом размеров плат и первой печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *