Температура плавления вольфрама: температура плавления, свойства, добыча, месторождения, характеристики, цвет

alexxlab | 19.10.1986 | 0 | Разное

Содержание

температура плавления, свойства, добыча, месторождения, характеристики, цвет

Вольфрам — самый тугоплавкий металл. Известны разные марки этого материала, которые обладают своим особенностями, свойствами. Температура плавления вольфрама — одна из главных характеристик этого металла. По ней специалисты определяют в каких отраслях промышленности его лучше использовать.

Вольфрам

Краткое описание

Вольфрам — тугоплавкий металл. В таблице Менделеева его можно найти под номером 74. Характерные качества — серый цвет, естественный металлический блеск.

Во Франции, Великобритании и США этот материал называется tungsten, что переводится как «тяжелый камень».

Структура и характеристики

Кристаллы вольфрама имеют объемноцентрированную кубическую решетку. Основная форма, размеры кристаллов не изменяются, если порошок прессуется при низких температурах.

Атомы в кубической ячейке металла расположены по всем вершинам и внутри самой ячейки. Коэффициент компактности вольфрама — 0,68.

История открытия и изучения

Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.

Вольфрамит

Получение из руды и месторождения

В природе вольфрам можно встретить окисленными отложениями.  Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

Промышленное получение

Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала. После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C. Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

Марки

Марки вольфрама:

  1. ВР — соединение вольфрама с рением.
  2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
  3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
  4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
  5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
  6. ВЧ — чистый металл без примесей, присадок.
  7. ВА — соединение основы с алюминием, кремнещелочными присадками.

Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

Лампа накаливания

Свойства

Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

Химические

Свойства:

  1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
  2. Молярная масса химического элемента —183,84.
  3. Элемент имеет орбиту, состоящую из двух ярусов.

Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

Физические

Свойства:

  1. Цвет — серый.
  2. Прозрачность — отсутствует.
  3. Металлический блеск — есть.
  4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
  5. Плотность — 19,3 г/см3.
  6. Радиоактивность — 0.
  7. Теплопроводность — 173 Вт/(м·К).
  8. Электропроводность — 55·10−9 Ом·м.
  9. Показатель твердости по Бринеллю — 488 кгс/мм².
  10. Теплоемкость — 134,4 Дж/(кг·град).
  11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
  12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
  13. Температура кипения — около 5555 °C.

Лучше всего металл куется при нагревании до 1600°C.

На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

Сферы применения

Вольфрам применяется при изготовлении:

  • нити накаливания;
  • электродов для аргонодуговой сварки;
  • хирургических инструментов;
  • танковой брони, оболочек для снарядов, торпед;
  • защитных костюмов, емкостей, листов от проникающего ионизирующего излучения;
  • ювелирных украшений.

Преимущества и недостатки

Положительные стороны:

  • тугоплавкость;
  • высокая прочность;
  • применение в разных сферах промышленности;
  • стойкость к большим нагрузкам после сильного нагревания;
  • экологичность.

Из главных недостатков можно выделить низкую пластичность, окисляемость при нагревании свыше 700°, высокую цену.

Сплавы

Известно множество соединений на основе этого металла. Они применяются в разных сферах промышленности. Виды и сферы их применения:

  1. Карбиды — добыча горных пород, бурение скважин.
  2. Сульфиды — изготовление высокотемпературной смазки.
  3. Дителлурид — производство преобразователей тепла в электричество.

Монокристаллы применяются в ядерной физике.

Остальные соединения используются в качестве пигментов, катализаторов. Они используются при изготовлении высоколегированных сталей, которые нужны для производства рабочих частей разных инструментов.

Чистый вольфрам по плотности можно сравнить с золотом 999 пробы. Раньше мошенники вкладывали стержни этого металла в золотые слитки. Определить подлинность золота без распиливания было невозможно.

Продукция из вольфрама выделяется высоким качеством, уникальными свойствами. Она применяется в разных сферах деятельности, не имеет аналогов среди похожих материалов.

ВОЛЬФРАМ: описание металла, свойства, сферы применения и месторождения

Главная › Металлы

01.07.2020

Металл получил название от минерала вольфрамита («Wolf Rahm» с немецкого). Минерал весил немало, и в Швеции горняки назвали его «тунг стен» — тяжелый камень.

Во Франции, США и Великобритании для вольфрама используют название «tungsten».

Как его нашли

История открытия связана со шведским химиком К.В. Шееле. Из неизученного минерала он выделил неизвестную «тунгстеновую» кислоту (WO3·h3O). Братья Элюар выделили из её солей новый элемент. Поскольку работали они с вольфрамитом, то  назван был элемент вольфрамом.

Вольфрамовые стержни с кристаллическими наростами

Свойства

Физические свойства металла:

  • плотность 19,25 г/см3;
  • кристаллическая структура объемноцентрированная, кубическая;
  • парамагнитен;
  • температура плавления 3422 °C;
  • цвет искры — желтый, дает пучок коротких прерывистых искр;
  • число стабильных изотопов 4.

Некоторые свойства вольфрама уникальны.

Тугоплавкость — визитная карточка вольфрама, ею он отличается от других металлов.

Свойства атома
Название, символ, номер Атомная масса
(молярная масса) Электронная конфигурация Радиус атома Химические свойства
Ковалентный радиус Радиус иона Электроотрицательность Электродный потенциал Степени окисления Энергия ионизации
(первый электрон) Термодинамические свойства простого вещества
Плотность (при н. у.) Температура плавления
Температура кипения Уд. теплота плавления Уд. теплота испарения Молярная теплоёмкость Молярный объём Кристаллическая решётка простого вещества
Структура решётки Параметры решётки Температура Дебая Прочие характеристики
Теплопроводность Номер CAS
Вольфра́м / Wolframium (W), 74
183,84(1)[1] а. е. м. (г/моль)
[Xe] 4f14 5d4 6s2
141 пм
170 пм
(+6e) 62 (+4e) 70 пм
2,3 (шкала Полинга)
W ← W3+ 0,11 В
W ← W6+ 0,68 В
6, 5, 4, 3, 2, 0
 769,7 (7,98) кДж/моль (эВ)
19,25[2] г/см³
3695 K (3422 °C, 6192 °F)[2]
5828 K (5555 °C, 10031 °F)[2]
285,3 кДж/кг
52,31[3][4] кДж/моль
4482 кДж/кг 824 кДж/моль
24,27[5] Дж/(K·моль)
9,53 см³/моль
кубическая
объёмноцентрированная
3,160 Å
310 K
(300 K) 162,8[6] Вт/(м·К)
7440-33-7

Месторождения и добыча

Для промышленной добычи пригодны вольфрамиты (гюбнерит, ферберит) и шеелит.

Классификация месторождений:

  • штокверковый вольфрамитовый;
  • штокверковый шеелитовый;
  • жильный вольфрамитовый;
  • скарново-шеелитовый.

Крупнейшими запасами вольфрамовых руд обладают:

  • Китай;
  • Канада;
  • Россия;
  • Австралия;
  • США.

Российские запасы вольфрамовых руд происхождением из коренных месторождений.

Получение

Промышленное получение металла из руды предваряется обогащением. Это дробление, шлифовка, флотация. Затем из концентрата выделяют WO3, который затем восстанавливают до металла водородом при температуре около 700°С.

Компактный вольфрам получают:

  1. Методом порошковой металлургии. Достоинство метода — возможность равномерного введения присадок.
  2. Электронно-лучевая плавка, или плавка в электро-дуговых печах. Достоинство метода — возможность получать крупные (до 3 тонн) заготовки металла.

Сплавы

Присадки меняют характеристики полученных сплавов.

Марка российского сплаваПрисадки
ВД-20 80% вольфрама, 20% меди
ВНЖ-95 3% никеля, 2% железа
ВНМ 2-1 2% никеля, 1% меди
ВНЖ 7-3 7% никеля, 3% железа
ВД-30 70% вольфрама, 30% меди
ВНЖ-97.5 1.5% никеля, 1% железа

Плюсы и минусы металла

ПреимуществаНедостатки
Электрическое сопротивлениеВысокая плотность
Температура плавленияСлабая сопротивляемость окислению
Коэффициент линейного расширенияЛомкость при низких температурах

Применение

  • В применении тугоплавкого металла соперничают металлообрабатывающая, нефтехимическая, мебельная промышленности.
  • Вольфрам используют в производства электродов для аргонно-дуговой сварки.
  • Качественная быстрорежущая сталь почти всегда имеет в составе вольфрам.
  • Светящаяся нить накаливания в осветительных лампах, аноды и катоды в электронных приборах — это чистый вольфрам.

Вольфрамовые нити накаливания

Победит, известный советский сплав, на 90% состоит из карбида вольфрама (WC). Победитовые сверла известны многим «рукодельным» мужчинам.

Металл входит в состав тяжелых сплавов, которые применяют в производстве бронебойных снарядов, гироскопов для баллистических ракет.

Рекомендуем:  ИРИДИЙ — подарок из космоса

Начали осваивать и ювелиры тяжелый металл — он гипоаллергенный, тяжелый и прочный.

Наночастицы WO3 нашли применение в медицине. Их антимикробные свойства используют для очистки сточных вод. В компьютерной томографии наночастицы WO3 применяют, как контрастный агент.

Цена вопроса

Средняя цена тонны Mo на конец июня 2020 года составила 24120-24600 долларов США.

Вольфрам — самый тугоплавкий металл Ссылка на основную публикацию

Вольфрам

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

Запасы и добыча

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C.

Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток.

Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее.

Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия.

Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества.

Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

КЛАССИФИКАЦИЯ

Физические свойства

Оптические свойства

Кристаллографические свойства

Вольфрам — свойства и область применения |

Из всех известных сегодня металлов вольфрам самый тугоплавкий. Он занимает 74-ю позицию периодической системы, имеет ряд схожих свойств с молибденом и хромом, находящимися с ним в одной группе. На вид вольфрам представляет твердое вещество серого цвета, с характерным серебристым блеском.

Основные характеристики вольфрама

Для практического применения наиболее важны высокие показатели следующих характеристик:

  • электрическое сопротивление;
  • коэффициент линейного расширения;

Чистый вольфрам обладает высокой пластичностью, не растворяется в специальном кислотном растворе без предварительного нагрева хотя бы до 5000С.

Он легко вступает в реакцию с углеродом, следствием которой является образование карбида вольфрама известного высокой прочностью. Также металл известен своими оксидами, наиболее распространенный из них вольфрамовый ангидрид.

Его главное преимущество над остальными, возможность восстановления порошка к состоянию компактного металла, с побочным образованием низших оксидов.

Режущие пластины фирмы Sandvik Coromant с применением карбида вольфрама

Среди основных характеристик, делающих применение вольфрама затруднительным называют следующие:

  • ломкость и склонность к окислению при низких температурах.

Кроме того, высокая температура кипения, а также точка испарения затрудняют добычу компактного материала.

Сплавы, содержащие вольфрам

Сегодня различают однофазные сплавы вольфрама. Это подразумевает внедрение одного или нескольких элементов. Наиболее известны соединения вольфрама с молибденом. Легирование этим элементом повышает прочность вольфрама при его растяжении. Также к однофазным сплавам относятся системы: вольфрам-титан/цирконий, ниобий, гафний.

Однако большей пластичности придает вольфраму рений, сохраняя остальные показатели на характерном ему высоком уровне. Но практическое применение таких соединений ограничено трудностями при добыче Re.

Поскольку вольфрам наиболее тугоплавкий материал, получить его сплавы трудно традиционным способом. При температуре плавления вольфрама другие металлы уже кипят или даже переходят в газообразную фазу.

Современные технологии позволяют получать ряд сплавов с помощью электролиза.

Например, вольфрам — никель — кобальт, который используется не для изготовления целых деталей, а с целью нанесения защитного слоя на менее прочные металлы.

Также в промышленности все еще остается актуальным способ получения вольфрамовых сплавов, используя методы порошковой металлургии. При этом требуется создание особых условий технологического процесса, который включает в себя наличие вакуума.

Особенности взаимодействия металлов с вольфрамом делают предпочтительными соединения не парного характера, а с использованием 3, 4-х и более компонентов.

Такие сплавы отличаются особенной твердостью, однако малейшее отклонение от процентного содержания того или иного элемента приводит к повышению хрупкости готового сплава.

Вольфрам, как многие другие элементы редкой группы, не встречается в природе. Поэтому добыча металла не сопровождается строительством крупных промышленных комплексов. Сам процесс получения материала условно делят на такие этапы:

  1. Добыча руды, содержащей редкий металл.
  2. Создание условий для возможного выделения вольфрама от перерабатываемой массы.
  3. Концентрирование материала в виде раствора или осадка.
  4. Очищение полученного химического соединения.
  5. Получение чистого вещества.

Вольфрамовая руда

Более сложным оказывается процесс изготовления компактного металла, к примеру, вольфрамовой проволоки. Основная трудность заключается в том, что нельзя допустить даже малейшего попадания примесей, резко ухудшающих плавкие и прочностные свойства.

Область применения вольфрама

С помощью этого металла изготавливают нити накаливания, рентгеновские трубки, нагреватели, экраны вакуумных печей, предназначающихся для использования в высокотемпературном режиме.

Рентгеновская трубка с нитью из вольфрама

Сталь, легированная вольфрамом имеет высокие прочностные качества.

Продукция из таких видов сплава используется для изготовления инструментов широкого предназначения: медицина, бурение скважин, изделия для обработки материалов в машиностроении (режущие пластины, как на фото выше).

Преимуществом соединения считается устойчивость к истиранию, маловероятность появления трещин в процессе эксплуатации. Наиболее известная в строительстве марка стали с использованием вольфрама называется «победит».

Лом вольфрама

Химическая промышленность также нашла применение вольфраму. Из него делают краски, катализаторы, пигменты.

Атомная промышленность использует тигли из этого металла, а также специальные контейнера для хранения радиоактивных отходов.

О нанесении покрытий из вольфрама уже вкратце упоминалось. Оно применяется для нанесения на материалы, работающие при высоких температурах в восстановительных и нейтральных средах, как защитная пленка.

Также известны прутки, используемые при дуговой сварке. Поскольку вольфрам неизменно остается тугоплавким металлом при выполнении сварочных работ он используется с присадочными проволоками.

Свойства и температура плавления вольфрама

Вольфрам — самый тугоплавкий металл. Известны разные марки этого материала, которые обладают своим особенностями, свойствами. Температура плавления вольфрама — одна из главных характеристик этого металла. По ней специалисты определяют в каких отраслях промышленности его лучше использовать.

Вольфрам

Краткое описание

Вольфрам — тугоплавкий металл. В таблице Менделеева его можно найти под номером 74. Характерные качества — серый цвет, естественный металлический блеск.

Во Франции, Великобритании и США этот материал называется tungsten, что переводится как «тяжелый камень».

Структура и характеристики

Кристаллы вольфрама имеют объемноцентрированную кубическую решетку. Основная форма, размеры кристаллов не изменяются, если порошок прессуется при низких температурах.

Атомы в кубической ячейке металла расположены по всем вершинам и внутри самой ячейки. Коэффициент компактности вольфрама — 0,68.

История открытия и изучения

Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.

Вольфрамит ( Instagram / lopatkin_oleg)

Получение из руды и месторождения

В природе вольфрам можно встретить окисленными отложениями.  Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

Промышленное получение

Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала.

После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C.

Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

Марки

Марки вольфрама:

  1. ВР — соединение вольфрама с рением.
  2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
  3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
  4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
  5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
  6. ВЧ — чистый металл без примесей, присадок.
  7. ВА — соединение основы с алюминием, кремнещелочными присадками.

Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

Лампа накаливания ( Instagram / climberam)

Свойства

Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

Химические

Свойства:

  1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
  2. Молярная масса химического элемента —183,84.
  3. Элемент имеет орбиту, состоящую из двух ярусов.

Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

Физические

Свойства:

  1. Цвет — серый.
  2. Прозрачность — отсутствует.
  3. Металлический блеск — есть.
  4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
  5. Плотность — 19,3 г/см3.
  6. Радиоактивность — 0.
  7. Теплопроводность — 173 Вт/(м·К).
  8. Электропроводность — 55·10−9 Ом·м.
  9. Показатель твердости по Бринеллю — 488 кгс/мм².
  10. Теплоемкость — 134,4 Дж/(кг·град).
  11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
  12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
  13. Температура кипения — около 5555 °C.

Лучше всего металл куется при нагревании до 1600°C.

На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

Вольфрам ( Instagram / chemical_language)

Сферы применения

Вольфрам применяется при изготовлении:

  • нити накаливания;
  • электродов для аргонодуговой сварки;
  • хирургических инструментов;
  • танковой брони, оболочек для снарядов, торпед;
  • защитных костюмов, емкостей, листов от проникающего ионизирующего излучения;
  • ювелирных украшений.

Преимущества и недостатки

Положительные стороны:

  • тугоплавкость;
  • высокая прочность;
  • применение в разных сферах промышленности;
  • стойкость к большим нагрузкам после сильного нагревания;
  • экологичность.

Из главных недостатков можно выделить низкую пластичность, окисляемость при нагревании свыше 700°, высокую цену.

Сплавы

Известно множество соединений на основе этого металла. Они применяются в разных сферах промышленности. Виды и сферы их применения:

  1. Карбиды — добыча горных пород, бурение скважин.
  2. Сульфиды — изготовление высокотемпературной смазки.
  3. Дителлурид — производство преобразователей тепла в электричество.

Монокристаллы применяются в ядерной физике.

Остальные соединения используются в качестве пигментов, катализаторов. Они используются при изготовлении высоколегированных сталей, которые нужны для производства рабочих частей разных инструментов.

Чистый вольфрам по плотности можно сравнить с золотом 999 пробы. Раньше мошенники вкладывали стержни этого металла в золотые слитки. Определить подлинность золота без распиливания было невозможно.

Продукция из вольфрама выделяется высоким качеством, уникальными свойствами. Она применяется в разных сферах деятельности, не имеет аналогов среди похожих материалов.

Вольфрам: свойства, способы добычи и применение

Содержание вольфрама в земной коре составляет чуть более одной десятитысячной доли процента, что делает его достаточно редким природным ископаемым. В чистом виде он не встречается, поэтому для его добычи используют такие минералы, как вольфрамиты и шеелит. Это вольфрамовые руды, имеющие в своём составе кроме основного металла целый ряд примесей.

В шахтах

Подземный способ добычи руд, содержащих вольфрам, заключается в последовательном обрушении горизонтальных слоёв шахты с дальнейшим накоплением материала в отработанных блоках (так называемое «магазинирование»). Затем собранная выработка грузится на транспорт и извлекается на поверхность.

В карьерах

В них добыча вольфрамовых руд выполняется открытым способом. Путём обваливания внешнего грунта с погружением его на транспортные системы и отправкой на переработку.

Процессы получения вольфрама

Так как ископаемые минералы содержат достаточное количество примесей, то для получения непосредственно самого вольфрама приходится применять трёхэтапную технологию:

  • Обогащение добытых руд с целью образования раствора или осадка нужной концентрации. В этот процесс входят гравитация, флотация, магнитная или электростатическая сепарация. Итогом становится получение 60% концентрата вольфрамового ангидрита WO3.
  • Химическое соединение высокой чистоты получают за счёт реакции восстановления под воздействием водорода или углерода. Для получения вольфрамового порошка этого бывает достаточно.
  • Но, чтобы изготовить компактные твёрдые слитки – штабики, более удобные для дальнейшей переработки, применяют прессование и спекание. Чтобы они хорошо поддавались ковке, их подвергают высокотемпературному воздействию.

Однако, и это ещё не всё. Для получения столь востребованных изделий, какими являются металлические прутки, вольфрам при температуре порядка 15000C обрабатывают на ротационно-ковочной машине.

Для выпуска проволоки из вышеупомянутых прутков их подвергают волочению, сначала нагрев до 10000 C, а затем постепенно остудив до 4000 C. После чего готовую проволоку отжигают, полируют и травят электролитическим способом.

Соединения вольфрама

Самыми распространёнными соединениями вольфрама являются его оксиды, хлориды, карбиды.

Оксид вольфрама, содержащий в своём составе два атома кислорода, является кристаллом тёмно-коричневого цвета. Трёх кислородный вольфрам представляет собой порошок лимонного цвета.

Вольфрамовые карбиды – соединения вольфрама с углеродом – нашли очень широкое применение в ряде отраслей промышленности благодаря своей твёрдости. Это, прежде всего композитные материалы и твёрдые сплавы типа победита, а также смеси карбидов: вольфрама, тантала и титана.

Сплав вольфрама и рения используется в изготовлении термопар, позволяющих измерять температуру свыше 20000C. Правда, в химически неагрессивных средах.

В качестве высокотемпературной смазки употребляется сульфид вольфрама.

Некоторые соединения вольфрама используются в качестве пигментных красителей и катализаторов химических реакций. Вольфрамовая кислота применяется как адсорбент и катализатор при производстве бензина. Монокристаллы из вольфраматов управляют потоками ионизирующих излучений, столь востребованных в медицине и ядерной физике.

Хранение и транспортировка

Условия хранения и транспортировки порошкообразного вольфрама и продукции, содержащей его в своём составе (штабиков, пластин, прутков, проволоки, электродов) определятся требованиями соответствующих государственных стандартов и технических условий, находящих своё отражение в документации на изготавливаемые изделия.

Так как концентрат вольфрама не токсичен, взрывобезопасен и не представляет пожарной опасности, то его хранение и транспортировка не представляют значительной сложности. Проблему представляет лишь его возможность пылеобразования и необходимость защиты изделий от внешних механических воздействий и агрессивных сред.

Поэтому вольфрамовый порошок необходимо упаковывать в специализированные контейнеры или двойные мешки массой не более 50 кг, наружный слой которых должен быть изготовлен из синтетической ткани или полипропилена, внутренний – из бумаги или полиэтилена. Для длительного хранения мешки формируют в транспортные пакеты. Перевозку концентрата производят в открытом подвижном составе, а хранение выполняется в упакованном виде на территории закрытых складских помещений.

Вольфрамовые электроды для хранения и перевозки упаковывают в картонные коробки с пенопластовыми или плотными бумажными ложементами. Затем коробки укладывают в деревянные ящики, защищённые водонепроницаемой бумагой, с дальнейшим уплотнением ватой или бумагой. Электроды, в отличие от концентрата, необходимо перемещать в крытом транспорте.

Аналогичные меры защиты применяют и для сохранности и перемещения других изделий из этого металла.

Продукция переработки

Благодаря своим уникальным свойствам, – прежде всего твёрдости и тугоплавкости, вольфрам с самого момента своего открытия нашёл широкую сферу применения. В качестве тугоплавкого материала он широко используется в металлургии. Хотя и другие отрасли не могут обходиться без столь ценного материала.

Осветительные приборы

Благодаря малой электропроводности и низкой скорости испарения, в своё время вольфрамовые нити накаливания позволили совершить технический переворот во всей индустрии создания электрических осветительных приборов, а также начали использоваться при изготовлении электронно-вакуумных приборов.

Снаряды

Высокий уровень плотности этого материала, доходящий до 19,3 г/см3, наряду с прочностью, предоставил в распоряжение оружейников отличное средство разрушения брони. Сегодня вольфрам – один из основных химических элементов, входящих в состав тяжёлых сплавов сердечников бронебойных пуль и снарядов.

Электроды

Неплавящиеся электроды из вольфрама используются как сварочный материал для процесса, выполняемого с использованием газов. Гелий или аргон защищают место соединения от атмосферного воздействия, а электрод в это время выдерживает значительную температуру и длительный срок эксплуатации. Это позволяет создавать оптимальные условия работы, избегая ненужных затрат.

Нахождение в природе

Месторождения

Геологическое строение земной коры таково, что наибольшие залежи вольфрамовых руд расположены в районах Альп, Гималаев, горных цепей региона Тихого океана. Это территории Казахстана (крупнейшее месторождение – Верхние Кайракты), Китая (наиболее продуктивное месторождение – Жианьши), Канады (месторождение Тангстен) и США (значительные запасы разведаны в месторождении Клаймакс).

Также имеются районы сосредоточения вольфрамитов и шеелитов на территории Боливии, Португалии, Великобритании, Турции, России, Узбекистана, Южной Кореи, Австралии.

В космосе

Прогресс не стоит на месте, а земные ресурсы распределены крайне неравномерно и достаточно ограничены. Освоение космического пространства, позволившее взять пробы с поверхностей ряда небесных тел близлежащих объектов Солнечной системы, дают все основания предполагать наличие огромного количества полезных ископаемых на астероидах, кометах и планетах.

Что открывает очень заманчивые перспективы их будущего освоения. Предполагается, что именно на астероидах содержится огромное количество минералов, причём очень высокой концентрации. В том числе и вольфрам. В связи с тем, что часть этих небесных тел вращаются в близости от Земли, перспективы их освоения становятся очень и очень заманчивыми.

Правительства целого ряда стран, международные космические сообщества и частные агентства активно формируют правовую базу, разрабатывают программы, отправляют миссии.

Так Люксембург первым принял закон, разрешающий частную добычу полезных ископаемых в космосе. Активность в этом вопросе проявляют не только ведущие космические державы мира, но и Япония, Индия, Австралия, Израиль.

Проводятся активные исследования поверхности Луны, Марса, Венеры.

Пока трудно ставить какую-либо оценку этим усилиям, так как на этом пути стоит множество организационных, технических и финансовых проблем. Хотя многие специалисты считают возможной добычу вольфрама в космосе в 21 веке.

Мировые запасы

Мировые подтверждённые запасы вольфрама составляют 2,6 млн. т. Выявленные ресурсы составляют 12,5 млн. т. Прогнозные ресурсы оцениваются в 9,5 млн. т. Свыше 60 стран мира обладают месторождениями данного металла:

  • Китай – 7,5 млн. т.
  • Казахстан – 3,1 млн. т.
  • Россия – 3 млн. т.
  • Канада – 1,7 млн. т.
  • США – 0,8 млн. т.
  • Австралия – 0,7 млн. т.
  • Боливия – 0,5 млн. т.

Надо отметить, что целый ряд стран мирового сообщества обладает месторождениями, непригодными для освоения, вследствие своей нерентабельности. В то время как пять ведущих имеют на своих территориях более 70% осваиваемых запасов.

Страны, добывающие вольфрам

Абсолютным лидером по добыче и экспорту вольфрама на мировом рынке является Китай. Доля этого государства составляет – 82,7% (70 тыс. т) по данным 2019 года. Значительно меньше производят:

  • Вьетнам – 4,8 тыс. т.
  • Монголия – 1,9 тыс. т.
  • Россия – 1,5 тыс. т.
  • Боливия – 1,2 тыс. т.

Очевидно, что европейские страны уступили этот сегмент рынка металлов своим азиатским конкурентам, так объём их добычи в 2019 году резко снизился. Австрия, Португалия и Испания совместно произвели в 2019 году 2,14 тыс. т., а Великобритания полностью прекратила добычу, удовлетворяя свои запросы импортом металла.

Сферы и области применения вольфрама. Где применяется вольфрам?

Углерод имеет самую высокую температуру плавления среди всех химических элементов в таблице Менделеева. Но речь пойдет не о нём, а о вольфраме, который занимает второе место. Благодаря своим свойствам отлично подходит для производства самых разнообразных деталей и механизмов. Прочитав эту статью, Вы сможете узнать об этих свойствах, и самое главное о том, какие сферы и области применения вольфрама существуют.

Физико-химические свойства вольфрама

Вольфрам – тугоплавкий, неметаллический элемент серого цвета. Он пластичен и тверд. Его твердость в несколько раз выше свинца. Сплавы вольфрама имеют высокий показатель теплопроводности, хорошую коррозийную стойкость и высокую прочность.

Вольфрам, химически активное вещество, которое может вступать в реакцию с различными химическими элементами, такими как бром, йод, селен, азот, сера.

Уникальные свойства данного элемента позволяют применять вольфрам и его сплавы в самых различных сферах промышленности.

Применение вольфрама в промышленности

Вольфрам начали активно применять в различных сферах промышленности не так уж и давно. На протяжении долгого времени он не мог найти практического применения, но сейчас больше половины всего вольфрама идет на производство вольфрамовых сплавов различной прочности. Перечислим сферы и области применения вольфрама более подробно:

— электротехническая промышленность. Вольфрам незаменим в данной сфере, так как из его изготавливают нити накалывания электрических ламп, катоды рентгеновских трубок и различные детали для радиоламп.

— химическая промышленность. В данной сфере вольфрам применяют в качестве сырья для изготовления пигментов, красок и смазочных материалов. Помимо этого, данный неметаллический элемент применяют как катализатор.

— военная промышленность. Вольфрам был одним из основных сырьевых материалов в данной сфере во времена Первой Мировой войны. Его применяют для производства пуль, орудийной стали и бронебойных снарядов.

— автомобильная промышленность. Вольфрам выступает в качестве легированного элемента некоторых видов стали. Он придает стали уникальных свойств и позволяет использовать её для производства автомобильных прочных рессор. Более подробно об этом можно узнать в нашей статье «Сферы и области применения стали».

— железнодорожная промышленность. Вольфрамовая сталь применяется для производства железнодорожных рельс и вагонов. Такие рельсы могут выдержать очень большие нагрузки. Кроме того, их срок эксплуатации намного больше, чем из других видов стали.

— металлургическая промышленность. Наиболее важное предназначение вольфрама в металлургии – это легирование им сталей, а также производство твердых сплавов.

Применение сплавов вольфрама

Вольфрам способен образовывать сплавы с кобальтом, железом, никелем и другими металлами. Как уже было сказано, вольфрам может вступать в реакции с различными химическими элементами и тем самым устранять негативное действие некоторых из них (серы, фосфора) в сплавах. В результате получаем вольфрамовые сплавы — твердые, химически стойкие и упругие.

К примеру, сплавы вольфрама с бором и углеродом по твердости очень близки к алмазам- самым твердым минералам.

Некоторые сплавы пригодны для производства деталей, которые можно использовать для работы при повышенных температурах. Сплавы вольфрама с молибденом применяют для производства сопел реактивных самолётов и проволоки. Военная промышленность активно использует тяжелые сплавы вольфрама для создания танков, гранат, оружия, снарядов. Вольфрам стал отличной заменой свинца в данной сфере.

Мы перечислили основные сферы и области применения вольфрама, и, как видно, этот химический элемент остается востребованным на протяжении многих лет в самых разных отраслях промышленности. Уникальные свойства вольфрама говорят о том, что в будущем он может стать популярнее вдвойне и его станут использовать в совершенно новых сферах.

Вольфрам

Вольфрам
Тугоплавкий прочный металл, стального цвета или белый

Название, символ, номерВольфрам / Wolframium (W), 74
Атомная масса
(молярная масса)
183,84(1) а. е. м. (г/моль)
Электронная конфигурация[Xe] 4f14 5d4 6s2
Радиус атома141 пм
Ковалентный радиус170 пм
Радиус иона(+6e) 62 (+4e) 70 пм
Электроотрицательность2,3 (шкала Полинга)
Электродный потенциалW ← W3+ 0,11 В
W ← W6+ 0,68 В
Степени окисления6, 5, 4, 3, 2, 0
Энергия ионизации
(первый электрон)
 769,7 (7,98) кДж/моль (эВ)
Плотность (при н. у.)19,25 г/см³
Температура плавления3695 K (3422 °C, 6192 °F)
Температура кипения5828 K (5555 °C, 10031 °F)
Уд. теплота плавления285,3 кДж/кг
52,31 кДж/моль
Уд. теплота испарения4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость24,27 Дж/(K·моль)
Молярный объём9,53 см³/моль
Структура решёткикубическая
объёмноцентрированная
Параметры решётки3,160 Å
Температура Дебая310 K
Теплопроводность(300 K) 162,8 Вт/(м·К)
Номер CAS7440-33-7
74

Вольфрам

4f145d46s2

Вольфрам — химический элемент с атомным номером 74 в Периодической системе химических элементов Д. И. Менделеева, обозначается символом W (лат. Wolframium). При нормальных условиях представляет собой твёрдый блестящий серебристо-серый переходный металл.

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод, но он существует в жидком виде только при высоких давлениях. При стандартных условиях вольфрам химически стоек.


История и происхождение названия

Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием «волчья пена» – лат. spuma lupi или нем. Wolf Rahm. Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирал олово как волк овцу»).

В английском и французском языках вольфрам называется tungsten (от швед. tung sten — «тяжёлый камень»). В 1781 году знаменитый шведский химик Карл Шееле, обрабатывая азотной кислотой минерал шеелит, получил жёлтый «тяжёлый камень» (триоксид вольфрама). В 1783 году испанские химики братья Элюар сообщили о получении из саксонского минерала вольфрамита как растворимой в аммиаке жёлтой окиси нового металла, так и самого металла. При этом один из братьев, Фаусто, был в Швеции в 1781 году и общался с Шееле. Шееле не претендовал на открытие вольфрама, а братья Элюар не настаивали на своём приоритете.

Нахождение в природе

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Основная статья: Вольфрамовые руды

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трёхокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 · mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Месторождения

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

Получение

Вольфрамовый порошок

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре ок. 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Физические свойства

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32⋅10−9). Твёрдость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55⋅10−9 Ом·м, при 2700 °C — 904⋅10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с.

Вольфрам является одним из наиболее тяжёлых, твёрдых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддаётся ковке и может быть вытянут в тонкую нить. Металл обладает высокой устойчивостью в вакууме.

Химические свойства

Проявляет валентность от 2 до 6. Наиболее устойчив 6-валентный вольфрам. 3- и 2-валентные соединения вольфрама неустойчивы и практического значения не имеют.

Вольфрам имеет высокую коррозионную стойкость: при комнатной температуре не изменяется на воздухе; при температуре красного каления медленно окисляется в оксид вольфрама (VI). Вольфрам в ряду напряжений стоит сразу после водорода, и в соляной, разбавленной серной и плавиковой кислотах почти нерастворим. В азотной кислоте и царской водке окисляется с поверхности. Растворяется в перекиси водорода.

Легко растворяется в смеси азотной и плавиковой кислот:

 2W + 4HNO3 + 10HF ⟶ WF6 + WOF4 + 4NO ↑ + 7H2O

Реагирует с расплавленными щелочами в присутствии окислителей:

 2W + 4NaOH + 3O2 ⟶ 2Na2WO4 + 2H2O
 W + 2NaOH + 3NaNO3 ⟶ Na2WO4 + 3NaNO2 + H2O

Поначалу данные реакции идут медленно, однако при достижении 400 °C (500 °C для реакции с участием кислорода) вольфрам начинает саморазогреваться, и реакция протекает достаточно бурно, с образованием большого количества тепла.

Растворяется в смеси азотной и плавиковой кислоты, образуя гексафторвольфрамовую кислоту H2[WF6]. Из соединений вольфрама наибольшее значение имеют: триоксид вольфрама или вольфрамовый ангидрид, вольфраматы, перекисные соединения с общей формулой Me2WOX, а также соединения с галогенами, серой и углеродом. Вольфраматы склонны к образованию полимерных анионов, в том числе гетерополисоединений с включением других переходных металлов.

Применение

Главное применение вольфрама — как основа тугоплавких материалов в металлургии.

Металлический вольфрам

Нить накаливания
  • Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
  • Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).
  • Вольфрам используют в качестве электродов для аргонно-дуговой сварки.
  • Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей.
  • Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.
  • Высокая плотность вольфрама делает его удобным для защиты от ионизирующего излучения. Несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением никеля, железа, меди и др. либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе.

Соединения вольфрама

  • Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
  • Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка.
  • Некоторые соединения вольфрама применяются как катализаторы и пигменты.
  • Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.
  • Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К).

Другие сферы применения

Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Рынок вольфрама

Цены на металлический вольфрам (содержание элемента порядка 99 %) на конец 2010 года составляли около 40—42 долларов США за килограмм, в мае 2011 года составляли около 53—55 долларов США за килограмм. Полуфабрикаты от 58 USD (прутки) до 168 (тонкая полоса). В 2014 году цены на вольфрам колебались в диапазоне от 55 до 57 USD.

Биологическая роль

Вольфрам не играет значительной биологической роли. У некоторых архебактерий и бактерий имеются ферменты, включающие вольфрам в своем активном центре. Существуют облигатно-зависимые от вольфрама формы архебактерий-гипертермофилов, обитающие вокруг глубоководных гидротермальных источников. Присутствие вольфрама в составе ферментов может рассматриваться как физиологический реликт раннего архея — существуют предположения, что вольфрам играл роль в ранних этапах возникновения жизни.

Пыль вольфрама, как и большинство других видов металлической пыли, раздражает органы дыхания.

Изотопы

Основная статья: Изотопы вольфрама

Известны изотопы вольфрама с массовыми числами от 158 до 192 (количество протонов 74, нейтронов от 84 до 118), и более 10 ядерных изомеров.

Природный вольфрам состоит из смеси пяти изотопов (180W — 0,12(1)%, 182W — 26,50(16) %, 183W — 14,31(4) %, 184W — 30,64(2) % и 186W — 28,43(19) %). В 2003 открыта чрезвычайно слабая радиоактивность природного вольфрама (примерно два распада на грамм элемента в год), обусловленная α-активностью 180W, имеющего период полураспада 1,8⋅1018 лет.

Соединения вольфрама

  • Вольфрам (W)
  • Арсенид вольфрама (WAs2) Вольфрам мышьяковистый
  • Борид вольфрама (WB) Вольфрам бористый
  • Борид дивольфрама (W2B) Бористый вольфрам
  • Бромид вольфрама II (WBr2) Вольфрам бромистый
  • Бромид вольфрама III (WBr3)
  • Бромид вольфрама IV (WBr4) Бромистый вольфрам
  • Бромид вольфрама 5 (WBr5)
  • Бромид вольфрама VI (WBr6)
  • Вольфрамит ((FeMn)WO4)
  • Вольфрамовая кислота (H2WO4) Ортовольфрамовая кислота
  • Гексакарбонилвольфрам (W(CO)6)
  • Диборид вольфрама (WB2)
  • Динитрид вольфрама (WN2)
  • Диоксидибромид вольфрама (WO2Br2) Бромистый вольфрамил
  • Диоксидихлорид вольфрама (WO2Cl2) Хлористый вольфрамил
  • Дисилицид вольфрама (WSi2) Кремнистый вольфрам
  • Дисульфид вольфрама (WS2) Сернистый вольфрам
  • Дифосфид вольфрама (WP2) Фосфористый вольфрам
  • Дифосфид тетравольфрама (W4P2)
  • Йодид вольфрама II (WI2) Вольфрам йодистый
  • Йодид вольфрама III (WI3)
  • Йодид вольфрама IV (WI4) Йодистый вольфрам
  • Карбид вольфрама (WC) Вольфрам углеродистый
  • Карбид дивольфрама (W2C) Углеродистый вольфрам
  • Нитрид дивольфрама (W2N) Вольфрам азотистый
  • Оксид вольфрама IV (WO2) Окись вольфрама
  • Оксид вольфрама VI (WO3) Вольфрам окись
  • Окситетрабромид вольфрама VI (WOBr4) Бромокись вольфрама
  • Окситетрафторид вольфрама VI (WOF4) Фторокись вольфрама
  • Окситетрахлорид вольфрама VI (WOCl4) Хлорокись вольфрама
  • Пентаборид дивольфрама (W2B5)
  • Селенид вольфрама IV (WSe2) Вольфрам селенистый
  • Селенид вольфрама VI (WSe3) Селенистый вольфрам
  • Силицид вольфрама (W2Si3) Вольфрам кремнистый
  • Теллурид вольфрама IV (WTe2) Вольфрам теллуристый
  • Тринитрид дивольфрама (W2N3) Азотистый вольфрам
  • Трисульфид вольфрама (WS3) Вольфрам сернистый
  • Фенолят вольфрама (WC36H30O6)
  • Фосфид вольфрама (WP) Вольфрам фосфористый
  • Фторид вольфрама IV (WF4) Вольфрам фтористый
  • Фторид вольфрама 5 (WF5)
  • Фторид вольфрама VI (WF6) Фтористый вольфрам
  • Фтороксивольфраматы
  • Хлорид вольфрама II (WCl2) Вольфрам хлористый
  • Хлорид вольфрама III (WCl3)
  • Хлорид вольфрама IV (WCl4)
  • Хлорид вольфрама 5 (WCl5)
  • Хлорид вольфрама VI (WCl6) Хлористый вольфрам
  • Шеелит (CaWO4)

Периодическая система химических элементов Д. И. Менделеева

 12              3456789101112131415161718
1H He
2LiBe BCNOFNe
3NaMg AlSiPSClAr
4KCa ScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
5RbSr YZrNbMoTcRuRhPdAgCdInSnSbTeIXe
6CsBaLaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTaWReOsIrPtAuHgTlPbBiPoAtRn
7FrRaAcThPaUNpPuAmCmBkCfEsFmMdNoLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
8UueUbnUbuUbbUbtUbqUbpUbhUbs 

Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Температура плавления вольфрама

Температура плавления вольфрама.

 

 

Температура плавления вольфрама относится к разделу о плавкости металлов, так как данный химический элемент является металлом.

Температура плавления (обычно совпадает с температурой кристаллизации) — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот.

Температура — физическая величина, характеризующая термодинамическую систему и количественно выражающая интуитивное понятие о различной степени нагретости тел.

Жидкое состояние вещества является промежуточным между твердым (кристаллическим) и газообразным состоянием.

Удельная теплота плавления — количество теплоты, которое необходимо сообщить одной единице массы кристаллического вещества в равновесном изобарно-изотермическом процессе, чтобы перевести его из твёрдого (кристаллического) состояния в жидкое (то же количество теплоты выделяется при кристаллизации вещества).

 

Температура плавления вольфрама при нормальных условиях:

Температуру плавления обозначают Тпл

Температура плавления вольфрама (Тпл) составляет 3422 °C (3695 K).

Температура плавления вольфрама приведена при нормальных условиях (согласно ИЮПАК), т.е. при  давлении 105 (100 000) Па.

Для сведения: 101 325 Па = 1 атм = 760 мм рт. ст.

Необходимо иметь в виду, что температура плавления металлов может изменяться в зависимости от условий окружающей среды (давления). Точное значение температуры плавления металлов в зависимости от условий окружающей среды (давления) необходимо смотреть в справочниках.

Зависимость температуры фазового перехода (в том числе и плавления, и кипения) от давления для однокомпонентной системы даётся уравнением Клапейрона-Клаузиуса.

 

 

Источник: https://ru.wikipedia.org

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

карта сайта

 

Коэффициент востребованности 28

Вольфрам свойства, марки температура плавления, применение, история Wolframium


Вольфрам

— самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

  1. Структура
  2. Свойства
  3. Запасы и добыча
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

Смотрите так же:

Серебро

— структура и физические свойства

СТРУКТУРА


Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.



Распространенность вольфрама в природе

Этот металл очень мало распространен в окружающей среде. После всех элементов он занимает 57-е место и содержится в виде кларка вольфрама. Также металл образует минералы – шеелит и вольфрамит. Вольфрам мигрирует в подземные воды либо в виде собственного иона, либо в виде всевозможных соединений. Но его наибольшая концентрация в подземных водах ничтожно мала. Она составляет сотые доли мг/л и практически не меняет их химические свойства. Вольфрам также может попадать в природные водоемы из стоков заводов и фабрик.



СВОЙСТВА


Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

§2. Вольфрамовые электроды

Дуговая сварка
Сварочные электроды являются одними из важнейших компонентов, необходимых для сварки. Наиболее широко они применяются при дуговой сварке. Она относится к термическому классу сварки, в котором плавление осуществляется за счет термической энергии. Дуговая сварка (ручная, полуавтоматическая и автоматическая) является наиболее распространенным технологическим процессом сварки. Тепловая энергия создается вольтовой дугой, которая горит между электродом и изделием (деталью, заготовкой). Дуга — мощный стабильный электрический разряд в ионизированной атмосфере газов, паров металла. Электрод подводит электрический ток к месту сварки, чтобы получить дугу.

Сварочные электроды

Сварочный электрод — проволочный стержень с нанесенным на него покрытием (или без покрытия). Существует большое количество разнообразных электродов для сварки. Они различаются по химическому составу, длине, диаметру, определенный тип электродов подходит для сварки определенных металлов и сплавов и. т.д. Разделение электродов сварочных на плавящиеся и неплавящиеся является одним из важнейших видов их классификации.

Плавящиеся сварочные электроды расплавляются в процессе сварки, их металл вместе с расплавленным металлом свариваемой детали идет на пополнение сварочной ванны. Такие электроды выполняют из стали и меди.

Неплавящиеся электроды не расплавляются во время сварки. К данному типу можно отнести угольные и вольфрамовые электроды. При сварке с использованием неплавящихся вольфрамовых электродов необходима подача присадочного материала (обычно это сварочная проволока или пруток), который расплавляется и вместе с расплавленным материалом свариваемой детали образует сварочную ванну.

Также, электроды для сварки бывают покрытые и непокрытые. Покрытие имеет важную роль. Его составляющие могут обеспечить получение металла швов заданных состава и свойств, стабильное горения дуги, защиту расплавленного металла от воздействия воздуха. Соответственно составляющие покрытия могут быть легирующими, стабилизирующими, газообразующими, шлакообразующими, раскисляющими, а само покрытие — кислым, рутиловым, основным или целлюлозным.

Сварочные вольфрамовые электроды

Как было отмечено ранее вольфрамовые электроды являются неплавящимися и при сварке используются вместе с присадочной проволокой. Данные электроды, в основном, применяются для сварки цветных металлов и их сплавов (вольфрамовый электрод с присадкой циркония), высоколегированных сталей (вольфрамовый электрод с присадкой тория ЭВТ), а также вольфрамовый электрод хорошо подходит для получения сварного шва повышенной прочности, причем свариваемые детали могут быть разного химического состава.

Довольно распространенной является сварка с использованием вольфрамовых электродов в среде аргона. Данная среда положительно влияет на процесс сварки и качество сварного шва. Вольфрамовые электроды могут быть сделаны из чистого вольфрама или содержать различные присадки, которые улучшают качество процесса сварки и сварного шва. Особенностью неплавящихся сварочных электродов из чистого вольфрама (например, вольфрамовый электрод марки ЭВЧ) является не очень хорошая зажигаемость дуги.

Зажигание дуги проходит в три этапа:

  • короткое замыкание электрода на заготовку;
  • отвод электрода на незначительное расстояние;
  • возникновение устойчивого дугового разряда.

Для улучшения зажигаемости дуги и достижения высокой стабильности дуги во время сварки в электроды из вольфрама добавляют цирконий. Торирование (вольфрамовый электрод ЭВТ-15) также улучшает зажигаемость дуги и увеличивает срок службы сварочных электродов. Добавление в вольфрамовые электроды иттрия (вольфрамовый электрод ЭВИ-1, ЭВИ-2, ЭВИ-3) позволяет использовать их в различных токовых средах. Например, может быть дуга переменного или постоянного тока. В первом случае сварочная дуга питается от источника переменного тока. Различают однофазное и трехфазное питание дуги. Во втором — от источника постоянного тока.
Аргонодуговая сварка (Дуговая сварка неплавящимся вольфрамовым электродом в среде аргона)

Данный вид сварки хорошо зарекомендовал себя при сваривании цветных металлов таких, как молибден, титан, никель, а также высоколегированных сталей. Это разновидность дуговой сварки, где источником высокой температуры, необходимой для создания сварочной ванны, является электрический ток. В данном виде аргонодуговой сварки основными элементами являются вольфрамовый электрод и инертный газ аргон. Аргон во время сварки подается на вольфрамовый электрод и защищает его, зону дуги и сварочную ванну от атмосферной газовой смеси (азот, водород, углекислый газ). Данная защита намного повышает качественные характеристики сварного шва, а также предохраняет сварочные вольфрамовые электроды от быстрого сгорания в среде воздуха. Газ аргон может применяться при сварке большого количества металлов и сплавов, так как он является инертным.

Стандарты для вольфрамовых электродов

В России неплавящиеся вольфрамовые электроды производятся в соответствии с требованиями стандартов и технических условий. Среди них:
ГОСТ 23949-80 “Электроды вольфрамовые сварочные неплавящиеся. Технические условия”; ТУ 48-19-27-88 “Вольфрам лантанированный в виде прутков. Технические условия”; ТУ 48-19-221-83 “Прутки из иттрированного вольфрама марки СВИ-1. Технические условия”; ТУ 48-19-527-83 “Электроды вольфрамовые сварочные неплавящиеся ЭВЧ и ЭВЛ-2. Технические условия”.

ЗАПАСЫ И ДОБЫЧА


Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

Сплавы

Присадки меняют характеристики полученных сплавов.

Марка российского сплаваПрисадки
ВД-2080% вольфрама, 20% меди
ВНЖ-953% никеля, 2% железа
ВНМ 2-12% никеля, 1% меди
ВНЖ 7-37% никеля, 3% железа
ВД-3070% вольфрама, 30% меди
ВНЖ-97.51.5% никеля, 1% железа

ПРОИСХОЖДЕНИЕ


Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания. Также есть месторождения вольфрама в Армении и других странах.

§4. Вольфрамовый порошок

Чистый вольфрамовый порошок служит исходным сырьем для производства компактного вольфрама (см. Главу 2). Карбид вольфрама WC, котрый по внешнему виду также представляет из себя порошок, используют для изготовления твердых сплавов.
В зависимости от назначения порошки вольфрама различают по средней величине частиц, набору зерен и другим параметрам.

Основная примесь в вольфрамовых порошках — кислород (0,05 — 0,3%). Металлические примеси содержатся в вольфрамовых порошках в очень малых количествах. Часто в порошки вольфрама вводят присадки из других металлов, которые улучшают определенные свойства конечного продукта. В качестве присадок часто используют алюминий, торий, лантан и другие.

Вольфрамовый порошок ВА, который применяется для изготовления проволоки, содержит равномерно распределенную кремнещелочную и алюминиевую присадки (0,32% K2O; 0,45% SiO2; 0,03% Al2O3), порошок из тугоплавкого металла вольфрам марки ВТ — присадку окиси тория (0,7 — 5%), ВЛ — присадку оскиси лантана (~1% La2O3), ВИ — присадку окиси иттрия (~3% Y2O3), ВМ — кремнещелочную и ториевую присадки (0,32% K2O; 0,45% SiO2; 0,25% ThO2).

ПРИМЕНЕНИЕ


Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках. Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

Молекулярный вес183,84 г/моль
Происхождение названиялат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»)
IMA статусподтвержден в 2011 году

История открытия

Рудокопы Саксонии в XIV-XVI вв. заметили, что после обработки оловянных руд остается много шлака. Работники в здешних копальнях называли его побочным продуктом, который «пожирает» олово, сравнивали с «волком, пожирающим овцу». Так и сформировалось название шлака «wolfrahm» («волчья пена» с немецкого языка).

Когда химик Карл Шееле обработал азотной кислотой «tungsten» («тяжелый камень» в переводе со шведского языка), удалось выделить новый метал, получивший такое же название. Событие произошло в 1781 г. Позже провели ряд анализов, которые показали, что шведскому химику удалось открыть не сам вольфрам, а его оксид. Поэтому минерал переименовали на «шеелит».

Через два года после открытия, сделанного Карлом Шееле, химики из Испании братья Элюар заявили, что смогли выделить из вольфрамита рудников Саксонии чистый вольфрам. Нужно отметить, что ни Шееле, ни братья Элюар не настаивали на том, что именно они стали первооткрывателями вольфрама.

До начала ХХ века химический элемент назывался «tungsten», его обозначали символом «Tu». Термин «вольфрам» и символ «W» был утвержден только в середине прошлого века.

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минераласерый
Цвет чертыбелый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнет
Твердость (шкала Мооса)7,5
Прочностьковкий
Изломзазубренный
Плотность (измеренная)19.3 г/см3
Радиоактивность (GRapi)0
Магнетизмпарамагнетик

Вольфрам в экономике

Глобальное производство вольфрама начало свой рост примерно с 2009 года, когда стала восстанавливаться азиатская промышленность. Крупнейшим производителем вольфрама остается Китай. Например, в 2013 году на долю производства этой страны приходился 81 % от мирового предложения. Около 12 % спроса на вольфрам связано с производством осветительных приборов. По прогнозам экспертов, использование вольфрама в этой сфере будет сокращаться на фоне применения светодиодных и люминесцентных ламп как в бытовых условиях, так и на производстве.

Считается, что будет расти спрос на вольфрам в сфере производства электронной техники. Высокая износостойкость вольфрама и его способность выдерживать электричество делают этот металл наиболее подходящим для производства регуляторов напряжения. Однако по объему этот спрос пока остается довольно незначительным, и считается, что к 2021 году он вырастет лишь на 2 %. Однако согласно прогнозам ученых, в ближайшее время должен произойти рост спроса на цементированный карбид. Это связано с ростом автомобильного производства в США, Китае, Европе, а также увеличением горнодобывающей промышленности. Считается, что к 2021 году спрос на вольфрам увеличится на 3,6 %.

W-MMC | Plansee

Сырье из бесконфликтных источников

Быть ведущим производителем в области тугоплавких металлов — это большая ответственность. Для нас особенно важно, чтобы закупаемое сырье добывалось в соответствии с экологическими нормами и из таких источников, которые не связаны ни с какими конфликтами. Именно поэтому мы принимаем комплексные меры для того, чтобы не закупать и не использовать сырье из социально, этически и экологически сомнительных источников.

Социальная и экологическая ответственность, являющая основным принципом нашей политики закупок, определена в Кодексе деловой этики компании.

Мы выбираем поставщиков в соответствии со строгими правилами закупок и нашей политикой в отношении поставщиков. Поставщики сырья должны не только соответствовать нашим строгим требованиям к качеству. Они также должны безукоризненно соблюдать законодательно установленные права человека, трудовое законодательство и международное торговое право, соответствовать строгим экологическим стандартам и предоставлять свидетельства приемлемого происхождения сырья. Мы приняли участие в пилотном исследовании, проведенном Организацией экономического сотрудничества и развития (ОЭСР), и внедрили у себя регламент в соответствии с Руководством по проверке благонадежности во избежание поставок минерального сырья из районов, затронутых конфликтами, и районов высокого риска.

Аудит в рамках Процесса обеспечения ответственного происхождения минеральных ресурсов (RMAP), спонсорами которой являются Альянс ответственного бизнеса (RBA), бывший EICC, и Глобальная инициатива в области устойчивого развития электронной сферы (GeSI), является добровольным обязательством со стороны Plansee. Для нас, наших клиентов и поставщиков это стало независимым подтверждением нашего строгого соблюдения требований RMAP.

После повторного аудита, проведенного в 2018 году, аудиторский комитет RBA и GeSI подтвердил, что зарегистрированная в Тованде компания Global Tungsten & Powders (GTP) — часть Plansee Group — закупает вольфрам в соответствии с требованиями RMAP. Для клиентов Plansee этот сертификат также является независимым доказательством того, что Plansee Group получает вольфрам из бесконфликтных источников.

К какой группе металлов относится вольфрам?

Вольфрам

Вольфрам — самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент — углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

  1. Структура
  2. Свойства
  3. Запасы и добыча
  4. Происхождение
  5. Применение
  6. Классификация
  7. Физические свойства
  8. Оптические свойства
  9. Кристаллографические свойства

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам — блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя — время существования сиборгия очень мало). Температура плавления — 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C — 55·10−9 Ом·м, при 2700 °C — 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных — 0,1, основных — 0,7, средних — 1,2, кислых — 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200—1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO4 * mMnWO4 — соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1—2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49—50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам — важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. ( Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам — что за металл? Свойства и сферы применения

Одним из самых распространенных химических элементов является вольфрам. Он обозначается символом W и имеет атомный номер — 74. Вольфрам относится к группе металлов, имеющих высокую стойкость к изнашиванию и температуру плавления. В периодической системе Менделеева он находится в 6-й группе, обладает схожими свойствами с «соседями» — молибденом, хромом.

Открытие и история

Еще в XVI веке был известен такой минерал, как вольфрамит. Он был интересен тем, что при выплавке олова из руды его пена превращался в шлак и, конечно же, это мешало производству. С тех пор, вольфрамит стали называть «волчья пена» (с нем. Wolf Rahm). Название минерала перешло и на сам металл.

Шведский химик Шееле в 1781 году обрабатывал азотной кислотой металл шеелит. В процессе эксперимента у него получился жёлтый тяжёлый камень — оксид вольфрама (VI). Через два года братья Элюар (испанские химики) получили из саксонского минерала сам вольфрам в чистом виде.

Добывают этот элемент и его руды в Португалии, Боливии, Южной Корее, России, Узбекистане, а наибольшие запасы были найдены в Канаде, США, Казахстане и Китае. В год добывается всего 50 тонн этого элемента, поэтому он дорого стоит. Рассмотрим подробнее, что за металл вольфрам.

Свойства элемента

Как уже было сказано ранее, вольфрам – это один из самых тугоплавких металлов. Он имеет блестящий светло-серый цвет. Его температура плавления 3422°С, а кипения — 5555°C, плотность в чистом виде — 19,25 г/см 3 , а твердость 488 кг/мм². Это один из самых тяжелых металлов, обладающий высокой коррозионной стойкостью. Он практически не растворим в серной, соляной и плавиковой кислотах, но быстро вступает в реакцию с перекисью водорода. Что за металл вольфрам, если он не реагирует с расплавленными щелочами? Вступая в реакцию с гидроксидом натрия и кислородом, он образует два соединения – вольфрамат натрия и обычную воду Н2О. Интересно, что при повышении температуры вольфрам саморазогревается, тогда процесс происходит намного активнее.

Получение вольфрама

На вопрос о том, к какой группе металлов относится вольфрам, можно ответить, что он входит в категорию редких элементов, как рубидий и молибден. А это, в свою очередь, означает, что для него характерны небольшие масштабы производства. Кроме того, такой металл не получают восстановлением из сырья, сначала он перерабатывается на химические соединения. Как же происходит получение редкого металла?

  1. Из рудного материала выделяют необходимый элемент и концентрируют его в растворе или осадке.
  2. Следующим шагом, получают чистое химическое соединение путем очистки.
  3. Из полученного вещества выделяют чистый редкий металл – вольфрам.

Для обогащения руды используют гравитацию, флотацию, магнитную или электростатическую сепарацию. В результате получают концентрат, который содержит 55-65% ангидрида вольфрама WO3. Для получения порошка его восстанавливают при помощи водорода или углерода. Для некоторых изделий, на этом процесс получения элемента заканчивается. Так, вольфрамовый порошок используют для приготовления твердых сплавов.

Изготовление штабиков

Мы уже выяснили, что за металл вольфрам, а теперь узнаем, в каком сортаменте он изготавливается. Из порошкового соединения изготавливают компактные слитки – штабики. Для этого используют только порошок, который был восстановлен водородом. Их изготавливают путем прессования и спекания. Получаются довольно прочные, но хрупкие слитки. Иными словами, они плохо поддаются ковке. Для улучшения этого технологического свойства, штабики подвергают высокотемпературной обработке. Из этого изделия изготавливают другой сортамент.

Вольфрамовые прутки

Конечно же, это один из самых распространенных видов продукции из этого металла. Что за вольфрам используется для их изготовления? Это вышеописанные штабики, которые подвергаются ковке на ротационной ковочной машине. Важно отметить, что процесс происходит в нагретом состоянии (1450-1500°С). Полученные прутки применяют в самых различных отраслях промышленности. Например, для изготовления сварочных электродов. Кроме того, вольфрамовые прутки нашли широкое применение в нагревателях. Они работают в печах при температуре до 3000 °С в вакууме, инертном газе или водороде. Прутки также могут быть использованы как катоды электронных и газоразрядных приборов, радиоламп.

Интересно, что сами по себе электроды являются неплавящимися, и поэтому во время сварки, необходима подача присадочного материала (проволока, прут). При расплавлении со свариваемым материалом он создает сварочную ванну. Данные электроды, как правило, применяются для сварки цветных металлов.

Вольфрам и проволока

Вот еще один вид широко распространённой продукции. Вольфрамовая проволока изготавливается из кованых прутков, рассмотренных нами ранее. Волочение производится с постепенным снижением температуры от 1000°С до 400°С. Затем проводят очистку изделия путем отжига, электролитической полировкой или электролитическим травлением. Поскольку вольфрам – тугоплавкий металл, проволока используется в элементах сопротивления в нагревательных печах при температурах до 3000°С. Из нее изготавливают термоэлектрические преобразователи, а также спирали ламп накаливания, петлевые подогреватели и многое другое.

Соединения вольфрама с углеродом

Карбиды вольфрама считаются очень важными с практической точки зрения. Они применяются для изготовления твердых сплавов. Соединения с углеродом имеют положительный коэффициент электросопротивления и хорошую проводимость металла. Карбиды вольфрама образуются двух видов: WC и W2C. Они различаются своим поведениям в кислотах, а также растворимостью в других соединениях с углеродом.

На основе вольфрамовых карбидов изготавливают два типа твердых сплавов: спеченные и литые. Последние получают из порошкообразного соединения и карбида с недостатком С (менее 3%) путем литья. Второй тип изготавливают из монокарбида вольфрама WC и цементирующего металла-связки, которым может выступать никель или кобальт. Спеченные сплавы получают только методом порошковой металлургии. Порошок цементирующего металла и карбид вольфрама смешивают, прессуют и спекают. Такие сплавы обладают высокой прочностью, твёрдостью износоустойчивостью.

В современной металлургической промышленности их используют для обработки металлов резанием и для изготовления бурового инструмента. Одним из самых распространённых сплавов являются ВК6 и ВК8. Их применяют для изготовления фрез, резцов, сверл и другого режущего инструмента.

Область применения карбидов вольфрама достаточно объёмная. Так, их используют для изготовления:

  • бронебойных припасов;
  • деталей двигателей, самолетов, космических кораблей и ракет;
  • оборудования в атомной промышленности;
  • хирургических инструментов.

На Западе особенно широко применяются карбиды вольфрама в ювелирных изделиях, в особенности, для изготовления свадебных колец. Металл смотрится красиво, эстетично, его легко обрабатывать.

Это объясняется тем, что они невероятно износоустойчивы. Чтобы поцарапать такое изделие, придется приложить немало усилий. Даже через несколько лет, кольцо будет выглядеть как новое. Оно не потускнеет, не повредится рельефный узор, да и полированная часть не потеряет своего блеска.

Вольфрам и рений

Сплав этих двух элементов довольно широко применяется для изготовления высокотемпературных термопар. Вольфрам – какой металл? Как и рений, это жаропрочный металл, а легирование элементов снижает это свойство. Но что, если взять два практически одинаковых вещества? Тогда температура их плавления снижаться не будет.

Если использовать рений в качестве присадки, будет наблюдаться повышение жаропрочности и пластичности вольфрама. Данный сплав получают методом плавки в порошковой металлургии. Термопары, изготавливаемые из этих материалов, являются жаропрочными и могут измерять температуру больше 2000°С, но только в инертной среде. Конечно же, подобные изделия стоят дорого, ведь в один год добывается всего 40 тонн рения и только 51 тонна вольфрама.

ВОЛЬФРАМ — самый тугоплавкий металл

Металл получил название от минерала вольфрамита («Wolf Rahm» с немецкого). Минерал весил немало, и в Швеции горняки назвали его «тунг стен» — тяжелый камень.

Во Франции, США и Великобритании для вольфрама используют название «tungsten».

Как его нашли

История открытия связана со шведским химиком К.В. Шееле. Из неизученного минерала он выделил неизвестную «тунгстеновую» кислоту (WO3·h3O). Братья Элюар выделили из её солей новый элемент. Поскольку работали они с вольфрамитом, то назван был элемент вольфрамом.

Свойства

Вольфрам относится к переходным металлам. Имеет серебристо-серый цвет. В периодической таблице Менделеева расположен в VI группе и носит атомный № 74.

Физические свойства металла:

  • плотность 19,25 г/см3;
  • кристаллическая структура объемноцентрированная, кубическая;
  • парамагнитен;
  • температура плавления 3422 °C;
  • цвет искры — желтый, дает пучок коротких прерывистых искр;
  • число стабильных изотопов 4.

Некоторые свойства вольфрама уникальны. Тугоплавкость — визитная карточка вольфрама, ею он отличается от других металлов.

Свойства атома
Название, символ, номерВольфра́м / Wolframium (W), 74
Атомная масса
(молярная масса)
183,84(1)[1] а. е. м. (г/моль)
Электронная конфигурация[Xe] 4f14 5d4 6s2
Радиус атома141 пм
Химические свойства
Ковалентный радиус170 пм
Радиус иона(+6e) 62 (+4e) 70 пм
Электроотрицательность2,3 (шкала Полинга)
Электродный потенциалW ← W3+ 0,11 В
W ← W6+ 0,68 В
Степени окисления6, 5, 4, 3, 2, 0
Энергия ионизации
(первый электрон)
769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.)19,25[2] г/см³
Температура плавления3695 K (3422 °C, 6192 °F)[2]
Температура кипения5828 K (5555 °C, 10031 °F)[2]
Уд. теплота плавления285,3 кДж/кг
52,31[3][4] кДж/моль
Уд. теплота испарения4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость24,27[5] Дж/(K·моль)
Молярный объём9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая
объёмноцентрированная
Параметры решётки3,160 Å
Температура Дебая310 K
Прочие характеристики
Теплопроводность(300 K) 162,8[6] Вт/(м·К)
Номер CAS7440-33-7

Месторождения и добыча

Для промышленной добычи пригодны вольфрамиты (гюбнерит, ферберит) и шеелит.

  • штокверковый вольфрамитовый;
  • штокверковый шеелитовый;
  • жильный вольфрамитовый;
  • скарново-шеелитовый.

Крупнейшими запасами вольфрамовых руд обладают:

  • Китай;
  • Канада;
  • Россия;
  • Австралия;
  • США.

Российские запасы вольфрамовых руд происхождением из коренных месторождений.

Получение

Промышленное получение металла из руды предваряется обогащением. Это дробление, шлифовка, флотация. Затем из концентрата выделяют WO3, который затем восстанавливают до металла водородом при температуре около 700°С.

Компактный вольфрам получают:

  1. Методом порошковой металлургии. Достоинство метода — возможность равномерного введения присадок.
  2. Электронно-лучевая плавка, или плавка в электро-дуговых печах. Достоинство метода — возможность получать крупные (до 3 тонн) заготовки металла.

Сплавы

Присадки меняют характеристики полученных сплавов.

Марка российского сплаваПрисадки
ВД-2080% вольфрама, 20% меди
ВНЖ-953% никеля, 2% железа
ВНМ 2-12% никеля, 1% меди
ВНЖ 7-37% никеля, 3% железа
ВД-3070% вольфрама, 30% меди
ВНЖ-97.51.5% никеля, 1% железа

Плюсы и минусы металла

ПреимуществаНедостатки
Электрическое сопротивлениеВысокая плотность
Температура плавленияСлабая сопротивляемость окислению
Коэффициент линейного расширенияЛомкость при низких температурах

Применение

В применении тугоплавкого металла соперничают металлообрабатывающая, нефтехимическая, мебельная промышленности.

Вольфрам используют в производства электродов для аргонно-дуговой сварки.

Качественная быстрорежущая сталь почти всегда имеет в составе вольфрам.

Светящаяся нить накаливания в осветительных лампах, аноды и катоды в электронных приборах — это чистый вольфрам.

Победит, известный советский сплав, на 90% состоит из карбида вольфрама (WC). Победитовые сверла известны многим «рукодельным» мужчинам.

Металл входит в состав тяжелых сплавов, которые применяют в производстве бронебойных снарядов, гироскопов для баллистических ракет.

Начали осваивать и ювелиры тяжелый металл — он гипоаллергенный, тяжелый и прочный.

Наночастицы WO3 нашли применение в медицине. Их антимикробные свойства используют для очистки сточных вод. В компьютерной томографии наночастицы WO3 применяют, как контрастный агент.

Цена вопроса

Средняя цена тонны W на конец июня 2020 года составила 24120-24600 долларов США.

Мне 42 года и я специалист в области минералогии. Здесь на сайте я делюсь информацией про камни и их свойства — задавайте вопросы и пишите комментарии!

Вольфрам – полезные свойства и особенности металла

Название этого элемента сразу вызывает ассоциации с электрической лампочкой. Нить накаливания, которая светится внутри стеклянной колбы, сделана из этого материала. Это вольфрам.

  1. Что представляет собой
  2. Как был открыт
  3. Старатели
  4. Наука
  5. Как представлен в природе
  6. Физико-химические характеристики
  7. Месторождения, добыча
  8. Технология получения
  9. Номенклатура марок металла
  10. Как используется
  11. Металл, сплавы
  12. Соединения
  13. Другие формы
  14. Значение для человека
  15. Цены

Что представляет собой

Вольфрам – это металл, химический элемент, занимающий ячейку периодической системы Менделеева № 74.

По блеску и сероватому цвету схож с платиной.

Относится к металлам «туговскипающей» и «тугоплавкой» групп. По тугоплавкости уступает только жидкому углероду. Данное свойство позволяет отличить его от других металлов.

Международное обозначение – W (Wolframium).

Как был открыт

Знакомство людей с вольфрамом датируется эпохой Средневековья.

Старатели

Вольфрам получали еще европейские старатели при восстановлении олова. Но его считали «мусором», засоряющим ценный элемент. Под влиянием вольфрамовой руды в процессе восстановления часть олова превращалась в шлак, уменьшая долю чистого вещества.

Отсюда присказка, которая появилась у старателей: «Вольфрам сжирает олово, как волк овечку».

Наука

История открытия вольфрама связана с несколькими учеными-химиками:

  • В середине 18 века швед Аксель Фредерик Кронштедт открыл тяжелый металл, названый им Tung Sten (по-шведски – тяжелый камень).
  • Через 30 лет за дело взялся его соотечественник, член академии наук страны Карл Шееле. Свободное от работы в аптеке время он отдавал экспериментам в домашней лаборатории. Его считают «отцом» не только вольфрама. В списке также барий, марганец, кислород, хлор. Из вольфрамовой руды (тунгстена) он выделил соль кислоты, не числящейся в реестрах.
  • Дальнейшую работу над соединением доверил испанским коллегам братьям Элюар. Которые и получили новый элемент.

Название и символ металла – Wolframium и W – предложил Йенс Якоб Берцелиус.

Этимология названия вольфрама имеет немецкие корни: Wolf Rahm («волчий крем/сливки»).

А тунгстен переименовали в честь ученого – в шеелит.

Как представлен в природе

Самородный цветной металл вольфрам на планете не встречается. Он представлен в виде руды либо минералов.

Руды состоят из соединений вольфрама с железом, марганцем, кальцием, иногда другими элементами, включая редкоземельные.

Минералы – это вкрапления в граниты (до 2%). Из них промышленное значение имеют вольфрамит (вольфрам с железом и марганцем) и шеелит (с кальцием).

Каждая тонна земной коры содержит 1,30 г вольфрама.

Физико-химические характеристики

Чистый вольфрам – в числе первых по плотности, твердости, первый по температуре плавления и кипения среди металлов. Эти физические свойства дополняет химическая стойкость даже при запредельных температурах.

Свойства атома
Название, символ, номерВольфра́м / Wolframium (W), 74
Атомная масса
(молярная масса)
183,84(1) а. е. м. (г/моль)
Электронная конфигурация[Xe] 4f14 5d4 6s2
Радиус атома137 пм
Химические свойства
Ковалентный радиус170 пм
Радиус иона(+6e) 62 (+4e) 70 пм
Электроотрицательность2,3 (шкала Полинга)
Электродный потенциалW ← W3+ 0,11 В
W ← W6+ 0,68 В
Степени окисления+2, +3, +4, +5, +6
Энергия ионизации
(первый электрон)
769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.)19,25 г/см³
Температура плавления3695 K (3422 °C, 6192 °F)
Температура кипения5828 K (5555 °C, 10031 °F)
Уд. теплота плавления285,3 кДж/кг
52,31 кДж/моль
Уд. теплота испарения4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость24,27 Дж/(K·моль)
Молярный объём9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решёткикубическая
объёмноцентрированная
Параметры решётки3,160 Å
Температура Дебая310 K
Прочие характеристики
Теплопроводность(300 K) 162,8 Вт/(м·К)
Номер CAS7440-33-7

При 1580°C легко куется, вытягивается до тонкой проволоки.

Данные преимущества создает структура вещества.

Тугоплавкий прочный металл, светло-серого цвета – вольфрам

На воздухе с относительной влажностью менее 60% сопротивление металла коррозии стопроцентное.

Месторождения, добыча

Месторождения вольфрамовой руды на планете не редкость, запасы оцениваются миллионами тонн.

Крупнейшими залежами располагают КНР, Казахстан, Канада, США. Меньше сырья у России, Португалии, Узбекистана, других стран.

Глобальные объемы производства – 48-51 тысяча тонн вольфрама ежегодно. Безусловный лидер Китай (80%).

Добыча ведется закрытым либо карьерным способом.

Технология получения

Вольфрамовые руды из разных мест добычи содержат 0,3-2,5% оксида металла. Поэтому промышленное получение продукта из руды начинается на обогатительных предприятиях.

Это многоступенчатый процесс:

  • Дробление руды.
  • Шлифовка.
  • Флотация.
  • Обжиг.

Содержание полезных компонентов увеличивается до 60%:

  • Чистоту концентрата повышают, расщепляя примеси гидроксидом натрия и задействуя метод ионообменной экстракции.
  • До порошка восстанавливают при 650-700°C в водородистой среде.

Тугоплавкость оказалась недостатком, исключающим классическую плавку.

Твердые формы создают методом порошковой металлургии:

  • Порошок спрессовывают.
  • Спекание проводят при 1250-1300°C в водороде.
  • Воздействуют электричеством.
  • Нагревают до 3000°C, добиваясь монолитного спекания.

Вольфрамовый порошок

Дополнительно металл очищают зонной плавкой.

Номенклатура марок металла

На основе вольфрама или с его участием металлурги выплавляют продукт десятков наименований и марок.

Среди самых распространенных – чистый вольфрам (ВЧ) и сплав с рением (ВР).

Классификация марок вольфрама основывается на составе присадок:

Название маркиВид присадки
ВААлюминий + кремнистая щелочь
ВМТорий + кремнистая щелочь
ВИОкись иттрия
ВТОкись тория
ВЛОкись лантана

Как используется

Свойства вольфрама обозначили главного потребителя. Это металлургия. Она создает конечный продукт и исходники для других отраслей промышленности.

Порошковый вольфрам – основа либо компонент твердых, жаропрочных износоустойчивых сплавов, премиальных марок сталей.

Металл, сплавы

Из тугоплавкого металла и сплавов создают широкий ассортимент продукции:

  • Узлы и детали авиационных, ракетных двигателей.
  • Элементы электровакуумных приборов (кинескопы, нити накаливания).

Нить накаливания из вольфрама

  • Нагреватели вакуумных печей.
  • Электроды для аргонно-дуговой сварки. Они не плавятся, создают прочный сварной шов. Пригодны для материалов любого состава (цветные металлы, легированные стали, другие).
  • Емкости для радиоактивных продуктов. Здесь решающими оказались преимущества металла перед свинцом.
  • Хирургический инструментарий.
  • Характеристики металла подошли оборонному комплексу: танковая, торпедная броня, крупнокалиберные снаряды, пули. А также суперскоростные роторы гироскопов, контролирующих траекторию полета баллистических ракет.

    Вольфрам в слитках

    Соединения

    Обширен спектр применения вольфрамовых соединений:

    • Без дителлурида невозможно преобразование тепла в электричество.
    • Карбид – основа сплавов и композитов для механической обработки металлов и неметаллов. У горнодобытчиков, нефтяников, газовиков – для бурения скважин.
    • Сульфид – термостойкая (до 500°C) смазка.
    • Трехокись – материал для создания электролита топливных элементов, работающих при повышенных температурах.

    Соединения вольфрама закупают производители лаков, красок, текстиля.

    Другие формы

    Изотоп W184 – компонент сплавов с изотопами урана. Из них делают ракетные двигатели на ядерном топливе.

    Радионуклид искусственного происхождения (W185) востребован как детектор излучений (включая рентгеновское) ядерным сегментом физики и медицины.

    Значение для человека

    Тугоплавкий металл не имеет значения для человека как биологического организма.

    Опасность представляет лишь вдыхание вольфрамовой пыли.

    На рынке торгуют металлическим вольфрамом (чистота 99%) и полуфабрикатами (пруток, проволока, полоска).

    Порядок цены на металл – 50 500$ за тонну. Полуфабрикаты дороже вдвое-втрое.

    Свойства и температура плавления вольфрама

    Вольфрам — самый тугоплавкий металл. Известны разные марки этого материала, которые обладают своим особенностями, свойствами. Температура плавления вольфрама — одна из главных характеристик этого металла. По ней специалисты определяют в каких отраслях промышленности его лучше использовать.

    Вольфрам

    Краткое описание

    Вольфрам — тугоплавкий металл. В таблице Менделеева его можно найти под номером 74. Характерные качества — серый цвет, естественный металлический блеск.

    Во Франции, Великобритании и США этот материал называется tungsten, что переводится как «тяжелый камень».

    Структура и характеристики

    Кристаллы вольфрама имеют объемноцентрированную кубическую решетку. Основная форма, размеры кристаллов не изменяются, если порошок прессуется при низких температурах.

    Атомы в кубической ячейке металла расположены по всем вершинам и внутри самой ячейки. Коэффициент компактности вольфрама — 0,68.

    История открытия и изучения

    Свое название металл получил от минерала вольфрамит. Его начали добывать в XVI веке. Тогда его называли «волчьей пеной». Вольфрам часто встречался в оловянных рудах, мешал выплавлять этот металл. Он переводил его в пену шлаков.

    Первое научное упоминание о нахождении нового химического элемента появилось в 1781 году. Тогда знаменитый химик из Швеции Карл Шееле работал с минералом шеелит. Он обрабатывал его азотной кислотой, в ходе чего получил новый химический элемент с желтым оттенком. Он назвал его «тяжелым камнем». Через два года, братья Элюар получили из саксонского минерала новый металл.

    Если сравнивать защиту от ионизирующего излучения из свинца или вольфрама, второй вид металла выигрывает. Готовый защитный слой будет задерживать больше частиц при меньшем весе.

    Получение из руды и месторождения

    В природе вольфрам можно встретить окисленными отложениями. Они образуются из трехокиси этого металла, которая соединяется с кальцием, марганцем, железом. Иногда в составе можно встретить медь, свинец, торий, некоторые редкоземельные элементы.

    Минералы, насыщенные вольфрамом, чаще встречаются в грунтовых породах небольшими вкраплениями. В таком случае средняя концентрация тяжелого металла — до 2%.

    Самые крупные месторождения вольфрама находятся в США, Китае, Канаде. Среднее мировое производство за год — 50 тысяч тонн.

    Критическая отметка температуры для этого металла — 13610°C. При нагревании до таких показателей он превращается в газ.

    Промышленное получение

    Получение вольфрама промышленными предприятиями начинается с добычи руды, ее доставки на производство. Следующий этап — выделение триоксида из расходного материала. После этого он проходит процесс восстановления для получения очищенного металлического порошка. Процедуру восстановления проводят под воздействием водорода. При этом сырье нагревается до 700°C. Готовый порошок прессуется, спекается при температуре 1300°C в защитной атмосфере из водорода.

    Марки

    1. ВР — соединение вольфрама с рением.
    2. ВТ, ВИ, ВЛ — к основе добавляется присадка окиси лантана, тория, иттрия.
    3. ВРН — металл без присадок. Допускается наличие небольшого количества разных примесей.
    4. ВМ — к основе добавляются разные присадки. Основные — кремнещелочные, алюминиевые.
    5. МВ — соединение молибдена с вольфрамом. Сохраняется пластичность одновременно с повышением прочности.
    6. ВЧ — чистый металл без примесей, присадок.
    7. ВА — соединение основы с алюминием, кремнещелочными присадками.

    Лампы накаливания не просто так имеют стеклянную герметичную капсулу. Поскольку вольфрам быстро окисляется на открытом воздухе, капсула заполняется инертным газом.

    Свойства

    Чтобы понять, где лучше применять вольфрам, нужно знать свойства этого металла. Сейчас про этот материал известно достаточно информации, чтобы определить сферы его применения.

    Химические

    1. Валентность чистого металла — 6. У соединений на его основе она может изменяться от 2 до 5.
    2. Молярная масса химического элемента —183,84.
    3. Элемент имеет орбиту, состоящую из двух ярусов.

    Вольфрам — химически активный металл. Он вступает в реакции с разными веществами с образованием сложных, простых соединений. При нагревании реакции протекают быстрее. Для дополнительного ускорения реакции можно добавить водяные пары.

    Физические

    1. Цвет — серый.
    2. Прозрачность — отсутствует.
    3. Металлический блеск — есть.
    4. Твердость — 7,5 (показатель указан согласно шкале Мооса).
    5. Плотность — 19,3 г/см3.
    6. Радиоактивность — 0.
    7. Теплопроводность — 173 Вт/(м·К).
    8. Электропроводность — 55·10−9 Ом·м.
    9. Показатель твердости по Бринеллю — 488 кгс/мм².
    10. Теплоемкость — 134,4 Дж/(кг·град).
    11. Температура плавления — 3380 °C (показатель зависит от количества примесей).
    12. Сопротивление электричеству — 55·10−9 Ом·м (при условии соблюдения температурного режима в 20°C).
    13. Температура кипения — около 5555 °C.

    Лучше всего металл куется при нагревании до 1600°C.

    На основе вольфрама изготавливают тяжелые сплавы. Общее содержание основы может достигать 97%. Готовые сплавы применяются для изготовления контейнеров, в которых будут храниться, переноситься радиоактивные вещества. Главная особенность емкости — возможность поглощения части гамма-излучения.

    Сферы применения

    Вольфрам применяется при изготовлении:

    • нити накаливания;
    • электродов для аргонодуговой сварки;
    • хирургических инструментов;
    • танковой брони, оболочек для снарядов, торпед;
    • защитных костюмов, емкостей, листов от проникающего ионизирующего излучения;
    • ювелирных украшений.

    Преимущества и недостатки

    • тугоплавкость;
    • высокая прочность;
    • применение в разных сферах промышленности;
    • стойкость к большим нагрузкам после сильного нагревания;
    • экологичность.

    Из главных недостатков можно выделить низкую пластичность, окисляемость при нагревании свыше 700°, высокую цену.

    Сплавы

    Известно множество соединений на основе этого металла. Они применяются в разных сферах промышленности. Виды и сферы их применения:

    1. Карбиды — добыча горных пород, бурение скважин.
    2. Сульфиды — изготовление высокотемпературной смазки.
    3. Дителлурид — производство преобразователей тепла в электричество.

    Монокристаллы применяются в ядерной физике.

    Остальные соединения используются в качестве пигментов, катализаторов. Они используются при изготовлении высоколегированных сталей, которые нужны для производства рабочих частей разных инструментов.

    Чистый вольфрам по плотности можно сравнить с золотом 999 пробы. Раньше мошенники вкладывали стержни этого металла в золотые слитки. Определить подлинность золота без распиливания было невозможно.

    Продукция из вольфрама выделяется высоким качеством, уникальными свойствами. Она применяется в разных сферах деятельности, не имеет аналогов среди похожих материалов.

    Вольфрам: добыча и производство вольфрама

    Вольфрам — название элемента на немецком, которое переводится как «волчьи сливки». Наименование обусловлено химической реакцией, которая возникала при получении олова — металл частично утрачивался, преобразуясь в пенистый шлак, будто волк пожирает добычу. В некоторых языках, в том числе и в английском, прижилась шведская интерпретация tungsten. Этот элемент отличается уникальными свойствами и используется в различных сферах производства.

    • Структура
    • Свойства
      • Физические
      • Оптические
      • Кристаллографические
    • Классификация
    • Происхождение
    • Запасы и добыча
      • Обогащение руды
      • Восстановление вольфрама
      • Получение монолитного металла
    • Производство изделий из вольфрама
    • Мировой рынок вольфрама

    Структура

    Структура кристалла металла представляет собой объемноцентрированную кубическую решетку с отличительным механизмом хрупко-вязкого перехода. Атомы размещаются в центре и по вершинам, то есть одна ячейка вмещает две частицы.

    Свойства

    Вольфрам — это металл светло-серого цвета с характерным блеском, напоминает платину. Особенность данного элемента заключается в тугоплавкости. Стоит отметить ряд и иных важных свойств.

    Физические

    Так, металл отличается самой высокой температурой плавления в 3420 °C и кипения в 5555 °C. Также для него характерно следующее:

    • плотность вольфрама без примесей составляет 19,25 г/см³;
    • имеет повышенную устойчивость к изменениям в вакууме;
    • оценка твердости по Бринеллю выражается значением 488 кг/мм²;
    • высокая тепло- и электропроводность;
    • парамагнетик;
    • поддается ковке при температуре в 1,6 тысячи градусов по Цельсию.

    Металл по достоинству признается как один из самых тяжелых и твердых.

    Оптические

    Что касается оптической характеристики, то вольфрам по принятому типу считается изотропным. При рассмотрении по плеохроизму — не плеохроирует. Также он не является флюоресцентным.

    Кристаллографические

    Металл относят к пространственной категории Im3m с кубической сингонией и гексаоктаэдральной точечной группой.

    Классификация

    Классификация вольфрама по Никелю-Штрунцу проводится на основе химического состава элемента. В десятом издании металлу было присвоено значение 1.AE.05.

    Седьмым изданием Dana группа вольфрам определена как 1.1.38.1.

    Происхождение

    Как правило, металл в естественной среде представляет собой окисленные сложные соединения с:

    • железом;
    • марганцем;
    • кальцием;
    • свинцом;
    • медью,

    и рядом иных редкоземельных элементов.

    В промышленном производстве используется вольфрамит — соединение вольфрамата железа и марганца. Также значение имеет шеелит — вольфрам и кальций.

    Обычно кристаллы минерала вкраплены в породы, в связи с чем средняя концентрация металла составляет не более 2 %.

    Запасы и добыча

    Наибольшие объемы запасов вольфрама в:

    • Казахстане;
    • Китае;
    • США;
    • Канаде.

    Определены местонахождения также в России и ряде других стран. Промышленное производство данного элемента заключается в трех стадиях:

    1. На первой осуществляется обогащение руды, что позволяет получить ангидрит.
    2. Второй этап обеспечивает восстановление вольфрама до порошкового состояния.
    3. На третьей стадии металл оформляется в монолит.

    Стоит рассмотреть процесс в деталях.

    Обогащение руды

    Итак, вольфрам в природе не встречается в качестве отдельного элемента. Он всегда является составляющей разнообразных соединений. При этом самые богатые руды содержат в себе не более 3 % вольфрама. Поэтому изначально проводится обогащение:

    1. Порода дробится и измельчается.
    2. Материал обрабатывается с учетом типа руды.
    3. С использованием гравитационного метода осуществляется обогащение. Принцип построен на применении двух сил: центробежной и земного притяжения. Таким образом, обеспечивается разделение минералов по размеру, плотности и смачиванию, что позволяет избавиться от пустой породы.
    4. Проводится магнитная сепарация вольфрамита для обеспечения чистоты концентрата.

    В итоге содержание искомого металла может составлять в среднем 65 % и максимум 85 %.

    Еще один вид соединения с производственным назначением — шеелит — очищается по-другому.

    Так как он не относится к группе магнитных минералов, сепарация к нему не может быть применена. Поэтому обогащение осуществляется за счет флотации, подразумевающей разделение частиц в водной суспензии. После обработки проводится электростатическая сепарация. Концентрация шеелита в итоге может достигать 90 %.

    Руда также может содержать в себе два соединения вольфрама сразу. При данных обстоятельствах используются совмещенные методы обработки с применением флотационных и гравитационных способов.

    При необходимости в большем очищении в дополнении применяется ряд инструментов, которые определяются с учетом типа примеси. К примеру, если нужно уменьшить количество фосфора в концентрате, прибегают к обработке в холоде соляной кислотой. Второй вариант с обжигом и дальнейшим использованием кислот позволяет удалить медь и мышьяк.

    Если нужно достичь формы растворимого соединения, методы могут быть такими:

    • проводят спекание концентрации с избытком соды;
    • осуществляют выщелачивание путем извлечения вольфрама содовым раствором при высокой температуре и под давлением;
    • обрабатывают газообразным хлором для получения хлорида вольфрама с последующим отделением возгонкой для переработки в элементарный металл.

    В результате использования стандартных методов обогащения можно получить триоксид вольфрама, который и применяется в процессе производства металла. Также из данного соединения получается карбид вольфрама — именно он является основой большинства твердых сплавов.

    Восстановление вольфрама

    Итак, после получения триоксида вольфрама следующий этап производства заключается в восстановлении до состояния металла. Как правило, этот процесс подразумевает необходимость в водородном методе:

    1. В печь помещается емкость с соединением.
    2. Емкость все время движется, при этом происходит повышение температуры.
    3. Подается водород по направлению к триоксиду.

    В процессе восстановления повышается насыпная плотность, объем загрузки снижается в два раза. В связи с этим прогон проводится в два этапа, с использованием различных печей.

    Первый этап предполагает образование диоксида из триоксида вольфрама.

    На втором получается чистый порошок, который просеивают через сетку с отделением крупных частиц для дополнительного перемалывания.

    В некоторых случаях для восстановления применяется углерод, который отчасти упрощает процесс, но для производства необходимо наличие высоких температур. Основной недостаток данного метода — реакция угля и иных примесей с вольфрамом, что становится причиной загрязнения материала. Есть и другие способы, но водородный вариант имеет наибольшую применимость.

    Получение монолитного металла

    Предшествующие стадии производства реализуются уже давно, но для выработки слитков была необходима специальная технология. Из-за основного свойства металла — тугоплавкости — невозможно использование стандартного метода с плавкой и отливкой формы.

    Суть применяемого способа — превращение порошка в металл с использованием электрического тока. Процесс проходит в несколько этапов:

    1. Металлический порошок спрессовывается.
    2. При температуре 1,3 тысячи градусов Цельсия брусок спекается для повышения прочности. Процедура проводится в герметичной печи, куда непрерывно подается водород, который необходим для эффективного восстановления. Он проникает в материал, что обеспечивает создание металлического контакта. В итоге прочность повышается значительно, размер бруска при этом уменьшается до 5 %.
    3. Основной этап — сварка. Осуществляется при температуре 3 тысячи градусов Цельсия путем пропуска через брусок электрического тока. Водород в таком случае также обязателен, так как он позволяет избежать окисления. Сила тока определяется с учетом сечения бруска: 10 на 10 миллиметров — 2,5 тысячи ампер, 25 на 25 миллиметров — 9 тысяч ампер. Подаваемое напряжение варьируется от 10 до 20 вольт.

    Чтобы получить материал высокой очистки, применяются присадки, которые испаряются при сварке, убирая при этом иные примеси. К примеру, используются окислы щелочных металлов. Если соблюдается температурный режим, можно допиться степени очистки в 99,995 %.

    Производство изделий из вольфрама

    Монолитный вольфрам характеризуется рядом свойств:

    • тугоплавкость;
    • отсутствие внутреннего напряжения.
    • высокая пластичность;
    • ковкость.
    • в качестве нагревательных элементов в печах сопротивления;
    • для защиты от ионизирующего излучения;
    • как основа для тяжелых сплавов;
    • для электродов аргонно-дуговой сварки;
    • в вакуумных трубках;
    • в контейнерах для отходов ядерного производства.

    Как показывает практика, в большинстве случаев производство продолжается вытягиванием проволоки, которая активно используется при производстве ламп накаливания.

    Мировой рынок вольфрама

    Совокупная величина годового производства металла ограничена 50 тысячами тонн. Основная часть приходится на Китай — 41 тысяча тонн. Он же является и главным экспортером. Для сравнения, объемы производства в России ограничены 3,5 тысячами тонн.

    При этом добыча металла составляет около 70 % мирового потребления. Треть приходится на вторичную переработку. Обычно в качестве сырья используется лом карбида вольфрама.

    Текущие тенденции мирового рынка свидетельствуют об уменьшении объемов спроса на вольфрамовые нити. Подобная статистика обосновывается развитием альтернативных технологий при производстве осветительных приборов. Лампы накаливания активно заменяются приборами, построенными по другой схеме.

    Похожие материалы: Загрузка…

    Вольфрам — точка плавления — температура кипения

    Вольфрам — точка плавления и температура кипения

    Температура плавления вольфрама — 3410°C .

    Температура кипения вольфрама 5660°C .

    Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.

    Температура кипения – насыщение

    В термодинамике насыщение определяет состояние, при котором смесь пара и жидкости может существовать вместе при заданной температуре и давлении.Температура, при которой начинает происходить испарение  (кипение) при данном давлении, называется  температурой  насыщения или точкой кипения . Давление, при котором начинается испарение (кипение) при данной температуре, называется давлением насыщения. Когда ее рассматривают как температуру обратного перехода из пара в жидкость, ее называют точкой конденсации.

    Точка плавления

    В термодинамике точка плавления определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии.Добавление тепла превратит твердое вещество в жидкость без изменения температуры. Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда ее рассматривают как температуру обратного перехода от жидкого к твердому, ее называют точкой замерзания или точкой кристаллизации.

    Первая теория, объясняющая механизм плавления в объеме, была предложена Линдеманном, который использовал колебание атомов в кристалле для объяснения плавления. Твердые тела похожи на жидкости тем, что оба находятся в конденсированном состоянии, а частицы находятся гораздо ближе друг к другу, чем частицы газа.Атомы в твердом теле тесно связаны друг с другом либо в правильной геометрической решетке (кристаллические твердые тела, которые включают металлы и обычный лед), либо в неправильной (аморфное твердое тело, такое как обычное оконное стекло), и обычно имеют низкую энергию. Движение отдельных атомов , ионов или молекул в твердом теле ограничено колебательным движением вокруг неподвижной точки. Когда твердое тело нагревается, его частицы вибрируют быстрее , поскольку твердое тело поглощает кинетическую энергию. В какой-то момент амплитуда колебаний становится настолько большой, что атомы начинают вторгаться в пространство своих ближайших соседей и возмущать их, и начинается процесс плавления.Точка плавления  – это температура, при которой разрушающие вибрации частиц твердого тела преодолевают силы притяжения, действующие внутри твердого тела.

    Вольфрам – Свойства

    Scale]




    Element Вольфрам
    Атомный номер 74
    Символ W
    Элемент Категория переходных металлов
    Фаза при STP Твердое вещество
    Атомная масса [а.е.м.] 183.84
    7
    Плотность на STP [G / CM3] 19.25
    Электронная конфигурация [XE] 4F14 5D4 6S2
    возможные состояния окисления +6
    моль] 78,6
    Электроотрицательность [Полинг шкала] 2,36
    первая Энергия ионизации [эВ] 7,98
    Год Открытия 1783
    Discoverer Elhuyar, Juan José & Elhuyar, Fausto
    3410
    Point Coping [Cellius Scale] 5660
    Теплопроводность [W / M K] 170
    Удельная теплоемкость [Дж/г·К] 0.13
    Тепловое тепло [KJ / MOL] 35.4
    824

    Tungsten – ведущий Edge Metals и сплавы

    10.28 г/см3 16.69 г/см3
    Tungsten 3695 K (3422 ° C, 6192 ° F) 6203 K (5930 ° C, 10706 ° F) 19,3 г / см3 52,31 кДж / моль [3][4] 24,27 Дж/(моль·К) 52,8 нОм·м (при 20 °C парамагнитный[5] 37,48 кДж/моль 24,06 Дж/(моль·К) 53,4 нОм·м (при 20 °C) парамагнитный[4]
    Titanium 1941 K (1668 ° C, 3034 ° F) 3560 K (3287 ° C, 5949 ° F) 4,506 г / см3 14.15 KJ / MOL XX 420 нОм·м (при 20 °C) парамагнитный
    Цирконий 2128 K (1855 °C, 3371 °F) 4650 K (4377 °C, 7911 °F) 6.52 г/см3 14 кДж/мес 25,36 Дж/(моль·К) 421 нОм·м (при 20 °C) парамагнитный[3]
    Константан 1210 °C
    Nickel 1728 K (1455 ° C, 2651 ° F) 3003 K (2730 ° C, 4946 ° F) 8,908 г / см3 17.48 KJ / MOL 26.07 J /(моль·K) 69,3 нОм·м (при 20 °C) ферромагнитный
    Алюмель 1399 °C xx 8.61 г см−3 xx xx xx xx
    Хромель 1420 °C 8,5 г см−3 xx 0,706 мкОм·м xx xx x7
    intern 36 1427 ° C, 2600 ° F XX 8055G CM 0.291 XX XX 495 OHM-CIR MIL / FT XX
    Ниобий 2750 K ​(2477 °C, 4491 °F) 5017 K ​(4744 °C, 8571 °F) 8.57 г/см3 30 кДж/моль 24,60 Дж/(моль·К) 152 нОм·м (при 0 °C) парамагнитный
    Renium
    3459 K (3186 ° C, 5767 ° F) 5903 K (5630 ° C, 10,170 ° F) 21.02 G / CM3 60.43 KJ / MOL 25.48 J /(моль·К) 193 нОм·м (при 20 °C) парамагнитный[2] 36,57 кДж/моль 25,36 Дж/(моль·К) 131 нОм·м (при 20 °C) парамагнитный[3]
    Ковар 1450°C / 2640°F 8,35 г/см30 0,49 Ом мм2/см
    Mumetal
    Mumetal 2642 ° F [1450 ° C] XX 0.316 LB / in³ [8.74G / см³] XX XX 60 μω CM XX

    10 фактов о карбиде вольфрама

    Несмотря на то, что в этом слове нет буквы W, химический символ вольфрама — буква W.W происходит от другого названия элемента, вольфрама, которое происходит от минерала, в котором этот элемент был обнаружен, вольфрамита.

    Карбид вольфрама — это термин, используемый для композитного материала, содержащего твердые частицы, окруженные карбидом вольфрама, а также более мягкий металлический связующий материал, который удерживает частицы на месте.

    Вот 10 интересных фактов о карбиде вольфрама:

    Карбид вольфрама Самая высокая температура плавления среди всех металлов

    Вольфрам имеет самую высокую температуру плавления среди всех металлов.Он расплавится при воздействии достаточного количества тепла, как и все металлы. Для плавления вольфрама требуется больше тепла, чем для любого другого металла на планете, его температура плавления превышает 3000 градусов по Фаренгейту. Сильно отличается от других вариантов, учитывая, что температура плавления алюминия составляет всего 1221 градус по Фаренгейту.

    Используется в лампочках

    Вольфрам служит нитью накаливания для нагревательных элементов лампочки. Нить накаливания на основе вольфрама часто используется в лампах накаливания.Вольфрамовая нить нагревается при активации, тем самым излучая свет. Вольфрам обладает высокой проводимостью, что позволяет использовать его в нитях накала ламп.

    Карбид вольфрама используется в вооруженных силах  

    Ракеты и пули в вооруженных силах изготавливаются из вольфрама, используемого в «кинетической бомбардировке». Это тип атаки, при котором вместо взрывчатых веществ для пробития брони используется очень плотный материал.

    Карбид вольфрама и вольфрам не взаимозаменяемы

    Карбид вольфрама хорошо известен своей износостойкостью.На самом деле его можно резать только алмазными инструментами. Практика добавления кобальта в качестве связующего делает его цементированным карбидом и придает свойствам карбида вольфрама, которые значительно отличаются от свойств чистого вольфрама, даже несмотря на то, что карбид вольфрама действительно содержит много вольфрама.

    Карбид вольфрама можно прессовать и спекать в трубчатые формы. Это дорогостоящий процесс, и, в отличие от других металлов, карбид вольфрама и вольфрам нельзя вытягивать в трубы.

    Карбид вольфрама  Используется в ювелирной промышленности

    Обручальные кольца — очень популярный вид украшений из вольфрама, они на самом деле состоят из карбида вольфрама.Поскольку кольцо из карбида вольфрама обладает высокой устойчивостью к повреждениям, оно обеспечивает исключительную прочность, а также защиту от царапин.

    80 Процент мировых поставок карбида вольфрама поступает из Китая

    По данным BBC, 80 процентов мировых поставок контролируется Китаем. Другие ресурсы вольфрама находятся в Великобритании, Португалии, России, Южной Корее, Боливии, а также в США, Калифорнии и Колорадо. Первое использование вольфрама было более 350 лет назад.По данным Королевского химического общества, китайские производители фарфора использовали вольфрамовый пигмент уникального персикового цвета.

    Карбид вольфрама редкий и чрезвычайно плотный

    Прочность карбида вольфрама является самой высокой из всех известных материалов. Он невероятно плотный и его практически невозможно растопить. Чистый вольфрам, серебристо-белый металл, может самовозгораться, если его превратить в мелкий порошок. Природный вольфрам содержит 21 нестабильный изотоп и пять стабильных изотопов.

    Используется в инструментальной промышленности

    Около 65% рынка карбида вольфрама приходится на производство сверл, горных наконечников и других горнодобывающих и режущих инструментов. По данным BBC, из-за его прочности при использовании системы алмазной резки на вырезание всего одного сверла из вольфрама может уйти около 10 минут.

    Карбид вольфрама  Банка, имитирующая золото

    Вольфрам часто используется в качестве заменителя золота. Имея аналогичный вольфрам, позволяющий имитировать физические свойства золота, становится доступным менее дорогой вариант.Еще одна особенность, делающая его более желательным материалом для ювелирных изделий, вольфрам значительно тверже золота и не деформируется с течением времени при износе. «…Вольфрам был найден в поддельных золотых слитках». — говорит Аманда Симсон, доцент химического машиностроения Университета Нью-Хейвена.

    Используется в сплавах

    Вольфрам используется в производстве многих сплавов. Очень распространенным примером может быть быстрорежущая сталь. Быстрорежущая сталь может содержать от 10% до 20% вольфрама.Остальной материал состоит из углерода и железа. Благодаря своей высокой прочности на растяжение вольфрам идеально подходит для использования в сплавах. При добавлении к более мягкому или слабому металлу он создает новый и более прочный сплав.

    Выберите консолидацию ресурсов для переработки металлолома из карбида вольфрама

    Consolidated Resources, Inc. стремится предоставить самые лучшие решения для промышленной переработки металлов предприятиям в Фениксе, штат Аризона.

    Если ваше предприятие производит металлолом из карбида вольфрама, позвоните нам по телефону (623) 931-5009.Мы создаем индивидуальные программы переработки, которые максимально увеличивают ценность ваших отходов. Мы с нетерпением ждем возможности обсудить ваши потребности в потоке отходов!

    Дополнительная информация о вольфраме и карбиде вольфрама:

    http://chronicle.kennametal.com/what-is-tungsten-carbide-you-asked-we-answered/

    https://www.livescience.com/38997-facts-about-tungsten.html#:~:text=One%20of%20the%20most%20common,system%2C%20according%20to%20the%20BBC.

    https://monroeengineering.com/blog/5-fun-facts-about-tungsten/ 

     

    Проволока и стержень из чистого вольфрама

    Вольфрам — хрупкий, твердый, плотный, редкий металл. Свободный элемент встречается на Земле в природе только в химических соединениях. Вольфрам был идентифицирован как новый элемент в 1781 году и впервые выделен как металл в 1783 году. Его важные руды включают вольфрамит (минерал вольфрамата железа и марганца) и минерал шеелит (вольфрамат кальция). Химический символ вольфрама (W) происходит от первоначального названия элемента, вольфрама.Он производится в виде металлического порошка, а затем затвердевает путем спекания и/или плавления.

    Вольфрам является одним из пяти основных тугоплавких металлов (металлов с очень высокой термостойкостью и износостойкостью). Он имеет самую высокую температуру плавления среди всех элементов, примерно 3370 градусов по Цельсию, и самое низкое давление паров среди всех широко используемых металлов. Чрезвычайно высокая температура плавления вольфрама делает его идеальным металлом для конструкционных применений, подверженных очень высоким температурам. Он прочный, обладает высочайшей прочностью на растяжение, обладает высокой электропроводностью и чрезвычайно устойчив к коррозии.

    Высокая плотность вольфрама, в 19,3 раза превышающая плотность воды, сравнима с плотностью урана и золота и намного выше (примерно в 1,7 раза), чем у свинца. Поликристаллический вольфрам по своей природе является хрупким и твердым материалом из-за слабых границ зерен, что затрудняет работу с ним. Однако чистый монокристаллический вольфрам более пластичен, и его можно резать ножовкой из твердой стали.

    Rhenium Alloys поставляет чистый вольфрам и вольфрамовые сплавы – вольфрам-медь и вольфрам-рений.

    Вольфрам обычно используется в нитях накаливания, электрических лампочках, электрических трубках, нагревательных элементах в высокотемпературных печах, высокоскоростных инструментах, а также в аэрокосмической и автомобильной промышленности.

    Вольфрамовые сплавы

    находят широкое применение в электронной, печной, соединительной и аэрокосмической промышленности. Точное сплавление рения с этими другими тугоплавкими металлами повышает пластичность и прочность в соответствии с требованиями заказчика.

    7 важных фактов о карбиде вольфрама

    От понимания материалов для вторичной переработки карбида до понимания того, что делать с вольфрамовым ломом, на рынке вольфрама имеется много информации.Надеюсь, эти факты помогут вам лучше понять все тонкости вольфрамовой промышленности.

    Эти факты помогут вам лучше понять вольфрам, его свойства, для чего он используется и историю.

    • История — Вольфрам был открыт 236 лет назад в 1781 году, но только в 1931 году промышленность нашла применение этому прочному металлу.
    • Свойства — Вольфрам блестящий и легко поддается обработке. Хотя вольфрам довольно твердый, он может появиться в своей естественной форме только в сочетании с минеральными формами из кальция, железа или марганца.
    • Температура плавления и кипения — Температура кипения вольфрама составляет 10 030 градусов по Фаренгейту (5 555 градусов Кальвина), а его точка плавления, которая является самой высокой температурой плавления среди всех известных металлов на Земле, составляет 6 191 градус по Фаренгейту (3422 градуса Кальвина).
    • Международные поставки вольфрама — США имеют большие запасы вольфрама, а также довольно часто закупают и перерабатывают его, но есть много других стран, которые являются основными странами-производителями вольфрама.Австрия, Перу, Португалия, Россия и Боливия остаются крупными производителями. Австралия, Япония, Франция, Швеция, Бразилия и еще несколько стран столкнулись с резким падением производства вольфрама, поскольку шахты продолжают закрываться.
    • Переработка — Материалы для переработки карбида вольфрама являются отличным источником дохода, если вы столкнетесь с обилием шлама карбида вольфрама. Будь то карбидные вставки или более крупные куски вольфрамового лома, этот металл пользуется спросом у компаний по всему миру, и они с удовольствием заплатят вам за ваши материалы для переработки карбида.
    • Области применения — Вольфрам используется во всем: от телевизоров, инструментов, микроволновых печей, ювелирных изделий, строительных работ и других отраслей промышленности.
    • Твердость — Карбид вольфрама фактически уступает только алмазам по шкале твердости Мооса от 8,5 до 9 по шкале (твердость алмазов равна 10). Вольфрам на самом деле в два раза жестче и плотнее стали.

    Надеюсь, это расширило ваши знания об этом популярном металле. Если вы хотите купить, переработать или просто узнать больше о вольфраме, свяжитесь с Tungco сегодня!

    5 забавных фактов о вольфраме


    Вольфрам серо-белого цвета является универсальным металлом, который используется в самых разных областях.Он прочный, проводящий и обладает многими другими свойствами, которые делают его привлекательным выбором металла. Однако, даже если вы знакомы с вольфрамом, вероятно, есть некоторые вещи, о которых вы не знаете. Ниже приведены пять забавных фактов о вольфраме.

    #1) Самая высокая температура плавления всех металлов

    Возможно, вы удивитесь, узнав, что вольфрам имеет самую высокую температуру плавления среди всех металлов. Как и все металлы, он плавится при воздействии достаточного количества тепла. Однако при температуре плавления более 3000 градусов по Фаренгейту для плавления вольфрама требуется больше тепла, чем для любого другого металла на планете.Чтобы представить это число в перспективе, температура плавления алюминия составляет всего 1221 градус по Фаренгейту.

    #2) Самая высокая прочность на растяжение

    Вольфрам не только имеет самую высокую температуру плавления среди всех металлов, но и обладает самой высокой прочностью на растяжение. Прочность на растяжение, конечно же, относится к способности материала выдерживать силу или давление без разрушения. Вольфрам имеет предел прочности на разрыв от 50 000 до 60 000 фунтов на квадратный дюйм (PSI), что больше, чем у любого другого материала.Если он не подвергается воздействию 60 000 фунтов на квадратный дюйм или более, он не должен сломаться.

    #3) Используется в лампочках

    Вольфрам часто используется в лампочках, где он служит нитью накаливания для их нагревательных элементов. Лампы накаливания, например, часто имеют вольфрамовую нить накаливания. При активации вольфрамовая нить нагревается, тем самым излучая свет. Вольфрам хорошо работает в нити накала лампочки из-за его высокой проводимости. он способен легко проводить электричество, которое отвечает за создание света.Когда электричество проходит через вольфрамовую нить, лампочка загорается.

    #4) Используется в сплавах


    Вольфрам также используется в производстве многих сплавов. Типичным примером является быстрорежущая сталь. В зависимости от конкретного типа быстрорежущая сталь может содержать от 10% до 20% вольфрама, а остальная часть состоит из железа и углерода. Вольфрам идеально подходит для использования в сплавах из-за его высокой прочности на растяжение. При добавлении к мягкому или слабому металлу он создает новый и более прочный сплав.

    #5) Замена золота

    Наконец, вольфрам часто используется в качестве заменителя золота. Он имеет аналогичный вольфрам, что позволяет ему имитировать физические свойства золота. При этом вольфрам значительно тверже золота, что делает его еще более желанным материалом для ювелирных изделий. Поэтому ювелиры часто используют вольфрам для создания колец, ожерелий и других украшений вместо золота.

    Нет тегов для этого поста.

    Тугоплавкие металлы: вольфрам и вольфрамовые сплавы

    Тугоплавкими металлами удобно называть те, которые, в первую очередь, из всех, плавятся при температурах, значительно превышающих точки плавления обычных легирующие основания, железо, кобальт и никель.Во-вторых, представляется целесообразным считать тугоплавкими металлами те, которые имеют более высокую температуру плавления чем титан (температура плавления 1660°С) и цирконий (1850°С), которые используются в основном при промежуточных температурах. Поэтому хром (плавление 1875°С) обычно относят к тугоплавким металлам.

    Когда тугоплавкими считаются металлы, плавящиеся при при температурах выше 1850°C в эту группу входят двенадцать металлов: W (температура плавления 3410°C), Re , Ос , Та , Мо , Ир , Нб , Ру , Хф , Рх , В , Кр .Металлоиды – элементы малых атомов. размера, которые образуют твердые растворы внедрения или соединения внедрения с металлы. К ним относятся водород, кислород, азот и углерод. В некоторых случаях маленькие атомы металлов, такие как бор и бериллий, могут входить в ограниченное твердые растворы внедрения. Однако атомные размеры этих металлов таковы, что препятствуют обширному промежуточному раствору, и они будут не считаться.

    Легирование вольфрама ( W ) было относительно менее изучен, чем некоторые другие тугоплавкие металлы.Большая часть вольфрама. используемый до сих пор в аэрокосмических приложениях, был в беспримесной форме, которая гораздо проще и дешевле в производстве и изготовлении. Кроме того, было обнаружили, что, особенно при температурах выше 2200°C (4000°F), упрочняющее действие многих легирующих добавок снижается непропорционально.

    Вольфрам потребляется в четырех формах:

    • Карбид вольфрама
    • Легирующие добавки
    • Чистый вольфрам
    • Химикаты на основе вольфрама
    На карбид вольфрама приходится около 65% потребления вольфрама.Он сочетается с кобальтом в качестве связующего с образованием так называемых цементированных карбидов, которые используется для резки и износа. Характерно, что большинство из них карбиды обладают высокой твердостью, хорошей электро- и теплопроводностью, а также высокая стабильность. Эти свойства учитывают основные приложения: конструкции, устойчивые к химическим реакциям, применение в которых износостойкость имеет большое значение и высокотемпературные источники лучистой энергии. То однако хрупкость карбидов не позволяет использовать их в качестве однофазных материалы в сильно нагруженных конструкционных приложениях и привели к разработка композитов на металлической связке (твердые сплавы или металлокерамика).

    Металлический вольфрам и прокат вольфрамовых сплавов составляют около 16% потребление. Вольфрам и вольфрамовые сплавы доминируют на рынке приложений для которых требуется материал высокой плотности (19,3 г/см 3 ), такой в качестве пенетраторов кинетической энергии, противовесов, маховиков и регуляторов. Другие области применения включают радиационные экраны и рентгеновские мишени. В виде проволоки, вольфрам широко используется для освещения, электронных устройств и термопары.

    Вольфрамовые химикаты составляют примерно 3% от общего потребления и используется для органических красителей, пигментных люминофоров, катализаторов, электронно-лучевых трубок и рентгеновские экраны.

    Высокая температура плавления вольфрама делает его очевидным выбором для конструкционных приложений, подверженных очень высоким температурам. Вольфрам используется при более низких температуры для приложений, которые могут использовать его высокий модуль упругости, плотность, или характеристики экранирования в пользу.

    Вольфрам и вольфрамовые сплавы можно прессовать и спекать в прутки и впоследствии изготавливается в кованый стержень, лист или проволоку. Много вольфрама изделия сложны и требуют механической обработки или литья и спекания для форму, близкую к чистой, и не могут быть изготовлены из стандартных прокатных изделий.

    Изделия из вольфрамового проката можно разделить на три отдельные группы по в основе рекристаллизационного поведения.

    Первая группа состоит из нелегированной стали, выплавленной ЭЛ, зонной или дуговой плавки. вольфрам; другие очень чистые формы нелегированного вольфрама; или сплав вольфрама с рения или молибдена.Эти материалы имеют равноосную зернистую структуру. первичная рекристаллизация. Температура рекристаллизации и размер зерна оба уменьшаются с увеличением деформации.

    Вторая группа, состоящая из технического или нелегированного вольфрама П/М, демонстрирует чувствительность вольфрама к чистоте. Как и первая группа, эти материалы имеют равноосную зернистую структуру, но их температуры рекристаллизации выше, чем у материалов первой группы.Также эти материалы не обязательно демонстрируют снижение температуры рекристаллизации и размера зерна с возрастающей деформацией. В расплавленной ЭП вольфрамовой проволоке рекристаллизация температура может быть 900°C (1650°F) или ниже, в то время как в коммерческих чистого (нелегированного) вольфрама она может достигать 1205–1400°C (2200–2550°F).

    Третья группа материалов состоит из вольфрама, легированного АКС (т.е. легированный алюминием-калием-кремнием), легированный вольфрам, легированный рением, и нелегированный вольфрам, легированный более чем 1% ThO 2 .Эти материалы характеризуется более высокими температурами рекристаллизации (> 1800 ° C или 3270 ° F) и уникальные структуры рекристаллизованных зерен. Структура сильнотянутой проволоки или катаный лист состоит из очень длинных переплетающихся волокон.

    Эту структуру легче всего найти в вольфраме, легированном AKS, или в легированном вольфраме. легированный от 1 до 5% Re . Легирующая добавка калия распределяется в направление прокатки или волочения; при нагревании он испаряется в виде линейного массива пузырьки субмикронного размера.Эти пузырьки закрепляют границы зерен наподобие диспергирование частиц второй фазы. По мере того, как ряды пузырьков становятся тоньше и с ростом деформации температура рекристаллизации повышается, а переплетающаяся структура становится более выраженной.

    Вольфрамовые сплавы. Коммерчески производятся три вольфрамовых сплава: вольфрам-ThO 2 , вольфрам-молибден и вольфрам-рений. То W-ThO 2 , сплав содержит дисперсную вторую фазу с содержанием тория от 1 до 2%.Дисперсия тория усиливает термоэлектронную эмиссию электронов, что, в свою очередь, улучшает Пусковые характеристики электродов для газовой вольфрамовой дуговой сварки. Это также увеличивает эффективность электронно-разрядных трубок и придает проволоке сопротивление ползучести при температуры выше половины абсолютной температуры плавления вольфрама.

    Изделия из вольфрамового проката, листы, прутки и проволока производятся из порошка. металлургия. Эти продукты доступны либо в чистом (нелегированном) вольфрам или коммерчески легированный (легированный AKS) вольфрам.Эти добавки улучшают рекристаллизационные и ползучести свойства вольфрама, которые особенно важны когда вольфрам используется для нитей накаливания ламп. Кованый запас P/M может быть зона, очищенная плавлением ЭП с получением монокристаллов более высокой чистоты чем коммерчески чистый продукт. Электронно-лучевой зонный расплав вольфрама, одиночный кристаллы представляют коммерческий интерес для приложений, требующих монокристаллов с очень высоким коэффициентом электрического сопротивления.

    Вольфрамовые сплавы тяжелых металлов (WHA). Это категория материалы на основе вольфрама, которые обычно содержат от 90 до 98 мас.% W . Большинство коммерческих WHA представляют собой двухфазные структуры, причем основная фаза почти чистый вольфрам в сочетании со связующей фазой, содержащей переходные металлы плюс растворенный вольфрам. Как следствие, ВАЗ получают свои фундаментальные свойства от основных вольфрамовых фаз, что обеспечивает как высокую плотность и высокая упругая жесткость.Именно эти два свойства порождают сусло. Применение этого семейства материалов.

    Текущее использование WHA охватывает широкий спектр потребительских, промышленных, и правительственные приложения, которые включают:

    • Демпфирующие грузы для головок компьютерных дисководов
    • Балансировочные грузы для элеронов коммерческих самолетов, винтов вертолетов, и для управляемых ракет
    • Кинетические пенетраторы для поражения тяжелой брони
    • Осколочные боеголовки
    • Радиационная защита, радиоизотопные контейнеры и коллимальные апертуры для аппаратов для лечения рака
    • Высокоэффективная бессвинцовая дробь для охоты на водоплавающую дичь
    • Компоненты гироскопа
    • Регулировка распределения веса в парусных лодках и гоночных автомобилях.
    Многие приложения, требующие высокой гравиметрической плотности для балансировочных грузов, инерционные массы, пенетраторы с кинетической энергией или высокая радиографическая плотность для радиационная защита и коллимация требуют довольно больших объемных форм. Такой требование устраняет всех, кроме нескольких кандидатов, на основании непомерно высокой стоимости, как правило, сокращая выбор очень плотных сплавов до вольфрама или материалы на основе урана.

    Урановые сплавы, как и свинец, исключаются из числа потенциальных применения, основанные на соображениях токсичности, с материалами на основе урана, требующими лицензии, за исключением очень небольших количеств.Хотя перечисленные драгоценные металлы обладают привлекательные плотности и практически не обладают токсичностью, их стоимость непомерно высока. для всех, кроме нескольких приложений плотности.

    WHA обычно состоят из 90-98% масс. W в сочетании с некоторыми смесь никеля, железа, меди и/или кобальта. Основная часть продукции ВАЗ приходится на диапазон от 90 до 95% Вт .

    Выбор состава сплава обусловлен несколькими соображениями.Основной фактор – это плотность, требуемая данным приложением. Дополнительные соображения включают коррозионную стойкость, магнитный характер, механические свойства и варианты послесинтетической термообработки.

    Первым разработанным WHA был сплав W-Ni-Cu. Сплавы этой тройной системы все еще иногда используется сегодня, в основном для приложений, в которых ферромагнитные характер и электрические свойства должны быть сведены к минимуму. сплавы W-Ni-Cu иначе предлагают более низкую коррозионную стойкость и более низкие механические свойства, чем нынешние стандартные промышленные сплавы W-Ni-Fe.

    Большинство текущих применений WHA лучше всего удовлетворяет система W-Ni-Fe. Такие сплавы, как 93W-4.9Ni-2.lFe и 95W-4Ni-lFe, представляют собой обычные составы. Добавление кобальта в сплав W-Ni-Fe является распространенным подходом для легкого повышение как прочности, так и пластичности. Наличие кобальта внутри сплав обеспечивает твердорастворное упрочнение вяжущего и незначительно повышенная прочность на границе раздела вольфрам-матрица. Добавки кобальта от 5 до 15% номинальной массовой доли вяжущего являются наиболее распространенными.

    Для особо требовательных применений требуются еще более высокие механические свойства. можно получить из системы W-Ni-Co с соотношением никеля к кобальту в диапазоне от 2 до 9. Однако такие сплавы требуют разрешения/закалки из-за обширной образование интерметаллидов (Co 3 W и др.) при охлаждении после спекания.

    Также известен ряд специальных ВАЗ. Примером является четвертичный компонент W-Mo-Ni-Fe. сплав, в котором используется молибден для ограничения растворения вольфрама и сфероида рост, что приводит к повышению прочности (но снижению пластичности) в спеченном состоянии. шифер.

    Существует также ряд систем сплавов, находящихся на разных стадиях разработки для пенетраторы с кинетической энергией, которые предназначены для обеспечения ВАЗ, который будет подвергаться Разрушение с высокой скоростью деформации из-за локализации сдвига аналогично закаленный и состаренный U-0,75Ti для более эффективного поражения брони.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *