Температура плавления и кипения меди и железа: Температура плавления и кипения металлов таблица

alexxlab | 11.02.1982 | 0 | Разное

Содержание

Температура плавления железа в градусах цельсия. Температура плавления бронзы, меди, латуни

Медные заготовки

Сегодня медь является одним из самых востребованных металлов. Высокий спрос объясняется отличительными характеристиками, присущими этому металлу. Медь проводит электроток лучше любых других металлов, кроме серебра, благодаря этому ее используют в производстве кабелей и электропроводов. Температура плавления меди не высокая, металл пластичный и легко поддается обработке, благодаря этому качеству стало возможным ее применение в строительстве в качестве водопроводных тр. Этот металл имеет высокое сопротивление к внешним раздражающим факторам, поэтому долговечен и может быть использован несколько раз, после переплавки. Это качество меди высоко ценят экологи, поскольку при повторной обработке металла тратится значительно меньшее количество энергии, чем при добыче и обработки руды, к тому же сохраняются земные недра. Добыча медной руды не проходит бесследно, на месте отработанных рудников появляются токсичные озера, наиболее известное во всем мире такое озеро – Беркли-Пит в штате Монтана в США.

Необходимая температура для плавления меди


Медь не является легкоплавким металлом

Люди нашли применение меди еще в древние времена, тогда ее добывали в виде самородков. Ввиду низкой температуры, необходимой для осуществления процесса плавления ее стали широко применять для изготовления орудий труда и охоты, самородки можно плавить на костре. В наши дни технология получения металла мало чем отличается от придуманной в древние времена, совершенствуются лишь печи, увеличена скорость обжига и объемы обработки. Здесь возникает уместный вопрос — какая температура плавления меди? Ответ на него можно найти в любом учебнике по физике и химии – медь начинает плавиться при температуре нагрева до 1083 о С.


Кипение меди уменьшает ее прочность

В процессе термического воздействия на металл происходит разрушение его кристаллической решетки, это достигается при определенной температуре, которая в течение некоторого времени остается постоянной. В этот момент и происходит плавка металла. Когда процесс разрушения кристаллов полностью завершен, температура металла снова начинает подниматься, и он переходит в жидкую форму и начинает кипеть. Температура плавления меди значительно ниже, чем та, при которой металл кипит. Процесс кипения начинается с появлением пузырьков, по аналогии с водой. На этом этапе любой металл, в том числе и медь, начинает терять свои характеристики, в основном это отражается на прочности и упругости. Температура кипения меди составляет 2560 о С. Во время остывания металла происходит похожая картина, как и при нагреве – сначала температура опускается до определенного градуса, в этот момент происходит затвердевание, которое длится некоторое время, затем продолжается остывание до обычного состояния.

Как изменяется металл под термическим воздействием

Любой нагрев меди влечет за собой изменение ее характеристик, наиболее значимой является величина ее удельного сопротивления. Медь является проводником электрического тока, при этом металл оказывает сопротивление движению носителям заряда. Отношение площади сечения проводника к оказываемому движению и называется удельным сопротивлением.


Так вот, эта величина для чистой меди составляет 0,0172 ОМ мм 2 /м при 20 о С. Этот показатель может измениться после термической обработки, а также вследствие добавления в состав различных примесей и добавок. Здесь наблюдается обратная зависимость сопротивления меди от температуры – чем выше была температура обработки металла, тем ниже будет ее сопротивление электрическому току. Для обеспечения наилучших электролитических характеристик медной проволоки, ее обрабатывают при 500 о С.

Во время термической обработки можно не только придавать металлу нужную форму и размер, но и создавать различные сплавы. Самыми распространёнными медными сплавами является бронза и латунь. Бронза получается путем смешивания меди с оловом, а латунь – с цинком. Добавление алюминия и стали увеличивает прочность материала, а добавление никеля повышает антикоррозийные свойства. Но стоит заметить, что любая примесь снижает главное свойство – электропроводность, поэтому для изготовления жил электрокабеля используют чистый состав металла.

Отжиг меди

Под отжигом меди следует понимать процесс ее нагрева с целью дальнейшей обработки и приданию необходимых форм изделию. В ходе отжига металл становится более пластичным и мягким, поддающимся различным трансформациям. При отжиге меди температура достигает 550 о С, она приобретает темно-красный оттенок. После нагрева желательно быстро производить ковку и оправлять изделие на охлаждение.


Если подвергать материал медленному, естественному охлаждению, то возможно образование наклепа, поэтому чаще применяют мгновенное охлаждение путем помещения заготовки в холодную воду. Если превысить допустимую величину нагрева, металл может стать более хрупким и ломким.

Во время отжига осуществляется процесс рекристаллизации меди, в ходе которого образуются новые зерна или кристаллы металла, которые не искажены решеткой и отделены от прежних зерен угловыми границами. Новые зерна по размеру могут сильно отличаться от предшественников, при их образовании высвобождается большое количество энергии, увеличивается плотность и появляется наклеп. Рекристаллизация осуществляется только после деформации изделия, и только после достижения ее определенного уровня. Для меди критический уровень деформации составляет 5%, если он не достигнут процесс формирования новых зерен не начнется. Температура рекристаллизации меди составляет 270 о С. Следует отметить, что при этой температуре процесс роста кристаллов только начинается, но он достаточно медленный, поэтому для достижения необходимого результата медь необходимо нагреть до 500 о С, тогда времени для остывания хватит для завершения процесса рекристаллизации.

Видео: Плавление меди в микроволновке

Предметы из меди, а также различные изделия, в состав которых она входит, получили широкое распространение в бытовых условиях. Поэтому многие задаются вполне стандартным вопросом: «Как расплавить медь самостоятельно?»

Имея представление о такой технологии, люди научились изготавливать разные предметы из чистого металла, а также получаемых из него сплавов – бронзы и латуни.

Плавление – это процесс, характеризующий постепенный переход металла из стандартного твердого состояния в жидкую консистенцию. Каждому металлическому соединению или металлу в чистом виде свойственная своя температура, под воздействием которой он начинает плавиться.

Немаловажным фактором в данном случае является то, какие примеси входят в состав расплавляемого соединения.

Так, медь начинает плавиться при температуре 1083 градусов по Цельсию. Если к ней добавить олово, то температура плавления снизится и составит примерно 930-1140 градусов по Цельсию.

В данном случае такое колебание обусловлено количеством олова, входящего в сплав. Соединение из меди и цинка плавится при еще более низкой температуре – 900-1050 градусов. Нагревание любых металлов связано с постепенным разрушением решетки, образованной из множества кристаллов.

С нагреванием температура плавления поднимается до максимально необходимой отметки, затем ее рост останавливается и сохраняется на достигнутом уровне до того момента, пока не расплавится весь металл, после чего начинает снижаться.

Остывание – обратный процесс изменения температуры. По мере охлаждения она падает и «замирает» на определенном уровне до тех пор, пока металл полностью не затвердеет.

Медь, разогретая до максимально возможной отметки, закипает при температуре, достигшей отметки в 2560 градусов. По внешнему виду ее кипение схоже с кипением любых жидких веществ, на поверхности которых по мере нагревания появляются пузырьки, и выделяется газ. Так, из меди в процессе кипения выходит углерод, образовавшийся в результате окисления и ее тесного контакта с воздухом.

Технология плавления меди получила широкое применение с древних времен, когда люди с помощью костра расплавляли металл для изготовления стрел, наконечников и другого оружия, и предметов быта.


Плавка меди в домашних условиях также возможна. Для этого понадобятся:

  • Тигель, где будет плавиться медь, и щипцы, необходимые для того, чтобы извлечь тигель из печи или снять его с огня.
  • Древесный уголь.
  • Муфельная печь (лучше, если в ней будет регулироваться температура нагрева).
  • Горн.
  • Обычный пылесос.
  • Форма, в которую выливается расплавленная жидкость.
  • Крюк, изготовленный из стальной проволоки.
  • Газовая горелка, если нет муфельной печи.

Алгоритм плавления включает несколько поэтапных шагов:

  1. Металл измельчить и пересыпать в тигель . Причем чем более мелкие фрагменты будут, тем скорее он достигнет расплавленного состояния. Тигель поставить в печь, раскаленную до максимально высокой температуры, необходимой для начала процесса плавления (здесь кстати придется регулятор температур). Во многих муфельных печах на двери вырезано окошко. Через него можно безопасно осуществлять наблюдение за процессом.
  2. По достижении медью жидкого окончательно расплавленного состояния, тигель с помощью щипцов нужно постараться как можно аккуратнее и скорее вынуть из печи . На поверхности жидкого вещества будет образована пленка, ее подвинуть к краю тигля, используя крюк из проволоки. Очищенный от пленки металл максимально быстро перелить в заранее подготовленную форму.
  3. Если муфельная печь отсутствует, осуществить плавку меди можно с применением обычной газовой горелки . Но тогда медь будет находиться в тесном контакте с воздухом, а сам процесс окисления пройдет значительно быстрее. Поэтому для предотвращения образования толстой пленки на поверхности металла, медь, когда она достигнет жидкого состояния, присыпают растолченным древесным углем.
  4. Расплавить медь и ее сплавы можно также с помощью горна . Для этого древесный уголь нужно хорошо раскалить и поместить на него тигель с металлом (предварительно измельчить медь). Для ускорения нагревательного процесса на уголь направить пылесос, включенный на режиме выдувания. Особое внимание стоит уделить наконечнику трубы. Она должна быть металлической, поскольку пластик расплавится под воздействием высокой температуры.

У чистой меди, в состав которой не входят другие соединения, достаточно плохая текучесть. Поэтому делать из нее сложное литье или мелкие детали не рекомендуется.

Тогда стоит использовать сплавы. Например, латунь, оттенок которой светлее остальных. Это говорит о том, что для ее плавления нужны менее высокие температуры.

Температура плавления латуни, бронзы и меди примерно одинаковая. Во всяком случае значения этой характеристики для всех трех данных цветных металлов находятся в одном узком диапазоне температур. Это обусловлено тем, что бронза и латунь являются сплавами меди, свойства которой в значительной степени влияют на их физические характеристики.

1

Для твердых кристаллических материалов, к коим относятся и металлы, состоящие из чистого (без примесей) вещества, температурой плавления является такой показатель их нагревания, при котором они переходят в другое состояние – жидкое. Причем при этой же температуре чистые вещества (металлы) и застывают. То есть для них такой показатель нагрева является температурой одновременно и плавления, и кристаллизации. А сами металлы, нагретые до температуры их плавления, могут находиться не только в жидком, но и твердом состоянии. Это зависит от того, продолжить подводить к ним дополнительное тепло или дать начать остывать.

Температура плавления

Вообще, по достижении температуры плавления чистое вещество сначала все еще остается твердым. Если продолжить нагрев, то оно станет жидким. Но температура вещества не будет повышаться (меняться) до тех пор, пока оно все полностью не расплавится в рассматриваемой системе (изделии, теле). А когда расплавленное вещество остывает до температуры кристаллизации (плавления), то оно сначала все еще остается жидким. И только если начать дополнительное отведение от него тепла, тогда оно станет переходить в кристаллическое твердое состояние (застывать). Но температура вещества, опять же, не будет меняться (понижаться), пока оно полностью не затвердеет.

2

У смесей веществ (в том числе и у различных сплавов металлов) нет температуры плавления/кристаллизации. Они совершают переход из одного состояния в другое (из твердого в жидкое и обратно) в некотором определенном интервале степени своего нагрева, граничные значения диапазона которого имеют соответствующее название. Температуру, при которой смеси веществ и сплавы металлов начинают переходить в жидкую фазу (или полностью затвердевают), называют “точкой солидуса”. Степень нагрева, при котором происходит полное расплавление (или начинается кристаллизация при остывании), называют “точкой ликвидуса”. Но в обиходе чаще говорят: температура солидуса и ликвидуса.

Точно замерить эти температуры как для смесей веществ, так и для сплавов металлов невозможно. Их определяют по специальным расчетным методикам, в которых учитывается точное процентное соотношение в смеси каждого элемента и ряд других параметров.

То есть относительно рассматриваемых металлов можно сделать следующие выводы. Температура плавления есть . Причем, только у чистой. У всех остальных металлов (латуни, бронзы и различных марок меди) ее нет, а есть температуры солидус и ликвидус. Для латуни и бронзы это так, потому что они являются сплавами меди, в которых в зависимости от марки добавлены различные легирующие добавки (другие металлы или иные вещества) и еще есть какие-то примеси. А производимые металлургической промышленностью для различных нужд имеют такие характеристики плавления, так как они тоже производятся легированными и с примесями. Чистую медь изготавливать нецелесообразно, и она уступает по своим характеристикам, требуемым для народного и промышленного ее использования, свойствам выпускаемых из нее марок.


Температура плавления металлов

Очевидно, что величина температуры ликвидус рассматриваемых металлов будет зависеть от их химического состава. В первую очередь от процентного содержания меди, так как ее в них всегда больше 50 %. И, соответственно, точка ликвидус марок этих металлов будет тем ближе к температуре плавления самой меди, чем ее больше в сплаве. А легирующие металлы или другие вещества и примеси, в зависимости от своего процентного содержания и температуры плавления, будут вносить соответствующую корректировку в сторону понижения либо повышения точки ликвидус у марок меди, бронзы и латуни. Понижать, если своя температура плавления ниже, чем у меди, и повышать, когда выше.

Так, ознакомившись, можно самому догадаться, в какую сторону будет отличаться у них точка ликвидус от температуры плавления чистой меди. Сам подскажет его влияние на эту и другие характеристики данного сплава. А даст возможность судить об отклонениях ее точки ликвидус от температуры плавления меди. С марками меди то же самое, но влияние легирующих добавок и примесей на их точку ликвидус будет рассмотрено отдельно ниже.

3

Температура плавления чистой меди – 1084,5 °C. А выпускаемые марки меди содержат ничтожно малое по отношению к самому этому металлу количество других веществ. Такое, что даже легирующие элементы, как, например, серебро и никель, наравне с прочими “случайными” веществами, относят в составе марок меди к примесям. Самого этого металла – от 99,93 до 99,99 %. И поэтому точки солидус и ликвидус выпускаемых марок меди очень близки к температуре плавления самого этого металла. Температуры полного расплавления в зависимости от марки: меди – 1083–1084 °C, латуни – 880–1050 °C, а бронзы – 900–1140 °C.


Изделия из меди

Температурные главным образом зависят от содержания меди и гораздо менее тугоплавкого цинка, являющегося в латунных сплавах основным легирующим элементом. А относительно бронзы следует отметить, что ее так называемые оловянные марки, с легированием оловом, полностью плавятся при температуре 900–950 °C, а не содержащие этот металл, безоловянные – при 950–1140 °C.

4

Прям совсем уж в домашних условиях плавить эти металлы, да еще потом и отливать из них какие-то заготовки, а тем более изделия, не получится. Надо будет сначала предварительно соответствующим образом подготовить подходящее помещение, обзавестись необходимым оборудованием и инструментом или смастерить самому что-то из требуемого для плавки и литья оснащения. И, разумеется, желательно поточнее выяснить характеристики сплава, с которым предполагается работать. А именно, его состав и температуру ликвидус.


Плавление в домашних условиях

А какие именно необходимо создать условия для работы, подготовить оборудование, оснащение и инструменты, а также технология плавки и литья перечислены и описаны в одной из публикаций сайта. Это статья: . Так как у этого сплава и у марок меди с латунью точки ликвидус близки по своим значениям, а другие свойства, влияющие на процессы плавки и литья, относительно сопоставимы, то и вся технология в кустарных условий для этих металлов идентична. То есть для меди и латуни можно воспользоваться инструкциями-рекомендациями по плавке бронзы из этой статьи.

Благодаря тому, что температура плавления меди достаточно невысокая, этот металл стал одним из первых, которые древние люди начали использовать для изготовления различных инструментов, посуды, украшений и оружия. Самородки меди или медную руду можно было расплавить на костре, что, собственно, и делали наши далекие предки.

Несмотря на активное применение человечеством с древних времен, медь не является самым распространенным природным металлом. В этом отношении она значительно уступает остальным элементам и занимает в их ряду только 23-е место.

Как плавили медь наши предки

Благодаря невысокой температуре , составляющей 1083 градуса Цельсия, наши далекие предки не только успешно получали из руды чистый металл, но и изготавливали различные сплавы на его основе. Чтобы получить такие сплавы, медь нагревали и доводили до жидкого расплавленного состояния. Затем в такой расплав просто добавляли олово или выполняли его восстановление на поверхности расплавленной меди, для чего использовалась оловосодержащая руда (касситерит). По такой технологии получали бронзу – сплав, обладающий высокой прочностью, который использовали для изготовления оружия.

Какие процессы происходят при плавлении меди

Что характерно, температуры плавления меди и сплавов, полученных на ее основе, отличаются. При , имеющего меньшую температуру плавления, получают бронзу с температурой плавления 930–1140 градусов Цельсия. А сплав меди с цинком (латунь) плавится при 900–10500 Цельсия.

Во всех металлах в процессе плавления происходят одинаковые процессы. При получении достаточного количества теплоты при нагревании кристаллическая решетка металла начинает разрушаться. В тот момент, когда он переходит в расплавленное состояние, его температура не повышается, хотя процесс передачи ему теплоты при помощи нагрева не прекращается. Температура металла начинает вновь повышаться только тогда, когда он весь перейдет в расплавленное состояние.


При охлаждении происходит противоположный процесс: сначала температура резко снижается, затем на некоторое время останавливается на постоянной отметке. После того, как весь металл перейдет в твердую фазу, температура снова начинает снижаться до полного его остывания.

Как плавление, так и обратная кристаллизация меди, связаны с параметром удельной теплоты. Данный параметр характеризует удельное количество теплоты, которая требуется для того, чтобы перевести металл из твердого состояния в жидкое. При кристаллизации металла такой параметр характеризует количество теплоты, которое он отдает при остывании.

Более подробно узнать о плавлении меди помогает фазовая диаграмма, показывающая зависимость состояния металла от температуры. Такие диаграммы, которые можно составить для любых металлов, помогают изучать их свойства, определять температуры, при которых они кардинально меняют свои свойства и текущее состояние.

Кроме температуры плавления, у меди есть и температура кипения, при которой расплавленный металл начинает выделять пузырьки, наполненные газом. На самом деле никакого кипения меди не происходит, просто этот процесс внешне очень его напоминает. Довести до такого состояния ее можно, если нагреть до температуры 2560 градусов.

Как понятно из всего вышесказанного, именно невысокую температуру плавления меди можно назвать одной из основных причин того, что сегодня мы можем использовать этот металл, обладающий многими уникальными характеристиками.

Если вас хоть раз волновал вопрос о температуре плавления бронзы, то данная статья именно для вас. Некоторые исторические данные дают право полагать, что первобытные люди имели в обиходе медь, но она была в самородках, которые иногда могли быть внушительных размеров.

Что такое медь?

Название «медь» (на латыни «Cuprum») происходит от названия острова Кипр, на котором и добывали этот металл древние греки. Ввиду того, что медь имеет не слишком высокую температуру плавления, медную руду или сами самородки в древности плавили на костре. А медь использовали в оружейном деле, а также для изготовления разных предметов обихода. По наличию и распространению в земной толще медь находится на 23 месте относительно иных элементов, однако люди начали применять ее еще в древние времена. Как правило, в природе медь встречается в соединениях сульфидных руд, самыми популярными из которых считаются медный колчедан и медный блеск.

Способы получения меди

Технологии для получения меди существуют разные. Но каждая отдельная технология имеет не один этап. Медь получают из руды. Как сказано выше, температура плавления меди давала возможность даже древним людям справляться с ее обработкой. Само примечательное то, что уже в древности люди сумели выработать способ получения и дальнейшего применения как чистой меди, так и сплавов.

Процесс плавления – это изменение состояния металла от твердого к жидкому. Именно для этого и использовали костер, а благодаря низкой температуре плавления можно было проделать эту процедуру без особых сложностей. Для получения сплавов в расплавленную медь добавляли олово. Его можно было получить, восстановив из специальной оловосодержащей руды (касситерит). Такой сплав получил название бронза, которая намного прочнее меди. Бронзу также использовали в древности для изготовления оружия.

А также можно было добыть из медной руды при помощи плавления более чистый металл. Все знают, что каждый металл имеет свою температуру плавления, которая в свою очередь зависит от того, какое количество примесей присутствует в руде. Например, медь, у которой температура плавления равняется 1083 °С, при смешивании с оловом образует новый материал – бронзу. А температура плавления бронзы составляет 930-1140°С, а разная температура потому, что зависит от того, сколько в ней содержится олова. Ну а если вам интересно узнать подробнее, например, какой имеет бронза цвет или какой имеет бронза состав, то эту информацию также можно найти в интернете.

Латунь

Например, латунь – это сплав цинка и меди с температурой плавления 900-1050°С. Когда металл нагревается и плавится, то кристаллические решетки начинают разрушаться. При процессе плавления температура метала постепенно повышается, а далее с определенной отметки становится постоянной, однако нагрев остается таким же. Вот в момент, когда температура останавливается на определенном значении, начинается процесс плавления. И в момент плавления металла температура остается на одном и том же значении, но когда металл полностью расплавлен, температура снова будет увеличиваться.

Такой процесс происходит относительно любого металла. Ну а в процессе охлаждения идет обратный процесс, а именно: сперва температура падает до того момента, пока металл не начнет затвердевать, а уже далее остается постоянной. Когда металл полностью затвердеет, температура снова начинает снижаться. Так ведут себя все металлы, изображая этот процесс графически, он будет иметь вид диаграммы с фазами, на которой четко будет видно состояние вещества на определенно температурной отметке.

Многие ученые пользуются такими фазовыми диаграммами в качестве главного инструмента для исследования процессов, происходящих с металлами при плавлении. Например, если уже расплавленный металл продолжать нагревать, то при достижении определенной температуре масса начнет кипеть. Например, медь кипит при температуре 2560 °С. Относительно металлов такой процесс также назвали кипением, поскольку по аналогии кипящей жидкости на его поверхности появляются пузыри газа.

Видео: Плавка меди в графитовом тигле

химический элемент, температура плавления и кипения, пошаговая инструкция

Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.

Купрум: характеристика элемента

Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.

Физические свойства

Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.

  • Температура плавления 1083 градуса.
  • Температура кипения 2567 градусов.
  • Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
  • Плотность 8,92 г/см.

Нахождение в природе

В природе встречается в самородном виде и в виде соединений.

Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.

В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.

Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.

Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.

Медные сплавы

Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:

  • Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
  • Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
  • Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
  • Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
  • Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.

Переплавка меди дома

Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.

График плавления меди

Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:

  • Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
  • При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
  • После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.

В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.

Температура кипения

Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.

Способы плавки

Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.

Для этих целей годятся следующие приспособления:

  • Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
  • Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
  • Паяльная лампа. Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
  • Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
  • Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.

Пошаговая инструкция

Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:

  • Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
  • После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
  • На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
  • После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.

Практические рекомендации

Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.

Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.

В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.

В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.

Температура плавления и основные свойства железа, классификация металлов

Металлы плавятся, как правило, при очень высокой температуре, которая может достигать более 3 тыс. градусов. Хотя некоторые из них можно расплавить в домашних условиях, например, свинец или олово. А вот ртуть плавят при температуре минус 39 градусов. В домашних условиях этого добиться не удастся. Температура плавления — это один из важных показателей производства не только самого металла, но и его сплавов. Выплавляя сырье, специалисты учитывают и другие физические и химические свойства руды и металла.

Железо и его свойства

Железо — это химический элемент, который в таблице Менделеева находится под номером 26. Это один из самых распространенных элементов во всей Солнечной системе. Согласно материалам исследований, в составе ядра Земли находится примерно 79−85% этого вещества. В земной коре его тоже присутствует большое количество, но оно уступает алюминию.

В чистом виде металл имеет белый цвет с чуть серебристым оттенком. Он пластичен, но имеющиеся в нем примеси могут определять его физические свойства. Реагирует на магнит.

Железо присутствует в воде. В речных водах его концентрация равна примерно 2 мг/л металла. В морской воде его содержание может быть ниже в сто или даже тысячу раз.

Оксид железа — это основная форма, добыча которой осуществляется и которая находится в природе. Оксидное железо может располагаться в самой верхней части земной коры и быть составляющей осадочных образований.

Элемент, находящийся на двадцать шестом месте в таблице Менделеева, может иметь несколько степеней окисления. Именно они определяют его геохимическую особенность нахождения в определенной среде. В ядре Земли металл присутствует в нейтральной форме.

Добыча полезных ископаемых

Руд, в которых присутствует железо, существует несколько. Однако, в качестве сырья для производства железа в промышленности используют в основном следующие:

  • магнезитовую руду;
  • гетитовую руду;
  • гематитовую руду.

А также часто встречаются такие разновидности руды:

  • леллингит;
  • сидерит;
  • марказит;
  • ильменит;
  • ярозит.

Существует еще минерал под названием мелантерит. Его используют преимущественно в фармацевтической промышленности. Из себя он представляет зелёного цвета хрупкие кристаллы, в которых присутствует стеклянный блеск. Из него производят лекарственные препараты, в составе которых имеется ферум.

Основным месторождением этого металла является Южная Америка, а именно Бразилия.

Плавление железа и необходимая температура

Точкой плавления металла называют такую минимальную температуру, при которой он переходит из твердого состояния в жидкое. При этом в объеме он практически остается неизменным.

Металл могут производить из руды различными способами, но самый основной из них — это доменный. Помимо доменного, используют еще выплавку железа при помощи обжига измельченной руды с примесью глины. Из полученной смеси формируют окатыши, которые обрабатываются в печи с последующим восстановлением водородом. Далее плавление железа осуществляется в электрической печи.

Температура плавления железа весьма высока. Для технически чистого элемента она составляет +1539 °C. В этом веществе присутствует примесь — Сера, которую можно извлечь лишь в жидком виде. Без примесей чистый материал получают при электролизе солей металла.

Классификация металлов по температуре плавления

Разные металлы могут переходить в жидкое состояние при разной температуре. Вследствие этого выделяют определённую классификацию. Их делят следующим образом:

  1. Легкоплавкие — те элементы, которые могут становиться жидкими уже при температуре ниже 600 градусов. К ним относят цинк, олово, свинец и пр. Их можно расплавить даже в домашних условиях — просто нужно разогреть при помощи плиты или паяльника. Такие виды нашли применение в технике и электронике. Они используются для соединения элементов из металла и движения электрического тока. Олово плавится при 232 градусах, а цинк — при 419 градусах.
  2. Среднеплавкие — элементы, которые начинают расплавляться при температуре от шестисот до тысячи шестисот градусов. Эти элементы используют по большей части для строительных элементов и металлоконструкций, то есть при создании арматур, плит и строительных блоков. В эту группу входят: железо, медь, алюминий. Температура плавления алюминия сравнительно низка и составляет 660 градусов. А вот железо начинает переходить в жидкое состояние лишь при температуре 1539 градусов. Это один из самых распространенных металлов, используемых в промышленности, особенно в автомобильной. Однако железо подвержено коррозии, то есть ржавчине, поэтому ему требуется специальная поверхностная обработка. Его необходимо покрывать краской или олифой, и не допускать попадание влаги.
  3. Тугоплавкие — это такие материалы, которые расплавляются и становятся жидкими при температуре выше 1600 градусов. В эту группу относят вольфрам, титан, платину, хром и т. п. Они используются в ядерной промышленности и для некоторых машинных деталей. Они могут применяться для расплавки других металлов, изготовления высоковольтных проводов или проволоки. Платину можно расплавить при 1769 градусах, а вольфрам — при 3420 °C.

Единственный элемент, который при обычных условиях находится в жидком состоянии — это ртуть. Температура его плавления составляет минус 39 градусов и его пары являются ядовитыми, поэтому его используют только в лабораториях и закрытых ёмкостях.

температура плавления, плотность и удельный объем. Физические характеристики, состав и особенности металла железа Температура кипения железного гвоздя

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути – она плавится даже при -39 °C, самая высокая у вольфрама – 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой – плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие – до 600 °C: свинец, цинк, олово;
  2. среднеплавкие – от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие – от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина – градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы – непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий – 660 °C;
  2. температура плавления меди – 1083 °C;
  3. температура плавления золота – 1063 °C;
  4. серебро – 960 °C;
  5. олово – 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец – 327 °C;
  7. температура плавления железо – 1539 °C;
  8. температура плавления стали (сплав железа и углерода) – от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) – от 1100 °C до 1300 °C;
  10. ртуть – -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл – ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия – 2519 °C , у железа – 2900 °C, у меди – 2580 °C, у ртути – 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов – у рения – 5596 °C . Наибольшая температура кипения – у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым – осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа – очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах – это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл – серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Температура плавления, наряду с плотностью, относится к физическим характеристикам металлов . Температура плавления металла – температура, при которой металл переходит из твердого состояния, в котором находится в нормальном состоянии (кроме ртути), в жидкое состояние при нагревании. При плавлении объем металла практически не изменяется, поэтому на температуру плавления нормальное атмосферное давление не влияет .

Температура плавления металлов находится в диапазоне от -39 градусов Цельсия до +3410 градусов . Для большинства металлов температура плавления высокая, однако, некоторые металлы можно расплавить в домашних условиях при нагревании на обычной горелке (олово, свинец).

Классификация металлов по температуре плавления

  1. Легкоплавкие металлы , температура плавления которых колеблется до 600 градусов Цельсия, например цинк, олово, висмут .
  2. Среднеплавкие металлы , которые плавятся при температуре от 600 до 1600 градусов Цельсия: такие как алюминий, медь, олово, железо .
  3. Тугоплавкие металлы , температура плавления которых достигает более 1600 градусов Цельсия – вольфрам, титан, хром и др.
  4. – единственный металл, находящийся при обычных условиях (нормальное атмосферное давление, средняя температура окружающей среды) в жидком состоянии. Температура плавления ртути составляет порядка -39 градусов по Цельсию.

Таблица температур плавления металлов и сплавов

Металл

Температура плавления,

градусов Цельсия

Алюминий660,4
Вольфрам3420
Дюралюмин~650
Железо1539
Золото1063
Иридий2447
Калий63,6
Кремний1415
Латунь~1000
Легкоплавкий сплав60,5
Магний650
Медь1084,5
Натрий97,8
Никель1455
Олово231,9
Платина1769,3
Ртуть–38,9
Свинец327,4
Серебро961,9
Сталь1300-1500
Цинк419,5
Чугун1100-1300

При плавлении металла для изготовления металлических изделий-отливок от температуры плавления зависит выбор оборудования, материала для формовки металла и др. Следует также помнить, что при легировании металла другими элементами температура плавления чаще всего снижается .

Интересный факт

Не стоит путать понятия “температура плавления металла” и “температура кипения металла” – для многих металлов эти характеристики существенно отличаются: так, серебро плавится при температуре 961 градус по Цельсию, а закипает только при достижении нагрева до 2180 градусов.

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в домашних условиях, разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура плавления олова составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

– первый по значимости и распространенности конструкционный материал. Известен он с глубокой древности, а свойства его таковы, что когда железо научились выплавлять в значимом количестве, металл вытеснил все остальные сплавы. Наступил век железа и, судя по , время это закончится нескоро. Данная статья расскажет вам, какова удельная плотность железа, какая у него температура плавления в чистом виде.

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

  • α-Fe – существует от нуля до +769 С. Имеет объемно-центрированную кубическую решетку и является ферромагнетиком, то есть, сохраняет намагниченность в отсутствие внешнего магнитного поля. +769 С – точки Кюри для металла;
  • от +769 до +917 С появляется β-Fe. От α-фазы она отличается лишь параметрами решетки. Практически все физические свойства при этом сохраняются за исключением магнитных: железо становится парамагнетиком, то есть, способность намагничиваться оно утрачивает и втягивается в магнитное поле. Металловедение β-фазу как отдельную модификацию не рассматривает. Поскольку переход не влияет на значимые физические характеристики;
  • в диапазоне от 917 до 1394 С существует γ-модификация, которой присуща гранецентрированная кубическая решетка;
  • при температуре выше +1394 С появляется δ-фаза, для которой характерна объемно-центрированная кубическая решетка.

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Теперь настал черед свойств металла железа.

О структуре железа рассказывает этот видеосюжет:

Свойства и характеристики металла

Железо – достаточно легкий, умеренно тугоплавкий металл, серебристо-серого цвета. Легко реагирует с разбавленными кислотами и поэтому считается элементом средней активности. На воздухе – сухом, металл постепенно покрывается пленкой оксида, которая препятствует дальнейшей реакции.

Но при самой небольшой влажности вместо пленки появляется ржавчина – рыхлая и неоднородная по составу. Ржавчина дальнейшей коррозии железа не препятствует. Однако физические свойства металла, а, главное, его сплавов с углеродом таковы, что, несмотря на низкую коррозийную стойкость, использование железа более чем оправдано.

Масса и плотность

Молекулярная масса железа составляет 55,8, что указывает на относительную легкость вещества. А какая же у железа плотность? Такой показатель определяется фазовой модификацией:

  • α-Fe – 7,87 г/куб. см при 20 С, и 7,67 г/куб. см при 600 С;
  • γ-фаза отличается еще более низкой плотностью – 7,59 г/куб см при 1000С;
  • плотность δ-фазы составляет 7,409 г/куб см.

С повышением температуры плотность железа закономерно падает.

А теперь давайте узнаем, какова температура плавления железа по Цельсию, сравнивая ее, например, с или чугуном.

Температурный диапазон

Металл относится к умеренно тугоплавким, что означает сравнительно невысокую температуру изменения агрегатного состояния:

  • температура плавления – 1539 С;
  • температура кипения – 2862 С;
  • температура Кюри, то есть, утраты способности к намагничиванию – 719 С.

Стоит иметь в виду, что когда говорят о температуре плавления или кипения, имеют дело с δ-фазой вещества.

Данное видео поведает вам о физических и химических свойствах железа:

Механические характеристики

Железо и его сплавы настолько распространены, что хотя и стали использоваться позже чем, например, и , стали своеобразными эталонами. Когда сравнивают металлы, указывают на железо: крепче, чем сталь, мягче железа в 2 раза и так далее.

Характеристики приводятся для металла, включающего малые доли примесей:

  • твердость по шкале Мооса – 4–5;
  • твердость по Бринеллю – 350–450 Мн/кв. м. Причем у химически чистого железа твердость выше – 588–686;

Показатели прочности исключительно сильно зависят от количества и характера примесей. Эта величина регламентируется ГОСТом для каждой марки сплава или чистого метала. Так, предел прочности на сжатие для нелегированной стали составляет 400–550 МПа. При закалке этой марки предел прочности при растяжении увеличивается до 700 МПа.

  • ударная вязкость металла составляет 300 Мн/кв м;
  • предел текучести –100 Мн/кв. м.

О том, что надо для определения удельной теплоемкости железа, узнаем далее.

Теплоемкость и теплопроводность

Как и всякий металл, железо проводит тепло, хотя показатели его в этой области невысоки: по теплопроводности металл уступает алюминию – в 2 раза меньше, и – в 5 раз.

Теплопроводность при 25 С составляет 74,04 вт/(м·К). Величина зависит от температуры;

  • при 100 к теплопроводность составляет 132 [Вт/(м.К)];
  • при 300 К – 80,3 [Вт/(м.К)];
  • при 400 – 69,4 [Вт/(м.К)];
  • а при 1500 – 31,8 [Вт/(м.К)].
  • Коэффициент температурного расширения при 20 С – 11,7·10-6.
  • Теплоемкость металла определяется его фазовой структурой и довольно сложно зависит от температуры. С повышением до 250 С, теплоемкость медленно увеличивается, затем резко возрастает до достижения точки Кюри, а потом начинается снижаться.
  • Удельная теплоемкость в температурном диапазоне от 0 до 1000С составляет 640,57 дж/(кг·К).

Электропроводность

Железо проводит ток, но далеко не так хорошо, как медь и серебро. Удельное электрическое сопротивление металла при нормальных условиях – 9,7·10-8 ом·м.

Поскольку железо является ферромагнетиком, его показатели в этой области более значимы:

  • магнитная индукция насыщения составляет 2,18 Тл;
  • магнитная проницаемость – 1,45.106.

Токсичность

Металл не представляет опасности для человеческого организма. стали и изготовления изделий из железа могут быть опасными, но только за счет высоких температур и тех добавок, которые используют при производстве различных сплавов. Отходы железа – металлолом, представляют опасность для окружающей среды, но вполне умеренную, поскольку металл ржавеет на воздухе.

Железо не обладает биологической инертностью, поэтому как материал для протезирования не используется. Однако в человеческом организме этот элемент играет одну из важнейших ролей: нарушение в усвоении железа или недостаточное количество последнего в рационе гарантирует в лучшем случае анемию.

Усваивается железо с большим трудом – 5–10% от всего количества, поступаемого в организм, или 10–20%, если наблюдается его недостаток.

  • Обычная суточная потребность в железе составляет 10 мг для мужчин и 20 мг для женщин.
  • Токсическая доза – 200 мг/сутки.
  • Летальная – 7–35 г. Получить такое количество железа практически невозможно, поэтому отравление железом встречается крайне редко.

Железо – металл, чьи физические характеристики, в частности, прочность, можно существенно изменить, прибегая к механической обработке или добавке очень небольшого количества легирующих элементов. Эта особенность в сочетании с доступностью и легкостью добычи металла делает железо самым востребованным конструкционным материалом.

Еще больше о свойствах железа расскажет специалистка в видео ниже:

В таблице представлена температура плавления металлов t пл , их температура кипения t к при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.

Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, золото Au, барий Ba, берилий Be, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, стронций Sr, тантал Ta, технеций Tc, торий Th, таллий Tl, уран U, ванадий V, цинк Zn, цирконий Zr.

По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.

Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.

Приведем примеры температуры плавления металлов , широко применяемых в промышленности и в быту:

  • температура плавления алюминия 660,32 °С;
  • температура плавления меди 1084,62 °С;
  • температура плавления свинца 327,46 °С;
  • температура плавления золота 1064,18 °С;
  • температура плавления олова 231,93 °С;
  • температура плавления серебра 961,78 °С;
  • температура плавления ртути -38,83°С.

Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.

В таблице находится в диапазоне от 0,534 до 22,59 , то есть самым легким металлом является , а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем и даже плутония при комнатной температуре.

В таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.

Температура плавления стали

Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.

Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.

Температура плавления стали — таблица
Стальt пл, °ССтальt пл, °С
Стали для отливок Х28Л и Х34Л1350Коррозионно-стойкая жаропрочная 12Х18Н9Т1425
Сталь конструкционная 12Х18Н10Т1400Жаропрочная высоколегированная 20Х23Н131440
Жаропрочная высоколегированная 20Х20Н14С21400Жаропрочная высоколегированная 40Х10С2М1480
Жаропрочная высоколегированная 20Х25Н20С21400Сталь коррозионно-стойкая Х25С3Н (ЭИ261)1480
Сталь конструкционная 12Х18Н101410Жаропрочная высоколегированная 40Х9С2 (ЭСХ8)1480
Коррозионно-стойкая жаропрочная 12Х18Н91410Коррозионно-стойкие обыкновенные 95Х18…15Х281500
Сталь жаропрочная Х20Н351410Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439)1500
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417)1415Углеродистые стали1535

Источники:

  1. Волков А. И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
  2. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. – М.: Энергоатомиздат, 1991. – 1232 с.

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным – физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании – при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне :

  1. Солидус – линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус – окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на :

  • Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения – точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Прочность металлов

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность – возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа – Мега Паскалях.

Существуют следующие группы прочности металлов :

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.

Таблица прочности металлов

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 – 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после ).

Смотрите так же:

СТРУКТУРА

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а 0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a 0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С -а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С – аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) – д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа – это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая – 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа – хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА

Железо – один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

В земной коре железо распространено достаточно широко – на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало – в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10 −5 -1·10 −8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства – восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe 1-x S) и когенит (Fe 3 C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO) n . В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Железо – один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов – важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов – например, никелевых.
Магнитная окись железа (магнетит) – важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.57

Strunz (8-ое издание)1/A.07-10
Nickel-Strunz (10-ое издание)1.AE.05
Dana (7-ое издание)1.1.17.1

Бронза температура плавления – Справочник химика 21

    Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал – бронзу. Медные предметы были найдены [c.446]
    Сплавы на основе меди. Бронза — под этим названием выпускаются сплавы, в состав которых входят медь (до 90%), олово (до 10%), свинец (до 1%). При сравнительно низкой температуре плавления (900—1300 ) бронзы обладают ценными механическими свойствами. [c.321]

    Магний сильно уступает бериллию как по прочности, так и по температуре плавления (650°С). Он химически более активен, чем бериллий, и легко поддается коррозии. Но магний более доступен и широко применяется в самолетостроении для внутрифюзеляжных конструкций. Магний употребляется как чистый, так и в сплавах. Сплав (МА8), содержащий 1,5—2,5% Мп и 0,15—0,25% Се, обладает высокими механическими свойствами, которые могут быть еще улучшены механической обработкой (прокат, деформирование). В табл. 61 приведены механические свойства чистого магния и этого сплава. Там же приведены свойства чистой меди и бериллиевой бронзы (БрБ-2,5). [c.311]

    Бронза. Бронза—сплав, известный еще в древности. Бронза широко применяется вследствие ее сравнительно низкой температуры плавления (900—1000° С) и высоких механических свойств. Из бронзы до открытия железа изготовляли различные орудия, оружие и предметы домашнего обихода. [c.314]

    Сплавы меди с оловом (алюминием, кремнием и некоторыми другими металлами) называются бронзами. Их температура плавления значительно ниже, чем у меди. Оловянистые бронзы часто имеют сложный химический состав, особенно в археологических предметах. Бронза -один из важнейших материалов, открытых человеком в древнейшие времена. [c.132]

    Печи для плавки сплавов на основе меди. Канальные индукционные печи для плавки и подогрева меди и спла ВОВ на медной основе (латуни, бронзы, томпака, мель хиора и т. п.) изготавливаются как периодического, так и непрерывного действия (миксеры). Корпус печи кон струируется прямоугольной или цилиндрической формы В последнее время применяют печи барабанного типа со сменными индукционными единицами. На рис. 3.10 при ведена конструкция печи ИЛК-16, имеющей цилиндри ческую ванну и щесть индукционных отъемных единиц Футеровка выполняется из шамотной набивной массы Теплоизоляцией служит диатомитовый кирпич. При плавке латуней и бронз температура разлива составляет 1100—1200° С. Большой перегрев металла свыше указанного значения может вызвать так называемую цинковую пульсацию, которая возникает при парообразовании цинка, входящего в состав расплава (цинк кипит при 916° С, тогда как температура плавления меди 1083° С). Цинковая пульсация выражается в кратковременном прекращении тока в каналах печи и затем его восстановлении, так как парообразование при исчезновении тока прекращается. Это приводит к характерному качанию стрелок измерительных приборов. [c.124]


    Олово — серебристо-белый, мягкий металл с удельным весом 7,3. Температура плавления 231,9° С. При сгибании оловянных палочек раздается характерный треск, возникающий вследствие трения друг о друга кристаллов металлического олова. Олово легко прокатывается в тонкие листы, называемые оловянной фольгой, или станиолем. На воздухе не окисляется, не взаимодействует с водой и трудно поддается действию разбавленных кислот. Это позволяет применять олово для покрытия железа, лужения бытовой и технической посуды, изготовления белой жести (луженое железо) и фольги. Большое количество олова расходуется для получения ценных сплавов бронзы, баббитов, припоев и др. [c.276]

    Металлическое олово идет на изготовление различных технических сплавов, таких, как бронзы и сплавы с низкой температурой плавления (сплав Вуда и др.). Из олова, сурьмы и меди делают подшипники. Оно входит в состав типографских сплавов. Сплавы олова с золотом и серебром применяются в зубоврачебной технике. Из олова делают также сплавы для пайки, которые легко плавятся и трудно окисляются, например припой третник ( 5.4). [c.191]

    Медь, серебро золото — слабые восстановители, окисляются с трудом. Их температура плавления порядка 1000° С (см. табл. 33), температура кипения высокая, большая плотность, кристаллическая решетка типа К-12. Опи легко куются и прокатываются, очень тепло-и электропроводны. В силу большой химической устойчивости золото и серебро находятся в природе в самородном состоянии. Эти металлы и их сплавы известны с древнейших времен, издавна применяются в различных денежных системах. Медь и ее сплавы (бронза, латунь) использовались для изготовления оружия, украшений, домашней утвари. [c.442]

    Итак, дуговые печи косвенного действия— небольшие (до 500—600 ква), обычно однофазные печи, служащие для плавления металлов с температурой плавления не выше 1 300—1400° С, в основном печи для плавления цветных металлов. В ннх переплавляют как с целью рафинировки, так и для фасонного литья медь и ее сплавы — бронзы, латуни и т. п. и другие цветные [c.5]

    Висмутовые припои имеют низкие температуры плавления, но плохо смачивают поверхность большинства металлов, хрупки и имеют низкую пр(] чность паяных соединений. Особенностью припоев (так же, как и сплавов) является увеличение объема при кристаллизации, что может оказаться полезным при пайке изделий из меди и бронзы сложной конфигурации. [c.139]

    Индиевые припои наряду с низкой температурой плавления обладают хорошей смачивающей способностью по отношению к металлам, керамике, стеклу. Припои на основе индия обладают высокой коррозионной стойкостью. Некоторые низкоплавкие сплавы индия могут быть использованы при реставрации серебряного слоя зеркал, участков потертости и разрушений посеребренных изделий из бронзы. [c.139]

    Бронза — сплав меди с оловом. Температура плавления оловянистых бронз 900—950° С. Имеются также безоловянистые бронзы, представляющие собой сплавы меди с алюминием, с марганцем или с другими элементами. Температура плавления безоловянистых бронз 950—10802 С. [c.37]

    Влияние цинка сказывается в улучшении литейных свойств (понижение температуры плавления и улучшение жидкотекучести). Бронзы с примесью цинка обладают по.вышенной хрупкостью. При больших нагрузках на вкладыш антифрикционные свойства оловянистой бронзы с добавкой цинка несколько понижаются трущаяся поверхность вкладыша подвергается различным напряжениям наклепу, растяжению, сжатию, вследствие чего поверхностный слой начинает разрушаться, от него отрываются тонкие пластинки металла в виде чешуек. [c.533]

    Физико-химические свойства оловянистых бронз следующие температура плавления 1000—1050 С Вв 15—25 /сГ/жд2 б от 3% (для литых в кокиль) и до 25% (для литых в песок) твердость 60—120 НВ усадка линейная 1.2—1,5%. [c.535]

    Реакционную смесь выливают в охлажденный до 0° раствор 200 г (1,2 мол.) иодистого калия в 200 мл воды. Через несколько минут добавляют 1 г медной бронзы (примечание 2) при непрерывном перемешивании и раствор медленно нагревают на водяной бане. Температуру поддерживают при 75—80° до тех пор, пока не прекратится выделение азота. Иодфенол при этом выделяется в виде тяжелого темноокрашенного масла. По охлаждении до комнатной температуры реакционную смесь извлекают три раза порциями по 165 мл хлороформа и соединенные вытяжки промывают разбавленным раствором тиосульфата. Растворитель отгоняют на водяной бане, а остаток перегоняют в вакууме, причем п-иодфе-нол собирают при 138—140°/5 мм. Однократная перекристаллизация из 2 л нефтяной фракции (т. кип. 90—110°) дает бесцветный продукт с резкой температурой плавления 94°. Выход продукта после перекристаллизации 153—159 г (69—72% теоретич.). [c.289]

    Благодаря большой ковкости и пластичности, низкой температуре плавления, малой твердости, невысокой химической активности (устойчивости к атмосферной коррозии) и очень незначительной токсичности металлическое олово находит широкое применение. Его применяют в производстве станиоля (для упаковки пиш евых продуктов, фармацевтических препаратов и т. д.), для изготовления труб, коробок (для фармацевтических препаратов), змеевиков (применяемых во многих дистилляционных аппаратах), для лужения жести или изделий из железа и латуни и т. д. Из олова делают также сплавы для пайки, для подшипников, для заш,иты от коррозии (они легкоплавки и трудно окисляются). Олово входит в состав типографских сплавов, бронз и некоторых видов латуни. Его применяют также в качестве восстановителя (в присутствии кислот) или катализатора в процессе хлорирования многих веществ. [c.405]


    Дисперсноупрочненные материалы — более широкий класс композитов, чем металлы, упрочненные волокнами. Напомним, что дисперсноупрочненными называют металлические материалы, упрочненные дисперсными частицами тугоплавких соединений. Отличительной особенностью их является наличие высокодисперсных, равномерно распределенных на заданном расстоянии друг от друга частиц фазы упрочнителя, не взаимодействующ,их активно с матрицей, не растворяюш,ихся в ней вплоть до температуры плавления и искусственно вводимых в сплав на одной из технологических стадий его приготовления. Первый дисперсноупрочнен-ный материал (вольфрам, упрочненный ТЬОз) был создан свыше 60 лет назад. Л1аксимальный эффект упрочнения достигается при достаточно малом размере частиц (0,01—0,06 мкм), их равномерном распределении и оптимальном расстоянии между ними (0,1—0,5 мкм). Обш,ее количество упрочняющей фазы обычно не превышает 5—107о. В отличие от дисперсионно-твердеющих сплавов, у которых упрочняющая дисперсная фаза выделяется из пересыщенного твердого раствора (дюралюминий, бериллиевые бронзы, железо-никелево-хромовые сплавы), в дисперсноупрочнен-ных композиционных материалах эта фаза вводится искусственно. Наиболее известные дисперсноупрочненные композиционные материалы — ТД-никель (N1-1-0,2% ТЬОз), ТД-нихром (N 4-20%, Сг + 2% ТЬОз), В9У-1 (N14-2,5% ТЬОг), [c.155]

    В фазе состава Кад УвО] , отвечающей нижнему пределу интервала составов, некоторые туннели могут содержать в себе упорядоченные ряды атомов, хотя другие из них остаются пустыми. Озеров предположил [347], что в этом соединении, как и в изоморфной бронзе К2 д Уб015 [349], щелочной металл находится в металлическом состоянии. Доказательства его основывались на данных по измерению электрического сопротивления при различных темпе ратурах и подкреплялись выдвинутым автором предположением о (хотя и маловероятном) пере-расиределении атомов щелочных металлов. Ввиду возможности появления самых различных изменений, вплоть до образования искаженной структуры, в результате нагревания до температуры плавления, эта модель маловероятна. Получен также медный аналог этого соединения Сцз.вУвОхб [348]. [c.154]

    Наряду с покрытиями чистыми металлами уже давно была показана возможность осаждения разнообразных бинарных и более сложных сплавов. Ряд давно известных сплавов в связи с новыми требованиями промышленности получил широкое применение. Так, например, латунные покрытия применяются для улучшения сцепления резины с металлами, а покрытия из малооловянистой бронзы хорошо защищают сталь от воздействия горячей воды. Покрытия бронзой с большим содержанием олова (40—50%) хорошо полируются, отличаются высоким блеском и твердостью, коррозионной стойкостью, немагнитны и могут в ряде случаев успешно конкурировать с никелевыми и хромовыми покрытиями. Сплавы олова и свинца стали широко применяться для покрытия контактов, подлежащих пайке. Такие сплавы имеют более низкую температуру плавления по сравнению с чистым оловом и значительно дешевле. [c.3]

    Олово широко применяется для изготовления различных технических сплавов, например, бронзы, а также сплавов с очень низкой температурой плавления. Так, например, сплав Вуда, состоящий из 7 частей висмута, 4 частей свинца, 2 частей олова и 2 частей кадмия, плавится при – -65° сплав Розе состоит из 2 частей висмута, 1 части свинца и 1 части олова, он плавится при 70° и т. д. [c.359]

    Пример легкого и вместе с тем твердого сплава — электрон. Он содержит магний, алюминий, марганец и цинк. Сплав победит, содержащий углерод, вольфрам и кобальт — один из самых твердых сплавов, известных в настоящее время. По твердости он приближается к алмазу. Сплав Вуда, содержащий висмут, кадмий и олово, имеет сравнительно низкую температуру плавления (около 70°С), поэтому его применяют в электротехнике для изготовления легкоплавящихся предохранителей. Давно известными сплавами являются бронзы разного состава, содержащие главным образом медь и олово. [c.195]

    Обработка поверхности покрытия, нанесенного с целью восстановления изношенных деталей, имеющих форму тел вращения, производится обычными металлорежущими станками. Практически установлено, что при каждом наслоении при распылении мягких металлов (например свинца, кадмия), образуется покрытие толщиной около 0,08 мм, а при распылении металлов, имеющих температуру плавления от 500 до 1100° (например меди, бронзы, и др.) 0,04 мм. При распылении тугоплавких металлов (как монель-металл, нержавеющая сталь и т. п.) образуется слой от 0,025 до 0,03 мм при каждом наслоении. Расход металла на покрытие зависит как от распыляемого металла, гак и типа распылителя (табл. 45). Требуемая толщина покрытия определяется в основном его назначением. Так, в случае свинцевания изделий, предназначаемых для службы в морской воде, толщина покрытия, полученного металллизацией, должна быть [c.208]

    Едва ли можно полагать, чтобы медь сильно корродировала под воздействием паров воды, что и было экспериментально подтверждено опытами при температурах, близких к ее температуре плавления [856]. Скорость окисления меди при 800° С в атмосфере кислорода с примесью паров воды не зависит от их содержания в газовой среде, если оно не превышает 3,9% [210], хотя, как сообщалось [165], скорость окисления во влажном воздухе была меньше, чем в сухом. Подобным же образом слабо тгяменя.пясь и скорость окисления при 400° С многочисленных медных сплавов с переходом от сухого воздуха к атмосфере, содержавшей 10% влаги. Обычно во влажном воздухе корродирование несколько ослабляется, хотя для оловянистой бронзы, содержавшей 2% So, наблюдалась противоположная картина [524]. [c.378]

    Бронзой можно паять также изделия пз низкоуглеродистой стали при условии предварительной сборки деталей пайка производится в печи столь же успешно, как и водородо-кислороднымп или ацетилено-воздушными горелками. При пайке ацетилено-кислородным пламенем во избежание расплавления основного металла не следует нагревать его внутренним ядром пламени, это допускается только при предварительном подогреве. В качестве припоя можно применять медно-цинковый сплав (50 1% каждого металла) [39] с температурой плавления 880° С в состав сплава входят также 8п, 8Ь, Аз п В1 — в количествах менее 0,05% Ге менее 0,15% и РЬ менее 0,5%, прп пахше применяется флюс, содержащий борную кислоту. [c.589]

    Как раскисленную, так и технически чистую медь можно сварпвать бронзой, применяя ацетилено-кислородное пламя (основной метал.ч при этом не расплавляется). Вначале на изделие наносится флюс и нагретые кромки смачиваются каплей расплавленного присадочного металла, имеющего температуру плав.иения 875° С (состав —60 40 Си — 2п, 0,5% 81 и 0,5% 8п). Затем производптся наплавка присадки. Иногда в качестве присадочного металла применяется латунь, содержащая 0,05—0,25% Мп и 0,1—0,5% Ге (температура плавления 895° С). [c.593]

    Пайка меди твердым припоем производится также ацетилено-кислородным пламенем — нормальным или с небольшим избытком кислорода (во избежание водородной болезни меди) ириной и способ сварки те же, что и прп твердой пайке малоуглеродистой стали. В качестве присадки можно применять фосфористую бронзу (например, 8 92) с температурой плавления 707—800° С, а также серебряные припои [39, 44], например Ag 61, Си 29, 2п 10% (тмшература плавления 690—735° С) Ag 43, Си 37, гн 20% (температура плавления 700—775° С) Ag 50, Си 15, 7н 16, С(1 19% (температура плавления 620—640° С) и т. д. [c.593]

    Применение новых высокоактивных каталитических систем позволяет получать полиэтилен низкого давления как высокой плотности с молекулярной массой до 700000, так и сверхвысокомолекулярного полиэтилена (СВМПЭ) с молекулярной массой от 1 до 4 млн. Такой полиэтилен резко отличается от обычного ПЭНД. Он обладает более высокими физико-механическими показателями, износостойкостью, стойкостью к растрескиванию и ударным нагрузкам, морозостойкостью, низким коэффициентом трения. При нагревании СВМПЭ выше температуры плавления, он, в отличие от термопластов, не переходит в вязкотекучее состояние, а только в высокоэластичное. В связи с этим его трудно формовать и перерабатывают его главным образом, горячим прессованием. СВМПЭ используют в тех областях, где обычные марки ПЭНД и других термопластов не выдерживают жестких условий эксплуатации. Он может заменять сталь, бронзу и другие материалы, а также фторопласт. Его используют для изготовления деталей машин во многих областях техники. [c.565]

    Флюс 18-В. Для пайки нержавеющих сталей, бериллие-вой бронзы, сплавов типа нихром, никеля и его сплавов серебряными припоями с температурой плавления до 850° С. [c.129]

    В корпус из углеродистой стали соответствующего размера насыпают бронзовую стружку и закрывают его диском (рис. 2-14). Затем закрепляют его в трехкулачковом патроне токарного станка и включают в работу с числом оборотов 380 в минуту. Газовой горелкой подогревают корпус. Бронза, разгоретая до температуры плавления, под влиянием центробежной силы прилегает 92 [c.92]

    Моногидрохлорид гидразония Ы2Н4-НС1 лучше растворим в воде (179 г/100 г воды при 25°С),чем дигидрохлорид, температура плавления — 90°С. Может быть получен при нагревании дигидрохлорида гидразония в течение длительного времени при температуре ниже его температуры плавления. Моногидрохлорид гидразония входит в состав флюсов для пайки металлов. Эти флюсы обеспечивают высокую прочность и малое коррозионное воздействие и нашли применение для пайки латуни и бронзы в производстве теплообменников и автомобильных радиаторов. [c.96]

    Сода (МагСОз 1ОН2О). Температура плавления 851°С. При нагреве теряет кристаллизационную воду и рассыпается из крупных кристаллов в порошок, называемый кальцинированной содой. Последняя плавится также при 851° С и применяется в смеси с бурой для покрывных флюсов при плавке свинцовистых бронз. [c.636]

    Следует отметить, что русские мастера не только нашли состав сплава (употреблялся преимущественно состав из 78 частей меди и 22 частей олова с температурой плавления около 880°), называемого колокольной бронзой, но и знали, что существует связь между химическим составом сплава и звуком, который он издает. Уже в XIV—XVII вв. русские мастера при всей сложности и опасности литейного производства умели отливать многопудовые колокола заданного тона [1]. [c.13]


T плавления металлов. Температура плавления металлов

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в , разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным – физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании – при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне:

  1. Солидус – линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус – окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на:

  • Легкоплавкие, до 600 °C. К ним относятся , цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения – точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

НазваниеT пл, °C
Алюминий660,4
Медь1084,5
Олово231,9
Цинк419,5
Вольфрам3420
Никель1455
Серебро960
Золото1064,4
Платина1768
Титан1668
Дюралюминий650
Углеродистая сталь1100−1500
1110−1400
Железо1539
Ртуть-38,9
Мельхиор1170
Цирконий3530
Кремний1414
Нихром1400
Висмут271,4
Германий938,2
Жесть1300−1500
Бронза930−1140
Кобальт1494
Калий63
Натрий93,8
Латунь1000
Магний650
Марганец1246
Хром2130
Молибден2890
Свинец327,4
Бериллий1287
Победит3150
Фехраль1460
Сурьма630,6
карбид титана3150
карбид циркония3530
Галлий29,76

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность – возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа – Мега Паскалях.

Существуют следующие группы прочности металлов:

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и .

Таблица прочности металлов

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 – 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Вконтакте

Наиболее низкая температура плавления у ртути – она плавится даже при -39 °C, самая высокая у вольфрама – 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой – плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие – до 600 °C: свинец, цинк, олово;
  2. среднеплавкие – от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие – от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина – градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы – непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий – 660 °C;
  2. температура плавления меди – 1083 °C;
  3. температура плавления золота – 1063 °C;
  4. серебро – 960 °C;
  5. олово – 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец – 327 °C;
  7. температура плавления железо – 1539 °C;
  8. температура плавления стали (сплав железа и углерода) – от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) – от 1100 °C до 1300 °C;
  10. ртуть – -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл – ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия – 2519 °C , у железа – 2900 °C, у меди – 2580 °C, у ртути – 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов – у рения – 5596 °C . Наибольшая температура кипения – у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым – осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа – очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах – это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл – серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

– первый по значимости и распространенности конструкционный материал. Известен он с глубокой древности, а свойства его таковы, что когда железо научились выплавлять в значимом количестве, металл вытеснил все остальные сплавы. Наступил век железа и, судя по , время это закончится нескоро. Данная статья расскажет вам, какова удельная плотность железа, какая у него температура плавления в чистом виде.

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

  • α-Fe – существует от нуля до +769 С. Имеет объемно-центрированную кубическую решетку и является ферромагнетиком, то есть, сохраняет намагниченность в отсутствие внешнего магнитного поля. +769 С – точки Кюри для металла;
  • от +769 до +917 С появляется β-Fe. От α-фазы она отличается лишь параметрами решетки. Практически все физические свойства при этом сохраняются за исключением магнитных: железо становится парамагнетиком, то есть, способность намагничиваться оно утрачивает и втягивается в магнитное поле. Металловедение β-фазу как отдельную модификацию не рассматривает. Поскольку переход не влияет на значимые физические характеристики;
  • в диапазоне от 917 до 1394 С существует γ-модификация, которой присуща гранецентрированная кубическая решетка;
  • при температуре выше +1394 С появляется δ-фаза, для которой характерна объемно-центрированная кубическая решетка.

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Теперь настал черед свойств металла железа.

О структуре железа рассказывает этот видеосюжет:

Свойства и характеристики металла

Железо – достаточно легкий, умеренно тугоплавкий металл, серебристо-серого цвета. Легко реагирует с разбавленными кислотами и поэтому считается элементом средней активности. На воздухе – сухом, металл постепенно покрывается пленкой оксида, которая препятствует дальнейшей реакции.

Но при самой небольшой влажности вместо пленки появляется ржавчина – рыхлая и неоднородная по составу. Ржавчина дальнейшей коррозии железа не препятствует. Однако физические свойства металла, а, главное, его сплавов с углеродом таковы, что, несмотря на низкую коррозийную стойкость, использование железа более чем оправдано.

Масса и плотность

Молекулярная масса железа составляет 55,8, что указывает на относительную легкость вещества. А какая же у железа плотность? Такой показатель определяется фазовой модификацией:

  • α-Fe – 7,87 г/куб. см при 20 С, и 7,67 г/куб. см при 600 С;
  • γ-фаза отличается еще более низкой плотностью – 7,59 г/куб см при 1000С;
  • плотность δ-фазы составляет 7,409 г/куб см.

С повышением температуры плотность железа закономерно падает.

А теперь давайте узнаем, какова температура плавления железа по Цельсию, сравнивая ее, например, с или чугуном.

Температурный диапазон

Металл относится к умеренно тугоплавким, что означает сравнительно невысокую температуру изменения агрегатного состояния:

  • температура плавления – 1539 С;
  • температура кипения – 2862 С;
  • температура Кюри, то есть, утраты способности к намагничиванию – 719 С.

Стоит иметь в виду, что когда говорят о температуре плавления или кипения, имеют дело с δ-фазой вещества.

Данное видео поведает вам о физических и химических свойствах железа:

Механические характеристики

Железо и его сплавы настолько распространены, что хотя и стали использоваться позже чем, например, и , стали своеобразными эталонами. Когда сравнивают металлы, указывают на железо: крепче, чем сталь, мягче железа в 2 раза и так далее.

Характеристики приводятся для металла, включающего малые доли примесей:

  • твердость по шкале Мооса – 4–5;
  • твердость по Бринеллю – 350–450 Мн/кв. м. Причем у химически чистого железа твердость выше – 588–686;

Показатели прочности исключительно сильно зависят от количества и характера примесей. Эта величина регламентируется ГОСТом для каждой марки сплава или чистого метала. Так, предел прочности на сжатие для нелегированной стали составляет 400–550 МПа. При закалке этой марки предел прочности при растяжении увеличивается до 700 МПа.

  • ударная вязкость металла составляет 300 Мн/кв м;
  • предел текучести –100 Мн/кв. м.

О том, что надо для определения удельной теплоемкости железа, узнаем далее.

Теплоемкость и теплопроводность

Как и всякий металл, железо проводит тепло, хотя показатели его в этой области невысоки: по теплопроводности металл уступает алюминию – в 2 раза меньше, и – в 5 раз.

Теплопроводность при 25 С составляет 74,04 вт/(м·К). Величина зависит от температуры;

  • при 100 к теплопроводность составляет 132 [Вт/(м.К)];
  • при 300 К – 80,3 [Вт/(м.К)];
  • при 400 – 69,4 [Вт/(м.К)];
  • а при 1500 – 31,8 [Вт/(м.К)].
  • Коэффициент температурного расширения при 20 С – 11,7·10-6.
  • Теплоемкость металла определяется его фазовой структурой и довольно сложно зависит от температуры. С повышением до 250 С, теплоемкость медленно увеличивается, затем резко возрастает до достижения точки Кюри, а потом начинается снижаться.
  • Удельная теплоемкость в температурном диапазоне от 0 до 1000С составляет 640,57 дж/(кг·К).

Электропроводность

Железо проводит ток, но далеко не так хорошо, как медь и серебро. Удельное электрическое сопротивление металла при нормальных условиях – 9,7·10-8 ом·м.

Поскольку железо является ферромагнетиком, его показатели в этой области более значимы:

  • магнитная индукция насыщения составляет 2,18 Тл;
  • магнитная проницаемость – 1,45.106.

Токсичность

Металл не представляет опасности для человеческого организма. стали и изготовления изделий из железа могут быть опасными, но только за счет высоких температур и тех добавок, которые используют при производстве различных сплавов. Отходы железа – металлолом, представляют опасность для окружающей среды, но вполне умеренную, поскольку металл ржавеет на воздухе.

Железо не обладает биологической инертностью, поэтому как материал для протезирования не используется. Однако в человеческом организме этот элемент играет одну из важнейших ролей: нарушение в усвоении железа или недостаточное количество последнего в рационе гарантирует в лучшем случае анемию.

Усваивается железо с большим трудом – 5–10% от всего количества, поступаемого в организм, или 10–20%, если наблюдается его недостаток.

  • Обычная суточная потребность в железе составляет 10 мг для мужчин и 20 мг для женщин.
  • Токсическая доза – 200 мг/сутки.
  • Летальная – 7–35 г. Получить такое количество железа практически невозможно, поэтому отравление железом встречается крайне редко.

Железо – металл, чьи физические характеристики, в частности, прочность, можно существенно изменить, прибегая к механической обработке или добавке очень небольшого количества легирующих элементов. Эта особенность в сочетании с доступностью и легкостью добычи металла делает железо самым востребованным конструкционным материалом.

Еще больше о свойствах железа расскажет специалистка в видео ниже:

Почти все металлы при нормальных условиях представляют собой твердые вещества. Но при определенных температурах они могут изменять свое агрегатное состояние и становиться жидкими. Давайте узнаем, какая температура плавления металла самая высокая? Какая самая низкая?

Температура плавления металлов

Большая часть элементов периодической таблицы относится к металлам. В настоящее время их насчитывается примерно 96. Всем им необходимы разные условия, чтобы превратиться в жидкость.

Порог нагревания твердых кристаллических веществ, превысив который они становятся жидкими, называется температурой плавления. У металлов она колеблется в пределах нескольких тысяч градусов. Многие из них переходят в жидкость при относительно большом нагревании. Благодаря этому они являются распространенным материалом для производства кастрюль, сковородок и других кухонных приборов.

Средние температуры плавления имеют серебро (962 °С), алюминий (660,32 °С), золото (1064,18 °С), никель (1455 °С), платина (1772 °С) и т.д. Выделяют также группу тугоплавких и легкоплавких металлов. Первым, чтобы превратиться в жидкость, нужно больше 2000 градусов Цельсия, вторым – меньше 500 градусов.

К легкоплавким металлам обычно относят олово (232 °C), цинк (419 °C), свинец (327 °C). Однако у некоторых из них температуры могут быть еще ниже. Например, франций и галлий плавятся уже в руке, а цезий можно греть только в ампуле, ведь от кислорода он воспламеняется.

Самые низкие и высокие температуры плавления металлов представлены в таблице:

Вольфрам

Самая высокая температура плавления – у металла вольфрама. Выше него по этому показателю стоит только неметалл углерод. Вольфрам представляет собой светло-серое блестящее вещество, очень плотное и тяжелое. Он кипит при 5555 °C, что почти приравнивается к температуре фотосферы Солнца.

При комнатных условиях он слабо реагирует с кислородом и не подвергается коррозии. Несмотря на свою тугоплавкость, он довольно пластичен и поддается ковке уже при нагревании до 1600 °C. Эти свойства вольфрама используют для нитей накаливания в лампах и кинескопах электродов для сварки. Большую часть добытого металла сплавляют со сталью, чтобы повысить ее прочность и твердость.

Широкое применение вольфрам имеет в военной сфере и технике. Он незаменим для изготовления боеприпасов, брони, двигателей и наиболее важных частей военного транспорта и самолетов. Из него также делают хирургические инструменты, ящики для хранения радиоактивных веществ.

Ртуть

Ртуть – единственный металл, температура плавления которого имеет минусовое значение. К тому же это один из двух химических элементов, простые вещества которых при нормальных условиях, существуют в виде жидкостей. Интересно, что кипит металл при нагревании до 356,73 °C, а это намного выше температуры его плавления.

Имеет серебристо-белый цвет и ярко выраженный блеск. Она испаряется уже при комнатных условиях, конденсируясь в небольшие шарики. Металл очень токсичен. Он способен накапливается во внутренних органах человека, вызывая болезни головного мозга, селезенки, почек и печени.

Ртуть – один из семи первых металлов, о которых узнал человек. В Средние века она считалась главным алхимическим элементом. Несмотря на ядовитость, когда-то ее применяли в медицине в составе зубных пломб, а также как лекарство от сифилиса. Сейчас ртуть почти полностью исключили из медицинских препаратов, но широко используют ее в измерительных приборах (барометрах, манометрах), для изготовления ламп, переключателей, дверных звонков.

Сплавы

Чтобы изменить свойства того или иного металла, его сплавляют с другими веществами. Так, он может не только приобрести большую плотность, прочность, но и снизить или повысить температуру плавления.

Сплав может состоять из двух или больше химических элементов, но хотя бы один из них должен быть металлом. Такие «смеси» очень часто используют в промышленности, ведь они позволяют получить именно те качества материалов, которые необходимы.

Температура плавления металлов и сплавов зависит от чистоты первых, а также от пропорций и состава вторых. Для получения легкоплавких сплавов чаще всего используют свинец, ртуть, таллий, олово, кадмий, индий. Те, в составе которых находится ртуть, называются амальгамами. Соединение натрия, калия и цезия в соотношении 12%/47%/41% становится жидкостью уже при минус 78 °C , амальгама ртути и таллия – при минус 61°C. Самым тугоплавким материалом является сплав тантала и карбидов гафния в пропорциях 1:1 с температурой плавления 4115 °C.

ФИЗИЧЕСКИЕ СВОЙСТВА МАТЕРИАЛОВ

В зубопротезной технике приходится сталкиваться со следующими физическими свойствами материалов: цветом, удельным весом, температурой плавления, температурой кипения, электропроводностью, усадкой при затвердевании, теплоемкостью, теплопроводностью.

Цве1 материала. Цветом материала называется свойство отражать свет со своей поверхности. Характерным признаком при определении металла является металлический блеск. По способности создавать различные оттенки отличают один металл от другого. Цвет химически чистого металла всегда постоянный. Цвет стоматологических пластических материалов зависит от введения в их состав различных красителей.

Большинство металлов, кроме золота и меди, имеет белозато-серый цвет с различными оттенками, золото — соломенно-желтый цвет, медь—красновато-коричневый цвет. При составлении сплавов из металлов цвет сплава приобретает отличительные свойства в зависимости от пропорции введения в него того или иного металла. В зубопротезной технике имеет большое значение умение составить сплав нужного цвета. Пластмассы для базисов протезов выпускают розового цвета, а искусственные зубы из пластмассы — с оттенками естественных зубов.

При изготовлении протезов из золота припой для спаивания деталей протеза должен подходить под цвег коронок и искусственных металлических зубов, иначе он будет выделяться на фоне протеза.

Для создания нужного цвета сплава золота следует помнить, что при добавлении меди сплав принимает красноватый оттенок, а при добавлении серебра становится красновато-зеленоватым с соломенным оттенком.

В медицинской практике для изготовления инструментов подбирают металлы такого цвета, чтобы их поверхность была блестящей, белой, отражающей чистоту инструмента.

Все металлы от других материалов отличаются своим специфическим металлическим блеском. В производстве условно принято считать железо и его сплавы черными металлами, остальные металлы — цветными.

Категория цвета в стоматологии имеет косметическое значение, поэтому наиболее удовлетворительными цветами материалов должны быть такие, которые соответствовали бы окраске органов полости рта и окружающих их тканей.

Удельный вес. Для определения понятия об удельном весе вещества необходимо знать о плотности вещеетва. Плотностью вещества называется количество вещества в единице объема — масса 1 см

данного тела, выраженная в граммах.

Существует прямо пропорциональная зависимость между массой и плотностью; чем больше плотность, тем больше масса вещества. Плотность у различных веществ разная. Например, плотность воды при температуре 4° равна 1 г/см

, плотность платины — 21,5 г/см

, золота — 19,32 г/см

Исходя из плотности вещества, можно всегда найти удельный вес. Удельным весом вещества называется вес вещества, содержащегося в единице объема. Удельный вес является относительной величиной.

Чтобы определить удельный вес вещества (d), следует плотность исследуемого вещества (D) умножить на ускорение воды свободного падения (g) по формуле: d = Dg. Для удобства вычисления значения плотности вещества его сравнивают с удельным весом воды при тем-.

10,5.

пературе 4°С. Например, удельный вес серебра j~=10,5,.

19 32.

удельный вес золота —`•— =Л9,32 г/см

Все вещества имеют определенный удельный вес. По удельному весу можно определить вид материала, судить о его некоторых качествах применительно к зубному протезированию. Для определения удельного веса металла или другого какого-либо вещества или материала используется следующий способ. Исследуемое тело взвешивают на точных аналитических весах и вычисляют его объем: а) для тел правильной геометрической формы по общеизвестным формулам, например V куба = а

; б) для тел неправильной геометрической формы— гидростатическим методом, основанным на законе Архимеда. Сущность метода: по количеству вытесненной воды в мерном сосуде определяют объем. Вес, деленный на объем, является показателем плотности вещества. Плотность делят на единицу и получают удельный вес.

В зубопротезной технике по удельному весу некоторые сплавы золота можно отличить от чистого золота, платину — от серебра.

Колебание удельного веса металлов довольно большое, например, у алюминия 2,7, у железа 7,86, у серебра 10,5.

При литье деталей зубного протеза, сопоставляя удельный вес воска, из которого отмоделнрован образец деталей, с удельным весом золота, платины, можно высчитать, сколько нужно взять металла на данную отливку.

Например, вес детали из воска 0,5 г, его удельный вес 0,95—0,96 г/см

, значит, золота нужно взять в 18—19 раз больше по весу восковой детали. Пластмассы для протезов должны иметь небольшой удельный вес.

Температура плавления. Температурой плавления вещества называется такая температура, при которой вещество из твердого состояния переходит в жидкое. Металлы при плавлении переходят из кристаллического твердого вещества в жидкое.

Температура плавления у металлов сохраняется постоянной до тех пор, пока все тело, подвергающееся плавлению, не перейдет в жидкое состояние.

Под явлением плавления следует понимать изменения расположенных частиц (атомов, молекул) в веществе.

При плавлении тело теряет постоянство формы, изменяется колебательное движение атомов, молекул, нарушается сила сцепления молекул. У твердого тела сила сцепления молекул значительно выше, чем у жидкого, поэтому, чтобы перевести тело из твердого состояния в жидкое, требуется энергия, тепло. Количество теплоты, затраченной на переход вещества из твердого состояния в жидкое, называется скрытой теплотой плавления.

Количество теплоты, затраченной на единицу массы (веса) 1 г вещества при переходе из твердого состояния в жидкое при температуре плавления, называют удельной теплотой плавления. Удельная теплота плавления измеряется в калориях. Количество тепла, необходимое для плавления 1 г вещества, измеряется в малых калориях, 1 кг — в больших калориях. Большая калория — это количество тепла, необходимое для нагревания 1 кг воды на 1° (от 19,5 до 20,5°).

Удельная теплота плавления для различных металлов различная: например, для золота 16 ккал, платины 27 ккал, железа 49 ккал.

Температура плавления у различных материалов разная. Так, железо плавится при температуре 1530°С, золото — 1063°С, платина — 1773°С, олово — 232

С.

Температура плавления всегда соответствует температуре отвердевания расплавленного вещества. У некоторых аморфных тел (воск, парафин, стекло и др.) нет определенной выраженной температуры плавления. При нагревании эти вещества вначале размягчаются, а при дальнейшем повышении температуры теряют вязкость и становятся жидкими. Преимущественное большинство твердых веществ, * обладающих способностью плавиться, при плавлении расширяются, а при отвердевании сокращаются. Обратное явление наблюдается у чугуна, йода. Расширение и сокращение металлов при плавлении необходимо учитывать при литье деталей зубных протезов.

Изучение физического явления температуры плавления металлов и других материалов имеет большое практическое значение в зубопротезной технике. Знание температуры плавления потребляемых металлов и некоторых материалов позволяет подобрать нужный источник тепла для плавления. Например, для плавления золота можно использовать бензиновую горелку, а для плавления нержавеющей стали нужна вольтова дуга или электропечь, для плавления воска — обычная горелка.

В зубопротезной технике для изготовления металлических коронок и других штампованных деталей протезов применяются различные легкоплавкие сплавы. Из легкоплавких сплавов приготовляют металлические штампы.

Для составления таких сплавов берут определенные металлы (свинец, олово, висмут и др.), имеющие близкую точку температуры плавления. При составлении сплавов металлов, зная температуру плавления каждого металла, входящего в состав сплава, следует расплавлять металлы вначале с более высокой температурой плавления, а затем последовательно с более низкой.

Для пайки деталей протезов сплав металлов, применяемый в качестве припоя, должен иметь более низкую температуру плавления, чем сплав металла, из которого изготовлен протез.

Температура кипения. Переход вещества из жидкого состояния в газообразное или парообразное под влиянием теплоты при нагревании происходит при определенной температуре. Расплавленный металл при дальнейшем нагревании с повышением температуры можно довести до состояния кипения, при этом металл перейдет постепенно в газообразное состояние.

Температура, при которой происходит кипение вещества, называется температурой кипения.

Явление кипения можно объяснить как усиление колебательных движений молекул в веществе при нагревании, при этом движение молекул вещества происходит под давлением. В момент, когда давление молекул становится равным атмосферному, начинается выделение газа или пара не только с поверхности жидкости, но и изнутри нее. В течение всего периода кипения в жидкости сохраняется постоянная температура.

Для превращения единицы массы (грамма, килограмма) вещества в газообразное, парообразное состояние требуется определенное количество тепла, выраженное в калориях. Это количество тепла называется удельной теплотой парообразования или газообразования.

При парообразовании значительно изменяется объем вещества. Например, вода, превращаясь в пар, увеличивается в объеме в 1700 раз.

Температура кипения может изменяться в зависимости от давления атмосферы над поверхностью расправленного вещества, температура кипения при уменьшении давления понижается и, наоборот, при повышении увеличивается.

Явление кипения жидкостей и металлов имеет практическое значение в зубопротезной технике. При составлении сплавов — припоев — возникает необходимость понизить температуру плавления, не изменяя основных качеств сплава; для этого, например, в золотой сплав вводят кадмий в небольшом количестве. Золото плавится при температуре 1063°, а кадмий кипит уже при температуре 778°. Спрашивается, как же ввести кадмий в золото? Если плавить одновременно, то кадмий улетучивается, а золото еще не расплавится. Существует несколько методов (см. «Кадмий»). При плавлении золота под вольтовой дугой, температура которой достигает 3000°, часть золота можно потерять, если длительно его нагревать и довести до температуры кипения.

С явлением парообразования можно сталкиваться при получении пластмассы. В медицинской практике явления кипения наблюдаются при стерилизации хирургических материалов в автоклаве, стерилизации медицинских инструментов, получении дистиллированной воды. Температура кипения определяет режим полимеризации пластмасс, получения полимеров.

Температура кипения различных металлов различная: золота 2550°, железа 2450°, платины 2450°, меди 2310°. При температуре кипения воды (100°) достигают полимеризации стоматологических пластмасс.

Медь – точка плавления – точка кипения

Медь – точка плавления и точка кипения

Точка плавления меди составляет 1084,62 ° C .

Температура кипения меди 2927 ° C .

Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.

Точка кипения – насыщение

В термодинамике термин насыщение определяет состояние, при котором смесь пара и жидкости может существовать вместе при заданной температуре и давлении.Температура, при которой начинает происходить испарение (кипение) для данного давления, называется температурой насыщения или точкой кипения . Давление, при котором начинается испарение (кипение) для данной температуры, называется давлением насыщения. Если рассматривать температуру обратного перехода от пара к жидкости, ее называют точкой конденсации.

Точка плавления – насыщение

В термодинамике точка плавления определяет состояние, при котором твердое вещество и жидкость могут находиться в равновесии.Добавление тепла превратит твердое вещество в жидкость без изменения температуры. Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда рассматривается как температура обратного перехода от жидкости к твердому телу, она упоминается как точка замерзания или точка кристаллизации.

Медь – Свойства

Элемент Медь
Атомный номер 29
Символ Cu
Категория элемента Переходный металл
Фаза на STP Твердое тело
Атомная масса [а.е.м.] 63.546
Плотность при STP [г / см3] 8,92
Электронная конфигурация [Ar] 3d10 4s1
Возможные состояния окисления +1,2
Сродство к электрону [кДж / моль] 118,4
Электроотрицательность [шкала Полинга] 1,9
Энергия первой ионизации [эВ] 7,7264
Год открытия неизвестно
Discoverer неизвестно
Термические свойства
Точка плавления [шкала Цельсия] 1084.62
Точка кипения [шкала Цельсия] 2927
Теплопроводность [Вт / м · К] 401
Удельная теплоемкость [Дж / г · К] 0,38
Теплота Плавление [кДж / моль] 13,05
Теплота испарения [кДж / моль] 300,3



Свойства металлов – Металлическая структура и сцепление – Eduqas – GCSE Combined Science Revision – Eduqas

Физические свойства

Типичные физические свойства металлов:

Некоторые металлы обладают нетипичными свойствами.Например:

  • ртуть (металл) имеет низкую температуру плавления и существует в виде жидкости при комнатной температуре
  • элемента в группе 1 имеют низкие температуры плавления, но также и низкую плотность, например, натрий менее плотен, чем вода и поэтому оно плавает

Вещество с высокой плотностью означает, что оно имеет большую массу для своего размера. Например, объем жидкости в банке с напитком равен 330 см 3 . Если бы банка была наполнена натрием (плотность = 0,97 г / см 3 ), то банка имела бы массу около 320 г.Однако, если бы банка была заполнена свинцом (плотность = 11,34 г / см 3 ), то банка имела бы массу почти 3,75 кг!

Тягучие вещества можно сгибать или придавать им форму без разрушения, в то время как хрупкие вещества разбиваются при сгибании или ударе.

Металлы считаются пластичными, потому что их можно растянуть в тонкую проволоку.

Точка плавления и точка кипения

Когда металл плавится или закипает, это изменение физического состояния.

Энергия передается веществу для его плавления или кипения.Эта энергия необходима для преодоления сил притяжения между ионами металла и делокализованными электронами в металле. Чем больше требуется энергии, тем выше температура плавления или кипения.

Поскольку металлы представляют собой гигантские решетчатые структуры, количество разрушаемых электростатических сил чрезвычайно велико, поэтому металлы имеют высокие температуры плавления и кипения. Это означает, что точки плавления и кипения металлов больше похожи на температуры ионных соединений, чем на ковалентные вещества.

Например, таблица показывает эти данные для магния, хлора и хлорида магния.

Вещество Формула Плавится при Кипит при Тип связки
Магний Mg 650 ° C 1091 ° C Металлик Металлик Cl 2 −101 ° C −34 ° C Простой молекулярный
Хлорид магния MgCl 2 714 ° C 1412 ° C Ионный

Объяснение свойств металла

Ковкость и пластичность

Структура металлов состоит из слоев ионов металлов.Эти слои могут скользить друг по другу при приложении силы. Это означает, что слои металла можно забивать плоскими молотками, а также они могут скользить друг по другу, образуя тонкую проволоку.

Металлическое соединение позволяет металлу изменять форму без разрушения.

Электропроводность

Вещества проводят электричество, потому что содержат заряженные частицы, способные двигаться.

Когда к металлу прикладывается напряжение, делокализованные электроны проходят через решетчатую структуру.Движение этих заряженных частиц образует электрический ток. Обратите внимание, что ионы металла в металлической решетке удерживаются в фиксированных положениях и не могут двигаться.

Чтение EAP

Чтение EAP

Металлургия: производство сплавов

Большинство сплавов получают смешиванием металлов в расплавленном состоянии; затем смесь выливают в металлические или песчаные формы и дают застыть. Обычно сначала плавят основной ингредиент; затем остальные добавляются к он и должен полностью раствориться.Например, если водопроводчик делает припой, он может расплавить свинец, добавить олово, перемешать и отлить сплав в форму стержня. Некоторые пары металлов не растворяются таким образом. Когда это так, маловероятно, что образуется полезный сплав. Таким образом, если бы сантехник добавил алюминий, вместо олова к свинцу, два металла не растворятся – они будут вести себя как масло и вода. При литье металлы разделялись на два слоя, тяжелые свинец внизу и алюминий вверху.

Одна из трудностей при изготовлении сплавов состоит в том, что металлы имеют разную температуру плавления.Таким образом, медь плавится при 1083 ° C, а цинк – при 419 ° C и кипит при 907 ° C. при изготовлении латуни, если мы просто поместим кусочки меди и цинка в тигель и нагревая их выше 1083 ° C, оба металла непременно расплавятся. Но при этом при высокой температуре жидкий цинк выкипит, а пар окислится. в воздухе. В этом случае принят метод: сначала нагревают металл, имеющий более высокая температура плавления, а именно медь. Когда он расплавлен, твердое добавляется цинк, который быстро растворяется в жидкой меди до того, как цинк выкипел.Тем не менее, при изготовлении латуни следует делать поправку. из-за неизбежных потерь цинка, составляющих примерно одну двадцатую часть цинка. Следовательно, при взвешивании металлов перед легированием дополнительное количество цинка.

Иногда изготовление сплавов затруднено из-за более высокой температуры плавления. точечный металл находится в меньшей пропорции. Например, один легкий сплав содержит 92% алюминия (точка плавления 660 ° C) с 8% меди (плавление точка 1,083 ° C).Для изготовления этого сплава было бы нежелательно плавить несколько фунтов меди и добавляют почти в двенадцать раз больше веса алюминия. В металл пришлось бы так сильно нагреть, чтобы большая часть алюминия растворить, что газы будут абсорбированы, что приведет к ненадежности. В этом, как во многих других случаях легирование проводится в два этапа. Сначала промежуточный производится «упрочняющий сплав», содержащий 50% меди и 50% алюминия, какой сплав имеет температуру плавления значительно ниже, чем у меди и, фактически, ниже, чем у алюминия.Затем алюминий плавится и правильный количество добавленного сплава-отвердителя; таким образом, чтобы сделать 100 фунтов алюминия-меди сплава нам потребуется 84 фунта. алюминия, который нужно расплавить первым, и 16 фунтов отвердителя сплав, который нужно добавить к нему.

В некоторых случаях температуру плавления сплава можно определить приблизительно по арифметике. Например, если медь (точка плавления 1083 ° C) легирована никель (точка плавления 1,454 ° C) сплав пятьдесят на пятьдесят плавится примерно на полпути между двумя температурами.Даже в этом случае поведение сплава на плавить не просто. Медно-никелевый сплав не плавится и не замерзает сразу. фиксированная и определенная температура, но постепенно затвердевает в диапазоне температура. Таким образом, если медно-никелевый сплав пятьдесят на пятьдесят сжижается, а затем постепенно остывая, он начинает замерзать при 1312 ° C, а по мере понижения температуры все больше и больше сплава становится твердым, пока, наконец, при 1248 ° C он полностью не станет твердым. затвердел. За исключением некоторых особых случаев, этот «диапазон замерзания» встречается в все сплавы, кроме чистых металлов, металлов или химических соединений, и в некоторых специальных составах сплавов, упомянутых ниже, все из которых плавятся. и заморозить при одной определенной температуре.

Сплав олова и свинца представляет собой пример одного из этих особых случаи. Свинец плавится при 327 ° C, олово – при 232 ° C. Если в расплавленное олово добавлен свинец и затем сплав охлаждают, температура замерзания сплава оказывается равной ниже точки замерзания свинца и олова (см. рисунок 1). Например, если расплавленный сплав, содержащий 90 процентов олова и 10 процентов свинца, охлаждается, смесь достигает температуры 217 ° C, прежде чем начинает затвердевать. Потом, по мере дальнейшего охлаждения сплава он постепенно выходит из полностью жидкого состояния, через стадию, когда она похожа на кашу, пока не станет густой, как каша, и, наконец, при температуре 183 ° C весь сплав стал полностью твердый.Из рисунка 1 видно, что с 80-процентным содержанием олова сплав начинает затвердевать при 203 ° C и заканчивается только тогда, когда температура упала до 183 ° C (обратите внимание на повторение 183 ° C).

Что происходит на другом конце ряда, когда олово добавляется к свинцу? Один раз снова точка замерзания понижается. Сплав, содержащий всего 20 процентов олова и оставшийся свинец начинает замерзать при 279 ° C и завершает затвердевание при теперь уже знакомая температура 183 ° C. Один конкретный сплав, содержащий 62 на процентов олова и 38 процентов свинца, плавится и полностью затвердевает при температуре 183 ° C.Очевидно эта температура 183 ° C и 62/38% состава важны для система сплава олово-свинец. Подобные эффекты возникают во многих других системах сплавов. и специальный состав, который имеет самую низкую температуру замерзания в серии и который полностью замерзает при этой температуре, получил особое название. Конкретный сплав известен как «эвтектический сплав ». температура (183 ° C в случае сплавов олово-свинец) называется эвтектикой температура.

Путем тщательного выбора компонентов можно изготавливать сплавы с необычной низкие температуры плавления. Такой легкоплавкий сплав представляет собой сложную эвтектику четырех или пяти металлы, смешанные так, чтобы температура плавления была понижена до самой низкой точки плавления точка возможна из любой смеси выбранных металлов. Знакомый плавкий сплав, известный как металл Вуда, имеет состав:

висмут

4 части

Свинец

2 части

Олово

1 часть

Кадмий

1 часть

и его температура плавления около 70 ° C; то есть ниже точки кипения воды.Шутники часто развлекались, бросая это плавкий сплав в форме чайной ложки, который тает при перемешивании чашка горячего чая.

Эти сплавы с низкой температурой плавления регулярно используются для более серьезных целей, как, например, в автоматических противопожарных оросителях, установленных в потолках зданий. Каждая форсунка спринклерной системы содержит кусок плавкого предохранителя. сплава, так что если произойдет пожар и температура поднимется достаточно высоко, сплав плавится и вода выходит через форсунки оросителя.

(из Металлы на службе человека У. Александер и А. Стрит.)

Metallic Bonding – Chemistry LibreTexts

В начале 1900-х Пауль Дрюде предложил теорию металлических связей «моря электронов», моделируя металлы как смесь атомных ядер (атомные ядра = положительные ядра + внутренняя оболочка электронов) и валентности. электроны. Металлические связи возникают между атомами металлов. В то время как ионные связи соединяют металлы с неметаллами, металлическая связь соединяет большую часть атомов металла .Лист алюминиевой фольги и медная проволока – это места, где вы можете увидеть в действии металлическое соединение.

Металлы, как правило, имеют высокие температуры плавления и кипения, что указывает на наличие прочных связей между атомами. Даже мягкий металл, такой как натрий (точка плавления 97,8 ° C), плавится при значительно более высокой температуре, чем элемент (неон), предшествующий ему в Периодической таблице. Натрий имеет электронную структуру 1s 2 2s 2 2p 6 3s 1 . Когда атомы натрия собираются вместе, электрон на 3s-атомной орбитали одного атома натрия делит пространство с соответствующим электроном на соседнем атоме, образуя молекулярную орбиталь – почти так же, как образуется ковалентная связь.

Разница, однако, заключается в том, что к каждому атому натрия прикасаются восемь других атомов натрия – и совместное использование происходит между центральным атомом и 3s-орбиталями на всех восьми других атомах. К каждому из этих восьми, в свою очередь, прикасаются восемь атомов натрия, которые, в свою очередь, касаются восьми атомов – и так далее, и так далее, пока вы не поглотите все атомы в этом куске натрия. Все из 3s-орбиталей на всех атомах перекрываются, давая огромное количество молекулярных орбиталей, которые простираются по всему куску металла.Конечно, должно быть огромное количество молекулярных орбиталей, потому что любая орбиталь может содержать только два электрона.

Электроны могут свободно перемещаться внутри этих молекулярных орбиталей, поэтому каждый электрон отделяется от своего родительского атома. Считается, что электроны делокализованы. Металл удерживается вместе сильными силами притяжения между положительными ядрами и делокализованными электронами (рис. \ (\ PageIndex {1} \)).

Рисунок \ (\ PageIndex {1} \): Металлическая связь: Модель электронного моря: Положительные атомные ядра (оранжевые кружки) окружены морем делокализованных электронов (желтые кружки).

Иногда его описывают как «массив положительных ионов в море электронов». Если вы собираетесь использовать это представление, будьте осторожны! Металл состоит из атомов или ионов? Он сделан из атомов . +} \).

Пример \ (\ PageIndex {1} \): Металлическое соединение из магния

Используйте модель моря электронов, чтобы объяснить, почему магний имеет более высокую температуру плавления (650 ° C), чем натрий (97,79 ° C).

Решение

Если вы проработаете тот же аргумент выше для натрия с магнием, вы получите более сильные связи и, следовательно, более высокую температуру плавления.

Магний имеет внешнюю электронную структуру 3s 2 . Оба этих электрона становятся делокализованными, поэтому «море» имеет вдвое большую электронную плотность, чем в натрии.Остальные «ионы» также имеют в два раза больший заряд (если вы собираетесь использовать этот конкретный взгляд на металлическую связь), поэтому между «ионами» и «морем» будет больше притяжения.

Более реалистично, каждый атом магния имеет 12 протонов в ядре по сравнению с 11 натрием. В обоих случаях ядро ​​экранировано от делокализованных электронов одинаковым количеством внутренних электронов – 10 электронов в 1s 2 2s 2 2p 6 орбиталей. Это означает, что чистое притяжение от ядра магния будет 2+, но только 1+ от ядра натрия.

Таким образом, в магнии будет не только большее количество делокализованных электронов, но также будет большее притяжение к ним со стороны ядер магния. Атомы магния также имеют немного меньший радиус, чем атомы натрия, поэтому делокализованные электроны находятся ближе к ядрам. У каждого атома магния также двенадцать ближайших соседей, а не восемь у натрия. Оба эти фактора еще больше увеличивают прочность связи.

Примечание: Переходные металлы обычно имеют особенно высокие температуры плавления и кипения.Причина в том, что они могут вовлекать в делокализацию как 3d-электроны, так и 4s. Чем больше электронов вы можете задействовать, тем сильнее будет притяжение.

Объемные свойства металлов

Металлы обладают несколькими уникальными качествами, такими как способность проводить электричество и тепло, низкую энергию ионизации и низкую электроотрицательность (поэтому они легко отдают электроны с образованием катионов). Их физические свойства включают блестящий (блестящий) вид, а также они пластичны и пластичны.Металлы имеют кристаллическую структуру, но легко деформируются. В этой модели валентные электроны свободны, делокализованы, подвижны и не связаны с каким-либо конкретным атомом. В данной модели может быть:

  • Проводимость : Так как электроны свободны, если электроны из внешнего источника были вставлены в металлический провод на одном конце (рис. \ (\ PageIndex {2} \)), электроны пройдут через провод и выйдут наружу. на другом конце с той же скоростью (проводимость – это движение заряда).
Рисунок \ (\ PageIndex {2} \): «Море электронов» свободно течет вокруг кристалла положительных ионов металла. Эти текущие электроны могут проводить электрические изменения при приложении электрического поля (например, от батареи). (CC-BY-SA; OpenStax и Rafaelgarcia).
  • Ковкость и Пластичность : Электронно-морская модель металлов не только объясняет их электрические свойства, но также их пластичность и пластичность. Море электронов, окружающее протоны, действует как подушка, и поэтому, когда, например, по металлу ударяют молотком, общий состав структуры металла не повреждается и не изменяется.Протоны могут быть перегруппированы, но море электронов приспосабливается к новому образованию протонов и сохраняет металл нетронутым. Когда один слой ионов в электронном море движется в одном пространстве относительно слоя под ним, кристаллическая структура не разрушается, а только деформируется (Рисунок \ (\ PageIndex {3} \)).
Рисунок \ (\ PageIndex {3} \): Ковкость металлов обусловлена ​​каждым из движущихся слоев атомов по отношению друг к другу. Конечная ситуация во многом такая же, как и первоначальная.Таким образом, если мы ударим по металлу молотком, кристаллы не разобьются, а просто изменят свою форму. Это сильно отличается от поведения ионных кристаллов.
  • Теплоемкость : Это объясняется способностью свободных электронов перемещаться по твердому телу.
  • Блеск : Свободные электроны могут поглощать фотоны в «море», поэтому металлы выглядят непрозрачными. Электроны на поверхности могут отражать свет с той же частотой, с которой свет падает на поверхность, поэтому металл кажется блестящим.

Однако эти наблюдения являются только качественными, а не количественными, поэтому они не могут быть проверены. Теория «моря электронов» сегодня выступает лишь как упрощенная модель того, как работает металлическая связь.

В расплавленном металле металлическая связь все еще присутствует, хотя упорядоченная структура нарушена. Металлическая связь не разрушается полностью, пока металл не закипит. Это означает, что температура кипения на самом деле является лучшим показателем прочности металлической связи, чем температура плавления.При плавлении связь ослабляется, а не разрывается. Прочность металлической связи зависит от трех факторов:

  1. Число электронов, делокализованных из металла
  2. Заряд катиона (металл).
  3. Размер катиона.

Сильная металлическая связь будет результатом более делокализованных электронов, что приведет к увеличению эффективного ядерного заряда на электронах на катионе, в результате чего размер катиона будет меньше.Металлические связи прочны и требуют большого количества энергии для разрыва, поэтому металлы имеют высокие температуры плавления и кипения. Теория металлических связей должна объяснить, как такое большое количество связей может происходить с таким небольшим количеством электронов (поскольку металлы расположены в левой части периодической таблицы и не имеют большого количества электронов в их валентных оболочках). Теория также должна учитывать все уникальные химические и физические свойства металла.

Расширение диапазона возможного соединения

Ранее мы утверждали, что связь между атомами можно классифицировать как диапазон возможных связей между ионными связями (полный перенос заряда) и ковалентными связями (полностью разделенными электронами).Когда два атома со слегка различающейся электроотрицательностью объединяются и образуют ковалентную связь, один атом притягивает электроны больше, чем другой; это называется полярной ковалентной связью. Однако простая «ионная» и «ковалентная» связь – идеализированные концепции, и большинство связей существует в двумерном континууме, описываемом треугольником Ван Аркеля-Кетелаара (рис. \ (\ PageIndex {4} \)).

Рисунок \ (\ PageIndex {4} \): треугольник Ван Аркеля-Кетелаара отображает разницу в электроотрицательности (\ (\ Delta \ chi \)) и средней электроотрицательности в связи (\ (\ sum \ chi \)).верхняя область – это большая часть ионных связей, нижняя левая область – металлическая связь, а нижняя правая область – ковалентная связь.

треугольников связи или треугольников Ван Аркеля – Кетелаара треугольников (названных в честь Антона Эдуарда ван Аркеля и Дж. А. А. Кетелаара) – это треугольники, используемые для отображения различных соединений с различной степенью ионной, металлической и ковалентной связи. В 1941 году ван Аркель выделил три экстремальных материала и связанные с ними типы склеивания. Используя 36 элементов основной группы, таких как металлы, металлоиды и неметаллы, он разместил ионные, металлические и ковалентные связи в углах равностороннего треугольника, а также предложил промежуточные соединения.Треугольник связей показывает, что химические связи – это не просто особые связи определенного типа. Скорее, типы связей взаимосвязаны, и разные соединения имеют разную степень разного характера связывания (например, полярные ковалентные связи).

Видео \ (\ PageIndex {1} \): Что такое Треугольник Связи Ван Аркеля-Кетелаара?

Использование электроотрицательности – два составных средних значения электроотрицательности по оси x рисунка \ (\ PageIndex {4} \).

\ [\ sum \ chi = \ dfrac {\ chi_A + \ chi_B} {2} \ label {sum} \]

и разность электроотрицательностей по оси ординат,

\ [\ Delta \ chi = | \ chi_A – \ chi_B | \ label {diff} \]

мы можем оценить доминирующую связь между соединениями.В правой части рисунка \ (\ PageIndex {4} \) (от ионной до ковалентной) должны быть соединения с различной разницей в электроотрицательности. Соединения с равной электроотрицательностью, такие как \ (\ ce {Cl2} \) (хлор), помещаются в ковалентный угол, в то время как в ионном углу есть соединения с большой разницей электроотрицательностей, такие как \ (\ ce {NaCl} \) ( столовая соль). Нижняя сторона (от металлической до ковалентной) содержит соединения с разной степенью направленности связи. С одной стороны, это металлические связи с делокализованными связями, а с другой – ковалентные связи, в которых орбитали перекрываются в определенном направлении.Левая сторона (от ионной до металлической) предназначена для делокализованных связей с различной разностью электроотрицательностей.

Три крайности в отношениях

Всего:

  • Металлические облигации имеют низкое значение \ (\ Delta \ chi \) и низкое среднее значение \ (\ sum \ chi \).
  • Ионные связи имеют от умеренного до высокого \ (\ Delta \ chi \) и умеренные значения среднего \ (\ sum \ chi \).
  • Ковалентные связи имеют среднее значение \ (\ sum \ chi \) от среднего до высокого и могут существовать с умеренно низким значением \ (\ Delta \ chi \).

Пример \ (\ PageIndex {2} \)

Используйте таблицы электроотрицательностей (Таблица A2) и рисунок \ (\ PageIndex {4} \) для оценки следующих значений

  • разница в электроотрицательности (\ (\ Delta \ chi \))
  • средняя электроотрицательность в связи (\ (\ sum \ chi \))
  • % ионный характер
  • вероятный тип облигации

для выбранных соединений:

  1. \ (\ ce {AsH} \) (например, в арсине \ (AsH \))
  2. \ (\ ce {SrLi} \)
  3. \ (\ ce {KF} \).

Решение

а: \ (\ ce {AsH} \)

  • Электроотрицательность \ (\ ce {As} \) составляет 2,18
  • Электроотрицательность \ (\ ce {H} \) равна 2,22

Использование формул \ ref {sum} и \ ref {diff}:

\ [\ begin {align *} \ sum \ chi & = \ dfrac {\ chi_A + \ chi_B} {2} \\ [4pt] & = \ dfrac {2.18 + 2.22} {2} \\ [4pt] & = 2.2 \ end {align *} \]

\ [\ begin {align *} \ Delta \ chi & = \ chi_A – \ chi_B \\ [4pt] & = 2.18 – 2.22 \\ [4pt] & = 0,04 \ end {align *} \]

  • Из рисунка \ (\ PageIndex {4} \) видно, что связь довольно неполярная и имеет низкоионный характер (10% или меньше)
  • Связь находится в середине ковалентной связи и металлической связи

b: \ (\ ce {SrLi} \)

  • Электроотрицательность \ (\ ce {Sr} \) составляет 0,95
  • Электроотрицательность \ (\ ce {Li} \) составляет 0,98

Использование формул \ ref {sum} и \ ref {diff}:

\ [\ begin {align *} \ sum \ chi & = \ dfrac {\ chi_A + \ chi_B} {2} \\ [4pt] & = \ dfrac {0.95 + 0,98} {2} \\ [4pt] & = 0,965 \ end {align *} \]

\ [\ begin {align *} \ Delta \ chi & = \ chi_A – \ chi_B \\ [4pt] & = 0.98 – 0.95 \\ [4pt] & = 0.025 \ end {align *} \]

  • Из рисунка \ (\ PageIndex {4} \) видно, что связь довольно неполярная и имеет низкоионный характер (~ 3% или меньше)
  • Склеивание вероятно металлическое.

c: \ (\ ce {KF} \)

  • Электроотрицательность \ (\ ce {K} \) составляет 0,82
  • Электроотрицательность \ (\ ce {F} \) равна 3.98

Использование формул \ ref {sum} и \ ref {diff}:

\ [\ begin {align *} \ sum \ chi & = \ dfrac {\ chi_A + \ chi_B} {2} \\ [4pt] & = \ dfrac {0.82 + 3.98} {2} \\ [4pt] & = 2.4 \ end {align *} \]

\ [\ begin {align *} \ Delta \ chi & = \ chi_A – \ chi_B \\ [4pt] & = | 0,82 – 3,98 | \\ [4pt] & = 3.16 \ end {align *} \]

  • Из рисунка \ (\ PageIndex {4} \) видно, что связь довольно полярная и имеет высокий ионный характер (~ 75%)
  • Связь, вероятно, ионная.

Упражнение \ (\ PageIndex {2} \)

Сравните связывание \ (\ ce {NaCl} \) и тетрафторида кремния.

Ответ

\ (\ ce {NaCl} \) представляет собой ионную кристаллическую структуру и электролит при растворении в воде; \ (\ Delta \ chi = 1.58 \), среднее \ (\ sum \ chi = 1.79 \), а тетрафторид кремния ковалентный (молекулярный, неполярный газ; \ (\ Delta \ chi = 2.08 \), средний \ ( \ sum \ chi = 2,94 \).

Авторы и авторство

Медь – Энергетическое образование

Фигура 2.Самородная медь (не сочетается с другими элементами и встречается в естественных условиях), прибл. Размером 4 см. [2]

Медь ( Cu ) – это 29 -й элемент в периодической таблице Менделеева, который довольно часто встречается на Земле, примерно с таким же содержанием, как цинк и никель. [3] Медь, известная своим отчетливым цветом (видна на рис. 2), была одним из первых металлов, которыми когда-либо манипулировали люди. Имеются данные, свидетельствующие о ее использовании более 11 000 лет. [4]

Медь в больших количествах используется в электроэнергетике в виде проволоки из-за ее высокой электропроводности (см. Таблицу ниже). [4] По проводимости он уступает только серебру, однако меди на Земле примерно в 860 раз больше, чем серебра, [3] , поэтому она намного дешевле. Хотя она используется в основном в электропроводке, медь также используется в сантехнике, валюте и ювелирных изделиях. Медь слишком мягкая, чтобы использовать ее отдельно для большинства применений, но люди давно обнаружили, что ее можно смешивать с другими металлами для образования прочных сплавов. Самый известный пример – это смешивание меди с оловом для получения бронзы или с цинком для получения латуни. [4]

Некоторые свойства меди включают: [4] [5]

Использование меди

Использование меди в процентах (оценочное) показано на рисунке ниже. [7]

Электрооборудование

Рисунок 4. Медный провод. [8]

Медь – основной компонент проводки. В одном транспортном средстве около 1,5 км медной проводки с общей массой около 20 кг для небольших автомобилей и 45 кг для автомобилей класса люкс и гибридных автомобилей. [9] Наряду с электропроводкой транспортных средств и другой электроникой медная проводка используется в производстве и передаче электроэнергии (кроме воздушных линий электропередач, которые сделаны из алюминия).

Помимо отличной проводимости, медь также очень пластична, поэтому с ней очень легко работать. Конкретные примеры использования меди в электрических приложениях включают печатные платы, микрочипы, полупроводники, электромагниты, электродвигатели, ветряные турбины, фотоэлектрические элементы и многое, многое другое.В основном любая проводка, кроме линий электропередач, изготавливается из меди. [7]

Строительство

Рисунок 5: Обратите внимание на контраст старой меди (зеленый) и новой меди (медь) на этой обсерватории. [10]

Медь является стандартным материалом для сантехники не только из-за ее высокой температуры плавления и коррозионной стойкости, но и потому, что она не допускает размножения бактерий или вирусов. Кроме того, он пластичен и легко поддается пайке; его легко согнуть и собрать.

Помимо водопровода, медь и ее сплавы используются в строительстве для изготовления теплообменников, трубопроводов, сельскохозяйственных систем водоснабжения, крыш, ручек, дверных ручек и других строительных материалов и т. Д. [7]

Видео

Видео ниже из проекта периодических видеоматериалов Ноттингемского университета. [11] Они создали полный набор коротких видеороликов по каждому элементу периодической таблицы элементов.

Список литературы

  1. ↑ Сделано на основе информации Королевского химического общества, Доступно: http: // www.rsc.org/periodic-table/element/29/copper
  2. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/f/f0/NatCopper.jpg
  3. 3,0 3,1 PeriodicTable.com. (31 июля 2015 г.). Изобилие элементов в земной коре [Онлайн], Доступно: http://periodictable.com/Properties/A/CrustAbundance.v.log.html
  4. 4,0 4,1 4,2 4,3 Джефферсон Лаб. (31 июля 2015 г.). The Element Copper [Online], доступно: http://education.jlab.org/itselemental/ele029.html
  5. ↑ Химия на About.com. (31 июля 2015 г.). Таблица удельного электрического сопротивления и проводимости [Онлайн], Доступно: http://chemistry.about.com/od/moleculescompounds/a/Table-Of-Electrical-Resistivity-And-Conductivity.htm
  6. ↑ UNEP. (19 августа 2015 г.). Экологические риски и проблемы антропогенных потоков и циклов металлов [Онлайн]. Доступно: https: // d396qusza40orc.cloudfront.net/metals/3_Environmental_Challenges_Metals-Full%20Report_36dpi_130923.pdf#96
  7. 7.0 7.1 7.2 Metals @ About.com. (31 июля 2015 г.). Copper Applications [Online], доступно: http://metals.about.com/od/properties/a/Copper-Applications.htm
  8. ↑ Wikimedia Commons [Online], доступно: https://upload.wikimedia.org/wikipedia/commons/7/74/Stranded_lamp_wire.jpg
  9. ↑ Геологическая служба США. (31 июля 2015 г.). Медь – металл для веков [Онлайн], Доступно: http://pubs.usgs.gov/fs/2009/3031/FS2009-3031.pdf
  10. ↑ Автор Royal_Observatory_Edinburgh_East_Tower_2010.jpg: Chi And HПроизводная работа: Spinningspark [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) или GFDL (http://www.gnu.org/copyleft /fdl.html)], через Wikimedia Commons загружено 30 декабря 2016 г.
  11. ↑ Другие видеоролики Ноттингемского университета по различным элементам см. Здесь: http: //www.periodicvideos.com /

Ресурсы ювелира – точки плавления

Удельный вес металла или сплава – это просто вес одного кубического сантиметра в граммах. Когда удобнее работать с тройскими весами, количество унций на кубический дюйм любого металла или сплава можно найти, умножив его удельный вес на константу 0,52686.

Точка плавления и масса различных металлов и сплавов
Металл Символ Температура плавления
ºF
Температура плавления
ºC
Удельный вес
Плотность
Вес в тройке
унций / Cu In
Алюминий Al 1220 660 2.70 1,423
Сурьма Сб 1167 630 6,62 3,448
Бериллий Be 2340 1280 1,82 0,959
висмут Bi 520 271 9.80 5,163
Кадмий Кд 610 321 8,65 4,557
Углерод С 2,22 1,170
Хром Cr 3430 1890 7.19 3,788
Кобальт Co 2070 1132,2 8,9 4,689
Медь Cu 1981 1083 8,96 4,719
Золото, 24K чистое Au 1945 1063 19.32 10,180
Иридий Ir 4449 2454 22,50 11,849
Утюг Fe 2802 1539 7,87 4,145
Свинец Пб 621 327 11.34 5,973
Магний мг 1202 650 1,75 0,917
Марганец Mn 2273 1245 7,43 3,914
молибден Пн 4760 2625 10.20 5,347
Никель Ni 2651 1455 8,90 4,691
Осмий Os 4892 2700 22,50 11,854
Палладий Pd 2831 1555 12.00 6,322
фосфор P 111 44 1,82 0,959
Платина, Чистая Pt 3224 1773 21,45 11.301
15% Irid Plat 3310 1821 21.59 11.301
10% Irid Plat 3250 1788 21,54 11,349
5% Irid Plat 3235 1779 21,50 11,325
Родий Rh 3571 1966 12.44 6.553
Рутений Ру 4500 2500 12,20 6,428
Кремний Si 2605 1430 2,33 1,247
Серебро, чистое Ag 1761 961 10.49 5,525
Серебро, стерлинговое серебро 1640 893 10,36 5,457
Серебро, Монета 1615 879 10,31 5,430
Олово Sn 450 232 7.30 3,846
цинк Zn 787 419 7,10 3,7758

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *