Теплопроводность металлов это: Теплопроводность металлов и сплавов, коэффициент теплопроводности

alexxlab | 30.01.1981 | 0 | Разное

Содержание

Коэффициент теплопроводности металлов (Таблица)

Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотно­шение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов тепло­проводности.

Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоем­кость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.

Таблица коэффициент теплопроводности металлов

Элементы с металлической электропроводностью (числа, набранные курсивом, относятся к жидкой фазе)

Металл

Коэффициент теплопроводности металлов при температура, °С

– 100

0

100

300

700

Алюминий

2,45

2,38

2,30

2,26

0,9

Бериллий

4,1

2,3

1,7

1,25

0,9

Ванадий

0,31

0,34

Висмут

0,11

0,08

0,07

0,11

0,15

Вольфрам

2,05

1,90

1,65

1,45

1,2

Гафний

 —

0,22

0,21

Железо

0,94

0,76

0,69

0,55

0,34

Золото

3,3

3,1

3,1

Индий

0,25

Иридий

1,51

1,48

1,43

Кадмий

0,96

0,92

0,90

0,95

0,44 (400°)

Калий

0,99

0,42

0,34

Кальций

0,98

Кобальт

0,69

Литий

0,71

0,73

Магний

1,6

1,5

1,5

1,45

 Медь

4,05

3,85

3,82

3,76

3,50

Молибден

1,4

1,43

 —

1,04 (1000°)

Натрий

1,35

1,35

0,85

0,76

0,60

Никель

0,97

0,91

0,83

0,64

0,66

Ниобий

0,49

0,49

0,51

0,56

Олово

0,74

0,64

0,60

0,33

Палладий

0,69

0,67

0,74

Платина

0,68

0,69

0,72

0,76

0,84

Рений

0,71

Родий

1,54

1,52

1,47

Ртуть

0,33

0,09

0. 1

0,115

Свинец

0,37

0,35

0,335

0,315

0,19

Серебро

4,22

4,18

4,17

3,62

Сурьма

0,23

0,18

0,17

0,17

0,21

Таллий

 

0,41

0,43

0,49

0,25 (400 0)

Тантал

0,54

0,54

Титан

0,16

0,15

Торий

0,41

0,39

0,40

0,45

Уран

0,24

0,26

0,31

0,40

Хром

0,86

0,85

0,80

0,63

Цинк

1,14

1,13

1,09

1,00

0,56

Цирконий

0,21

0,20

0,19

Таблица коэффициент теплопроводности полупроводники и изоляторы

Вещество

Коэффициент теплопроводности при температура, °С

– 100

0

100

500

700

Германий

1,05

0,63

Графит

0,5—4,0

0,5—3,0

0,4-1,7

0,4-0,9

Йод

0,004

Углерод

0,016

0,017

0,019

0,023

Селен

0,0024

Кремний

0,84

Сера

0,0029

0,0023

Теллур

0,015



Теплопроводность металлов и ее применение

Металлы –  это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель –  удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов –  это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов –  золото, медь, серебро. Более низкая теплопроводность –   у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование –  ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение –  при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы –  кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

22 Электро- и теплопроводность металлов и сплавов

1.1.   Электро- и теплопроводность металлов и сплавов

Электропроводность металлов

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных свободных валентных электронов. К электронному газу применялись представления и законы обычных газов. Это привело к выводу законов Ома и Джоуля – Ленца, позволило описать и объяснить ранее обнаруженные экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах.

Однако исчерпывающее объяснение явлений электропроводности оказалось возможным на основе квантовой механики. В соответствии с квантово–механическими представлениями причиной наличия электрического сопротивления твердых тел является не столкновение свободных электронов с атомами решетки (как в классической теории Друде), а рассеяние их на дефектах решетки, вызывающих нарушение периодичности потенциала. Идеально правильная, бездефектная неподвижная решетка не способна рассеивать свободные носители заряда и поэтому должна обладать нулевым сопротивлением.

Подвижность и длина свободного пробега электронов в твердом теле зависят от структуры материала. Чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления r. Примеси, искажая решетку, приводят к увеличению r. С позиций квантовой механики рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием порядка четверти длины волны электрона; нарушения меньших размеров не вызывают заметного рассеяния волн де Бройля. В металлическом проводнике, где длина волны электрона порядка 5 Å, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов и длину свободного пробега, и, следовательно, приводят к росту r.

Так как в металлах концентрация электронного газа n практически не зависит от температуры (Т), то зависимость удельного сопротивления r (и обратной величины удельной электропроводности s) от температуры полностью определяется температурной зависимостью подвижности (m) и пропорциональной ей длины свободного пробега электронов (l).

Вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т.е. уменьшается среднестатистическая длина свободного пробега l, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 3.14).

Рис. 3.14. Зависимость удельного сопротивления металлов и сплавов от температуры: 1 – железо; 2 – электротехническая сталь с содержанием 4 % Si; 3 – сплав Fe-Ni-Cr

Удельное сопротивление сплавов

Как указывалось, примеси и нарушения правильной структуры металлов ведут к увеличению их удельного сопротивления.

Рекомендуемые файлы

Значительное возрастание r наблюдается при сплавлении двух металлов в том случае, если они образуют твердый раствор, т.е. создают при отвердевании совместную кристаллизацию, и атомы одного металла входят в кристаллическую решетку другого.

Зависимость удельного сопротивления сплава двух металлов, образующих твердый раствор, от процентного содержания каждого из них представлена на рис. 3.15 (кривая а). Кривая имеет максимум, соответствующий некоторому соотношению содержания компонентов в сплаве; при уменьшении содержания каждого из них r падает, приближаясь к соответствующим значениям r чистых металлов. Обычно наблюдается определенная закономерность и в изменении ТКr (ТК – температурный коэффициент): относительно высокими значениями ТКr обладают чистые металлы, а у сплавов ТКr меньше и даже может приобретать небольшие по абсолютной величине отрицательные значения (рис. 3.15, кривая б). Это объясняется тем, что у сплавов изменение r вызывается не только изменением подвижности носителей заряда, но в некоторых случаях и возрастанием концентрации носителей при повышении температуры.

Рис. 3.15. Зависимость r (а) и ТКr (б) сплавов системы Cu-Ni от состава (в процентах по массе)

Теплопроводность

Тепло через металл передается в основном теми же свободными электронами, которые определяют и электропроводность металлов; количество их в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности h металлов много больше, чем у диэлектриков. Очевидно, что при прочих равных условиях чем больше удельная электрическая проводимость s металла, тем больше его коэффициент теплопроводности h. При повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость s уменьшаются, отношение коэффициента теплопроводности металла к его удельной электрической проводимости h/s должно возрастать. Математически это выражается законом Видемана – Франца – Лорентца:

                                          h/s = L0T,                                               (3.1)

где Т – абсолютная температура, К; L0 – число Лорентца, равное

В лекции “13. Обзор печати” также много полезной информации.

                                         .                                              (3.2)

Подстановка в (3.2) значений постоянной Больцмана k = 1,38×10-23 Дж/К и заряда электрона e = -1,6×10-19 Кл дает  L0 = 2,45×10-8 В22.

Закон Видемана – Франца – Лорентца для большинства металлов хорошо подтверждается при температурах, близких к нормальной или несколько повышенных.

Проверим справедливость этого закона для меди при нормальной температуре. Подставляя в формулу (3.1) параметры меди: s = 57×106 См/м и  h= 390 Вт/(м×К), получаем (при Т = 293 К) L0 = 2,54×10-8 В22, что весьма близко к теоретическому значению. При нормальной температуре для алюминия L0 = 2,1×10-8, для свинца и олова – 2,5×10-8, для железа – 2,9×10-8 В22.

Однако в области низких температур коэффициент при Т в уравнении (3.1) уже не остается неизменным: так, для меди при охлаждении он проходит через минимум, а при приближении к абсолютному нулю вновь близок к теоретическому значению L0.

Теплопередача. Теплопроводность металлов

Всем известно, что теплота может «путешествовать» с одного места на другое. Однако нам пока что неизвестно, каким же образом это происходит? Одинаково ли протекают теплообменные процессы в твёрдых телах, жидкостях и газах? И какова природа передачи теплоты? Чтобы ответить на эти вопросы, проведём эксперимент.

Возьмём железный гвоздь и стеклянную палочку и будем нагревать их концы в пламени спиртовки.

Через некоторое время мы почувствуем тепло. К пальцам, которые держат железный гвоздь, оно дойдёт гораздо быстрее, и вскоре мы не сможем удержать гвоздь, поскольку его температура значительно повысится. Стеклянную же палочку мы ещё долго сможем держать, хотя со временем и её температура повысится до такой степени, что будет печь пальцы.

В рассмотренном нами эксперименте происходит перенос теплоты от более нагретых частей тела к менее нагретым. Вы сами можете привести множество примеров такого переноса теплоты.

Такая передача энергии происходит в результате столкновения частиц. Она передаётся как бы по цепочке, последовательно слой за слоем, и со временем температура всех частей тела выравнивается.

Проведём ещё один опыт. К металлическому стержню, закрепленному в штативе, с помощью воска или пластилина прикрепим несколько кнопок. Свободный конец стержня будем нагревать на пламени спиртовки.

Через некоторое время мы увидим, что кнопки начнут отпадать от стержня: сначала отпадёт та кнопка, которая находится ближе к пламени, а затем поочерёдно все остальные.

Поскольку кнопки отпадали не одновременно, то можно сделать вывод о том, что температура стержня повышалась постепенно.

Почему это происходит? Попробуем разобраться, используя знания, полученные нами на предыдущих уроках.

Мы знаем, что в твёрдом теле (например, в металле) частицы взаимодействуют между собой, потенциальная энергия их велика, и они могут совершать колебательные движения около определенных положений. Модель структуры твердого тела (металла) можно представить в виде кристаллической решётки.

Модель кристаллической решётки

Частицы металла ближнего к пламени конца стержня получают от него энергию. А это значит, что увеличивается средняя кинетическая энергия колебательного движения его частиц. Так как частицы взаимодействуют друг с другом, то они передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь, передают энергию своим соседям, и так далее по всему стержню.

Это можно уподобить передаче энергии колебательного движения от одного человека к другому в цепочке стоящих рядом, взявшихся за руки людей. Если один человек будет смещаться, то в одну, то в другую сторону, то он вызовет смещение по очереди и всех остальных.

Обращаем внимание на то, что перемещение вещества от одного тела к другому или от одной части тела к другой, не происходит, но при этом передаётся энергия.

Процесс переноса теплоты от более нагретых тел или частей тела к менее нагретым в результате теплового движения и взаимодействия частиц без переноса вещества называется теплопроводностью.

Так как взаимодействие молекул и тепловое движение у разных веществ неодинаковы, то и теплопроводность веществ разная.

Чтобы в этом убедиться, проделаем следующий опыт. Возьмём сосуд с горячей водой и стержни одинакового размера из различных материалов, например, из серебра, латуни, стали, стекла и дерева. Верхние концы стержней погрузим в сосуд так, чтобы они прогревались водой. А к свободным нижним концам этих стержней прикрепим воском или пластилином кнопки.

Через некоторое время мы заметим, что первым отпадает кнопка от серебряного стержня. Значит серебро — это очень хороший проводник тепла. Затем отпадает гвоздик от стержня из латуни, а потом и от стального.

Ждать же, пока прогреются стеклянный и деревянный стержни, приходится очень долго. Значит,  дерево и стекло имеют очень малую теплопроводность.

Так теплопроводность дерева примерно в три тысячи раз меньше теплопроводности серебра. Убедиться в этом можно на опыте. Деревянную или стеклянную палочку можно безопасно держать рукой, в то время как другой ее конец, находящийся в пламени спиртовки, уже горит или плавится.

Становится понятным, почему деревянные дома лучше сохраняют тепло, чем кирпичные, почему ручки паяльников, кастрюль и сковородок делают из пластмассы или дерева.

Материалы, которые очень плохо проводят тепло, называют теплоизоляторами.

Теперь зададимся вопросом, а могут ли проводить теплоту газы? Что бы на него ответить, проделаем такой опыт: поместим в открытый конец пробирки термометр и будем нагревать пробирку в пламени спиртовки донышком вверх. Можно заметить, что нагревание воздуха идёт, но очень медленно, что подтверждается незначительным повышением показания термометра.

Приведём ещё несколько примеров. И так, все вы знаете, что фен выдувает горячий воздух за счёт электрической энергии, которую он потребляет из сети.

Однако, если встать чуть-чуть в стороне от потока воздуха, то тепло едва ли можно будет ощутить.

Кроме того, мы знаем, что двойные окна значительно лучше сохраняют тепло, чем одинарные. Это происходит за счёт небольшого слоя воздуха между ними.

Двойные стёкла в оконной раме

Так чем объясняется столь плохая теплопроводность газов? Вспомните, что силы взаимодействия между молекулами газов при нормальном давлении практически равны нулю. Значит, энергия переносится только за счёт хаотического движения молекул и столкновений их друг с другом. Поэтому, например, сильно разреженные газы практически не проводят теплоту. Это их свойство применяют, в частности, в термосах, чтобы продолжительное время сохранять в них жидкости при постоянной температуре.

Такими образом, теплопроводность газов очень малая, особенно по сравнению с теплопроводностью твёрдых тел. Так, например, теплопроводность обычного воздуха, которым мы с вами дышим, почти в 10 000 раз меньше, чем теплопроводность меди.

А теперь давайте выясним, какова же теплопроводность жидкостей? Так как взаимодействие молекул у жидкостей значительное, то перенос энергии молекулами у них лучше, чем у газов, но хуже, чем у твёрдых тел. Чтобы в этом убедиться, проведём такой опыт. Возьмём пробирку с водой, на дно которой поместим кусочек льда. Чтобы лёд не всплывал, прикрепим к нему какой-либо металлический предмет. Будем нагревать верхнюю часть пробирки в спиртовке.

Через некоторое время вода в верхней части пробирки закипит, но лёд на дне при этом не растает. Это говорит о том, что теплопроводность воды малая, хотя и больше чем у воздуха. Следует помнить, что металлы, находящиеся в жидком состоянии (это, например, медь, олово и так далее) обладают хорошей теплопроводностью.

Таким образом, теплопроводность жидкости действительно занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

И так, из всех рассмотренных нами примеров мы можем сделать вывод о том, что теплопроводность — это свойство тел, и у каждого тела она разная. Например, шерсть, перья и волосы имеют плохую теплопроводность. Это объясняется тем, что между их волокнами содержатся частички воздуха.

Мы постоянно сталкиваемся с явлением теплопроводности в повседневной жизни. Например, посуду, в которой готовят пищу, делают из материалов, обладающих хорошей теплопроводностью, чтобы передавать энергию от источника к пище. А вот посуду из которой едят, наоборот, делают из материалов с плохой теплопроводностью.

Самой низкой теплопроводностью обладает вакуум (то есть пространство, свободное от вещества). И это неудивительно, ведь явление теплопроводности возникает при взаимодействии молекул или других частиц, которых в вакууме попросту нет в вакууме. Этим и объясняется тот факт, что в открытом космосе самая низкая температура в природе.

Конечно же у вас может возникнуть вопрос: как же тогда нам передаётся тепло от Солнца? Это происходит посредством ещё одного вида теплопередачи — излучения. Но нём мы поговорим с вами в следующий раз.

Теплопроводность меди – две стороны одной медали

Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.  

Блок: 1/5 | Кол-во символов: 242
Источник: http://tutmet.ru/koefficient-teploprovodnosti-medi-aluminiya.html

Немного о теплопроводности

Под теплопроводностью в физике понимают перемещение энергии в объекте от более нагретых мельчайших частиц к менее нагретым. Благодаря этому процессу выравнивается температура рассматриваемого предмета в целом. Величина способности проводить тепло характеризуется коэффициентом теплопроводности. Данный параметр равен количеству тепла, которое пропускает через себя материал толщиной 1 метр через площадь поверхности 1 м2 в течение одной секунды при единичной разнице температур.

МатериалКоэффициент теплопроводности, Вт/(м*К)
Серебро428
Медь394
Алюминий220
Железо74
Сталь45
Свинец35
Кирпич0,77

Медь обладает коэффициентом теплопроводности 394 Вт/(м*К) при температуре от 20 до 100 °С. Соперничать с ней может только серебро. А у стали и железа этот показатель ниже в 9 и 6 раз соответственно (см. таблицу). Стоит отметить, что теплопроводность изделий, изготовленных из меди, в значительной мере зависит от примесей (впрочем, это касается и других металлов). Например, скорость проводимости тепла снижается, если в медь попадают такие вещества, как:

  • железо;
  • мышьяк;
  • кислород;
  • селен;
  • алюминий;
  • сурьма;
  • фосфор;
  • сера.

Медная проволока

Если добавить к меди цинк, то получится латунь, у которой коэффициент теплопроводности намного ниже. В то же время добавление других веществ в медь позволяет существенно снизить стоимость готовых изделий и придать им такие характеристики, как прочность и износостойкость. К примеру, для латуни характерны более высокие технологические, механические и антифрикционные свойства.

Поскольку для высокой теплопроводности характерно быстрым распространение энергии нагрева по всему предмету, медь получила широкое применение в системах теплообмена. На данный момент из нее изготавливают радиаторы и трубки для холодильников, вакуумных установок и автомашин для быстрого отвода тепла. Также медные элементы применяют в отопительных установках, но уже для обогрева.

Медный радиатор отопления

Чтобы поддерживать теплопроводность металла на высоком уровне (а значит, делать работу устройств из меди максимально эффективной), во всех системах теплообмена используют принудительный обдув вентиляторами. Такое решение вызвано тем, что при повышении температуры среды теплопроводность любого материала существенно понижается, ведь теплоотдача замедляется.

Блок: 2/5 | Кол-во символов: 2339
Источник: http://met-all.org/cvetmet-splavy/med/teploprovodnost-medi-i-ee-splavov.html

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Блок: 2/7 | Кол-во символов: 1195
Источник: https://prompriem.ru/metally/teploprovodnost.html

2 Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

Блок: 3/5 | Кол-во символов: 2572
Источник: http://tutmet.ru/koefficient-teploprovodnosti-medi-aluminiya.html

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Таблица 1

Металл

Коэффициент теплопроводности металлов при температура, °С

— 100

100

300

700

Алюминий

2,45

2,38

2,30

2,26

0,9

Бериллий

4,1

2,3

1,7

1,25

0,9

Ванадий

0,31

0,34

Висмут

0,11

0,08

0,07

0,11

0,15

Вольфрам

2,05

1,90

1,65

1,45

1,2

Гафний

 —

0,22

0,21

Железо

0,94

0,76

0,69

0,55

0,34

Золото

3,3

3,1

3,1

Индий

0,25

Иридий

1,51

1,48

1,43

Кадмий

0,96

0,92

0,90

0,95

0,44 (400°)

Калий

0,99

0,42

0,34

Кальций

0,98

Кобальт

0,69

Литий

0,71

0,73

Магний

1,6

1,5

1,5

1,45

 Медь

4,05

3,85

3,82

3,76

3,50

Молибден

1,4

1,43

 —

1,04 (1000°)

Натрий

1,35

1,35

0,85

0,76

0,60

Никель

0,97

0,91

0,83

0,64

0,66

Ниобий

0,49

0,49

0,51

0,56

Олово

0,74

0,64

0,60

0,33

Палладий

0,69

0,67

0,74

Платина

0,68

0,69

0,72

0,76

0,84

Рений

0,71

Родий

1,54

1,52

1,47

Ртуть

0,33

0,09

0.1

0,115

Свинец

0,37

0,35

0,335

0,315

0,19

Серебро

4,22

4,18

4,17

3,62

Сурьма

0,23

0,18

0,17

0,17

0,21

Таллий

0,41

0,43

0,49

0,25 (400 0)

Тантал

0,54

0,54

Титан

0,16

0,15

Торий

0,41

0,39

0,40

0,45

Уран

0,24

0,26

0,31

0,40

Хром

0,86

0,85

0,80

0,63

Цинк

1,14

1,13

1,09

1,00

0,56

Цирконий

0,21

0,20

0,19

Блок: 3/7 | Кол-во символов: 3131
Источник: https://prompriem.ru/metally/teploprovodnost.html

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Блок: 4/7 | Кол-во символов: 782
Источник: https://prompriem.ru/metally/teploprovodnost.html

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Блок: 5/7 | Кол-во символов: 1126
Источник: https://prompriem.ru/metally/teploprovodnost.html

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Таблица 2

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Блок: 6/7 | Кол-во символов: 1576
Источник: https://prompriem.ru/metally/teploprovodnost.html

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

:

Ещё

Блок: 7/7 | Кол-во символов: 1759
Источник: https://prompriem.ru/metally/teploprovodnost.html

Кол-во блоков: 11 | Общее кол-во символов: 14722
Количество использованных доноров: 3
Информация по каждому донору:
  1. http://met-all.org/cvetmet-splavy/med/teploprovodnost-medi-i-ee-splavov.html: использовано 1 блоков из 5, кол-во символов 2339 (16%)
  2. http://tutmet.ru/koefficient-teploprovodnosti-medi-aluminiya.html: использовано 2 блоков из 5, кол-во символов 2814 (19%)
  3. https://prompriem.ru/metally/teploprovodnost.html: использовано 6 блоков из 7, кол-во символов 9569 (65%)

Коэффициент теплопроводности металлов, полупроводников и изоляторов

Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотно­шение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов тепло­проводности.

Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоем­кость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.

Таблица коэффициента теплопроводности металлов

Элементы с металлической электропроводностью.

МеталлКоэффициент теплопроводности металлов (при температуре, °С)
— 1000100300700
Алюминий2,452,382,302,260,9
Бериллий4,12,31,71,250,9
Ванадий0,310,34
Висмут0,110,080,070,11*0,15*
Вольфрам2,051,901,651,451,2
Гафний0,220,21
Железо0,940,760,690,550,34
Золото3,33,13,1
Индий0,25
Иридий1,511,481,43
Кадмий0,960,920,900,950,44 (400°)*
Калий0,990,42*0,34*
Кальций0,98
Кобальт0,69
Литий0,710,73
Магний1,61,51,51,45
Медь4,053,853,823,763,50
Молибден1,41,431,04 (1000°)
Натрий1,351,350,85*0,76*0,60*
Никель0,970,910,830,640,66
Ниобий0,490,490,510,56
Олово0,740,640,600,33
Палладий0,690,670,74
Платина0,680,690,720,760,84
Рений0,71
Родий1,541,521,47
Ртуть0,330,090.10,115
Свинец0,370,350,3350,3150,19
Серебро4,224,184,173,62
Сурьма0,230,180,170,170,21*
Таллий0,410,430,490,25 (400 0)*
Тантал0,540,54
Титан0,160,15
Торий0,410,390,400,45
Уран0,240,260,310,40
Хром0,860,850,800,63
Цинк1,141,131,091,000,56*
Цирконий0,210,200,19

* числа, набранные курсивом, относятся к жидкой фазе.

Таблица коэффициента теплопроводности полупроводников и изоляторов


ВеществоКоэффициент теплопроводности при температура, °С
— 1000100500700
Германий1,050,63
Графит0,5—4,00,5—3,00,4-1,70,4-0,9
Йод0,004
Углерод0,0160,0170,0190,023
Селен0,0024
Кремний0,84
Сера0,00290,0023
Теллур0,015

Где используется теплопроводность металлов – Яхт клуб Ост-Вест

Тепло – это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта – тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала – например, большинство металлов хорошо проводят тепло, а дерево и пластик – гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой – при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом – таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее – мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Материал
Теплопроводность, Вт/(м·K)
Алмаз1001—2600
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Оксид алюминия40
Кварц8
Гранит2,4
Бетон сплошной1,75
Базальт1,3
Стекло1-1,15
Термопаста КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Стекловата0,032-0,041
Каменная вата0,034-0,039
Воздух (300 K, 100 кПа)0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата – нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и “всплывает” наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи – это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (

600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая – порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (

1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме – именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред. И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.

1 Медь – коротко про теплопроводность

Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м 2 , толщиной 1 м, за 1 секунду при единичном градиенте температуры.

Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

2″ Теплопроводность алюминия и меди – какой металл лучше?

Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.

Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:

  • плотность (удельный вес) алюминия меньше в 3 раза;
  • стоимость – ниже в 3,5 раза.

Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).

В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.

Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).

Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.

3 Минусы высокой теплопроводности

Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.

У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.

При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.

4 Как у меди повысить теплопроводность?

Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.

Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.

Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель – удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов – это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов – золото, медь, серебро. Более низкая теплопроводность – у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование – ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение – при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы – кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

>

Теплопроводность металлов | Electrical4U

Теплопроводность – термин, аналогичный электрической проводимости с той разницей, что он касается потока тепла в отличие от тока в последнем случае. Это указывает на способность материала переносить тепло из одной точки в другую без движения материала в целом, чем больше теплопроводность , тем лучше он проводит тепло.
Рассмотрим блок материала, один конец которого имеет температуру T 1 , а другой – T 2 .Для T 1 > T 2 тепловые потоки от конца T 1 к концу T 2 , а тепловой поток (Дж), протекающий через единицу площади в единицу времени, задается как –

Где,
K – это коэффициент теплопроводности в Джоулях на метр-с-К или Ватт / метр-К.

Обычно теплопередача в твердом теле состоит из двух компонентов

  1. Решетчатая проводимость
  2. Электронная проводимость

Оба типа теплопроводности происходят в твердых телах, но один преобладает над другим в зависимости от типа материала.
В изоляционных материалах решетка способствует теплопроводности. В основном это связано с тем, что в изоляторах электроны прочно удерживаются их родительскими атомами, а свободных электронов не существует. Следовательно, тепло передается от одного конца к другому за счет колебаний атомов, удерживаемых в структуре решетки. Очевидно, что изоляторы являются плохими проводниками тепла, поскольку они не обладают достаточной теплопередачей из-за отсутствия свободных электронов.

Однако в случае металлов у нас есть большое количество свободных электронов, и, следовательно, теплопроводность в первую очередь обусловлена ​​электронной проводимостью.Свободные электроны металлов могут свободно перемещаться по твердому телу и передавать тепловую энергию с очень высокой скоростью по сравнению с изоляторами. Благодаря этому металлы обладают высокой теплопроводностью. Также замечено, что среди металлов лучшие электрические проводники также демонстрируют лучшую теплопроводность. Поскольку как электрическая, так и теплопроводность зависят от свободных электронов, такие факторы, как легирование, влияют на оба свойства.
Теплопроводность металлов варьируется от 15 до 450 Вт / мК при 300 К.

Закон Видемана Франца

Закон Видемана Франца в основном связывает две проводимости металлов, то есть тепловую и электрическую проводимость, с температурой. В нем говорится, что отношение теплопроводности К и электропроводности пропорционально температуре образца. Г. Видеманн и Р. Франц в 1853 г. на основании экспериментальных данных установили, что это соотношение постоянно при постоянной температуре.

В 1882 году датский физик Л. Лоренц показал, что зависимость изменяется прямо пропорционально абсолютной температуре T.

Где, T = температура

Этот закон в основном утверждает, что с повышением температуры теплопроводность металлов увеличивается, а электропроводность уменьшается. Мы знаем, что два свойства металлов зависят от свободных электронов. Повышение температуры увеличивает среднюю скорость свободных электронов, что приводит к увеличению передачи тепловой энергии. С другой стороны, увеличение скорости электронов также увеличивает количество столкновений свободных электронов с ионами решетки и, следовательно, способствует увеличению удельного электрического сопротивления или снижению электропроводности.
Однако этот закон имеет определенные ограничения. Пропорциональность верна не для всех диапазонов температур. Он действителен только для очень высоких и очень низких температур. Также некоторые металлы, такие как бериллий, чистое серебро и т. Д., Не подчиняются этому закону.

Введение в термическую и электрическую проводимость (все содержание)

Примечание. Пакеты обучения и обучения DoITPoMS предназначены для интерактивного использования на компьютере! Эта версия TLP для печати предназначена для удобства, но не отображает все содержимое TLP.Например, отсутствуют какие-либо видеоклипы и ответы на вопросы. Форматирование (разрывы страниц и т. Д.) Печатной версии непредсказуемо и сильно зависит от вашего браузера.

Содержание

  • Цели
  • Перед тем, как начать
  • Введение
  • Введение в проводимость
  • Металлы: модель электропроводности по Друде
  • Факторы, влияющие на электрическую проводимость
  • Металлы теплопроводные
  • Электропроводность: неметаллы
  • Неметаллы: тепловые фононы
  • Приложения
  • Сводка
  • вопросов
  • Дальше

Цели

По завершении этого пакета TLP вам необходимо:

  • Понимать основные механизмы и модели теплопроводности и теплопроводности металлов и неметаллов.
  • Помните о некоторых факторах, которые влияют на оба типа проводимости.
  • Знайте некоторые области применения обоих типов проводников и изоляторов.

Перед тем, как начать

Этот TLP является введением, поэтому никаких специальных знаний не требуется. Однако есть и другие TLP, которые охватывают более сложные темы, такие как полупроводники, ссылки на которые приведены в разделе для дальнейшего чтения.

Введение

Электропроводность охватывает невероятно большой порядок величин (30!) От изоляторов до металлов и даже может быть бесконечным в сверхпроводниках.Знание того, как управлять им, привело к компьютерной революции и постоянно увеличивающейся миниатюризации

Теплопроводность, хотя для известных материалов она составляет всего около 10 порядков величины, по-прежнему имеет решающее значение для многих важных технологических достижений, от реактивных турбин и космических путешествий до USB-холодильников для напитков.

Чтобы по-настоящему оценить эти достижения, важно понимать, как возникает проводимость в материалах. Существуют простые модели, которые можно использовать для прогнозирования поведения многих материалов; между теплопроводностью и электропроводностью в металлах существуют близкие параллели, в то время как механизмы проводимости в неметаллах совершенно разные.

Введение в проводимость

Электропроводность

Важно не запутаться в проводимости, проводимости, сопротивлении и удельном сопротивлении.

Свойства материалов: электропроводность σ и удельное электрическое сопротивление ρ

Электропроводность материала определяется как количество электрического заряда, переносимого в единицу времени через единицу площади под действием единичного градиента потенциала: J = σ E

где J – плотность тока (ток на единицу площади), а E – градиент потенциала.Это еще один способ выражения закона Ома, который чаще выражается как \ (V = I R \).

Для изотропного материала:

\ [\ sigma = \ frac 1 \ rho \]

Единицами измерения удельного электрического сопротивления являются омметр ( Ом · м ), а для проводимости – обратная величина ( Ом -1 м -1 ). Для фактического образца длиной l и площадью поперечного сечения A сопротивление R рассчитывается по формуле:

\ [R = \ rho \ frac l A \]

Электрические сигналы распространяются со скоростью, близкой к скорости света, хотя , а не означает, что сами электроны движутся так быстро.Вместо этого типичная дрейфовая скорость электронов (их средняя скорость) намного ниже: менее 1 мм с -1 . Это подробно описано в разделе моделей Друде.

Еще одно уместное напоминание о потенциале и токе: ток – это поток электронов, а потенциал – это движущая сила, заставляющая их течь. Обладая достаточным потенциалом, электроны могут переносить заряд через любой материал, включая вакуум (см. ЭЛТ), хотя они бессильны без какого-либо чистого тока.

Лучшие электрические проводники (кроме сверхпроводников) – это чистая медь и чистое серебро с удельным сопротивлением 16,78 и 15,87 нОм соответственно. Для сравнения, полистирол имеет удельное сопротивление до 10 28 нОм, что на 27 порядков отличается!

Теплопроводность:

Чтобы понять теплопроводность материалов, важно знать концепцию теплопередачи, которая представляет собой движение тепловой энергии от более горячего тела к более холодному.Это происходит при нескольких обстоятельствах:

  • Когда объект имеет температуру, отличную от окружающей его температуры;
  • Когда объект имеет температуру, отличную от температуры другого объекта, контактирующего с ним;
  • Когда существует температурный градиент внутри объекта.

Направление теплопередачи определяется вторым законом термодинамики, который гласит, что энтропия изолированной системы, не находящейся в тепловом равновесии, будет со временем увеличиваться, приближаясь к максимальному значению в состоянии равновесия.Это означает, что передача тепла всегда происходит от тела с более высокой температурой к телу с более низкой температурой и будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.

Передача тепловой энергии происходит только через 3 режима: теплопроводность, конвекция и излучение. Каждый режим имеет свой механизм и скорость передачи тепла, и, таким образом, в любой конкретной ситуации скорость передачи тепла зависит от того, насколько преобладает определенный режим.

Проводимость включает в себя передачу тепловой энергии за счет комбинации диффузии электронов и фононных колебаний – применимо к твердым телам.

Конвекция включает передачу тепловой энергии в движущейся среде – горячий газ / жидкость движется через более холодную среду (обычно из-за разницы в плотности).

Излучение включает передачу тепловой энергии электромагнитным излучением. Солнце – хороший пример передачи энергии через (близкий) вакуум.

Этот TLP фокусируется на проводимости в кристаллических твердых телах.

Теплопроводность, Κ, – это свойство материала, которое указывает на способность проводить тепло.Согласно первому закону Фурье тепловой поток пропорционален разности температур, площади поверхности и длине образца:

\ [H = \ frac {\ Delta Q} {\ Delta t} = \ kappa A \ frac {\ Delta T} {l} \]

где ΔQ / Δt – скорость теплопередачи, A – площадь поверхности, а l – длина.

Лучшие металлические теплопроводники – это чистая медь и серебро. При комнатной температуре технически чистая медь обычно имеет проводимость около 360 Вт · м -1 K -1 (хотя теплопроводность монокристалла меди была измерена при 12 200 Вт · м -1 K -1 при температура 20.8 К). В металлах движение электронов преобладает над теплопроводностью.

Основной материал с самой высокой теплопроводностью (помимо сверхтекучего гелия II), что, возможно, удивительно, является неметаллом: чистый монокристаллический алмаз, который имеет теплопроводность при комнатной температуре около 2200 Вт · м -1 K -1 . Высокая проводимость используется даже для проверки подлинности алмаза. Сильные ковалентные связи внутри молекулы ответственны за высокую проводимость, хотя свободных электронов нет, тепло передается фононами.Большинство природных алмазов также содержат атомы бора, которые заменяют атомы углерода в кристаллической матрице, которые также обладают высокой теплопроводностью.

Металлы: модель электропроводности Друде

Из-за квантово-механической природы электронов полное моделирование движения электронов в твердом теле (т. Е. Проводимости) потребует рассмотрения не только всех ядер положительных ионов, взаимодействующих с каждым электроном, , но также каждого электрона с каждым другим электроном .Даже с продвинутыми моделями это быстро становится слишком сложным для адекватного моделирования материала макроскопического масштаба.

Модель Друде значительно упрощает ситуацию за счет использования классической механики и рассматривает твердое тело как фиксированный массив ядер в «море» несвязанных электронов. Кроме того, электроны движутся по прямым линиям, не взаимодействуют друг с другом и случайным образом рассеиваются ядрами.

Вместо моделирования всей решетки используются два статистически полученных числа:
τ , среднее время между столкновениями (время рассеяния ) и
l , среднее расстояние, пройденное между столкновениями ( среднее свободное путь )

Под действием поля E электроны испытывают силу –e E, и, таким образом, ускорение от F = m a

Для электрона, выходящего из столкновения со скоростью v 0 , скорость после времени t определяется как:

\ [v = v_ {0} – \ frac {eEt} {m} \]

Конечно, если электроны рассеиваются случайным образом при каждом столкновении, v 0 будет равно нулю.{2} \ tau E} {m} \]

Проводимость σ = n e μ, где μ – подвижность , которая определяется как

\ [\ mu = \ frac {| v |} {E} = \ frac {eE \ tau} {mE} = \ frac {e \ tau} {m} \]

Конечный результат всей этой математики – разумное приближение проводимости ряда одновалентных металлов. При комнатной температуре, используя кинетическую теорию газов для оценки скорости дрейфа, модель Друде дает σ ~ 10 6 Ом -1 м -1 .Это примерно правильный порядок величины для многих одновалентных металлов, таких как натрий ( σ ~ 2,13 × 10 5 Ом -1 м -1 ).

Модель Друде можно визуализировать с помощью следующего моделирования. В отсутствие приложенного поля видно, что электроны перемещаются беспорядочно. Используйте ползунок, чтобы применить поле, чтобы увидеть его влияние на движение электронов.

Примечание. Для этой анимации требуется Adobe Flash Player 8 и более поздних версий, который можно загрузить здесь.

Однако важно отметить, что для неметаллов, многовалентных металлов и полупроводников модель Друде с треском проваливается. Чтобы иметь возможность более точно предсказать проводимость этих материалов, требуются квантово-механические модели, такие как модель почти свободных электронов. Это выходит за рамки настоящего TLP

. Сверхпроводники

также не объясняются такими простыми моделями, хотя дополнительную информацию можно найти на сайте Superconductivity TLP.

Факторы, влияющие на электрическую проводимость

Электропроводность большинства металлических проводников (не полупроводников!) Легко определить.Есть три важных случая:

Чистые и почти чистые металлы

Для чистых металлов при температуре около комнатной удельное сопротивление линейно зависит от температуры.

\ [\ rho_2 = \ rho_1 [1 + \ alpha (T_2 – T_1)] \]

Однако при низких температурах проводимость перестает быть линейной (сверхпроводники рассматриваются отдельно), а удельное сопротивление связано с температурой по правилу Маттизена:

\ [\ rho (T) = {\ rho _ {{\ rm {defect}}}} + {\ rho _ {{\ rm {Thermal}}}} \]

Низкотемпературное удельное сопротивление (\ ({\ rho _ {{\ rm {defect}}}} \)) зависит от концентрации дефектов решетки, таких как дислокации, границы зерен, вакансии и межузельные атомы.Следовательно, оно ниже в отожженных металлических образцах с крупными кристаллами и выше в сплавах и закаленных металлах. Вы можете подумать, что при более высоких температурах электроны будут иметь больше энергии, чтобы двигаться через материал, поэтому, возможно, довольно удивительно, что удельное сопротивление увеличивается (а, следовательно, и проводимость уменьшается) с увеличением температуры. Причина этого в том, что с повышением температуры электроны все чаще рассеиваются на колебаниях решетки или фононах, что приводит к увеличению удельного сопротивления.Этот вклад в удельное сопротивление описывается ρ термическим .

Температурная зависимость проводимости чистых металлов схематично проиллюстрирована в следующем моделировании. Используйте ползунок для изменения температуры, чтобы увидеть, как это влияет на движение электронов через решетку. Вы также можете ввести межузельные атомы, щелкнув мышью внутри решетки.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно загрузить здесь.

Сплавы – твердый раствор

Как и раньше, добавление примеси (в данном случае другого элемента) снижает проводимость. Для твердого раствора изменение удельного сопротивления в зависимости от состава определяется правилом Нордхейма:

\ [\ rho = \ chi _ {\ alpha} \ rho _ {\ alpha} + \ chi _ {\ beta} \ rho _ {\ beta} + C \ chi _ {\ alpha} \ chi _ {\ beta} \]

, где C – постоянная величина, CA и CB – атомные доли металлов A и B, удельные сопротивления которых равны ρA и ρB соответственно.2 \]

, где ΔZ – разность валентностей растворенного вещества и растворителя.

Таким образом, растворенные атомы с более высоким (или более низким) зарядом, чем решетка, будут иметь большее влияние на удельное сопротивление.

Сплавы – многофазные

Для сплава, в котором есть две или более различных фаз, вклады просто линейно влияют на общее удельное сопротивление (хотя влияние многих границ зерен немного увеличивает удельное сопротивление).

\ [\ rho = \ chi_ \ alpha \ rho_ \ alpha + \ chi_ \ beta \ rho_ \ beta \]

Следующая анимация иллюстрирует правило Маттейзена, правило Нордхейма и правило смешения.

Примечание. Для этой анимации требуется Adobe Flash Player 8 и более поздних версий, который можно загрузить здесь.

Металлы теплопроводные

Металлы обычно имеют относительно высокую концентрацию свободных электронов проводимости, и они могут передавать тепло при движении через решетку. Фононная проводимость также имеет место, но эффект перекрывается электронной проводимостью.

Следующая симуляция показывает, как электроны могут проводить тепло, сталкиваясь с ядрами и передавая тепловую энергию.Нажмите кнопку «источник», чтобы приложить источник тепла к одной стороне образца. График покажет температурный градиент внутри образца, и вы также можете применить радиатор к противоположной стороне образца, используя кнопку «сток».

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно загрузить здесь.

Закон Видеманна-Франца

Так как преобладающий метод теплопроводности у металлов одинаковый для теплопроводности и электропроводности (т.{- 2}} \]

Этот закон можно объяснить тем фактом, что свободные электроны в металле участвуют в механизмах переноса тепла и электричества. Теплопроводность увеличивается со средней скоростью электронов, так как это увеличивает прямой перенос энергии. Однако электропроводность уменьшается с увеличением скорости частиц, поскольку столкновения отвлекают электроны от прямого переноса заряда.

Электропроводность: неметаллы

Хотя модель Друде достаточно хорошо работает для одновалентных металлов, она не предсказывает свойства полупроводников, сверхпроводников или неметаллических проводников.

Сверхпроводники и полупроводники лучше всего объясняются в их собственных TLP.

Ионная проводимость

Для некоторых материалов нет чистого движения электронов, но они по-прежнему проводят электричество.

Это механизм ионной проводимости, при котором некоторые заряженные ионы могут перемещаться через объемную решетку (с помощью обычных механизмов диффузии, за исключением движущей силы электрического поля).

Такие ионные проводники используются в твердооксидных топливных элементах – хотя, например, для оксида циркония, стабилизированного оксидом иттрия (YZT), рабочие температуры составляют от 500 до 1000 ° C.Поскольку они действуют по механизму, подобному диффузии, более высокие температуры приводят к более высокой проводимости, что противоположно тому, что предсказывала бы простая модель Друде.

Напряжение пробоя

Существует важный и потенциально смертельный механизм, благодаря которому изолятор может стать проводящим. В воздухе это обычно распознается как молния. Следует отметить, что механизм может ионизировать «изолятор», делая его временно более проводящим.

Газы обычно ионизируются в бытовых осветительных приборах.Наиболее распространены люминесцентные лампы и неоновые лампы.

Для первоначального возбуждения паров ртути в свете люминесцентной лампы необходим всплеск напряжения, превышающий напряжение пробоя. Это можно заметить при включении такого света, как внезапное возгорание с соответствующим всплеском радиопомех. Неисправная трубка может не полностью ионизироваться, что приводит к небольшому свечению на концах.

Под высоким напряжением может проводиться даже оргстекло. Временно ионизированный путь непрозрачен при охлаждении, что в данном случае дает фигуру Лихтенберга. Изображение «Фигура Лихтенберга» от Берт Хикман

Более подробная информация доступна на странице Dielectrics TLP, посвященной поломке

.

Неметаллы: тепловые фононы

Как упоминалось ранее, металлы имеют два режима теплопроводности: на основе электронов и на основе фононов. Для неметаллов имеется относительно мало свободных электронов, поэтому преобладает фононный метод.

Тепло можно рассматривать как меру энергии колебаний атомов в материале.Как и все вещи в атомном масштабе, здесь есть квантово-механические соображения; энергия каждой вибрации квантована (и пропорциональна частоте). Фонон – это квант колебательной энергии, и за счет комбинации (суперпозиции) многих фононов тепло наблюдается макроскопически.

Энергия данного колебания решетки в жесткой кристаллической решетке квантована в квазичастицу, называемую фононом . Это аналог фотона в электромагнитной волне; тепловые колебания в кристаллах можно описать как термически возбужденные фононы, которые можно отнести к термически возбужденным фотонам.Фононы являются основным фактором, определяющим электрическую и теплопроводность материала.

Фонон – это квантово-механическая адаптация нормальных модальных колебаний в классической механике. Ключевым свойством фононов является дуальность волна-частица; нормальные моды имеют волновые явления в классической механике, но приобретают поведение, подобное частицам в квантовой механике.

Энергия фонона пропорциональна его угловой частоте ω:

\ [\ varepsilon = (n + \ frac {1} {2}) \ hbar \ omega \]

с квантовым числом n .Член \ (\ frac {1} {2} \ hbar \ omega \) – это энергия нулевой точки моды. Это определяется как минимально возможная энергия, которой обладает система, и является энергией основного состояния.

Если твердое тело имеет более одного типа атомов в элементарной ячейке, будет два возможных типа фононов: «акустические» и «оптические» фононы. Частота акустических фононов примерно равна частоте звука, а частота оптических фононов близка к частоте инфракрасного света. Их называют оптическими, потому что в ионных кристаллах они легко возбуждаются электромагнитным излучением.

Если кристаллическая решетка имеет нулевую температуру, она находится в основном состоянии и не содержит фононов. Когда решетка нагревается и поддерживается при ненулевой температуре, ее энергия не постоянна, а колеблется случайным образом около некоторого среднего значения. Эти флуктуации энергии вызваны случайными колебаниями решетки, которую можно рассматривать как газ фононов. Поскольку температура решетки порождает эти фононы, их иногда называют тепловыми фононами . Тепловые фононы могут создаваться или разрушаться случайными колебаниями энергии.

Считается, что фононы тоже обладают импульсом и, следовательно, могут проводить энергию через решетку. В отличие от электронов, существует чистое движение фононов – от более горячей части решетки к более холодной, где они разрушаются. Электроны должны сохранять нейтральность заряда в решетке, поэтому нет чистого движения электронов во время теплопроводности.

Следующая симуляция показывает схематические оптические и акустические фононы в двумерной решетке и дает возможность анимировать двумерный волновой вектор, определяемый щелчком внутри зеленого поля.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно загрузить здесь.

Рассеяние переброса

Когда два фонона сталкиваются, образующийся фонон имеет векторную сумму их импульсов. Способ обработки частиц, движущихся в решетке квантово-механическим способом в рамках схемы редуцированных зон (которая выходит за рамки данной TLP, но более подробно исследуется в TLP зон Бриллюэна), приводит к концептуально странному эффекту. Если импульс слишком велик (вне первой зоны Бриллюэна), то образующийся фонон движется почти в противоположном направлении.Это Umklapp scattering , и оно преобладает при более высоких температурах, снижая теплопроводность при повышении температуры.

Приложения

Кремниевые чипы

Поскольку электрические свойства меняются в зависимости от микроструктуры, был разработан тип компьютерной памяти, называемый памятью с произвольным доступом с фазовым переходом (PC-RAM). Используемый материал представляет собой халькогенид, обозначаемый как GST (Ge 2 Sb 2 Te 5 ).

Аморфное состояние является полупроводником, а в (поли) кристаллической форме – металлическим.При нагревании выше точки стеклования, но ниже точки плавления кристаллизуется ранее полупроводниковая аморфная ячейка. Точно так же, полностью расплавившись, а затем быстро охлаждая клетку, она остается в металлическом кристаллическом состоянии.

Это изменение удельного сопротивления в зависимости от микроструктуры имеет решающее значение для работы таких устройств. Варьируя условия нагрева, различная пропорция каждой ячейки GST может быть кристаллической и аморфной – правило смеси применяется, поскольку фактически это две фазы.Это позволяет использовать несколько различимых уровней сопротивления для каждой ячейки, увеличивая плотность хранения и снижая стоимость мегабайта.

Наиболее распространенной проблемой кремниевых устройств является рассеивание тепла.

Современный процессор имеет расчетную тепловую мощность более 70 Вт (Intel i7 3770, процесс 22 нм). Охладитель должен отводить указанное количество тепла с поверхности кристалла, которое обычно составляет менее 10 см 2 . Обычно радиаторы имеют медный блок, прикрепленный к корпусу микропроцессора с помощью термопасты и давления.Основная часть радиатора обычно делается из гораздо более дешевого алюминия, хотя для интерфейса необходима высокая теплопроводность меди. Термопаста, хотя и является лучшим проводником тепла, чем воздух, намного хуже, чем большинство металлов, поэтому ее используют только в качестве тонкого слоя для замены воздушных зазоров.

Электропроводность – не самый эффективный метод отвода тепла к отдельному радиатору, поэтому можно использовать конвекцию и скрытую теплоту испарения. Тепловые трубы, обычно сделанные из меди, заполнены жидкостью с низкой температурой кипения, которая кипит на горячем конце и конденсируется на холодном конце трубы.Это гораздо более быстрый способ передачи тепла на большие расстояния.

Космос

Теплоизоляторы находят множество применений, разработка которых связана с попытками улучшить объемные механические свойства при сохранении изоляционных свойств (т.е. не пропускает тепло, но не плавится).

Особенно известное применение теплоизоляции – это (ныне снятые с производства) плитки космических челноков, которые отвечают за защиту челнока во время повторного входа в атмосферу.Они такие хорошие изоляторы, что снаружи они могут раскалиться докрасна, а внутри шаттла астронавты еще живы.

Одним из лучших теплоизоляторов является кремнеземный аэрогель.

Аэрогель – это твердотельный материал с чрезвычайно низкой плотностью, сделанный из геля, в котором жидкая фаза геля заменена газом. В результате получается твердое тело чрезвычайно низкой плотности, что делает его эффективным теплоизолятором.

Одно применение аэрогелей – это легкий коллектор микрометеоритов, использовался аэрогель.Хотя он очень легкий, он достаточно силен, чтобы улавливать микрометеоры.

Спички остаются холодными в миллиметрах от паяльной лампы, большой массив аэрогелевых кирпичей готов к запуску в космос, а образовавшаяся космическая пыль фотографируется после возвращения на Землю.

Aerogels могут быть изготовлены из различных материалов, но имеют универсальную структуру. (аморфные «нано-пены» с открытыми ячейками). Однако обычно используется силикат. Аэрогели кремнезема были впервые открыты в 1931 году.

Аэрогели обладают экстремальной структурой и экстремальными физическими свойствами. Высокопористая природа структуры аэрогеля обеспечивает низкую плотность. Процент открытого пространства в структуре аэрогеля составляет около 94% для геля плотностью 100 кг м 3 .

Аэрогели являются хорошими теплоизоляторами, поскольку они исключают три метода передачи тепла (конвекцию, теплопроводность и излучение). Они являются хорошими конвективными изоляторами благодаря тому, что воздух не может циркулировать по решетке.Кремнеземный аэрогель является особенно хорошим проводящим изолятором, потому что диоксид кремния плохо проводит тепло – металлический аэрогель, с другой стороны, был бы менее эффективным изолятором. Углеродный аэрогель является эффективным изолятором излучения, поскольку углерод способен поглощать инфракрасное излучение, которое передает тепло. Следовательно, для максимальной теплоизоляции лучший аэрогель – это кремнезем, легированный углеродом.

Трансмиссия

Одно из самых масштабных применений электрических проводников – передача энергии.

К сожалению, свойства, которые желательны для прочного кабеля, кажутся противоположными свойствам хорошего проводника.

Алюминиевые сплавы могут быть очень прочными из-за своей плотности, но, согласно правилу Нордхейма, они намного хуже проводят.

Существует огромное множество сталей, но, опять же, межузельные атомы углерода увеличивают сопротивление по сравнению с чистым железом. Это означает, что необходим кабель большего диаметра, который из-за плотности стали оказывается очень тяжелым и дорогим.Более тяжелый кабель также означает, что мы должны построить дополнительные пилоны, что составляет значительную часть стоимости.

Медь, хотя и подходит для домашней электропроводки, является плотной и все более дорогой.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно загрузить здесь.

Для большинства воздушных силовых кабелей решением является использование двух материалов – стальной жилы, окруженной множеством отдельных алюминиевых жил. Это позволяет получить легкие, высокопрочные кабели с приемлемой проводимостью.

Сверхпроводники

были испытаны для передачи энергии, но только под землей, и при значительно более высокой стоимости (и эффективности!).

Термоэлектрический эффект

Термоэлектрический эффект – это прямое преобразование разницы температур в электрическое напряжение и наоборот. Проще говоря, термоэлектрическое устройство создает напряжение, когда на каждой стороне устройства разная температура. Он также может работать «в обратном направлении», поэтому, когда на него подается напряжение, создается разница температур.Этот эффект можно использовать для выработки электричества, измерения температуры, охлаждения объектов или их нагрева. Поскольку знак приложенного напряжения определяет направление нагрева и охлаждения, термоэлектрические устройства представляют собой очень удобные регуляторы температуры.

Эффект Пельтье заключается в том, что когда (постоянный) ток течет через переход металл-полупроводник, тепло либо поглощается, либо выделяется. Это связано с тем, что средняя энергия электронов в двух материалах различается, и это различие компенсируется теплом.

Для более полного понимания требуется знание зонной структуры, более подробно рассмотренной в TLP по полупроводникам.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно загрузить здесь.

Сводка

Мы рассмотрели основы, лежащие в основе электрической и теплопроводности, а также некоторые из наиболее распространенных приложений. Вы должны понимать роль электронов и фононов в теплопроводности, а также то, как взаимодействия между ними приводят к изменению электропроводности в зависимости от температуры.Вы должны понимать, что металлы имеют больше механизмов теплопередачи, чем их неметаллические аналоги, что объясняет, почему они имеют более высокую теплопроводность. Кроме того, этот TLP должен был затронуть некоторые из основных применений тепловых и электрических проводников и изоляторов. Наконец, была установлена ​​связь между теплопроводностью и электропроводностью металлов, включая закон Видемана-Франца.

Суммируя факторы, влияющие на проводимость:

  • Температура – при повышении температуры увеличивается средняя энергия, приходящаяся на один фонон, а за счет механизма рассеяния перебросом теплопроводность уменьшается.Фононы также больше рассеивают электроны.
  • Плотность электронов (в металлах) – если электроны являются проводниками, большее количество (валентных) электронов обычно приводит к лучшей проводимости.
  • Легирование – межузельные частицы рассеивают электроны и уменьшают проводимость. Фазовые границы, примеси, дислокации и т. Д. Снижают проводимость даже при низкой температуре.

Вопросы

Быстрые вопросы

Вы сможете без особого труда ответить на эти вопросы после изучения этого TLP.Если нет, то вам следует пройти через это еще раз!

  1. Для фононов нормальные моды

  2. Каким образом кристаллические решетки влияют на электроны, исходя из предположений модели свободных электронов?

  3. Разброс Umklapp:

  4. Что из следующего верно согласно закону Видемана-Франца?

  5. Какие из следующих утверждений об электропроводности почти чистых материалов верны?

  6. Какой из них является правильным с точки зрения электропроводности от лучшей к худшей (предполагается, что это чистые материалы)?

    Nb 3 Sn при 4K, Ag при 300K, Au при 300K, Nb 3 Sn при 300K, Cu при 300K.
    b Ag при 300K, Cu при 300K, Nb 3 Sn при 4K, Au при 300K, Nb 3 Sn при 300K.
    с Nb 3 Sn при 4K, Ag при 300K, Cu при 300K, Au при 300K, Nb 3 Sn при 300K.
    d Nb 3 Sn при 300K, Cu при 300K, Ag при 300K, Au при 300K, Nb 3 Sn при 4K.
    e Nb 3 Sn при 4K, Cu при 300K, Nb 3 Sn при 300K, Ag при 300K, Au при 300K.

Далее

Книги

Курс химии A NST IB и / или курс физики NST IB также более подробно рассматривают проведение.

Сайты

Академический консультант: Джесс Гвинн (Кембриджский университет)
Разработка контента: Эндрю Витти
Фотография и видео:
Веб-разработка: Лианн Саллоус и Дэвид Брук

DoITPoMS финансируется Великобританией Центр материаловедения и кафедра наук о материалах и металлургии, Кембриджский университет

Термодинамика – Теплопроводность металлов

Когда что-то кажется холодным, это не температура делает его холодным, а скорость передачи тепла (тепловой поток) от вашего тела к объекту.\ circ $ C, а другой проверяет объект , чтобы всегда иметь одну и ту же площадь контакта. Затем мы можем сделать вывод, что тепловой поток зависит от теплопроводности объекта, которая является свойством материала, из которого он сделан, и его температуры.

$$ \ dot {q} \ sim k ~ (T – 37) $$

Давайте немного поиграемся с этим.

Случай 1. Прикосновение к одному и тому же объекту при разных температурах
В этом случае $ T $ варьируется. $ k $ остается постоянным. Это дает нам $ \ dot {q} \ sim (T – 37) $, поэтому десять центов при 0C кажутся холоднее, чем десять центов при 30C

.

Случай 2: касание десятицентовика и глиняной монеты при одинаковой температуре
В этом случае $ T $ то же самое, и уравнение сводится к $ \ dot {q} \ sim k $.Мы знаем, что проводимость глиняной монеты меньше, чем проводимость металлической монеты. Вот почему мы чувствуем, что металлическая монета быстрее отводит тепло от нашего пальца, и, следовательно, становится холоднее.

Следовательно, если вы посмотрите с точки зрения монеты, она быстрее нагревается и, следовательно, быстрее достигает температуры вашего тела. Глиняной монете потребуется больше времени, чтобы достичь той же температуры.

Поскольку разность температур является определяющим параметром для проводимости, через некоторое время оба будут достигать одинаковой температуры.t- \ frac {k A} {m C} \ text {d} t \\ \ поэтому \ ln (\ frac {T – T_ {ref}} {T_ {init} – T_ {ref}}) & = – \ frac {k A} {m C} t \\ \ поэтому \ frac {\ Delta T} {\ Delta T_ {init}} & = \ exp (- \ frac {k A} {m C} t) \\ \ поэтому \ frac {\ Delta T} {\ Delta T_ {init}} & = \ exp (- \ phi t) \\ \ поэтому \ dot {q} & = -k A \ exp (- \ phi t) \ Delta T_ {init} \ end {align} $

Как видно из этого рисунка, разница температур падает намного быстрее, чем больше $ \ phi $, т.е. больше $ k A / m C $. Если масса и площадь контакта обоих сравниваемых объектов идентичны, это означает, что чем больше $ k / C $, тем быстрее объект достигает равновесия с тепловым резервуаром.Вот тот же график, но показывающий температуру монеты, изначально равную 0 ° C, с течением времени при прикосновении к тепловому резервуару при 37 ° C.

На следующем изображении показан график зависимости теплового потока от времени. Как видите, меньшая величина $ k $ дает меньший тепловой поток, но сохраняется в течение более длительного периода времени.


Примечания:

$ C $ – удельная теплоемкость материала, из которого сделана монета. $ k $ – это теплопроводность. $ m $ – масса, а $ A $ – площадь контакта между объектом и слуховым резервуаром.

Теплопроводность чистых металлов

Как уже говорилось ранее в этом разделе, измерение теплопроводности является чрезвычайно сложной задачей. Следствием этого является то, что, хотя точность измерений отдельными исследователями, как утверждается, составляет порядка 2%, лаборатории, участвующие в циклических тестах, дают результаты, отличающиеся друг от друга на 15% или более [1]. Даже измерение чистых металлов не является исключением.

Примерно сорок лет назад опубликованные значения никеля и вольфрама, например, варьировались на порядок.Предположительно неправильное значение для вольфрама, использованное для расчета надлежащей толщины тепловых экранов ранних космических аппаратов, привело к фатальным проблемам с возвращением в атмосферу. Большие расхождения, обнаруженные в «ранней» литературе, возможно, можно объяснить небольшими уровнями примесей, для которых теплопроводность очень чувствительна. Людям, ищущим наиболее достоверные данные, лучше всего обратиться к серии книг Тулукиана и др. [2].

Теплопроводность чистых металлов показывает довольно сложную зависимость от температуры, но в нашем интересующем диапазоне (0-200 ° C) ее значение обычно немного уменьшается с повышением температуры.Практически во всех случаях, представляющих практический интерес, температурной зависимостью можно пренебречь, за исключением, возможно, никеля, олова и вольфрама. В следующей таблице перечислены значения чистых металлов, наиболее часто используемых для охлаждения электроники, при трех различных температурах.

Источник: Beaton and Hewitt

Теплопроводность (Вт / мК)

Каталожные номера:

1. Халстром Л., Тай Р., Смит С., Раунд Робин Тестирование эталонных материалов теплопроводности, в теплопроводности, том 19, Plenum Press, 1988, стр. 199-211.

2.Touloukian Y. et al. (ред.) Теплофизические свойства вещества, IFI / Plenum, 1970.

3. Битон К., Хьюитт Г. (ред.), Данные о физических свойствах для инженера-проектировщика, Hemisphere, 1989.

Есть ли связь между электропроводностью и теплопроводностью?


Спросил: Дарелл Хейс

Ответ

Для металлов существует взаимосвязь, известная как закон Видемана-Франца.Металлы бывают хорошие электрические проводники, потому что в них много бесплатных зарядов. Свобода заряды обычно представляют собой отрицательные электроны, но в некоторых металлах, например, в вольфраме, они положительные «дыры». Для целей обсуждения предположим, что у нас есть заряды свободных электронов.

Когда существует разница напряжений между двумя точками в металле, возникает электрический разряд. поле, которое заставляет электроны двигаться, то есть вызывает ток. Конечно, электроны натыкаются на некоторые из неподвижных атомов (фактически, «ионные ядра») металла и это фрикционное «сопротивление» их замедляет.Сопротивление зависит от конкретный тип металла, с которым мы имеем дело. Например, трение в серебре намного меньше, чем это в железе. Чем большее расстояние может пройти электрон, не наткнувшись на ионного ядра, тем меньше сопротивление, т. е. больше электрическая проводимость. Среднее расстояние, которое электрон может пройти без столкновения, называется ‘длина свободного пробега.’ Но есть еще один фактор. Электроны, которые свободны чтобы реагировать на электрическое поле, иметь тепловую скорость, составляющую значительный процент от скорости легкий, но поскольку они движутся беспорядочно с такой высокой скоростью, в среднем они никуда не движутся, я.е., эта тепловая скорость сама по себе не создает тока.

Теплопроводность этого металла, как и электрическая проводимость, определяется в основном за счет свободных электронов. Предположим теперь, что металл имеет разные температуры при его концы. Электроны движутся немного быстрее на горячем конце и медленнее на холоде. конец. Более быстрые электроны передают энергию более холодным, более медленные, сталкиваясь с их, и, как и в случае с электропроводностью, чем больше длина свободного пробега, тем быстрее энергия может передаваться, т.е.е., тем больше теплопроводность. Но скорость также определяется очень высокой тепловой скоростью – чем выше скорость, тем быстрее течет ли тепловая энергия (т. е. тем быстрее происходят столкновения). Фактически, тепловая проводимость прямо пропорциональна произведению длины свободного пробега и теплового скорость.

Тепловая и электрическая проводимость одинаково зависят не только от среднего свободного пути, но также и от других свойств, таких как масса электрона и даже количество свободных электронов в единице объема.Но, как мы видели, они по-разному зависят от теплового скорость электропроводности электронов обратно пропорциональна ей, а тепловая электропроводность прямо пропорциональна ему. В итоге соотношение теплового к Электропроводность зависит в первую очередь от квадрата тепловой скорости. Но это квадрат пропорционален температуре, поэтому соотношение зависит от температура, T, и две физические константы: постоянная Больцмана, k, и электронная заряд, эл.В этом контексте постоянная Больцмана является мерой того, сколько кинетической энергии электрон имеет на градус температуры.

В совокупности отношение теплопроводности к электрической проводимости составляет:

( 2 /3) * ((к / э) 2 ) * Т

значение постоянной T умножения составляет: 2,45×10 -8 Вт-ом-К-квадрат.
Ответил: Фрэнк Манли, доктор философии, доцент физики, Роанок-колледж

Теплопроводность металлов: какой металл лучше всего проводит тепло? | Научный проект

Какой металл лучше всего проводит тепло: медь, сталь или латунь? Почему? Проведя небольшое онлайн-исследование, сформулируйте свою гипотезу .

  • 3 12-дюймовые металлические стержни или толстая проволока: медь, сталь, латунь или другой металл. Убедитесь, что все провода имеют одинаковый калибр , или толщину. Почему проверка того, что калибр такой же, может быть важным шагом?
  • 8 одинаковых чашек из пенополистирола
  • Что-то для кипячения воды (кастрюля или чайник)
  • Плита
  • 4 цифровых термометра мгновенного действия
  • Кувшин или другой большой контейнер, который поместится в холодильник
  • Вода
  • Блокнот и ручка

Процедура:

  1. Наполните кувшин или другой большой контейнер водой и кубиками льда.Дайте воде в кувшине остыть не менее получаса.
  2. Согните каждый металлический стержень пополам два раза, чтобы образовались металлические перемычки. Как вы думаете, почему мы должны дважды складывать удочку пополам? Приведет ли его однажды сложение к тем же результатам?

  1. Разместите чашки попарно. Между каждой чашкой проходят три перемычки из одного металла. У одной пары чашек перемычки не будет. Это контрольная группа.
  1. Поместите растворимые цифровые термометры в каждую из чашек для холодной воды.
  2. Попросите взрослого вскипятить воду. Перед использованием дайте ему немного остыть.
  3. На каждую пару чашек налейте равные объемы горячей воды в «горячую» чашку. Убедитесь, что вода покрывает концы перемычек.
  4. На каждую пару чашек налейте равные объемы холодной воды в «холодную» чашку. Убедитесь, что вода покрывает конец перемычек. Как вы думаете, почему количество воды должно быть одинаковым?
  5. Возьмите начальную температуру холодной воды. Запишите температуру в таблице с указанием времени (в минутах) и температуры (в градусах Фаренгейта).
  6. Записывайте температуру каждой чашки с холодной водой каждые 5 минут в течение 30 минут. Ваш стол должен иметь, какой он есть (нет, медь, сталь, латунь), время и поля для заполнения температуры. Как вы думаете, все тепло, отводимое от горячей чашки, переходит в холодную чашку? Почему или почему нет? Подсказка: иногда тепло не всегда идет туда, куда нам нужно!
  7. Какая чашка холодной воды испытала наибольшее изменение температуры от начала до конца? Рассчитайте это, вычтя начальную температуру чашки из ее конечной температуры.
  8. Организуйте данные с помощью линейных графиков. По оси абсцисс отложите время в минутах. По оси ординат отложите разницу температур в градусах. Создав подобную диаграмму, мы можем увидеть, какой металл в целом передает больше всего тепла. Это также дает нам некоторую информацию о проводимости каждого металла: чем круче наклон, тем выше проводимость.

Из трех металлов в этом эксперименте больше всего тепла будет передавать медь, затем латунь и сталь.

Медь имеет самое высокое значение теплопроводности, а сталь – самое низкое значение теплопроводности.Теплопроводность – действительно важное свойство материала – мы должны помнить об этом, когда решаем, для чего мы собираемся использовать этот материал! Вот пример: поскольку медь является отличным проводником, мы используем ее для таких вещей, как нагревательные стержни и провода. Поскольку сталь плохо проводит ток и может выдерживать высокие температуры, мы используем ее для изготовления двигателей самолетов.

Вспомните, как мы дважды складывали проволочные перемычки пополам. Как вы думаете, почему мы это сделали? Помните: проводимость лучше всего происходит, когда больше молекул контактируют друг с другом.Складывание стержня пополам дважды позволяет теплу от горячей чашки проходить через большее количество молекул, позволяя большему количеству тепла перемещаться от горячей чашки к холодной. Складывание металлических стержней только один раз по-прежнему создаст хороший тепловой мост, но мы увидим меньшее изменение температуры в чашках для холода, что затруднит определение того, какой металл является лучшим проводником!

Что касается равенства объемов воды? Чтобы получить хорошие данные из нашего эксперимента, каждая чашка с горячей водой должна удерживать одинаковое количество тепла, а вода имеет очень специфическую теплоемкость .Теплоемкость – это количество тепловой энергии, необходимое для изменения температуры определенного количества вещества. Подумайте об этом так: все четыре наши чашки содержат равные объемы воды при одинаковой температуре, а это означает, что каждая чашка с горячей водой содержит одинаковое количество тепловой энергии.

Итак, когда тепло уходит от горячей чашки, вся эта энергия проходит через металлический мостик в холодную чашку? Нисколько. Тепло часто теряется для окружающей среды, и в этом случае часть тепла от горячей воды будет потеряна для воздуха.Точно так же воздух в комнате будет терять часть тепла из-за чашки с холодной водой. Мы пытались свести к минимуму потери тепла, используя чашки из пенополистирола, потому что пенополистирол известен как отличный изолятор – материал с плохой проводимостью тепла.

Не стесняйтесь повторить этот эксперимент с другими металлами! Такие металлы, как серебро, золото и алюминий, дадут вам совсем другие результаты. Просто убедитесь, что вы сохранили все остальные условия эксперимента такими же.

Заявление об ограничении ответственности и меры предосторожности

Образование.com предоставляет идеи проекта Science Fair для информационных только для целей. Education.com не дает никаких гарантий или заверений относительно идей проектов Science Fair и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проекта Science Fair, вы отказываетесь от отказаться от любых претензий к Education.com, которые возникают в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и идеям проектов Science Fair покрывается Образование.com Политика конфиденциальности и Условия использования сайта, которые включают ограничения об ответственности Education.com.

Настоящим дается предупреждение, что не все идеи проекта подходят для всех индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта должны проводиться только в соответствующих условиях и с соответствующими родительскими или другой надзор. Прочтите и соблюдайте правила техники безопасности всех Материалы, используемые в проекте, являются исключительной ответственностью каждого человека.Для Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.

Почему так важна теплопроводность керамики и полимеров?

Тепловые свойства

Тепловые потоки при разнице температур. Есть три режима теплопередачи: теплопроводность, излучение и конвекция. Проводимость и излучение являются фундаментальными физическими механизмами, в то время как конвекция на самом деле является проводимостью, на которую влияет поток жидкости.

  • Проводимость – это обмен энергией путем прямого взаимодействия между молекулами вещества, содержащего разность температур.Он встречается в газах, жидкостях или твердых телах и имеет прочную основу в молекулярно-кинетической теории физики.
  • Излучение – это передача тепловой энергии в форме электромагнитных волн, излучаемых атомным и субатомным возбуждением на поверхности тела. Как и все электромагнитные волны (свет, рентгеновские лучи, микроволны), тепловое излучение распространяется со скоростью света, наиболее легко проходя через вакуум или почти «прозрачный» газ, такой как кислород или азот.Жидкости, «участвующие» газы, такие как углекислый газ и водяной пар, и стекла пропускают только часть падающего излучения. Большинство других твердых веществ по существу непрозрачны для излучения.
  • Конвекция может быть описана как проводимость в жидкости, усиленная движением жидкости. Это может не быть действительно независимый режим
Рисунок 1: Модели теплопередачи

Теплопроводность – термин, аналогичный электрической проводимости, с той разницей, что он касается потока. тепла в отличие от тока в случае последнего.Это указывает на способность материала переносить тепло из одной точки в другую без движения материала в целом, чем больше теплопроводность , тем лучше он проводит тепло. Обычно теплопередача в твердом теле (проводимость) состоит из двух компонентов:

  1. Решетка теплопроводности
  2. Электронная теплопроводность

Оба типа теплопроводности происходят в твердых телах, но один преобладает над другим в зависимости от типа материала.

Рисунок 2: Зона валентности и зона проводимости

В случае изоляционных материалов проводимость решетки способствует теплопроводности. В основном это связано с тем, что в изоляторах электроны прочно удерживаются их родительскими атомами, а свободных электронов не существует. Следовательно, тепло передается от одного конца к другому за счет колебаний атомов, удерживаемых в структуре решетки. Очевидно, что изоляторы являются плохими проводниками тепла, поскольку они не обладают достаточной теплопередачей из-за отсутствия свободных электронов.

Однако в случае металлов у нас есть большое количество свободных электронов, и, следовательно, теплопроводность в первую очередь обусловлена ​​электронной проводимостью. Свободные электроны металлов могут свободно перемещаться по твердому телу и передавать тепловую энергию с очень высокой скоростью по сравнению с изоляторами. Благодаря этому металлы обладают высокой теплопроводностью. Также замечено, что среди металлов лучшие электрические проводники также демонстрируют лучшую теплопроводность. Поскольку как электрическая, так и теплопроводность зависят от свободных электронов, такие факторы, как легирование, влияют на оба свойства.

Рисунок 3: Теплопроводность в металлах

С другой стороны, металлы кристаллизуются в трех фундаментально кристаллических системах (BBC, FCC, HCF). Каждая из этих кристаллических систем обеспечивает различную плотность упаковки атомов. Металлы, которые представляют структуру FCC, имеют самую высокую теплопроводность, так как они имеют самое высокое уплотнение

Рисунок 4: Кристаллическая структура

905 Рисунок 5: Фактор атомной упаковки

Теплопроводность в керамике и полимерах

Теория

В этих материалах электроны не являются свободными, поэтому их вклад в электрическую проводимость, а также в теплопроводность, составляет практически нет, за исключением очень высоких температур.В этом случае передача тепла происходит не за счет движения электронов, а за счет колебаний самой решетки. Эта вибрация передается посредством распространения волн или, согласно двойственной концепции квантовой механики, через элементарные частицы, называемые фононами.

Фононы очень сложны, но концептуально фононы – это волны колебаний в решетке твердого тела. Колебательная энергия в одной части твердого тела будет передаваться другим частям твердого тела в виде фононов.Что ограничивает скорость передачи тепла посредством этого механизма, так это рассеяние фононов. Существует несколько механизмов рассеяния фононов, которые могут ограничивать значение длины свободного пробега фононов. Механизмы разлета:

  • Взаимодействие между фононами «переброса-процессы».
  • Рассеяние фононов на точечных дефектах (см. Рисунки 7-9), таких как примеси, изотопы; атомы кристалла с одинаковым числом протонов, но разным числом нейтронов и т. д. Рассеяние фононов по границам образца или кристаллитов.
  • Рассеяние фононов на дислокациях.
Рисунок 6: Различные типы рассеяния фононов

Рисунок 7: Дефекты в кристалле
Рисунок 8: Типичные точечные дефекты в кристалле

Рисунок 9: Типичные линейные дефекты в кристалле

Каждый механизм имеет средний свободный пробег с этим; lunk, limp, lfro, ldis…, значения различных длин свободного пробега могут быть объединены для достижения общей длины свободного пробега (l) (среднее расстояние, которое фононы проходят без рассеяния или без взаимодействия друг с другом, равно называется средней длиной свободного пробега).

Уравнение 2

На теплопроводность сильно влияют различные механизмы рассеяния фононов, которые могут проявляться в передаче тепловой энергии в твердых телах. Частота возникновения событий рассеяния фононов во многом определяет теплопроводность. Вот почему кристаллические вещества (например, алмаз), как правило, имеют более высокую теплопроводность, чем аморфные (например, стекло или полимеры), поскольку фононы более рассредоточены, когда у них нет хорошо упорядоченной кристаллической структуры, через которую можно перемещаться.

Как и в случае с электропроводностью, повышение температуры вызывает колебания большей амплитуды и энергии, а также способствует возбуждению некоторых электронов в направлении зоны проводимости, что приводит к увеличению проводимости с увеличением температуры. На следующем рисунке представлена ​​предыдущая гипотеза, согласно которой атомы колеблются вокруг своего положения равновесия в соответствии с моделью гармонического осциллятора.

Рисунок 10: Модель вибрации

Атомы колеблются вокруг своего положения равновесия, определяемого средним расстоянием разделения от их соседей, с определенной частотой и амплитудой.Характеристическая частота колебаний гармонического осциллятора подчиняется выражению:

Уравнение 3

где k – постоянная, связанная с упругими деформациями вокруг точки равновесия на графике потенциальной энергии связи и межатомного расстояния, разные в каждом материале. Максимальная амплитуда колебаний A0 является функцией температуры T:

Уравнение 4

Повышение температуры вызывает колебания большей амплитуды и энергии, а также возбуждение некоторых электронов в направлении зоны проводимости. облегчается, что приводит к увеличению проводимости с повышением температуры.Электропроводность увеличивается с увеличением температуры, модуля упругости и плотности материала. Теплопроводность неметаллов можно оценить по соотношению:

k = Ce (d · E) 1/2 d Eq 5

где:

E – модуль упругости
d – плотность
Ce – удельная теплоемкость
d или l, – средний путь тепловой вибрации.

Значение d среднего пути вибрации увеличивается с увеличением температуры материала, что объясняет наблюдаемое увеличение теплопроводности при нагревании материала.Приведенное выше уравнение подтверждает несколько экспериментально подтвержденных фактов:

  • Материалы с более компактной структурой и более высоким модулем упругости имеют более высокую проводимость.
  • Кристаллические твердые тела имеют более высокую проводимость, чем аморфные.

Силы и энергии связи

Рассмотрение взаимодействия между двумя изолированными атомами, когда они оказываются в непосредственной близости от бесконечного разделения.

Рисунок 11: Силы сцепления в зависимости от расстояния
Рисунок 12: Атомный механизм упругой деформации

Рисунок 13: Типы связей

Примеры

Металл и оксиды металлов

Slack (1979) провел систематическое сравнение расчетных и измеренных значений теплопроводности для гранецентрированного куба. решетки.Более низкие значения теплопроводности наблюдаются, когда разница в атомных массах между анионами и катионами увеличивается или увеличивается количество атомов, составляющих элементарную ячейку. В основном, большая разница масс улучшает ангармонизм колебаний решетки, где проводимость оксидов уменьшается в последовательности BeO → MgO → Al2O3. Такие аргументы также применимы к другим классам керамики, таким как нитриды или карбиды.

Рисунок 14: Ионная связь / электроотрицательность

В таблице приведены некоторые примеры, показывающие, что теплопроводность резко падает в оксидах металлов

Таблица 1: Теплопроводность металлов и их соответствующих металлов оксиды

Al203 9 1,2-1,5 9064 Теплопроводность металлов при комнатной температуре
Материал Вт / м · К
Mg 156
MgO

5
905 39
Zn 106-140
ZnO 54
Ti
TiO2 5
Si 140
SiO2 1,2-1,5

Рисунок 16. Ковалентная связь

Оксиды металлов имеют более низкую теплопроводность, чем исходные металлы.Это связано со следующими факторами:

  • Разница электроотрицательностей между атомами (ионный характер)
  • Кристаллическая структура кристаллизации (плотность упаковки)
  • Дефекты кристаллической структуры
  • Разница масс между атомами

Рисунок 17: Сравнение ионной и ковалентной связи

Теплопроводность неметаллических кристаллов, включая большинство оксидов, показывает четыре различных режима при нанесении на график зависимости от температуры.Это показано на следующем рисунке. Ключом к пониманию температурной зависимости теплопроводности является осознание того, что фононы, ответственные за перенос тепла, претерпевают события рассеяния, пропорциональные количеству присутствующих участков рассеяния, включая дефекты и другие фононы.

  • При низких температурах, в режиме A или I , очень мало тепловой энергии для возбуждения фононов. Следовательно, длина свободного пробега фононов ограничена физическими размерами материала, размером зерна и расстоянием между дислокациями.Проводимость в этой области быстро увеличивается (∝ T 3 ), достигая, таким образом, области, в которой теплопроводность имеет максимальное значение и которую мы определяем как область II. В таком случае температурная зависимость теплопроводности T 3 должна быть объяснена теплоемкостью, имеющей зависимость T 3 при очень низких температурах.
  • Режим B или II, , характеризующийся максимумом теплопроводности, возникает, когда длина свободного пробега фононов фонон-фононных столкновений равна столкновениям фононных дефектов.Хотя эта температура, безусловно, будет варьироваться в зависимости от типа и концентрации дефекта, это значение будет примерно 0,1 θD-0,2 θ. В области II вклады уменьшаются из-за влияния размера зерна, дислокаций и отсутствия гармонии (ангармонии) в сетке.

  • При температурах выше этого пика, в режиме C или III , теплопроводность показывает зависимость 1 / T. Это связано с тем, что преобладает ангармоническое рассеяние фононов из-за фонон-фононного взаимодействия.Если присутствует больше фононов, вероятность рассеяния должна возрасти.

  • Наконец, при очень высоких температурах режим D или IV стремится к отсутствию температурной зависимости. Физическое объяснение этого состоит в том, что фононы представляют собой волны смещенных атомов, и длина свободного пробега не может быть уменьшена меньше, чем расстояние между двумя соседними атомами.

Рисунок 18: Зависимость теплопроводности от температуры для неметаллического кристалла.Четыре режима характеристик соответствуют различным процессам рассеяния. Атомы углерода в алмазе присоединены к 4 другим атомам углерода, расположенным в вершинах тетраэдра. Следовательно, связь в алмазе представляет собой непрерывную и однородную трехмерную сеть одинарных связей C-C (сигма).С другой стороны, графит состоит из атомов углерода, которые образуют непрерывную двумерную сеть сигма- и пи-связей. Эта двумерная решетка образует листы графита, но между листами мало связи, на самом деле расстояние между листами составляет колоссальные ~ 3,4 ангстрем.

Это может привести нас к подозрению, что теплопроводность в двумерном графитовом листе будет выше, чем у алмаза, но теплопроводность между графитом листы были бы очень низкими.Фактически, это точное описание теплопроводности графита. Теплопроводность параллельно листам графита = 1950 Вт / мК, но теплопроводность перпендикулярно листу = 5,7 Вт / мК. Следовательно, когда мы рассматриваем теплопроводность во всех возможных направлениях (анизотропия), алмаз будет лучше графита.

Рисунок 19: Кристаллическая структура алмаза и графита

Причина, по которой алмаз, в частности, является особенно хорошим проводником тепла, даже по сравнению с другими хорошо упорядоченными кристаллами , сводится к двум факторам: массе атомов углерода и прочности связей, которые их соединяют.

Поскольку гармонический осциллятор имеет более высокую частоту с более сильной пружиной (сила связей C-C) и меньшей массой (атомы C), алмаз может поддерживать фононы с более высокой энергией. Это означает, что при данной температуре в алмазе вблизи границы материала будет меньше фононов, чем в материале с меньшей границей. Детали не важны, но когда фононы вблизи границы взаимодействуют, они распространяются таким образом, что фононы не проходят через структуру.Поскольку граница алмаза настолько высока, вероятность такого разброса меньше.

Фононы и электроны очень хорошо перемещаются по графеновым листам графита, но плохо между ними из-за слабого взаимодействия между слоями и большого расстояния между слоями, что объясняет анизотропию их теплопроводности и электронной проводимости.

Рисунок 20: Аллотропы углерода

То же самое происходит с кристаллизованным нитридом бора в гексагональной системе (аналогично графиту), вдоль листов наблюдается очень хорошая проводимость но между слоями проводимость низкая.

Рисунок 21: Структура NB и графена

В случае карбида кремния, несмотря на его алмазоподобную структуру (ковалентные связи и кристаллическая структура по всей сети), его проводимость падает до значения 490 Вт / мК

Карбид кремния Алмаз
Рисунок 22: Кристаллическая структура карбида кремния по сравнению с алмазом

Материал A с температурой окружающей среды значение K более 100 Вт / м K считается материалом с высокой теплопроводностью.На пределе высокой температуры выражение проводимости выглядит следующим образом:

K (HT) = BM¯ Ω1 / 3 en Θ3 D / (T γ2) Eq 6

где B – постоянная ΘD – температура Дебая. Этот результат предлагает четыре критерия для выбора материалов с высокой теплопроводностью:

  • с низкой атомной массой,
  • с сильной межатомной связью,
  • с простой кристаллической структурой и
  • с низким ангармонизмом.

Условия (i) и (ii) помогают увеличить количество M¯ Θ3 D в уравнении Условие (iii) означает низкое количество атомов в элементарной ячейке, что приводит к меньшему количеству оптических ветвей и, следовательно, меньшему количеству ангармонических взаимодействий. , а условие (iv) означает уменьшение силы ангармонических взаимодействий.Согласно этому предположению, по крайней мере, 12 полупроводников и изоляторов можно отнести к материалам с высокой теплопроводностью. В порядке уменьшения проводимости при комнатной температуре это: C (алмаз), BN, SiC, BeO, BP, AlN, BeS, BAs, GaN, Si, AlP и GaP. В следующей таблице показана теплопроводность следующих материалов:

Таблица 2: Значения K при комнатной температуре для неметаллических монокристаллов с высокой теплопроводностью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *