Сплавы металлов сообщение по химии: Применение металлов и их сплавов — урок. Химия, 8–9 класс.

alexxlab | 19.01.1970 | 0 | Разное

Содержание

Применение металлов и их сплавов — урок. Химия, 8–9 класс.

О том, что свойства металлов меняются при их сплавлении, стало известно ещё в древности. \(5\) тысяч лет тому назад наши предки научились делать бронзу — сплав олова с медью. Бронза по твёрдости превосходит оба металла, входящие в её состав.

 

Свойства чистых металлов, как правило, не соответствуют необходимым требованиям, поэтому практически во всех сферах человеческой деятельности используют не чистые металлы, а их сплавы.

Сплав — это материал, который образуется в результате затвердения расплава двух или нескольких отдельных веществ.

В состав сплавов кроме металлов могут входить также неметаллы, например, такие как углерод или кремний.

 

Добавляя в определённом количестве примеси других металлов и неметаллов, можно получить многие тысячи материалов с самыми разнообразными свойствами, в том числе и такими, каких нет ни у одного из составляющих сплав элементов.

 

Сплав по сравнению с исходным металлом может быть:

  • механически прочнее и твёрже,
  • со значительно более высокой или низкой температурой плавления,
  • устойчивее к коррозии,
  • устойчивее к высоким температурам,
  • практически не менять своих размеров при нагревании или охлаждении и т. д.

Например, чистое железо — сравнительно мягкий металл. При добавлении в железо углерода твёрдость его существенно возрастает. По количеству углерода, а следовательно, и по твёрдости, различают сталь (содержание углерода менее \(2\) % по массе), чугун (\(С\) — более \(2\) %). Но не только углерод изменяет свойства стали. Добавленный в сталь хром делает её нержавеющей, вольфрам делает сталь намного более твёрдой, добавка марганца делает сплав износостойким, а ванадия — прочным.

Применение сплавов в качестве конструкционных материалов

Сплавы, используемые для изготовления различных конструкций, должны быть прочными и легко обрабатываемыми.

 

В строительстве и в машиностроении наиболее широко используются сплавы железа и алюминия.

 

Такие сплавы железа, как стали, отличаются высокой прочностью и твёрдостью. Их можно ковать, прессовать, сваривать.


Чугуны
используют для изготовления массивных и очень прочных деталей. Например, раньше из чугуна отливали радиаторы центрального отопления, канализационные трубы, до сих пор изготавливают котлы, перила и опоры мостов. Изделия из чугуна изготавливаются с применением литья.

  

Сплавы алюминия, используемые в конструкциях, наряду с прочностью должны отличаться лёгкостью. Дюралюминий, силумин — сплавы алюминия, они незаменимы в самолёто-, вагоно- и кораблестроении.

 

В некоторых узлах самолётов используются сплавы магния, очень лёгкие и жароустойчивые.

 

В ракетостроении применяют лёгкие и термостойкие сплавы на основе титана.

 

Для улучшения ударопрочности, коррозионной стойкости, износоустойчивости сплавы легируют — вводят специальные добавки. Добавка марганца делает сталь ударопрочной. Чтобы получить нержавеющую сталь, в состав сплава вводят хром.

 

Рис. \(1\). Конструкция из стальных балок

Рис. \(2\). Радиатор центрального отопления

Рис. \(3\). Детали, отлитые из чугуна

Инструментальные сплавы

Инструментальные сплавы предназначены для изготовления режущих инструментов, штампов и деталей точных механизмов. Такие сплавы должны быть износостойкими и прочными, причём при разогревании их прочность не должна существенно уменьшаться. Таким требованиям отвечают, например, нержавеющие стали, которые прошли специальную обработку (закалку).

Добавление к сплавам веществ, улучшающих их свойства, называют легированием.

Для придания необходимых свойств инструментальные стали, как правило, легируют вольфрамом, ванадием или хромом.

Применение сплавов в электротехнической промышленности, электронике и приборостроении

Сплавы служат незаменимым материалом при изготовлении особо чувствительных и высокоточных приборов, различного рода датчиков и преобразователей энергии.

 

Например, на изготовление сердечников трансформаторов и деталей реле идёт сплав никеля. Отдельные детали электромоторов изготавливаются из сплавов кобальта.

 

Сплав никеля с хромом — нихром, отличающийся высоким сопротивлением — используется для изготовления нагревательных элементов печей и бытовых электроприборов.


Из сплавов меди в электротехнической промышленности и в приборостроении наиболее широкое применение находят латуни и бронзы.

 

Латуни незаменимы при изготовлении приборов, деталью которых являются запорные краны. Такие приборы используются в сетях подачи газа и воды.

 

Бронзы идут на изготовление пружин и пружинящих контактов.

 

Рис. \(4\). Нагревательные элементы бытовых электроприборовРис. \(5\). Краны для водопроводов

Рис. \(6\). Металлическая пружина

 

Применение легкоплавких сплавов

Главным востребованным свойством легкоплавких сплавов является заданная низкая температура плавления. Это свойство, в частности, используется для пайки микросхем. Кроме того, эти сплавы должны иметь определённую плотность, прочность на разрыв, химическую инертность, теплопроводность.

 

Легкоплавкие сплавы производят из висмута, свинца, кадмия, олова и других металлов. Такие сплавы используют в термодатчиках, термометрах, пожарной сигнализации, например, сплав Вуда. А также в литейном деле для производства выплавляемых моделей, для фиксации костей и протезирования в медицине.

 

Сплав натрия с калием (температура плавления \(–\)\(12,5\) °С) используется как теплоноситель для охлаждения ядерных реакторов.

 

Рис. \(7\). Припой (сплав для паяния) имеет невысокую температуру плавленияРис. \(8\). Легкоплавкие сплавы незаменимы в датчиках пожарной сигнализации

 

Применение сплавов в ювелирном деле

Применение в чистом виде драгоценных металлов в ювелирном деле не всегда оправдано и целесообразно из-за их дороговизны, физических и химических особенностей.

 

Для придания ювелирным изделиям из золота большей твёрдости и износостойкости используются сплавы с другими металлами.

 

Самая лучшая добавка — это серебро (понижает температуру плавления) и медь (повышает твёрдость). Чистое золото используют очень редко, так как оно слишком мягкое, легко деформируется и царапается.

 

Из сплавов золота с \(10–30\) % других благородных металлов (платины или палладия) изготавливают форсунки лабораторных приборов, а из сплава с \(25–30\) % серебра — ювелирные изделия и электрические контакты.

 

Рис. \(9\). Ювелирные изделия из сплавов золота

 

Сплавы в искусстве

Оловянная бронза (сплав меди с оловом) — один из первых освоенных человеком сплавов металлов. Она обладает большей, по сравнению с чистой медью, твёрдостью, прочностью и более легкоплавка. Бронзы успешно применяют для получения сложных по конфигурации отливок, включая художественное литьё. Классической маркой бронзы является колокольная бронза.

Одно из новых направлений в искусстве — производство художественных литых изделий из чугуна. Литые изделия из чугуна существенно превосходят по качеству кованые изделия.

 

Чугун — металл гораздо более хрупкий и не такой ковкий, как сталь. Но даже из такого, казалось бы, грубого материала можно получать настоящие произведения литейного искусства способом литья, например, такие как литые лестницы или решётки на окна. Такие изделия подвержены лишь поверхностной коррозии и не требуют тщательного ухода.

 

Рис. \(10\). Бронзовая скульптура

  

Рис. \(11\). Колокола из специального сорта бронзыРис. \(12\). Чугунная лестница —  практично и красиво

Источники:

Рис. 1. Конструкция из стальных балок https://cdn.pixabay.com/photo/2019/09/07/16/14/steel-scaffolding-4459235_960_720.jpg

Рис. 2. Радиатор центрального отопления https://cdn.pixabay.com/photo/2017/10/12/19/00/radiator-2845463_960_720.jpg

Рис. 3. Детали, отлитые из чугуна https://cdn.pixabay.com/photo/2017/10/15/18/47/fence-2854829_960_720.jpg

Рис. 4. Нагревательные элементы бытовых электроприборов https://upload.wikimedia.org/wikipedia/ru/7/7d/%D0%9A%D0%B8%D0%BF%D1%8F%D1%82%D0%B8%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA.JPG Общественное достояние

Рис. 5. Запорные краны для водопроводов  https://cdn.pixabay.com/photo/2020/02/01/21/11/water-crane-4811466_960_720.jpg

Рис. 6. Металлическая пружина https://cdn.pixabay.com/photo/2020/03/08/16/03/spring-4912865_960_720.jpg

Рис. 7. Припой (сплав для паяния)  https://cdn.pixabay.com/photo/2018/04/01/06/13/soldering-3280085_960_720.jpg

Рис. 8. Легкоплавкие сплавы https://cdn.pixabay.com/photo/2014/11/10/08/09/fire-detector-525147_960_720.jpg

Рис. 9. Ювелирные изделия из сплавов золота  https://cdn.pixabay.com/photo/2013/07/25/11/52/watch-166849_960_720.jpg

Рис. 10. Бронзовая скульптура https://cdn.pixabay.com/photo/2016/01/26/19/35/bronze-statue-1163163_960_720.jpg

Рис. 11. Колокола https://cdn.pixabay.com/photo/2017/06/17/19/30/bells-2413297_960_720.png

Рис. 12. Чугунная лестница https://cdn.pixabay.com/photo/2021/01/11/10/51/passage-5907911_960_720.jpg

Урок 13. сплавы металлов – Химия – 11 класс

Химия, 11 класс

Урок № 13. Сплавы металлов

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению сплавов чёрных и цветных металлов, роли легирующих добавок, зависимости свойств сплавов от состава.

Глоссарий

Бронза – сплав на основе меди; оловянная бронза содержит до 8,5% олова. Может содержать также алюминий, кремний, свинец. Используется для изготовления деталей машин, инструментов, при ударе не образующих искр.

Баббиты – сплавы на основе олова и свинца. Применяются для изготовления подшипников, так как отличаются высокой устойчивостью к истиранию.

Дюралюминий – высокопрочные сплавы на основе алюминия с добавками меди, магния и марганца. Основной конструкционный материал в авиа- и ракетостроении.

Константан – сплав на основе меди, никеля и марганца, используется для изготовления электроизмерительных приборов.

Латунь – сплав меди и цинка, с небольшими добавками никеля, олова, свинца, марганца. Используется для изготовления деталей машин и запорной аппаратуры.

Легированная сталь – сталь, в состав которой включены легирующие добавки, повышающие прочность, коррозионную устойчивость, жаропрочность и другие свойства сплава.

Легирующие добавки – вещества, вводимые в сплав в определённых количествах, для придания сплаву необходимых свойств.

Мельхиор – медно-никелевый сплав с добавлением железа, используется для изготовления монет, инструментов, столовых приборов.

Нейзильбер – трёхкомпонентный сплав на основе меди, цинка и никеля.

Силумин – сплав алюминия с кремнием. Применяется для литья деталей в авто- моторостроении.

Сплав – материал с металлическими свойствами, состоящий из двух или более компонентов, один из которых обязательно металл.

Сплав Вуда – легкоплавкий сплав на основе висмута, свинца, олова и кадмия. Используется для изготовления металлических моделей, заливки образцов, пайки некоторых сплавов.

Сталь – сплав железа с углеродом, причем доля углерода не превышает 2,14%.

Цветные металлы – алюминий, медь, никель, цинк, олово, свинец и другие металлы, не относящиеся к чёрным.

Цементит – карбид железа Fe3C, образуется в виде отдельной фазы в чугуне с высоким содержанием углерода.

Чёрные металлы – железо, марганец, иногда к чёрным металлам относят хром.

Чугун – сплав железа с углеродом, содержание углерода в пределах от 2,14 до 4,3%.

Электрон – сплав на основе магния и алюминия с добавлением цинка, и марганца. Используется в авиа- и ракетостроении.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс: учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Сплавы металлов и их классификация

Одним из первых металлов, который человек стал применять для своих нужд, была медь. Но ещё в III тысячелетии люди обнаружили, что медь, сплавленная с оловом, позволяет делать более прочное оружие, долговечную посуду. Материал, полученный при сплавлении меди с оловом, получил название «бронза». Это был первый сплав, изготовленный человеком.

Сплавом называют искусственный материал с металлическими свойствами, состоящий из двух или более компонентов, из которых, по крайней мере, один является металлом.

В зависимости от количества компонентов различают двойные (бинарные), тройные и многокомпонентные сплавы. Сплавы могут иметь однородную структуру (гомогенные сплавы), а также состоять из нескольких фаз (гетерогенные сплавы). В зависимости от своих свойств сплавы подразделяются на легкоплавкие, тугоплавкие, жаропрочные, высокопрочные, твердые, коррозионно-устойчивые. По предполагаемой технологии обработки различают литейные (изделия производят путём литья) и деформируемые (обрабатывают путём ковки, проката, штамповки, прессования) сплавы.

Чёрные металлы и сплавы на их основе

В зависимости от природы металла, составляющего основу сплава, различают чёрные и цветные сплавы. В чёрных сплавах основным металлом является железо. Самыми распространенными из чёрных сплавов являются сталь и чугун. К чёрным металлам относятся железо, а также марганец и хром, которые входят в состав чёрных сплавов.

Чугун

Чугун – сплав на основе железа, содержание углерода в котором превышает точку предельной растворимости углерода в расплаве железа (2,14%). При остывании сплава, углерод кристаллизуется в виде отдельных включений цементита и графита. Углерод придает чугуну твердость, но снижает пластичность сплава, поэтому чугун хрупкий. Чугун применяют для изготовления литых деталей (коленчатых валов, колёс, труб, радиаторов отопления, ванн, решеток ограждения), кухонной посуды (сковородок, чугунков, казанов).

Сталь

В стали содержание углерода значительно меньше. В низкоуглеродистых сталях количество углерода не превышает 0,25%, в высокоуглеродистой стали содержание углерода может достигать 2%. Самые первые стальные изделия появились 4000 лет назад. В настоящее время выплавляют стальные сплавы с различными свойствами. Это конструкционные, нержавеющие, инструментальные, жаропрочные стали.

Легирующие добавки

Для придания стали особых свойств в процессе её изготовления, вводят легирующие добавки. Легирующими добавками называют вещества, которые добавляют в сплав в определенном количестве для изменения механических и физических свойств материала.

Легированные стали

В зависимости от количества легирующих добавок различают низколегированную, среднелегированную и высоколегированную сталь. Марка стали обозначается с помощью букв и цифр. Буква указывает на химическую природу легирующей добавки, а цифра, стоящая после буквы – на примерное содержание этой добавки в сплаве. Если содержание добавки меньше 1%, то цифру не ставят. Цифры впереди букв показывают содержание углерода в сотых долях процента. Например, в стали марки 18ХГТ содержится 0,18 % С, 1 % Сr, 1 % Мn, около 0,1 % Тi.

Стали применяют для изготовления армирующих железнодорожных рельсов, дробильных установок, конструкций, турбин электростанций и двигателей самолётов, инструментов (пилы, сверла, резцы, зубила, фрезы), химической аппаратуры, деталей автомобилей, тракторов, дорожных машин, труб и много другого.

Цветные металлы и сплавы на их основе

К цветным металлам относят алюминий, цинк, медь, никель, олово, свинец и др. Сплавы на основе цветных металлов называют цветными. Это бронза, латунь, силумин, дюралюминий, баббиты и многие другие. В авиации широкое применение нашли легкие и прочные сплавы на основе алюминия и титана. Изделия из медных сплавов: бронзы и латуни, применяются в химической промышленности, для изготовления запорной аппаратуры: кранов, вентилей. Сплавы на основе олова и свинца используют для изготовления подшипников. Из мельхиора и нейзильбера – сплавов меди и никеля, изготовляют столовые наборы, монеты.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Расчет массовой доли металла в сплаве

Условие задачи: Кусочек нейзильбера массой 2,00 г поместили в раствор гидроксида натрия. В ходе реакции выделилось 0,14 л водорода (н.у.). Вычислите массовую долю цинка в сплаве. Ответ запишите в процентах с точностью до десятых долей.

Шаг первый: запишем уравнение реакции цинка с раствором гидроксида натрия:

Zn + 2NaOH → Na2ZnO2 + H2↑.

Один моль цинка вытесняет из щёлочи один моль водорода.

Шаг второй: найдём количество цинка, которое вытеснило 0,14 л водорода.

Для этого найдём в периодической таблице элементов Д.И. Менделеева молярную массу цинка: М(Zn) = 65 г/моль. При нормальных условиях 1 моль любого газа занимает объём, равный 22,4 л. Составим пропорцию:

65 г цинка вытесняет 22,4 л водорода;

х г цинка вытесняет 0,14 л водорода.

65 : х = 22,4 : 0,14, откуда х = (65·0,14) : 22,4 = 0,41 (г) – масса цинка в сплаве.

Шаг третий: найдём массовую долю цинка в сплаве:

ω = (0,41 : 2,00)*100 = 20,5 (%).

Ответ: 20,5

2. Расчёт массы легирующей добавки

Условие задачи: Для придания стали противокоррозионных свойств в сплав добавляют хром. Сталь марки С1 должна содержать 12% хрома, 1% кремния, 1,5% марганца и 0,2% углерода. Сколько хрома необходимо добавить к железному лому (посторонними примесями пренебрегаем) массой 500 кг, чтобы получить нержавеющую сталь требуемой марки? Ответ записать в килограммах с точностью до десятых долей.

Шаг первый: найдём массовую долю железа в стали марки С1:

Для этого от 100% отнимем массовые доли остальных элементов:

100 – 12 – 1 – 1,5 – 0,2 = 85,3 (%).

Шаг второй: найдём массу одного процента сплава.

Для этого массу железного лома разделим на массовую долю железа:

500 : 85,3 = 5,9 (кг).

Шаг третий: найдём необходимую массу хрома. Для этого массу одного процента сплава умножим на массовую долю хрома в сплаве:

5,9*12 = 70,8 (кг).

Ответ: 70,8

Доклад на тему Сплавы металлов 9 класс сообщение

Давным-давно люди приметили, говоря о биологии, например, что если совместить два организма, то третий превзойдёт своих родителей. Оказывается, тот же принцип работает и в химии, поэтому историю появления сплавов можно считать незамысловатой. Кто-то просто заметили, что при плавлении металлы смешиваются и получается что-то новое и более прочное.

По современному определению сплавы — это химическое соединение, в которое должен входить хотя бы один металл, при этом остальные компоненты металлами могут не являться.  

Например, бронза, являющаяся сплавом медь+олово, более прочная, поэтому чаще всего люди и используют сплавы. Тем более существует бесчисленное множество различных вариаций сплавов, хотя на данный момент известно всего восемьдесят с лишним видов металлов.

Также сплавы отличаются высокой стойкостью и твёрдостью помимо того, что они обладают превосходными литейными свойствами. Например, оловянная бронза (медь+олово) лучше поддаётся литью, чем просто медь, поэтому она часто используется в изваянии произведений искусства. К подобным литейным сплавам также относятся чугун (железо+углерод), дюралюминий (алюминий+медь+магний+марганец) и т.д.

Рассмотрим классификацию сплавов:

  • Состав. Сплавы подразделяются по преобладающим компонентам, например: титановые, медные, никелевые и т.д.
  • Ценность. Названия сплавов относятся к ценности компонентов, например: латунь, вольфрамовая сталь и т.д.
  • Черные металлы. Название чаще всего используется в металлургическом производстве. В эту группу входят абсолютно все сплавы, в составе которых есть железо.
  • Цветные металлы. Опять-таки название используется в металлургии и относится к остальным металлам, помимо железа.

Соответственно, вышеперечисленные группы делятся на подгруппы с более узким выбором общих компонентов или свойств, например.

Вариант №2

Сплавы

1) Причины использования
2) Классификации
3) Компоненты и лигатуры
4) Применение

Человек революционный шаг сделал, когда понял, что смесь меди и олова гораздо твёрже, чем любой из этих металлов в чистом виде. Считается, что это произошло не менее восьми тысяч лет назад.

В современном мире используются десятки тысяч сплавов, и продолжается разработка новых. Используют несколько критериев для классификации сплавов.

Прежде всего, выделяют две большие группы: чёрные металлы (т.е. сплавы на основе железа) и цветные металлы (на основе других элементов).

В зависимости от того, где будет использован данный металл, его относят к сплавам общего назначения или к специальным. Далее, различают двойные и сложные (тройные, четверные и т.д.) сплавы по числу элементов, входящих в его состав.

Выделяют легированные сплавы. В них вносят специальные примеси для получения нужных свойств. С точки зрения производственного процесса сплавы бывают литейные, порошковые (спекаемые) и деформируемые.

Степень связанности элементов в сплаве может быть разной, поэтому различают механическую смесь (каждый элемент образует отдельный кристалл), твёрдый раствор (разные элементы встраивается в общую кристаллическую решётку) и соединение (атомы образуют химическую связь).

Для придания железу большей твёрдости вносят углерод, но одновременно металл становится более хрупким. Сталь содержит 0.3-2.14% углерода. Малоуглеродистая сталь используется как конструкционный материал, более твёрдые сорта идут на изготовление инструментов. Легированная сталь применяется в машиностроении и изготовлении инструментов с большой скоростью резания. Легируют сталь введением хрома, марганца, титана, ванадия и др. Таким способом добиваются увеличения прочности без потери твёрдости.

Чугун содержит от 2 до 4% углерода. Из него литьём изготавливают изделия, обладающие хорошей стойкостью к истиранию, прочностью, жёсткостью.

Кадмий замедляет износ медных сплавов. В медных сплавах цинк увеличивает пластичность и устойчивость к коррозии. Титан намного увеличивает температурный предел эксплуатации. Никель и, в меньшей степени, хром увеличивают прочность феррита, не влияя на пластичность.

9 класс по химии

Сплавы металлов

Популярные темы сообщений

  • Роль животных в природе

    Наш животный мир разнообразен. Весь земной шар наполнен ими, обитающих, практически, везде: в воде, в почве, на суши. Животные давным-давно идут в ногу с человеком. Но мало кто задумывается, что они играют

  • Соломон

    Соломон – израильский царь, правивший приблизительно в 965 – 928 году до нашей эры. Соломон был третьим еврейским царем, правителем Израили в тот момент, когда царство было на пике своего развития. Его отцом

  • Хлопок

    Мы часто в повседневной жизни сталкиваемся со словами, хлопок и хлопчатобумажные изделия. Мало кто знает, что хлопок, сам по себе не растение, это лишь волокно, которое человек получает при выращивании хлопчатника. На сегодняшний день хлопок – это самое

Реферат по химии на тему “Сплавы”

Государственное бюджетное образовательное учреждение

средняя общеобразовательная школа №225 Адмиралтейского района Санкт-Петербурга

Школа БИОТОП Лаборатории непрерывного математического образования

Реферат

по химии

Сплавы

Выполнил ученик

9 А класса

Серебренников Данила Андреевич

Учитель химии:

Оценка:

Санкт-Петербург

2018

Оглавление:

1. Введение…………………………………………………………………………………….3

2. Сплавы………………………………………………………………………………………4

3. Свойства сплавов…………………………………………………………………………5

4. Виды сплавов………………………………………………………………………………6

5. Заключение…………………………………………………………………………………7

6. Библиография………………………………………………………………………………8

1. Введение.

Цель: Узнать что такое сплавы их виды и свойства.

3

2. Сплавы.

Сплавы – это материалы с металлической кристаллической решеткой, обладающие характерными свойствами и состоящие из двух и более компонентов.

Сплавы состоят из основы одного или нескольких металлов, малых добавок ,специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей . Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

4

3. Свойства сплавов.

Свойства металлов и сплавов полностью определяются их структурой кристаллической структурой фаз и микроструктурой. Макроскопические свойства сплавов определяются микроструктурой и всегда отличаются от свойств их фаз, которые зависят только от кристаллической структуры. Макроскопическая однородность многофазных сплавов достигается за счёт равномерного распределения фаз в металлической матрице. Сплавы проявляют металлические свойства, например: электропроводность и теплопроводность, отражательную способность металлический блеск и пластичность. Важнейшей характеристикой сплавов является свариваемость.

В глубокой древности люди заметили, что в большинстве случаев сплавы обладают другими, нередко более полезными для человека свойствами, чем составляющие их чистые металлы. Помимо большей прочности многие сплавы обладают большей коррозионной стойкостью и твёрдостью, лучшими литейными свойствами, чем чистые металлы. Помимо более высоких механических качеств сплавам присущи свойства, которых нет у чистых металлов.

5

4. Виды сплавов.

По способу изготовления сплавов различают литые и порошковые сплавы. Литые сплавы получают кристаллизацией расплава смешанных компонентов. Порошковые — прессованием смеси порошков с последующим спеканием при высокой температуре. Компонентами порошкового сплава могут быть не только порошки простых веществ, но и порошки химических соединений. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. По способу получения заготовки изделия различают литейные деформируемые и порошковые сплавы.

В твердом агрегатном состоянии сплав может быть гомогенным и гетерогенным. Твёрдый раствор является основой сплава. Фазовый состав гетерогенного сплава зависит от его химического состава. В сплаве могут присутствовать: твердые растворы внедрения, твердые растворы замещения, химических соединений и кристаллиты простых веществ.

6

5. Заключение.

Цель выполнена.

Сплавы – это материалы с металлической кристаллической решеткой, обладающие характерными свойствами и состоящие из двух и более компонентов.

7

6. Библиография:

– Учебник химии 9 класса Дрофа О. С. Габриеляна 2-е издание М. 2014 г. П. №10.

https://ru.wikipedia.org/wiki/Сплав

8

Доклад по химии Тема: “Сплавы”

МОСКОВСКИЙ ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ

ШКОЛА — ЛАБОРАТОРИЯ № 799

Доклад по химии

Тема: “Сплавы”

Ученика Кудашева Алексея

 

Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволка имеют чистоту около 99,9%. В большин­стве же других случаев люди имеют дело со сплавами. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и тер­мическое поведение сплавов. Все сплавы имеют специльную маркировку, т.к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют стали раз­личных составов. Простые конструкционные стали состоят из железа относительно высокой чистоты с небольшими (0,07—0,5%) добавками углерода. Так, чугун, получаемый в доменной печи, содержит около 10% других металов, из них примерно 3% составляет углерод, а остальные — кремний, марганец, сера и фосфор. А легированные стали получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден.

Никель наряду с хромом является важнейшим компонентом многих сплавов. Он придает сталям высокую химическую стойкость и механическую прочность. Так, известная нержа­веющая сталь содержит в среднем 18% хрома и 8% никеля. Для производства химической аппаратуры, сопел самолетов, космических ракет и спутников требуются сплавы, которые устойчивы при тем­пературах выше 1000 °С, то есть не разрушаются кислородом и горючими газами и обладают при этом прочностью лучших сталей. Этим условиям удовлетворяют сплавы с высоким содержанием никеля. Большую группу составляют медно-никелевые сплавы.

Сплав меди, известный с древ­нейших времен, – бронза содержит 4-30% олова (обычно 8-10%). До наших дней сохрани­лись изделия из бронзы мастеров Древнего Египта, Греции, Китая. Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом. В настоящее время в бронзах олово часто заменяют другими ме­таллами, что приводит к изменению их свойств. Алюминиевые бронзы, которые содержат 5-10% алюми­ния, обладают повышенной проч­ностью. Из такой бронзы чеканят медные монеты. Очень прочные, твердые и упругие бериллиевые бронзы содержат примерно 2% бе­риллия. Пружины, изготовленные из бериллиевой бронзы, практически вечны. Широкое применение в народном хозяйстве нашли бронзы, изготовленные на основе других металлов: свинца, марганца, сурь­мы, железа и кремния.

Сплав мельхиор содержит от 18 до 33% никеля (остальное медь). Он имеет красивый внешний вид. Из мельхио­ра изготавливают посуду и укра­шения, чеканят монеты («серебро»). Похожий на мельхиор сплав -нейзильбер -содержит, кроме 15% ни­келя, до 20% цинка. Этот сплав используют для изготовления худо­жественных изделий, медицинского инструмента. Медно-никелевые спла­вы константан (40% никеля) и ман­ганин (сплав меди, никеля и мар­ганца) обладают очень высоким электрическим сопротивлением. Их используют в производстве элект­роизмерительных приборов. Харак­терная особенность всех медно-ни­келевых сплавов – их высокая стой­кость к процессам коррозии – они почти не подвергаются разрушению даже в морской воде. Сплавы меди с цинком с содер­жанием цинка до 50% носят наз­вание латунь. Латунь “60” содержит, например, 60 весовых частей меди и 40 весовых частей цинка. Для литья цинка под давлением применяют сплав, содер­жащий около 94% цинка, 4% алюминия и 2% меди. Это дешевые сплавы, обладают хорошими механическими свойствами, легко обрабатываются. Латуни благодаря своим качествам нашли широкое применение в ма­шиностроении, химической промыш­ленности, в производстве бытовых товаров. Для придания латуням особых свойств в них часто добав­ляют алюминий, никель, кремний, марганец и другие металлы. Из латуней изготавливают тру­бы для радиаторов автомашин, тру­бопроводы, патронные гильзы, па­мятные медали, а также части технологических аппаратов для полу­чения различных веществ.

По следующим рецептам можно получить легкоплавкие сплавы. Сплав Ньютона: 31 массовая часть свинца, 19 частей олова и 50 частей висмута. Температура плавления 95 °С. Сплав Вуда: 25 частей свинца, 12,5 частей олова, 50 частей висмута и 12,5 частей кадмия. Температура плавления 60 °С. Ложка из такого сплава расплавится, если ею помешать горячий кофе. Раньше это демонстрировали в качестве шутли­вого опыта. Однако перемешанный таким образом напиток ядовит из-за солей свинца и висмута!

Очень давно было замечено, что если смешать расплавленные металлы и остудить полученную смесь, то получается вещество, свойства которого отличаются от свойств каждого из металлов. Так, если в расплавленную медь добавить алюминий, то в результате химической реакции получается новое соединение с формулой АlСи.

Сплавы получают различными способами. Если смешивают расплавленные компоненты, а затем производят кристаллизацию полученного расплава, то получают литой сплав. Кристаллизация – это процесс  перехода из жидкого состояния в твердое. При этом образуется соединение с кристаллической структурой. А если смешивают порошки компонентов, а затем спекают смесь при высокой температуре, то получают сплав, который называется порошковым сплавом. Для улучшения свойств в сплавы вводятся элементы, которые называются легирующими.

Виды сплавов

В состав сплавов могут входить только металлы или соединения металлов с неметаллами. Свое название сплав обычно получает от названия элемента, который содержится в сплаве в самом большом количестве и составляет основу сплава. Так, если основой сплава является железо, то сплавы называются чёрными. А если основа сплавов – цветные металлы, то и сплавы называются цветными. Бывают ещё сплавы редких металлов и сплавы радиоактивных металлов.

ЧЕРНЫЕ СПЛАВЫ

В сплавах могут быть два и более компонентов.

Наиболее известные чёрные сплавы – сталь и чугун. Оба эти сплава являются смесью железа и углерода. Но чугун содержит углерода намного больше, чем сталь. Кроме углерода, в чугун входят сера, фосфор, марганец и кремний. В сталь также добавляются эти элементы, но в гораздо меньших количествах. Чугун – хрупкий материал. Его применяют там, где не требуется ковка. А вот сталь не только прочный, но и пластичный материал. Поэтому она широко применяется в промышленности в металлических конструкциях, механизмах, деталях, для изготовления режущих инструментов и т. д. В нашем доме нас окружают изделия из нержавеющей стали: ножи, вилки, ложки, ножницы, тёрки, кастрюли.

ЦВЕТНЫЕ СПЛАВЫ

Самые известные сплавы меди – бронза и латунь.

Сплав меди с оловом называют бронзой. В  III тысячелетии до н.э из меди изготавливались орудия труда, так как залежи меди в то время были огромны. Выяснилось, что если медь соединить с оловом, то получается вещество, более поддающееся литью. Так впервые была получена бронза. Следующее тысячелетие назвали «бронзовым веком». В XV в. из бронзы начали отливать пушки. В наше время бронза применяется в машиностроение для изготовления различных  деталей.

Латунь – сплав меди с цинком. Используется в производстве техники, автомобилестроении, в химической промышленности. Интересно, что латунь внешне схожа с золотом. Поэтому до XIX века ее часто выдавали за золото.

Соединение меди с алюминием называют алюминиевой бронзой.  Алюминиевая бронза – очень пластичный материал.

Мельхиор — сплав меди и никеля. Используется для изготовления столовых приборов и художественных изделий.

Известный алюминиевый сплав дюралюминий – соединение алюминия с медью, магнием и марганцем. Применяется в авиационной промышленности и авиастроении.

Магниевые, титановые, берилиевые сплавы также находят свое применение в промышленности и медицине.

Металлы и сплавы играют очень важную роль в различных видах жизнедеятельности человека. Невозможно перечислить все сферы, в которых металлы и их сплавы находят применение.

Сплавы. 9 класс. Разработка урока

Цель урока:

  • Дат ь понят ие о сплавах, их классификацией и свойст вах;
  • Познакомить с важнейшими сплавами их значением в жизни
  • общест ва и преимущест вом сплавов перед чист ыми мет аллами;
  • Обучать и развивать умение делат ь выводы;
  • Прививат ь и развиват ь навыки делового общения;
  • Развитие логического мышления;
  • Развивать кругозор;
  • Обучать и развивать умение самостоятельного поиска необходимой информации;
  • Развивать умение делать выводы, работать в коллективе, говорить на публике;
  • Воспитание эстетического вкуса

Оборудование и материалы: Коллекции сплавов цветных и черных металлов (чугуны и стали, алюминий, медь), изделия из сплавов. Компьютер, мультимедийный проектор.

Методы урока: Объяснение, рассказ, беседа, самостоятельная работа с учебником.

Тип урока: комплексный.

Дополнительное задание: за 2 – 3 недели до урока дается задание найти информацию о сплавах и сделать сообщение по плану:

  • История создания
  • Состав сплава
  • Его свойства
  • Применение

Ход урока

Этап урока

 Действия учителя

Действия учащихся

 

 

 

Вступительное слово учителя: Здравствуйте! Мы изучали с вами свойства металлов, особенности их строения, типа связи. Пришло время перейти к изучению новой способности металлов: образованию сплавов. Открываем тетради, записываем тему урока: «СПЛАВЫ».

Но прежде чем прис тупить к изучению нового материала. Повторим ранее изученный. Часть учащихся работает по карточкам с заданиями разного уровня. Уровень 1 – на «3», уровень 2 – на «4», уровень 3 – на «5». Уровень выбираем самостоятельно. (См. приложение)

Остальные беседуют со мной, получая за верный ответ карточки, по сумме которых мы выставляем оценки.

Вопросы для обсуждения:

  1. Где элементы – металлы расположены в периодической системе?
  2. К каким электронным семействам относятся элементы – металлы?
  3. Сколько электронов имеют атомы металлов на внешнем электронном слое?
  4. Что называется металлической связью?
  5. Чем обусловлены физические свойства металлов?
  6. Какими физическими свойствами характеризуются металлы?
  7. Почему в химических реакциях металлы выступают в роли восстановителей?
  8. Какие химические свойства характерны для металлов?
  9. Как реагируют металлы с кислотами?
  10. Как определить активность металла?

(Задания разных уровней приведены в приложении.)

Но в реальной жизни металлы в чистом виде встречаются редко, а в основном мы имеем дело со сплавами. Поэтому запишите тему урока: «Сплавы». И на этом уроке мы поговорим о сплавах, их особенностях, классификации, значением и применением в жизни общества. И в конце урока вы должны будете ответить на один вопрос: «Почему с течением времени человечество перешло от использования чистых металлов к использованию сплавов?»

Давайте подумаем, с чем ассоциируется у вас слово сплав. (Сплавление чего-либо между собой). Совершенно верно. А на основании этого попробуйте дать определение металлического сплава. Если затрудняетесь, откройте ваши учебники на странице 267. (Металлические сплавы – материалы с металлическими свойствами, состоящие из двух и более компонентов, из которых хотя бы один – металл).

Как вы думаете, как получают сплавы? (Смешиванием различных металлов в расплавленном состоянии). Хочу заметить, что в результате затвердевания смеси, возможно, образование нескольких видов сплавов.

Виды сплавов
Характеристика
Пример

Твердые растворы

Расплавленные металлы смешиваются в любых отношениях

Ag иCu; Ag и Au; Cu и Ni

Механическая смесь

При охлаждении смеси расплавленных металлов образуется сплав, состоящих из мельчайших отдельных кристалликов каждого металла

Pb и Sn; Pb и Ag; Bi и Cd

Интерметаллиды

Расплавленные металлы образуют между собой химические соединения

Cu и Zn; Ca и Sb; Pb и Na

  1. Твердые растворы: они получаются, если расплавленные металлы неограниченно растворяются друг в друге, то есть смешиваются в любых соотношениях. Компонентами могут быть металлы, кристаллические решетки которых одного типа, а атомы мало различаются по размеру. Например, золото и серебро, серебро и медь, медь и никель. Такие сплавы содержат в узлах кристаллической решетки атомы обоих металлов, а потому они однородны. По сравнению с чистыми металлами, из которых они состоят, такие сплавы имеют более высокую прочность, твердость и химическую стойкость; они пластичны и хорошо проводят электрический ток.
  2. Механическая смесь металлов: Расплавленные металлы смешиваются между собой в любых соотношениях, но при охлаждении образуется не твердый раствор, а сплав, состоящий из мельчайших отдельных кристалликов каждого из металлов. Например, свинца и олова, свинца и серебра, висмута и кадмия.
  3. Интерметаллиды: такие сплавы получаются, если расплавленные металлы вступают во взаимодействие и образуют между собой химические соединения. Например, медь и цинк, Кальций и сурьма, свинец и натрий. Некоторые сверхтвердые сплавы получают методом порошковой металлургии, когда смесь порошков металлов прессуется под большим давлением с последующим спеканием ее при высокой температуре. Но это не единственный признак классификации сплавов. Если составлять полную классификацию, то она будет выглядеть следующим образом:

По строению:

  • Механическая смесь
  • Твердый раствор
  • Интерметаллическая смесь

По структуре

  • Гомогенные
  • Гетерогенные

По основному компоненту

  • Черные
  • Цветные

По числу компонентов

  • Двойные
  • Тройные
  • Многокомпонентные

По свойствам

  • Тугоплавкие
  • Легкоплавкие
  • Коррозионно-устойчивые

Ну а теперь самое время заслушать те сообщения, которые вы подготовили. В ходе рассказов вы будьте внимательны, смотрите на экран, в свои учебники, в коллекции на ваших с толах, а так же не забывайте заполнять таблицу:

Название сплава
Состав
Основные свойства
Применение

Латунь

Медь, цинк 30–35%

Пластичность

Изготовление приборов и предметов быта

Нихром

Никель 67%, хром 15%, марганец 1,5 %

Большое электрическое сопротивление, жаропрочность

Изготовление электронагревательных приборов

  1. Историками установлено, что в период Древнего царства в Египте ремесленники применяли только медные инструменты. Но некоторые свойства меди не удовлетворяли потребности мастеров, поэтому с конца 4-го тысячелетия до нашей эры стали появляться бронзовые изделия. Ее секрет раскрыли китайцы, впервые ее получившие. С этого момента начинается в истории бронзовый век. Бронза сплав меди с оловом, иногда в нее добавляют цинк, свинец, алюминий, марганец, фосфор и кремний. Добавки влияют на свойства сплава. Так количество олова меняется от 5 до 25%, если его больше сплав становится хрупким. Фосфор добавляется для предотвращения окисления олова до оловянной кислоты. А свинец добавляется для жесткости. Наряду с изготовлением орудий труда и изделий культового назначения уже в глубокой древности из бронзы начали отливать скульптуру. Первая из них появилась в 3 тысячелетии до нашей эры в Месопотамии. Это была статуя местного божества. В России из бронзы лились даже колокола. Из нее отлиты знаменитые Царь – колокол и Царь – пушка. Бронза относится к интерметаллидам.
  2. Латунь является сплавом, состоящим из меди и цинка, причем процент цинка может достигать 50%. Иногда в него добавляют олово, марганец, алюминий, свинец, кремний, но их количество колеблется от 0.08 до 1.2 %. Данный сплав обладает хорошими механическими свойствами, устойчив к коррозии, легко обрабатывается. Открытие латунного сплава связано с кораблестроением. До открытия латуни суда смолили, но такой защиты было не достаточно. И борта стали обивать латунными пластинами, которые не боятся контакта с водой. Помимо защиты, пластины просто красивы, так как сплав имеет красивый желто – золотистый цвет. В современной промышленности латунь применяется для изготовления водопроводных кранов, любых предметов находящихся в тесном контакте с водной средой.
  3. Мельхиор представляет собой соединение меди и никеля, причем процент никеля составляет 29 – 33%, иногда с добавлением серебра. Был получен с целью создания боле дешевой альтернативы серебру, и в отличие от первого не стирается, так как более прочный. Мельхиор служит материалом получения посуды, столовых приборов, из него чеканили монеты. Это прочный материал, легкий в обработке.
  4. Дюралюминий состав из алюминия и меди 6 – 8%. С добавками магния, марганца, кремния. Медь добавлена в сплав для придания ему большей мягкости, что упрощает его обработку, а так же для прочности. Используется как строительный материал, для изготовления легких и прочных конструкций, а так же в современном самолетостроении.
  5. Чугун сплав железа и углерода (2–4.5%), с добавками марганца до 3%, кремния до 4.5%, серы до 0.08%, фосфора до 2.5%. чугун сыграл важную роль в развитии изобразительного искусства и архитектуры. В России его применение в архитектуре началось с литых столбов, которые производили заводы Демидова на Урале. Изобретение данного сплава стало причиной революции в мостостроении. Вообще, литье из чугуна – самостоятельный вид искусства. Особо почетное место в «чугунном кружеве» принадлежит Воронихинской решетке у Казанского собора. Отлитая в 1811 году она до сих пор является украшением центра города. Но данный сплав, в силу коррозионной стойкости и прочности применяется и для изготовления кухонной утвари.
  6. Сталь сплав железа и углерода (0.04 – 2%), и добавок марганца(0.1 – 1%), кремния(0.4%), серы(0.08%), фосфора(0.09%), если сталь легированная, то в нее добавлены хром и никель. Сталь – основа современной техники. Она прочная, легкая, коррозионностойкая. В старину она считалась драгоценным металлом. Из нее в первую очередь делали оружие. Самым знаменитым был булат. Его родина – Индия. До 19 века сталь считалась исключительно оружейным сплавом, но в 1830 году в Англии из нее стали делать бытовые предметы: шкатулки, подносы, портсигары. В 20 веке из стали начали изготавливать светильники, и даже барельефы. Сталь с различными видами обработки может иметь золотой, красный, синий, зеленый, оранжевый цвет.
  7. Нихром состоит из никеля до 78% и хрома. Выдумка современных мастеров. Поскольку данный сплав является жаропрочным и обладает низкой теплопроводностью, а так же высокой сопротивляемостью электричеству, то из него изготовляют современную кухонную посуду, а так же детали электронагревательных приборов.
  8. Существует огромное количество ювелирных сплавов:
  • Ювелирное золото сплав, содержащий от 58 до 96% золота и медь
  • Ювелирное серебро содержит серебро 98% и никель
  • Белое золото, состоящее из золота и никеля

Слово учителя: Спасибо! А теперь попробуйте ответить на основной вопрос нашего урока: «Почему же люди стали использовать сплавы?»

Учащиеся высказывают различные предположения, но в конечном итоге должны сделать следующие выводы:

  1. Сплавы обладают различными свойствами, поэтому есть возможность создать сплав с нужными свойствами.
  2. Не смотря на то, что в состав сплавов входят металлы, обладающие определенным набором свойств (металлический блеск, высокая электро- и теплопроводность, ковкость, пластичность), но свойства сплава сильно отличаются от свойств компонентов, входящих в него, что особенно ценно.

Слово учителя: Сплавы состоят из металлов, которые в его составе сохраняют свои химические свойства. Например, взаимодействие с кислотами. Этот факт позволяет установить качественный состав сплава. И это мы проверим с помощью расчетных задач.

Часть из них мы решим в классе, а часть пойдут в качестве домашнего
задания:

  1. При действии избытка соляной кислоты на 60 граммов сплава меди и цинка выделился газ объемом 1.12 литра. Найдите массовые доли металлов в сплаве.
  2. При действии соляной кислоты на 500 граммов сплава серебра и магния выделился газ, объемом 112 литров. Найдите массовые доли металлов в сплаве.
  3. При действии разбавленной серной кислоты на 10 граммов сплава меди и алюминия, выделился газ, объемом 1.24 литра. Найдите массовые доли металлов в сплаве.

В конце урока проводится оценивание деятельности учащихся и класса в целом, а так же сбор тетрадей некоторых школьников, с целью проверки правильности решения задач.

Домашнее задание: Параграф 74, задачи

  1. Тугоплавкий металл вольфрам – неизменный материал для изготовления нитей накаливания, а карбид вольфрама состава WC – основа твердого сплава «Победит, из которого изготавливают сверла. Для получения порошкообразного вольфрама используют восстановление оксида вольфрама водородом. Рассчитайте тепловой эффект реакции, если на получение 1 кг. Вольфрама этим способом было потрачено 636 кДж теплоты. WO3 +2H2 = W + 3H2O
  2. Выплавка свинца, вероятно, была одним из первых металлургических процессов. В качестве природного сырья чаще всего использовали Галенит – природный сульфид свинца, который сначала обжигали, получая оксид свинца (II), а затем восстанавливали углем. Определите массу угля, необходимого для получения 40 кг. Свинца, если практический выход процесса восстановления равен 20%.

Пользуясь дополнительной литературой, заполните схему – применение сплавов в различных отраслях.

Итог урока.

Как бы вы, продолжили фразу:

  • Сегодня на уроке…
  • Теперь я знаю…
  • Мне на уроке…
  • попробуйте определить настроение сегодняшнего урока, выберите его (на доске появляются «рожицы» с разным выражением): если вам было комфортно, понятно, то «рожица» 1, если настроение не изменилось – 2, если ухудшилось – 3.__

Основные виды металлических сплавов, типы и свойства.

Сплавы представляют собой вещества структурно однородные и содержащие в своем составе из двух или нескольких химических элементов в основном металлы. Базой для изготовления большинства сплавов используется до несколько металлических материалов с добавлением модифицирующих и легирующих примесей. Кроме того, сплав может содержать оставшиеся включения естественного, случайного и технологического происхождения.

   В зависимости от технологии производства выделяют две категории сплавов:

1. Литые. Для их изготовления используется достаточно популярный метод – кристаллизация однородной консистенции на основе горячих частиц.

2. Сплавы порошковые. Формируются в результате воздействием пресса на смесь различных порошков, которые отправляются в специальную печь и проходят цикл высокотемпературной обработки. Для исходного сырья используют металлический порошок и нескольких химических соединений. К примеру, производство твердых сплавов подразумевает использование карбидов вольфрама или титана.

   С учетом способа получения готового материала выделяют 2 разновидности сплавов:

1. Литейные (к ним относятся чугуны и силумины).

2. Деформируемые (порошковые сплавы и стальные).

В разных промышленных отраслях применяется множество подвидов сплавов – инструментальные, специальные, конструкционные. В зависимости от сфер применения их разделяют на несколько типов. К конструкционным сплавам относят чугунные заготовки, сталь, дюралюминий и составы с особыми свойствами, к примеру, антифрикционные характеристики и устойчивость к искрению.

   Также в эту категорию входят такие материалы:

1. Латунь.

2. Бронза.

3. Сплавы для изготовления подшипников.

4. Баббит.

5. Сплавы для электронагревательного и измерительного оборудования.

6. Нихром.

7. Манганин.

8. Заготовки для производства режущих инструментов.

9. Победит.

Также для промышленных целей подходят устойчивые к коррозии, термостойкие, легкоплавкие, температурно-электрические, магнитные и аморфные сплавы. Количество разновидностей, которые используются в настоящее время достаточно большое и постоянно увеличивается. Сплавы классифицируют по двум признакам:

1. Материалы на базе железа.

2. Цветные сплавы металлов.

Ниже представлены самые популярные и важные сплавы для промышленного производства с основными сферами их эксплуатации.

Сталь.

Под сталью подразумевается соединение железа с углеродом (концентрация последнего составляет 2%). Из-за включении различных легирующих примесей как ванадий, хром или никель, стал приобретает легированные свойства.

Их всех существующих разновидностей сплавов по объемам поставок и производства, стали занимают ведущие места. Области их эксплуатации очень широкие, поэтому указать все сферы достаточно сложно.

Малоуглеродистые стали куда входит до 0,25% углерода, используются для конструкционных целей, а те, где процент значительно выше (от 0,55) применяются в производстве низкоскоростных режущих аппаратов, сверл и бритвенных лезвий. Легированные подвиды востребованы в машиностроительной отрасли и при изготовлении быстрорежущего оборудования.

Чугун.

Сплав железа с 2-4% углерода называется чугуном. Еще одним незаменимым элементом этого материала является кремний. Чугунные сплавы используются при изготовлении различной продукции с утилитарными функциями, к примеру, крышки канализационных люков, арматура трубопроводов, двигательные блоки цилиндров. Грамотно отлитое изделие обладает улучшенными механическими характеристиками.

Медные сплавы.

Эта категория сплавов представлена различными подвидами латуни, т.е. материалами на основе меди с включением от 5 до 45% цинка. Если к латуни добавляется от 5 до 20% цинка, ее называют красной (томпаком), а при концентрации цинка в пределах 20-36%, сплав получает название желтая латунь (альфа-латунь).

Данная разновидность широко востребована при изготовлении мелких деталей, которые нуждаются в особой обрабатываемости и точности.

Кроме того, для промышленных целей используют сплавы меди с добавлением алюминия, кремния и олова или бериллия.

К примеру, фосфористая и кремнистая бронза (сплав медный с добавлением кремнием) имеет отличные прочностные характеристики и используются при производстве мембран и пружин.

Свинцовые сплавы.

Незаменимые материалы для процесса пайки. В обычном припое содержится 1 часть свинца и 2 части олова. Металлический сплав востребован для пайки электропроводов и составляющих трубопроводов.

На основе сурьмяно-свинцовых сплавов изготавливают оболочки телефонных кабелей и пластины аккумулятора. Сплавы, использующие кадмий, олово и висмут, обладают точкой плавления, которая намного ниже показателя кипения жидкости (70°C). Из-за этой особенности их применяют при производстве клапанов противопожарного оборудования спринклерных систем.

Сплав пьютер, незаменим для изготовления декоративной кухонной утвари и ювелирных изделий, состоит на 85-90% из олова. Оставшаяся часть состава – свинец. Также свинец добавляют при разработке так называемых баббитов, которые являются подшипниковыми сплавами. В составе свинцовых сплавов также присутствует мышьяк, олово и сурьма.

Легкие сплавы.

В машиностроении востребованы легкие сплавы с улучшенными прочностными свойствами, устойчивостью к высоким температурам и механическим воздействиям. В качестве исходного сырья для изготовления материала используют бериллий, магний, титан и алюминий. Не все сплавы из магния и алюминия подходят для эксплуатации в высокотемпературной и агрессивной среде.

Алюминиевые сплавы.

В эту категорию входят литейные сплавы (алюминий и кремний), для литья под высоким давлением (магний и алюминий), и сплавы интенсивного закаливания высокой прочности на основе алюминия и меди.

Основным преимуществом алюминиевых сплавов является их невысокая стоимость и прочность при невысоких температурах, а также легкость обработки. Заготовку достаточно просто ковать, штамповать или использовать для волочения, экструдирования и глубокой вытяжки.

Материал легко поддаются сварке и обрабатывается при помощи металлорежущего оборудования. Эксплуатационные характеристики алюминиевых сплавов теряются при повышении температуры до 175°C. Но за счет формирования оксидной пленки на поверхности, они не боятся коррозийных процессов при нахождении в различных агрессивных условиях.

Сплав не плохо проводит электрическую энергию и тепло, характеризуется усиленными отражательными свойствами, немагнитностью и безвредностью для здоровья человека при взаимодействии с продуктами питания (изделия из алюминия не подвергаются появлению ржавчины, не имеют какого-либо цвета и вкуса). Кроме того, сплавы алюминия защищены от взрыва, т.к. они не образуют искр и могут подавлять энергию ударов.

За счет перечисленных особенностей алюминиевые сплавы широко применяются в автомобилестроении, вагоно- и самолетостроении, в строительстве, для монтажа линий электропередач высокого напряжения и в пищевой промышленности. Наличие незначительного количества железа в составе сплавов повышает запас прочности при высокотемпературном воздействии, но негативно сказывается на устойчивости к коррозии и пластичности при комнатной температуре.

Магниевые сплавы.

Данный тип сплавов отличается небольшим весом и прочностью, а еще улучшенными литейными свойствами. Обрабатывать материал достаточно легко методом резания. В связи с этим, магниевые сплавы нашли применение в ракето- и авиастроительной сферах, где их используют для производства двигателей, колес, корпусов, топливных баков и прочих комплектующих.

Отдельные разновидности сплавов характеризуются повышенным коэффициентом вязкостного демпфирования, из-за этих свойств их применяют при производстве движущихся элементов средств транспортных и составляющих конструкций, которые используются в условиях высоких вибраций.

Из недостатков магниевых сплавов выделяют мягкость, неустойчивость к износу и недостаточную пластичность. Однако заготовку легко формировать путем термической обработки. Кроме того, сплавы магния подходят для обработки газовой, электродуговой и контактной сварки. Для качественной защиты сплавов от коррозии их покрывают специальной оболочкой.

Титановые сплавы.

По эксплуатационным характеристикам титановые сплавы в разы лучше магниевых и алюминиевых, в области прочности и степени упругости. При увеличенной плотности они характеризуются особой стойкостью к механическим воздействиям, уступая только бериллиевым сплавам.

В составе титановых сплавов присутствует минимальная концентрация азота, углерода и кислорода, учитывая это они достаточно пластичны. За счет невысокой электрической проводимости и низкого коэффициента проводимости тепла, сплавы титана устойчивы к износу и истиранию, да и прочность их гораздо выше, чем у других из группы магниевых сплавов.

Ползучесть отдельных сортов при среднем напряжении достигает 90 МПа, оставаясь на этом уровне при нагреве до 600°C, что намного выше предельной отметки у магниевых и алюминиевых сплавов. Сохраняют ковкость сплавы с титаном до температуры 1150°С, поэтому для их обработки разрешено использование электродуговой сварки с инертным газом или точечной и шовной сварки.

Обрабатывать материал с помощью технологии резания неоправданно, что объясняется быстрым схватыванием режущего приспособления. Плавку сплавов титана выполняют в вакуумных условиях или управляемой атмосфере для исключения проблемы выброса врезных примесей кислорода и азота в среду окружающую.

Титановые сплавы, как известно широко применяются в космической и авиационной промышленности. На их основе производятся различные механизмы и детали, которые эксплуатируются в температурных пределах от 150 до 430°C. Также из титана изготовляются составляющие специализированного химического оборудования.

Из титано-ванадиевых сплавов разработана уникальная легкая броня для техники и кабин летчиков в боевых самолетах. А для изготовления реактивных двигателей и корпусов летательных аппаратов основным материалом является сплав алюминия, титана и ванадия.

Бериллиевые сплавы.

Имея прекрасную пластичность, бериллиевый сплав превосходит другие металлические сплавы по удельной прочности. Для его производства используется принцип добавления хрупких зерен бериллия в мягкую пластичную основу, например, в разогретое серебро.

Являясь материалом с низкой плотностью, бериллиевый сплав активно применяется при разработке систем наведения ракет. Модуль его упругости выше, чем у стали или бериллиевой бронзы, что позволяет использовать материал для производства пружин и контактов в электрических схемах.

В чистом виде сплав применяется в качестве замедлителя и отражателя нейтронов в ядерных реакторах. За счет возможности формирования защитной оксидной пленки, он сохраняет свои эксплуатационные показатели при воздействии высоких температур.

Основная сложность при обработке сплава связана с его токсичностью. Пары от разогретого бериллия способствуют развитию опасных проблем со здоровьем, включая заболевания органов дыхания и дерматит.

Металлические изделия на основе различных сплавов вы можете купить через наш сайт. Промышленная компания «Кварто» включает большое количество российских поставщиков металлопродукции из разных регионов. На складах нашего предприятия в Московской области хранится цветной и нержавеющий прокат, продукция из специализированных сплавов и сталей, а также уникальное сырье металлургической промышленности.

Кроме того, мы занимаемся резкой, литьем металла на основе предоставленных заказчиком чертежей и документации. В процессе производства предусматривается строгий контроль с применением ультразвукового и химического оборудования.

23.6: Сплавы – Химия LibreTexts

Когда расплавленный металл смешивается с другим веществом, существует два механизма, которые могут вызвать образование сплава: (1) атомный обмен или (2) междоузельный механизм . Относительный размер каждого элемента в смеси играет первостепенную роль в определении того, какой механизм произойдет.

Когда атомы относительно близки по размеру, обычно применяется метод обмена атомами, когда некоторые из атомов, составляющих металлические кристаллы, замещаются атомами другого компонента.Это называется замещающим сплавом . Примеры сплавов замещения включают бронзу и латунь, в которых некоторые атомы меди замещены атомами олова или цинка.

Рисунок \ (\ PageIndex {1} \): различные атомные механизмы образования сплава, показывающие чистый металл, структуры замещения и межузельные структуры. (CCO; Hbf878 через Википедию)

Почему возникают сплавы замещения: соединение

Связь между двумя металлами лучше всего описать как комбинацию «разделения» металлических электронов и ковалентной связи, одно не может происходить без другого, и соотношение одного к другому изменяется в зависимости от вовлеченных компонентов.Металлы разделяют электроны по всей своей структуре, этот поток электронов является причиной многих характеристик, связанных с металлами, включая их способность действовать как проводники. Различное количество и сила ковалентных связей могут меняться в зависимости от различных конкретных металлов и того, как они смешиваются. Ковалентная связь – это то, что отвечает за кристаллическую структуру, а также за температуру плавления и различные другие физические свойства.

Рисунок \ (\ PageIndex {2} \): Примеры металлических сплавов с замещением.В зависимости от конкретного типа сплава замещения они могут иметь несколько кристаллических структур. Две из возможных структур включают Face Center Cubic (слева) и Cubic Center Cubic (справа). Структура металлического сплава не ограничивается этими двумя структурами, но вместе они составляют большую часть обычных сплавов.

По мере увеличения сходства электронной структуры металлов, входящих в состав сплава, металлические характеристики сплава ухудшаются. Чистые металлы полезны, но их применение часто ограничивается свойствами каждого отдельного металла.Сплавы позволяют использовать смеси металлов, которые обладают повышенной стойкостью к окислению, повышенной прочностью, проводимостью и температурой плавления; Практически любым свойством можно управлять, регулируя концентрацию сплава. Примером могут быть дверные светильники из латуни, они прочны и устойчивы к коррозии лучше, чем чистый цинк или медь, два основных металла, составляющих латунный сплав. Комбинация также имеет низкую температуру плавления, что позволяет легко отливать ее в различные формы и размеры. (1) Есть много других аспектов замещающих сплавов, которые можно было бы глубоко изучить, но основная концепция заключается в том, что каждый отдельный металл в сплаве придают конечному продукту его химические и физические свойства.

Замещающие сплавы сыграли важную роль в развитии человеческого общества и культуры, какими мы их знаем сегодня. Сам бронзовый век назван в честь Заместительного сплава, состоящего из олова в металлическом растворе меди. Древние изделия из бронзы очень загрязнены или даже имеют неправильную маркировку, они содержат большое количество цинка и мышьяка, а также много примесей. Эти многочисленные замещающие сплавы позволили создать более сильные инструменты и оружие, они позволили повысить производительность как в мастерской, так и на поле боя.Потребность в сырье, таком как олово и медь для производства бронзы, также стимулировала рост торговли, поскольку их руды редко встречаются вместе. Современное химическое понимание сплавов замещения не было бы таким глубоким, если бы не их полезность для человека.

Сводка

Сплав представляет собой смесь металлов, объемные металлические свойства которой отличаются от свойств составляющих ее элементов. Сплавы могут быть образованы путем замены одного атома металла на другой такой же размер в решетке (сплавы замещения), путем вставки более мелких атомов в отверстия в решетке металла (межузельные сплавы) или сочетанием того и другого.Хотя элементный состав большинства сплавов может варьироваться в широких пределах, некоторые металлы объединяются только в фиксированных пропорциях с образованием интерметаллического соединения

.

Список литературы

  1. Смоллмен Р. Э., Нган А. Х. У. и Смоллмен Р. Э. (2007). Металлургия и новые материалы . Амстердам: Баттерворт Хайнеманн.
  2. Ван, Ф. Э .. (2005). Теория связи для металлов и сплавов . Амстердам: Эльзевир.
  3. Дикинсон, О.Т. П. К. (1994). Эгейский бронзовый век . Кембриджская мировая археология. Кембридж: Издательство Кембриджского университета.

Проблемы

  1. Встречаются ли в природе на поверхности земли замещающие металлические сплавы?
  2. Какие две характеристики металла необходимы для образования замещающего сплава?
  3. Может ли кислород или азот быть частью кристаллической структуры замещающего сплава?

Решения

  1. Нет, окислительная природа земной атмосферы, а также потребность в определенных и концентрированных металлах не позволяют обнаружить их в природе.
  2. Подобные радиусы и аналогичная электроотрицательность.
  3. Только металлические элементы могут образовывать необходимые металлические связи, позволяющие образовывать сплавы.

Какие они? Из чего делают обычные сплавы?

Криса Вудфорда. Последнее изменение: 12 октября 2020 г.

Практически любой материал мы могли бы когда-нибудь захотеть скрывается где-то на планете под нашим ноги. От золота, которое мы носим как украшения, до нефть, которая питает наши машины, земной кладезь удивительных материалов может поставлять практически каждая потребность.Химические элементы – это основные строительные блоки из из которых сделаны все материалы внутри Земли. Их около 90 природные элементы, большинство из которых – металлы. Но, хотя металлы и полезны, иногда они не идеальны. для работы, которая нам нужна. Возьмем, к примеру, железо. Это удивительно прочный, но может быть довольно хрупким и ржавеет легко во влажном воздухе. Или как насчет алюминия. Он очень легкий, но в своем в чистом виде, он слишком мягкий и слабый, чтобы от него можно было много пользы.Вот почему большинство используемых нами “металлов” не вообще металлы, кроме сплавов: металлы в сочетании с другими веществами, чтобы сделать их сильнее, тверже, легче или лучше как-нибудь по-другому. Сплавы повсюду вокруг нас – от пломбы в наши зубы и литые диски на наших автомобилях к космическим спутникам свист над нашими головами. Давайте подробнее разберемся, что это такое и почему они такие полезный!

Фото: Этот топливный бак от Space Shuttle был сделан из сверхлегкого алюминиево-литиевого сплава, так что это на колоссальные 3400 кг (7500 фунтов) легче, чем бак, который он заменил.Снижение веса базовой конструкции шаттла означало, что он мог нести более тяжелую полезную нагрузку (груз). Фото любезно предоставлено Космическим центром Кеннеди НАСА (NASA-KSC).

Что такое сплав?

Фото: Образец сплава титан-цирконий-никель. заставляют левитировать (парить в воздухе) с помощью электричества. Это один из многих замечательных новых материалов, которые разрабатываются для возможного использования в космосе. Фото любезно предоставлено Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Вы могли встретить слово сплав, описанное как «смесь металлов», но это немного вводит в заблуждение, потому что некоторые сплавы содержат только один металл, и он смешан с другие неметаллические вещества (например, чугун сплав из одного металла, железа, смешанного с одним неметаллом, углеродом). Лучше всего думать о сплаве как о материале, состоящем из минимум два разных химических элемента, один из которых – металл. В самый важный металлический компонент сплава (часто представляющий 90 процентов или более материала) называется основным металл, основной металл или основание металл.Остальные компоненты сплава (которые называются легирующими добавками) может быть металлы или неметаллы, и они присутствуют в гораздо меньших количествах (иногда менее 1 процента от общей суммы). Хотя сплав иногда может быть составным (элементы, из которых он сделан, химически связаны вместе), обычно это твердый решение (атомы элементов просто перемешаны, как соль, смешанная с вода).

Состав сплавов

Если вы посмотрите на металл в мощный электронный микроскоп, вы увидите атомы внутри расположены в регулярной структуре, называемой кристаллической решетка.Представьте себе небольшую картонную коробку, полную шариков, и это в значительной степени что бы вы увидели. В сплаве, кроме атомов основного металла, есть также атомы легирующих добавок, разбросанных по всему состав. (Представьте, что вы уронили несколько пластиковых шарики в картон коробку, чтобы они случайным образом расположились среди шариков.)

Изображение: Замещающие сплавы и промежуточные сплавы: На этих диаграммах черные кружки представляют основной металл, а красные кружки – легирующие добавки.

Сплавы замещения

Если атомы легирующего агента заменяют атомы основного металла, мы получаем то, что называется замещающий сплав. Такой сплав сформируется только в том случае, если атомы основного металла и легирующего агента имеют примерно одинакового размера. В большинстве сплавов замещения составляющая элементы довольно близко друг к другу в периодической таблице. Латунь, для Например, сплав на основе меди в какие атомы цинка заменяют 10–35 процентов атомов, которые обычно находятся в меди.Латунь работает как сплав, потому что медь и цинк близки друг к другу в периодической таблицы и имеют атомы примерно одинакового размера.

Сплавы внедрения

Сплавы также могут образовываться, если легирующий агент или агенты имеют атомы, которые намного меньше чем у основного металла. В этом случае атомы агента проскальзывают в между основными атомами металла (в зазорах или «пустотах»), дает то, что называется межузельным сплавом. Сталь – это пример сплава внедрения, в котором относительно небольшое количество атомы углерода проникают внутрь промежутки между огромными атомами в кристаллической решетке железа.

Как ведут себя сплавы?

Фото: Дело не только в основных ингредиентах (металлы и другие составляющие). влияющие на свойства сплава; как эти ингредиенты сочетаются очень важно тоже. Скорость разливки или перемешивания, температура разливки и скорость охлаждения являются некоторыми из факторов. что может повлиять на физические свойства сплавов. Фотография отливки из латунного сплава, сделанная Джетом Лоу, любезно предоставлена ​​Библиотекой Конгресса США, Отделом эстампов и фотографий, Historic American Engineering Record.

Люди делают и используют сплавы, потому что металлы не имеют подходящие свойства для конкретная работа. Железо – отличное здание материал, но сталь (сплав получается путем добавления небольшого количества неметаллического углерода к железу) прочнее, тверже и устойчивее к ржавчине. Алюминий – очень легкий металл, но он также очень мягкий в чистом виде. Добавьте небольшое количество металлов магний, марганец и медь, и вы получите превосходный алюминиевый сплав называется дюралюминий, который достаточно силен, чтобы изготавливать самолеты.Сплавы всегда показывают улучшения по сравнению с основным металлом в одном или нескольких своих важные физические свойства (такие как прочность, долговечность, способность проводить электричество, способность выдерживать жару, и так на). Как правило, сплавы прочнее и тверже, чем их основные металлы, менее пластичные (труднее работать) и менее пластичные (труднее втягиваем в провода).

Таблица

: Один и тот же основной металл может давать очень разные сплавы, когда он смешивается с другими элементами. Вот четыре примера медных сплавов.Хотя медь является основным металлом во всех них, каждый из них обладает совершенно разными свойствами.

Фото: Ученые NASA Ames разработали методику называется распылением газа под высоким давлением для упрощения производства магниевые сплавы. Фото любезно предоставлено Министерством энергетики США.

Как изготавливаются сплавы?

Представление о сплаве как о «смеси металлов» может показаться вам весьма удачным. сбивает с толку. Как можно ли смешать два куска твердого металла? Традиционный способ изготовление сплавов заключалось в нагревании и плавлении компонентов для получения жидкостей, смешайте их вместе, а затем дайте им остыть до состояния, называемого твердый раствор (твердый эквивалент раствор как соль в воде).Альтернативный способ изготовления сплава – повернуть компоненты в порошки, смешайте их вместе, а затем соедините их с сочетание высокого давления и высокой температуры. Эта техника называется порошковой металлургией. Третий метод изготовление сплавов стрелять пучками ионов (атомов со слишком малым или слишком большим количеством электронов) в поверхностный слой куска металла. Ион имплантация, как это известно, является очень точным способом изготовления сплава. Это вероятно, наиболее известен как способ изготовления полупроводников, используемых в электронные схемы и компьютерные микросхемы.(Подробнее об этом читайте в нашей статье о молекулярно-лучевой эпитаксии.)

Узнать больше

На этом сайте

Статьи

Книги

Общие сведения о материаловедении и инженерии

В этих книгах объясняется основная концепция подбора материалов для работы, которую они должны выполнять. Это основная идея, лежащая в основе большинства сплавов – по сути, металлы «улучшены», чтобы выполнять определенные задачи лучше, чем в чистом естественном состоянии.

Более подробные книги

Достаточно сложно найти простые общие книги по сплавам; вместо этого ищите книги по «инженерным материалам», и вы найдете что-нибудь подходящее.

Организации

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2008, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Inconel – зарегистрированная торговая марка Huntington Alloys Corporation
Monel – зарегистрированная торговая марка International Nickel Co.
Waspaloy – зарегистрированная торговая марка United Technologies Corporation
Hastelloy – зарегистрированная торговая марка Haynes International, Inc.
Названия определенных сплавов CMSX ( такие как CMSX-4) являются зарегистрированными товарными знаками Cannon-Muskegon Corporation.

Исследователи нашли лучший способ конструирования металлических сплавов

IMAGE: Исследователи нашли новый способ предсказания свойств металлических сплавов, основанный на реакциях на границах между кристаллическими зернами первичного металла. На этом изображении … посмотреть еще

Кредит: Изображение предоставлено исследователями

Современные металлические сплавы необходимы в ключевых сферах современной жизни, от автомобилей до спутников, от строительных материалов до электроники.Но создание новых сплавов для конкретных целей с оптимизированной прочностью, твердостью, коррозионной стойкостью, проводимостью и т. Д. Было ограничено нечетким пониманием исследователями того, что происходит на границах между крошечными кристаллическими зернами, из которых состоит большинство металлов.

Когда два металла смешиваются вместе, атомы вторичного металла могут собираться вдоль границ зерен или распространяться по решетке атомов внутри зерен. Общие свойства материала во многом определяются поведением этих атомов, но до сих пор не существовало систематического способа предсказать, что они будут делать.

Исследователи из Массачусетского технологического института теперь нашли способ, используя комбинацию компьютерного моделирования и процесса машинного обучения, производить детальные прогнозы этих свойств, которые могли бы направлять разработку новых сплавов для самых разных применений. Результаты описаны сегодня в журнале Nature Communications , в статье аспиранта Малика Вагиха, постдока Питера Ларсена и профессора материаловедения и инженерии Кристофера Шу.

Шу объясняет, что понимание поведения поликристаллических металлов на атомном уровне, которые составляют подавляющее большинство металлов, которые мы используем, является сложной задачей. В то время как атомы в монокристалле расположены упорядоченным образом, так что отношения между соседними атомами просты и предсказуемы, это не относится к множеству крошечных кристаллов в большинстве металлических объектов. «У вас есть кристаллы, разбитые вместе по тому, что мы называем границами зерен. А в обычном конструкционном материале таких границ миллионы и миллионы», – говорит он.

Эти границы помогают определить свойства материала. «Вы можете думать о них как о клее, скрепляющем кристаллы», – говорит он. «Но они неупорядочены, атомы перемешаны. Они не соответствуют ни одному из кристаллов, к которым они присоединяются». Это означает, что они предлагают миллиарды возможных атомных расположений, говорит он, по сравнению с несколькими в кристалле. Создание новых сплавов включает в себя «попытки спроектировать эти области внутри металла, а это буквально в миллиарды раз сложнее, чем конструирование в кристалле».«

Шу проводит аналогию с людьми по соседству. «Это похоже на пребывание в пригороде, где вокруг вас может быть 12 соседей. В большинстве случаев с металлами вы смотрите вокруг, вы видите 12 человек, и все они находятся на одинаковом расстоянии от вас. Это абсолютно однородно. граница зерна, у вас все еще есть что-то вроде 12 соседей, но все они находятся на разном расстоянии, и все это дома разного размера в разных направлениях “.

Традиционно, говорит он, разработчики новых сплавов просто игнорируют проблему или просто смотрят на средние свойства границ зерен, как если бы они были одинаковыми, даже если они знают, что это не так.

Вместо этого команда решила подойти к проблеме строго, изучив фактическое распределение конфигураций и взаимодействий для большого количества репрезентативных случаев, а затем используя алгоритм машинного обучения для экстраполяции этих конкретных случаев и предоставления прогнозируемых значений для всего диапазона. возможных вариаций сплава.

В некоторых случаях кластеризация атомов вдоль границ зерен является желательным свойством, которое может повысить твердость металла и устойчивость к коррозии, но иногда оно также может приводить к охрупчиванию.В зависимости от предполагаемого использования сплава инженеры постараются оптимизировать сочетание свойств. Для этого исследования команда исследовала более 200 различных комбинаций основного металла и легирующего металла на основе комбинаций, которые были описаны в литературе на базовом уровне. Затем исследователи систематически моделировали некоторые из этих соединений, чтобы изучить конфигурацию границ их зерен. Они использовались для создания прогнозов с использованием машинного обучения, которые, в свою очередь, были проверены с помощью более целенаправленного моделирования.Прогнозы машинного обучения точно соответствовали подробным измерениям.

В результате исследователи смогли показать, что многие комбинации сплавов, которые были исключены как нежизнеспособные, на самом деле оказываются возможными, говорит Вагих. По его словам, новая база данных, составленная на основе этого исследования и ставшая общедоступной, может помочь любому, кто сейчас работает над разработкой новых сплавов.

Команда продолжает анализ. «В нашем идеальном мире мы бы взяли каждый металл в периодической таблице, а затем добавили бы к нему любой другой элемент в периодической таблице», – говорит Шу.«Итак, вы берете периодическую таблицу, пересекаете ее с самой собой и проверяете все возможные комбинации». По его словам, для большинства из этих комбинаций базовые данные пока недоступны, но по мере того, как проводится все больше и больше моделирования и собираются данные, их можно интегрировать в новую систему.

###

Работа поддержана Управлением фундаментальных энергетических наук Министерства энергетики США.

Написано Дэвидом Л. Чендлером, MIT News Office

Дополнительный фон

Статья: «Изучение энергетических спектров сегрегации по границам зерен в поликристаллах.”
http: // doi. org / 10. 1038/ s41467-020-20083-6

Заявление об отказе от ответственности: AAAS и EurekAlert! не несут ответственности за точность выпусков новостей, размещенных на EurekAlert! участвующими учреждениями или для использования любой информации через систему EurekAlert.

Жидкие металлы: основы и приложения в химии

Постпереходные элементы вместе с металлами группы цинка и их сплавами относятся к новому классу материалов с удивительными характеристиками, обусловленными их одновременной металлической и жидкой природой.Эти металлы и сплавы характеризуются низкими температурами плавления (, т.е. от комнатной температуры до 300 ° C), что делает их жидкое состояние доступным для практического применения в различных областях физической химии и синтеза. Эти материалы могут предложить исключительные возможности в синтезе новых материалов, катализе, а также могут открыть новые области применения, включая микрофлюидику, гибкую электронику и доставку лекарств. Однако более широкое исследовательское сообщество в некоторой степени пренебрегало удивительно жидкими металлами.В этом обзоре мы даем всесторонний обзор основ, лежащих в основе исследований жидких металлов, включая синтез жидких металлов, функционализацию поверхности и химию с использованием жидких металлов. Кроме того, мы обсуждаем явления, которые требуют дальнейших исследований в соответствующих областях, и обрисовываем, как жидкие металлы могут внести свой вклад в захватывающие будущие приложения.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй еще раз?

3d переходные металлы | Химия [Магистр]

Титан, хром и марганец

Титан, хром и марганец – это 3d-переходные металлы, которые используются для придания стали коррозионной стойкости, долговечности и легкости.

Цели обучения

Напомним полезные физические характеристики, которые титан, хром и марганец придают при легировании стали.

Основные выводы

Ключевые моменты
  • Двумя наиболее полезными свойствами титана являются его устойчивость к коррозии и высокое отношение прочности к весу.
  • Хром металлический очень ценен из-за его высокой коррозионной стойкости и твердости.
  • Марганец – металл, который широко используется в промышленных сплавах, особенно в нержавеющих сталях.
Ключевые термины
  • нержавеющая сталь : сплав железа и хрома, устойчивый к коррозии.
  • титан : прочный, коррозионно-стойкий переходный металл с атомным номером 22.

Титан, хром и марганец – это переходные металлы, которые используются во многих сплавах железа для производства коррозионно-стойкой, прочной и легкой стали.

Титан

Титан – прочный блестящий переходный металл.Он имеет низкую плотность, устойчив к коррозии и имеет серебристый цвет. Титан был обнаружен в Корнуолле, Великобритания, в 1791 году Уильямом Грегором. Он был назван Мартином Генрихом Клапротом в честь титанов греческой мифологии.

Титановый стержень : Титан – один из наименее плотных, прочных и устойчивых к коррозии элементов. Он имеет множество применений, особенно в сплавах с другими элементами, такими как железо. Титан обычно используется в самолетах, клюшках для гольфа и других объектах, которые должны быть прочными, но легкими.

Титан может быть легирован железом, алюминием, ванадием, молибденом и некоторыми другими элементами для производства прочных и легких сплавов, которые используются в различных отраслях промышленности, в том числе:

  • аэрокосмическое строительство (реактивные двигатели, ракеты и космические аппараты)
  • военная разработка
  • промышленный процесс (химикаты и нефтехимия, опреснительные установки, целлюлоза и бумага)
  • автомобильная промышленность
  • сельское хозяйство и пищевая промышленность
  • протезы медицинские
  • имплантаты ортопедические
  • стоматологические и эндодонтические инструменты
  • зубные имплантаты
  • спортивные товары
  • ювелирные изделия
  • мобильных телефонов

Металлический титан обладает двумя очень важными и полезными свойствами: он устойчив к коррозии и имеет самое высокое отношение прочности к весу среди всех металлов.В нелегированном состоянии титан такой же прочный, как и некоторые стали, но на 45% легче.

Хром

Хром – стально-серый, блестящий, твердый металл, который требует полировки и имеет высокую температуру плавления. Он без запаха, вкуса и податливости. Название элемента происходит от греческого слова «chrōma» (χ), означающего цвет, потому что многие из его соединений сильно окрашены.

Хром : Хром, как титан и ванадий до него, чрезвычайно устойчив к коррозии и действительно является одним из основных компонентов нержавеющей стали.Хром также имеет много красочных соединений и очень часто используется в пигментах, таких как хромовый зеленый.

Оксид хрома использовался китайцами во времена династии Цинь более 2000 лет назад для покрытия металлического оружия. Оружие, покрытое оксидом хрома, было обнаружено Терракотовой армией. Хром был открыт как элемент после 1761 года, когда он был обнаружен в красном кристаллическом минерале крокоите (хромат свинца (II)). Первоначально он использовался как пигмент.

Луи Николя Воклен в 1797 году первым выделил металлический хром из этого минерала крокоита.После этого первого открытия небольшие количества самородного (свободного) металлического хрома были обнаружены в редких минералах, но они не используются в коммерческих целях. Почти весь коммерчески извлекаемый хром производится из единственной коммерчески жизнеспособной руды, хромита, который также известен как оксид железа и хрома (FeCr 2 O 4 ). Хромит также является основным источником хрома, который используется в пигментах.

Крокоит : Крокоит – это минерал, образованный из хромата свинца (PbCrO 4 ), соединения хрома.

Металлический хром оказался очень ценным благодаря своей высокой коррозионной стойкости и твердости, особенно когда сталь сочетается с металлическим хромом для образования нержавеющей стали. Нержавеющая сталь обладает высокой устойчивостью к коррозии и обесцвечиванию. Это применение, наряду с хромированием (гальваника хромом), в настоящее время составляет 85% коммерческого использования элемента. Остальные 15% составляют другие области применения соединений хрома.

Марганец

Марганец содержится в природе как свободный элемент (часто в сочетании с железом), а также содержится во многих минералах.Это металл, который широко используется в промышленности, особенно в производстве нержавеющих сталей.

Марганец : Марганец, как и предшествующий ему хром, является важным компонентом нержавеющей стали, предотвращающим ржавление железа. Марганец часто используется в пигментах, опять же, как хром. Марганец также ядовит; если вдыхать достаточно, это может вызвать необратимые неврологические нарушения.

Исторически марганец был назван в честь различных черных минералов (таких как пиролюзит), которые были обнаружены в том же регионе Магнезии в Греции.К середине 18 -го века шведский химик Карл Вильгельм Шееле использовал пиролюзит для получения хлора. Шееле и другие знали, что пиролюзит (теперь известный как диоксид марганца) содержит новый элемент, но они не смогли его выделить. Йохан Готлиб Ган был первым, кто выделил нечистый образец металлического марганца в 1774 году, восстановив диоксид углерода углеродом.

Фосфатирование марганца используется для обработки стали от ржавчины и коррозии. В зависимости от степени окисления ионы марганца имеют различный цвет и используются в промышленности в качестве пигментов.Диоксид марганца используется в качестве материала катода (акцептора электронов) в углеродно-цинковых и щелочных батареях.

В биологии ионы марганца (II) действуют как кофакторы для большого количества ферментов, выполняющих множество функций. Ферменты марганца особенно важны для детоксикации супероксидных свободных радикалов в организмах, которые должны иметь дело с элементарным кислородом. Марганец также участвует в синтезирующем кислород комплексе фотосинтезирующих растений. Этот элемент является необходимым микроэлементом для всех известных живых организмов.При вдыхании в больших количествах марганец может вызвать у млекопитающих ядовитый синдром с неврологическими повреждениями, которые иногда необратимы.

Железо, кобальт, медь, никель и цинк

Кобальт, никель, медь и цинк – это 3d-орбитальные переходные металлы с множеством свойств.

Цели обучения

Вспомните характеристики кобальта, меди, никеля и цинка в их элементарных состояниях и в сочетании в сплавах.

Основные выводы

Ключевые моменты
  • Медь является наиболее часто используемым в чеканке металлом благодаря своим электрическим свойствам, большому количеству (в отличие от серебра и золота) и привлекательности ее сплавов – латуни и бронзы.
  • Цинк используется в сплавах с медью для создания более твердого металла, известного как латунь.
  • При гальванике цинк покрывает железо путем окисления, образуя защитный слой оксида цинка (ZnO), который защищает железо от ржавчины.
  • Кобальт и никель – микроэлементы со свойствами, близкими к железу.
Ключевые термины
  • медь : Красновато-коричневый, податливый, пластичный металлический элемент с высокой электрической и теплопроводностью. Его символ – Cu, а его атомный номер – 29.
  • латунь : металлический сплав меди и цинка, используемый во многих промышленных и сантехнических приложениях.
  • бронза : Природный или искусственный сплав меди, обычно с оловом, но также с одним или несколькими другими металлами.

Медь

Медь является членом семейства металлов, известных как «чеканные металлы», в которое входят медь, серебро, золото и рентгений. Из-за своей мягкости из металла для чеканки легко превращаются в монеты. Их сравнительная редкость и привлекательность, а также их устойчивость к коррозии делают их компактными хранилищами богатства.Однако чистая медь слишком мягкая, чтобы иметь структурную ценность, а медные сплавы с цинком и оловом позволяют образовывать более твердые латуни и бронзы. Латунь и бронза были важными компонентами самых ранних металлических инструментов.

Медные трубы : Медь широко используется во многих областях, включая медные трубы.

Медь является наиболее широко используемым металлом для чеканки монет из-за ее электрических свойств, ее большого количества (по сравнению с серебром и золотом), а также свойств ее латуни и бронзовых сплавов.Пока алюминий не стал обычным явлением, медь по производству металлов занимала второе место после железа. Медь легко идентифицировать по красноватому цвету.

Медь окисляется – с некоторыми трудностями – до состояния +1 в галогенидах и оксиде и до состояния +2 в солях, таких как сульфат меди CuSO 4 . Растворимые соединения меди легко идентифицировать по их характерному сине-зеленому цвету.

Цинк

Цинковая монета : Цинк – важный микроэлемент для живых существ.Обладает бактерицидными свойствами и в больших количествах токсичен. Цинковые монеты нельзя глотать.

Семейство цинков состоит из цинка, кадмия, ртути и коперника. Цинк и кадмий – мягкие металлы, которые легко окисляются до степени окисления +2. Ни один из этих двух металлов не кажется несоединенным в природе. Цинк используется в сплавах с медью для создания более твердого металла, известного как латунь. При гальванике цинк покрывает железо путем окисления, образуя защитный слой оксида цинка (ZnO), который защищает железо от окисления.Оксид цинка намного безопаснее оксида свинца, и его часто используют в белой краске. С 1982 года цинк был основным металлом, используемым в американских монетах. Теперь он используется в новых органных трубах.

Кобальт : Как и никель, кобальт в земной коре находится только в химически комбинированной форме, за исключением небольших отложений, обнаруженных в сплавах природного метеоритного железа. Свободный элемент, полученный восстановительной плавкой, представляет собой твердый блестящий серебристо-серый металл.

Цинк является важным микроэлементом для живых существ и обладает некоторыми бактерицидными свойствами, но в больших количествах может быть токсичным.Цинковые монеты нельзя глотать.

Железо, кобальт и никель

Железо, кобальт и никель являются довольно хорошими восстановителями, поэтому они редко бывают несвязанными в природе. Железо – один из самых распространенных элементов во Вселенной. Несвязанное железо, кобальт и никель можно найти в метеоритах.

Сама Земля имеет горячее плотное ядро, состоящее в основном из железа и никеля. При температурах, характерных для ядра Земли, железо и никель образуют гигантский природный магнит, который создает магнитное поле Земли.Это магнитное поле блокирует опасное излучение, которое может убить жизнь на Земле.

Что такое металлические сплавы? | MATSE 81: Материалы в современном мире

Щелкните здесь, чтобы просмотреть стенограмму видеоролика «Свойства вещества: сплавы и их свойства».

В этом видео мы видим, как различные металлы соединяются вместе, образуя сплавы, которые по-прежнему сохраняют металлические свойства исходных металлов, но обычно более прочные. Типичным примером атомов металлов является то, что их внешние оболочки имеют всего несколько электронов.Это означает, что даже когда они связываются, в этой валентной оболочке всегда остается место для большего количества электронов. Каждый атом металла может связываться с 12 другими атомами в плотноупакованной решетке. Посмотрите на красный атом. Он окружен шестью в своей плоскости, тремя сверху и тремя снизу.

Возможны и менее компактные кристаллические структуры. Например, это расположение, где каждый атом связан с восемью другими. Поскольку электронов все еще недостаточно, чтобы завершить внешнюю оболочку любого из атомов, электроны могут легко перемещаться от одного атома к другому, делая металлы хорошими проводниками как электричества, так и тепла.А поскольку электроны не локализованы в фиксированных связях, атомы могут скользить мимо друг друга, делая их пластичными, позволяя металлу изменять форму. Это также означает, что когда вы пытаетесь взаимодействовать с металлами вместе, атомы обычно просто смешиваются в решетке, образуя металлические связи друг с другом, без фиксированных пропорций и случайным образом распределенных. Эти структуры называются сплавами. Сравните это с соединениями между металлами и неметаллами или между неметаллическими элементами, где пропорции каждого элемента фиксированы.

Самым древним примером сплава, возможно, является то, как бронза пришла на смену меди в древних человеческих сообществах Европы около 6000 лет назад. В конце каменного века топоры стали делать из чистой меди, но они были довольно мягкими. Когда для изготовления бронзы добавлялось небольшое количество олова, получался топор, который был вдвое тяжелее и хорошо работал. Наступил бронзовый век. Атомы в металлической решетке удерживаются ненаправленными связями, своего рода морем свободных электронов, как мы сказали, позволяя атомам скользить мимо друг друга, все еще соприкасаясь, что делает металлы относительно легкими для плавления и изгиба, но с трудом для испарения.Когда металлы меняют форму, атомы фактически скользят друг по другу вот так. Однако этот процесс происходит не сразу, а постепенно, как если бы вы пытались сдвинуть ковер, вставив в него камень.

Вот как это происходит в металле. Вы видите, как скольжение легко перемещается по одному атому за раз, когда в решетке есть дислокация. Именно это легкое движение атомов в кристаллической решетке делает самый чистый металл мягким. Теперь поместите в решетку атом большего или меньшего размера, и это легкое движение дислокации будет заблокировано.Посмотрите, как более крупный атом стабилизирует дислокацию, которая не продвинется дальше, если вы не приложите большую силу, что означает, что сплав сложнее согнуть.

В заключение рассмотрим некоторые известные сплавы. Бронза, три четверти меди, четверть олова, для скульптур, лодочного оборудования, винтов и решеток. Латунь 70 процентов меди, 30 процентов цинка. Музыкальные инструменты, монеты, дверные молотки. Углеродистая сталь 99 процентов железа и до одного процента углерода. Строительные конструкции, инструменты, автомобильные кузова, рельсы для машин и т. Д.нержавеющая сталь с содержанием хрома около 18 процентов и никеля на восемь процентов. Используется для посуды, кухонной посуды, хирургических инструментов и т. Д. Алюминиевые сплавы для самолетов содержат несколько процентов меди или других металлов. Амальгама – это ртуть с серебром и другими металлами. Когда-то использовался для пломбирования зубов. Свинцовый припой и олово для соединения электрических проводов и компонентов. Очень легко плавится. Золото обычно представляет собой сплав, содержащий другой металл, например серебро, для повышения твердости. Количество каратов k определяет, сколько массовых частей чистого золота содержится в 24 частях сплава.

Все, что вам нужно знать о сплавах стали

Если вы когда-либо задавались вопросом, какой металл в мире используется чаще всего, вы можете быть удивлены (или не удивлены в этом отношении), узнав, что это сталь. Сталь прочна и широко используется. Многие объекты, с которыми мы с вами регулярно взаимодействуем, сделаны из стали. Тем не менее, учитывая ее популярность и применимость, многие люди относительно не осведомлены о различных свойствах, тонкостях и использовании стали. Если это правда для вас, вы, вероятно, найдете интересную информацию в этом посте.

Истоки современных стальных сплавов

Сталь впервые была получена путем добычи железной руды из земли, плавления руды в печи для удаления примесей и добавления углерода. Сегодняшний процесс производства стали предполагает переработку существующей стали. Добывается ли она на Земле или перерабатывается, сталь представляет собой комбинацию железа и углерода.

Поскольку сталь на 100% перерабатывается, нет ограничений на то, сколько раз сталь может быть повторно использована и перепрофилирована. По данным Американского института железа и стали,

«Североамериканские сталеплавильные печи потребляют почти 70 миллионов тонн отечественного стального лома при производстве новой стали… Используя стальной лом для производства новой стали, сталелитейная промышленность Северной Америки экономит энергию, выбросы, сырье и природные ресурсы.”

Кроме того, переработка стали не приводит к потере качества или прочности.

Сталь

: нержавеющая, углеродистая, инструментальная и сплав

Когда вы впервые пытаетесь понять сталь, легко потерпите поражение. Отчасти это связано с тем, что сталь состоит из четырех различных групп. Немного разобравшись в этих группах, вы найдете информацию о стали более удобоваримой. К четырем группам относятся нержавеющая сталь, углерод, инструмент и сплав, и они сгруппированы по химическому составу.

Нержавеющая сталь

Нержавеющая сталь известна как самая коррозионно-стойкая из четырех групп. Нержавеющая сталь обычно включает хром, никель или молибден, причем эти сплавы составляют около 11-30 процентов стали.

Из четырех групп сталей наиболее широко известна нержавеющая сталь. Он обычно используется в пищевой и пищевой промышленности, в медицинских инструментах, оборудовании и бытовой технике.

Углеродистая сталь

Углеродистая сталь

и нержавеющая сталь содержат одни и те же основные компоненты железа и углерода, но их состав различается по содержанию сплава.Углеродистая сталь содержит менее 10,5% сплава. Обычно углеродистую сталь разбивают на три подкатегории: низкоуглеродистая сталь (0,03–0,15% углерода), среднеуглеродистая сталь (0,25–0,50% углерода) и высокоуглеродистая сталь (0,55–1,10% углерода).

По мере увеличения процентного содержания углерода сталь становится тверже, и ее становится труднее сгибать или сваривать. Чаще используются низкоуглеродистые стали из-за более низких производственных затрат, большей пластичности и простоты использования в производстве.Низкоуглеродистые стали более склонны к деформации под нагрузкой, а высокоуглеродистые стали более склонны к разрушению под давлением. Низкоуглеродистые стали обычно используются в автомобильных панелях, болтах, приспособлениях, бесшовных трубах и стальных листах.

Инструментальная сталь

Инструментальная сталь имеет содержание углерода от 0,5% до 1,5%. Инструментальная сталь содержит другие добавки, в том числе вольфрам, хром, ванадий и молибден. Инструментальные стали известны своей твердостью и способностью удерживать режущую кромку при повышенных температурах.Это, в сочетании с устойчивостью к износу и деформации, делает инструментальную сталь идеально подходящей для использования при механической обработке и изготовлении инструмента.

Легированная сталь

Если вы технический специалист, сталь, которая попадает в любую из этих четырех групповых классификаций, является сплавом, но я сейчас говорю не об этом. «Легированная сталь» отличается от «стальных сплавов». Итак, что такое легированная сталь? Легированная сталь – это сталь, в состав которой входит около 5% легирующих элементов. Эти легирующие элементы могут включать марганец, хром, ванадий, никель и вольфрам.Добавление легирующих элементов увеличивает общую обрабатываемость и коррозионную стойкость.

Легированная сталь

чаще всего используется для производства труб, особенно труб, связанных с энергетикой. Он также используется в производстве нагревательных элементов в таких приборах, как тостеры, столовое серебро, кастрюли и сковороды, а также коррозионностойкие контейнеры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *