Характеристика элемента аргон – – , – ѻ

alexxlab | 08.02.2020 | 0 | Разное

Аргон

Арго́н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440–37–1) — инертный одноатомный газ без цвета, вкуса и запаха.

История

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется. В течение многих недель он подвергал воздействию электрического разряда смесь воздуха с кислородом в U-образных трубках, в результате чего в них образовывались все новые порции бурых окислов азота, которые исследователь периодически растворял в щёлочи. Через некоторое время образование окислов прекратилось, но после связывания оставшегося кислорода остался пузырек газа, объём которого не уменьшался при длительном воздействии электрических разрядов в присутствии кислорода. Кавендиш оценил объём оставшегося газового пузыря в 1/120 от первоначального объёма воздуха. Разгадать загадку пузыря Кавендиш не смог, поэтому прекратил свое исследование, и даже не опубликовал его результатов. Только спустя много лет английский физик Джеймс Максвелл собрал и опубликовал неизданные рукописи и лабораторные записки Кавендиша. Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. Оказалось, что литр азота, полученного из воздуха, весил больше литра «химического» азота (полученного путём разложения какого-либо азотистого соединения, например, закиси азота, окиси азота, аммиака, мочевины или селитры) на 1,6 мг (вес первого был равен 1,2521, а второго 1,2505 г). Эта разница была не так уж мала, чтобы можно было её отнести на счет ошибки опыта. К тому же она постоянно повторялась независимо от источника получения химического азота. Не придя к разгадке, осенью 1892 года Рэлей в журнале «Nature» опубликовал письмо к учёным, с просьбой дать объяснение тому факту, что в зависимости от способа выделения азота он получал разные величины плотности. Письмо прочли многие учёные, однако никто не был в состоянии ответить на поставленный в нём вопрос. У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею свое сотрудничество. Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжелого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы). Пытаясь выделить из воздуха скрытую составную часть, каждый из учёных пошел своим путём. Рэлей повторил опыт Кавендиша в увеличенном масштабе и на более высоком техническом уровне. Трансформатор под напряжением 6000 вольт посылал в 50-литровый колокол, заполненный азотом, сноп электрических искр. Специальная турбина создавала в колоколе фонтан брызг раствора щёлочи, поглощающих окислы азота и примесь углекислоты. Оставшийся газ Рэлей высушил, и пропустил через фарфоровую трубку с нагретыми медными опилками, задерживающими остатки кислорода. Опыт длился несколько дней. Рамзай воспользовался открытой им способностью нагретого металлического магния поглощать азот, образуя твёрдый нитрид магния. Многократно пропускал он несколько литров азота через собранный им прибор. Через 10 дней объём газа перестал уменьшаться, следовательно, весь азот оказался связанным. Одновременно путём соединения с медью был удален кислород, присутствовавший в качестве примеси к азоту. Этим способом Рамзаю в первом же опыте удалось выделить около 100 см³ нового газа. Итак, был открыт новый элемент. Стало известно, что он тяжелее азота почти в полтора раза и составляет 1/80 часть объёма воздуха. Рамзай при помощи акустических измерений нашёл, что молекула нового газа состоит из одного атома — до этого подобные газы в устойчивом состоянии не встречались. Отсюда следовал очень важный вывод — раз молекула одноатомна, то, очевидно, новый газ представляет собой не сложное химическое соединение, а простое вещество. Много времени затратили Рамзай и Рэлей на изучение его реакционной способности по отношению ко многим химически активным веществам. Но, как и следовало ожидать, пришли к выводу: их газ совершенно недеятелен. Это было ошеломляюще — до той поры не было известно ни одного настолько инертного вещества. Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов. 7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном. В своём докладе Рэлей утверждал, что в каждом кубическом метре воздуха присутствует около 15 г открытого газа (1,288 вес. %). Слишком невероятен был тот факт, что несколько поколений ученых не заметили составной части воздуха, да еще и в количестве целого процента! В считанные дни десятки естествоиспытателей из разных стран проверили опыты Рамзая и Рэлея. Сомнений не оставалось: воздух содержит аргон. Через 10 лет, в 1904 году, Рэлей за исследования плотностей наиболее распространённых газов и открытие аргона получает Нобелевскую премию по физике, а Рамзай за открытие в атмосфере различных инертных газов — Нобелевскую премию по химии. По предложению доктора Медана (председателя заседания, на котором был сделан доклад об открытии) Рэлей и Рамзай дали новому газу имя «аргон» (от др.-греч. ἀργός — ленивый, медленный, неактивный). Это название подчеркивало важнейшее свойство элемента — его химическую неактивность.

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) −185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина. Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF

3 и FArCCH.


Источник: Википедия

Другие заметки по химии

edu.glavsprav.ru

Аргон №18 Ar химический элемент

В 1785 г. английский химик и физик Г. Кавендиш обнаружил в воздухе какой-то новый газ, необыкновенно устойчивый химически. На долю этого газа приходилась примерно одна сто двадцатая часть объема воздуха. Но что это за газ, Кавендишу выяснить не удалось.

Об этом опыте вспомнили 107 лет спустя, когда Джон Уильям Стратт (лорд Рэлей) натолкнулся на ту же примесь, заметив, что азот воздуха тяжелее, чем азот, выделенный из соединений. Не найдя достоверного объяснения аномалии, Рэлей через журнал «Nature» обратился к коллегам-естествоиспытателям с предложением вместе подумать и поработать над разгадкой ее причин...

Спустя два года Рэлей и У. Рамзай установили, что в азоте воздуха действительно есть примесь неизвестного газа, более тяжелого, чем азот, и крайне инертного химически.

Когда они выступили с публичным сообщением о своем открытии, это произвело ошеломляющее впечатление. Многим казалось невероятным, чтобы несколько поколений ученых, выполнивших тысячи анализов воздуха, проглядели его составную часть, да еще такую заметную — почти процент!

Кстати, именно в этот день и час, 13 августа 1894 г., аргон и получил свое имя, которое в переводе с греческого значит «недеятельный». Его предложил председательствовавший на собрании доктор Медан.

Между тем нет ничего удивительного в том, что аргон так долго ускользал от ученых. Ведь в природе он себя решительно ничем не проявлял! Напрашивается параллель с ядерной энергией: говоря о трудностях ее выявления, А. Эйнштейн заметил, что нелегко распознать богача, если он не тратит своих денег...

Скепсис ученых был быстро развеян экспериментальной проверкой и установлением физических констант аргона. Но не обошлось без моральных издержек: расстроенный нападками коллег (главным образом химиков) Рэлей оставил изучение аргона и химию вообще и сосредоточил свои интересы на физических проблемах. Большой ученый. он и в физике достиг выдающихся результатов, за что в 1904 г. был удостоен Нобелевской премии. Тогда в Стокгольме он вновь встретился с Рамзаем, который в тот же день получал Нобелевскую премию за открытие и исследование благородных газов, в том числе и аргона.

Облик «недеятельного» газа

Химическая инертность аргона (как и других газов этой группы) и одноатомность его молекул объясняются прежде всего предельной насыщенностью электронных оболочек. Тем не менее разговор о химии аргона сегодня не беспредметен.

Есть основания считать, что исключительно нестойкое соединение Hg —Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены валентные соединения аргона с фтором и кислородом, которые, скорее всего, будут неустойчивыми, как нестойки и даже взрывоопасны окислы ксенона — газа, более тяжелого и явно более склонного к химическим реакциям, чем аргон.

Еще в конце прошлого века француз Вийяр, сжимая аргон под водой при 0°С, получил кристаллогидрат состава Ar-6Н2О, а в 20-30-х годах XX столетия Б. А. Никитиным, Р. А. Франкраном и другими исследователями при повышенных давлениях и низких температурах были получены кристаллические клатратные соединения аргона с H2S, SO2, галогеноводородами, фенолами и некоторыми другими веществами. В 1976 г. появилось сообщение о синтезе гидрида аргона, но гидрид этот особый.

В метастабнльном — электронно-возбужденном — состоянии аргон, как и другие благородные газы, способен образовывать короткоживущие соединения, время жизни которых измеряется пикосекундами. Но как только атом аргона возвращается из этого возбужденного состояния в основное, происходит распад этих необычных соединений. Вот пока и все успехи химии...

Из подгруппы тяжелых инертных газов аргон самый легкий. Он тяжелее воздуха в 1,38 раза. Жидкостью становится при — 185,9°С, затвердевает при — 189,4°С (в условиях нормального давления). В отличие от гелия и неона, он довольно хорошо адсорбируется на поверхностях твердых тел и растворяется в воде (3,29 см

3 в 100 г воды при 20°С). Еще лучше растворяется аргон во многих органических жидкостях. Зато он практически нерастворим в металлах и не диффундирует сквозь них.

Как все инертные газы, аргон диамагнитен. Это значит, что его магнитная восприимчивость отрицательна, он оказывает большее противодействие магнитным силовым линиям, чем пустота. Это свойство аргона (как и многие другие) объясняется «замкнутостью» электронных оболочек. Под действием электрического тока аргон ярко светится, сине-голубое свечение аргона широко используется в светотехнике.

Теперь о влиянии аргона на живой организм

При вдыхании смеси из 69% Ar, 11% азота и 20% кислорода под давлением 4 атм возникают явления наркоза, которые выражены гораздо сильнее, чем при вдыхании воздуха под тем же давлением. Наркоз мгновенно исчезает после прекращения подачи аргона. Причина — в неполярности молекул аргона, повышенное же давление усиливает растворимость аргона в нервных тканях.

Биологи нашли, что аргон благоприятствует росту растений. Даже в атмосфере чистого аргона семена риса, кукурузы, огурцов и ржи выкинули ростки. Лук, морковь и салат хорошо прорастают в атмосфере, состоящей из 98% аргона и только 2% кислорода.

На Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых. Его среднее содержание в земной коре (кларк) в 14 раз больше, чем гелия, и в 57 раз больше, чем неона. Есть аргон и в воде, до 0,3 см3 в литре морской и до 0,55 см3 в литре пресной воды. Любопытно, что в воздухе плавательного пузыря рыб аргона находят больше, чем в атмосферном воздухе. Это потому, что в воде аргон растворим лучше, чем азот...

Главное «хранилище» земного аргона — атмосфера. Его в ней (по весу) 1,286%, причем 99,6% атмосферного аргона — это самый тяжелый изотоп — аргон-40. Еще больше доля этого изотопа в аргоне земной коры. Между тем у подавляющего большинства легких элементов картина обратная — преобладают легкие изотопы.

Причина этой аномалии обнаружена в 1943 г. В земной коре находится мощный источник аргона-40 — радиоактивный изотоп калия 40K. Этого изотопа на первый взгляд в недрах немного — всего 0,0119% от общего содержания калия. Однако абсолютное количество калия-40 велико, поскольку калий — один из самых распространенных на нашей планете элементов. В каждой тонне изверженных пород 3,1 г калия-40.

Радиоактивный распад атомных ядер калия-40 идет одновременно двумя путями. Примерно 88% калия-40 подвергается бета-распаду и превращается в кальций-40. Но в 12 случаях из 100 (в среднем) ядра калия-40 не излучают, а, наоборот, захватывают по одному электрону с ближайшей к ядру К-орбиты («К-захват»). Захваченный электрон соединяется с протоном — образуется новый нейтрон в ядре и излучается нейтрино. Атомный номер элемента уменьшается на единицу, а масса ядра остается практически неизменной. Так калий превращается в аргон.

Период полураспада 40K достаточно велик — 1,3 млрд. лет. Поэтому процесс образования 40Ar в недрах Земли будет продолжаться еще долго, очень долго. Поэтому, хотя и чрезвычайно медленно, но неуклонно будет возрастать содержание аргона в земной коре и атмосфере, куда аргон «выдыхается» литосферой в результате вулканических процессов, выветривания и перекристаллизации горных пород, а также водными источниками.

Правда, за время существования Земли запас радиоактивного калия основательно истощился — он стал в 10 раз меньше (если возраст Земли считать равным 4,5 млрд. лет).

Соотношение изотопов 40Ar: 40K и 40Ar: 36Ar в горных породах легло в основу аргонного метода определения абсолютного возраста минералов. Очевидно, чем больше эти отношения, тем древнее порода. Аргонный метод считается наиболее надежным для определения возраста изверженных пород и большинства калийных минералов. За разработку этого метода профессор Э. К. Герлинг в 1963 году удостоен Ленинской премии.

Итак, весь или почти весь аргон-40 произошел на Земле от калия-40. Поэтому тяжелый изотоп и доминирует в земном аргоне. Этим фактором объясняется, кстати, одна из аномалий периодической системы. Вопреки первоначальному принципу ее построения — принципу атомных весов — аргон поставлен в таблице впереди калия. Если бы в аргоне, как и в соседних элементах, преобладали легкие изотопы (как это, по-видимому, имеет место в космосе), то атомный вес аргона был бы на две-три единицы меньше...

Теперь о легких изотопах.

Откуда берутся 36Ar и 38Ar? Не исключено, что какая-то часть этих атомов реликтового происхождения, т. е. часть легкого аргона пришла в земную атмосферу из космоса при формировании нашей планеты и ее атмосферы. Но большая часть легких изотопов аргона родилась на Земле в результате ядерных процессов.

Вероятно, еще не все такие процессы обнаружены. Скорее всего некоторые из них давно прекратились, так как исчерпались короткоживущие атомы-«родители», но есть и поныне протекающие ядерные процессы, в которых рождаются аргон-36 и аргон-38. Это бета-распад хлора-36 обстрел альфа-частицами (в урановых минералах) серы-33 и хлора-35: 3617Cl —β     → 3618Ar + 0-1е + v, 3316S + 42He   →   3618Ar + 10n, 3517Cl + 42He   →   3818Ar + 10n + 0+1e.

В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия — элементов, весьма распространенных на Земле.

В космическом аргоне главенствуют изотопы 36Ar и 38Ar, аргона-40 во Вселенной очень мало. На это указывает масс-спектральный анализ аргона из метеоритов. В том же убеждают подсчеты распространенности калия. Оказывается, в космосе калия примерно в 50 тыс. раз меньше, чем аргона, в то время как на Земле их соотношение явно в пользу калия — 660:1. А раз мало калия, то откуда же взяться аргону-40?!

Как добывают аргон

Земная атмосфера содержит 664013 т аргона. Этот источник аргона неисчерпаем, тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород — из пространства над конденсатором.

Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10-12% аргона, до 0,5% азота, остальное — кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3-10% кислорода и 3-5% азота. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией). В промышленных масштабах ныне получают аргон до 99,99%-ной чистоты. Аргон извлекают также из отходов аммиачного производства — из азота, оставшегося после того, как большую его часть связали водородом.

Аргон хранят и транспортируют в баллонах емкостью 40 л, окрашенных в серый цвет с зеленой полосой и зеленой надписью. Давление в них 150 атм. Более экономична перевозка сжиженного аргона, для чего используют сосуды Дьюара и специальные цистерны.

Искусственные радиоизотопы аргона получены при облучении некоторых стабильных и радиоактивных изотопов (37Cl, 36Ar, 40Ar, 40Ca) протонами и дейтронами, а также при облучении нейтронами продуктов, образовавшихся в ядерных реакторах при распаде урана. Изотопы 37Ar и 41Ar используются как радиоактивные индикаторы: первый — в медицине и фармакологии, второй — при исследовании газовых потоков, эффективности систем вентиляции и в разнообразных научных исследованиях. Но, конечно, не эти применения аргона самые важные. Как самый доступный и относительно дешевый благородный газ аргон стал продуктом массового производства, особенно в последние десятилетия.

Интересное об аргоне

ПРЕДСКАЗАНИЕ Н. МОРОЗОВА. В январе 1881 г. в Петропавловскую, а затем в Шлиссельбургскую крепость за революционную деятельность был заточен русский ученый-самородок, человек энциклопедического ума Николай Морозов. Четверть века провел он в заключении. В жутких условиях каземата он продумал и написал около 60 книг и статей по различным вопросам естествознания. Развивая идеи Менделеева, он построил таблицу «минеральных элементов», в которой в отличие от менделеевской таблицы была последняя группа; в нее Морозов включил предполагаемые химически не активные элементы с атомными массами 4, 20, 36 (или 40), 82 и т. д. Позже, в 1903 г., он писал: «Аналогия подсказывала, что недостающие элементы должны быть... газообразными... Искать их, по теории, следовало именно в атмосфере. Атомы у этих безвалентных. газов не должны быть менее прочны, чем у остальных элементов. Велика была моя радость, когда впервые дошла до меня весть об открытии Рамзаем и Рэлеем первого вестника из этой недостававшей серии элементов — аргона!»

И У ВЕЛИКИХ БЫВАЮТ ОШИБКИ. Об одной из таких ошибок рассказывал в автобиографическом очерке Рамзай. После сжижения сырого аргона он обнаружил на стенках сосуда какое-то вещество, при испарении которого образовался газ. Спектр газа был необычным, и ученый поспешил сообщить об открытии еще одного компонента воздуха, который он назвал метаргоном. Но при последующей проверке оказалось, что этот необычный спектр дала... смесь аргона с CO. Откуда попала в жидкий воздух окись углерода — сказать трудно. Важно, что и в этой — мало приятной для ученого — ситуации Рамзай оказался на высоте. Вот его собственные слова по этому поводу: «Достойно сожаления, конечно, если случается обнародовать нечто неточное. Тем не менее я осмеливаюсь думать, что случайная ошибка извинительна. Непогрешимым быть невозможно, а в случае ошибок найдется всегда очень большое число друзей, которые быстро исправят ошибку».

natural-museum.ru

АРГОН

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) - 185,9°C (немного ниже, чем у кислорода, но немного выше, чем у азота). В 100 мл воды при 20°C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

Пока известны только 2 химических соединение аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Аr, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO[1]. Вероятно существованияесоединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Земная атмосфера содержит 66 • 1013 т аргона. Этот источник аргона неисчерпаем, тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород – из пространства над конденсатором.

Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну.

Состав аргонной фракции: 10...12% аргона, до 0,5% азота, остальное – кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3...10% кислорода и 3...5% азота.

Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией).

В промышленных масштабах ныне получают аргон до 99,99%-ной чистоты. Аргон извлекают также из отходов аммиачного производства – из азота, оставшегося после того, как большую его часть связали водородом.

Аргон хранят и транспортируют в баллонах емкостью 40 л, окрашенных в серый цвет с зеленой полосой и зеленой надписью. Давление в них 150 атм. Более экономична перевозка сжиженного аргона, для чего используют сосуды Дюара и специальные цистерны. Искусственные радиоизотопы аргона получены при облучении некоторых стабильных и радиоактивных изотопов (37Cl, 36Аr, 40Аr, 40Са) протонами и дейтонами, а также при облучении нейтронами продуктов, образовавшихся в ядерных реакторах при распаде урана. Изотопы 37Аr и 41Аr используются как радиоактивные индикаторы: первый – в медицине и фармакологии, второй – при исследовании газовых потоков, эффективности спетом вентиляции и в разнообразных научных исследованиях. Но, конечно, не эти применения аргона самые важные.

Земная атмосфера содержит 66 1013 тонн аргона. Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10-12% аргона, до 0,5% азота, остальное - кислород. В "аргонной" колонне, присоединенной к основному аппарату, получают аргон с примесью 3-10% кислорода и 3-5% азота. Дальше следует очистка "сырого" аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией).

Как самый доступный и относительно дешевый инертный газ аргон стал продуктом массового производства, особенно в последние десятилетия. Наибольшая часть получаемого аргона идет в металлургию, металлообработку и некоторые смежные с ними отрасли промышленности.

В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов (сильные восстановители).

Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла. Все шире применяется дуговая электросварка в среде аргона. В аргонной струе можно сваривать тонкостенные изделия и металлы, которые прежде считались трудносвариваемыми.

Электрическая дуга в аргонной атмосфере внесла переворот в технику резки металлов. Процесс намного ускорился, появилась возможность резать толстые листы самых тугоплавких металлов. Продуваемый вдоль столба дуги аргон (в смеси с водородом) предохраняет кромки разреза и вольфрамовый электрод от образования окисных, нитридных и иных пленок. Одновременно он сжимает и концентрирует дугу на малой поверхности, отчего температура в зоне резки достигает 4000-6000°С. К тому же, эта газовая струя выдувает продукты резки. При сварке в аргонной струе нет надобности во флюсах и электродных покрытиях, а стало быть, и в зачистке шва от шлака и остатков флюса.

Стремление использовать свойства и возможности сверхчистых материалов - одна из тенденций современной техники. Для сверхчистоты нужны инертные защитные среды, разумеется, тоже чистые; аргон - самый дешевый и доступный из благородных газов.

Показатели Значение
Объемная доля аргона, в % 99.998
Объемная доля кислорода, в % 0.0002
Объемная доля азота, в % 0.001
Объемная доля водяного пара, в % 0.0003
Объемная доля двуокиси углерода, в % 0.00002
Объемная доля метана, в % 0.0001
Объемная доля водорода, в % 0.0002

Аргон относится к инертным газам, которые химически не взаимодействуют с металлом и не растворяются в нем. Инертные газы применяют для сварки химически активных металлов (титан, алюминий, магний и др.), а также во всех случаях, когда необходимо получать сварные швы, однородные по составу с основным и присадочным металлом (высоколегированные стали и др.). Инертные газы обеспечивают защиту дуги и свариваемого металла, не оказывая на него металлургического воздействия.

Аргон газообразный чистый используется трех сортов: высшего, первого и второго. Содержание аргона соответственно 99,99 %; 99,98 %; и 99,95 %. Примеси – кислород (<0,005), азот (< 0,004) , влага(<0,003). Аргон хранится и поставляется в баллонах вместимостью 40л, под давлением 150 ? 98,06 кПа. Цвет окраски баллону присвоен серый, надпись «Аргон чистый» зеленого цвета.

Аргонодуговая сварка – дуговая сварка, при которой в качестве защитного газа используется аргон . Применяют аргонодуговую сварку неплавящимся вольфрамовым и плавящимся электродами. Сварка может быть ручной и автоматической. Аргонодуговая сварка вольфрамовым электродом предназначена для сваривания швов стыковых, тавровых и угловых соединений. Сварка плавящимся электродом применяется для сварки цветных металлов (Al, Mg , Cu ,Ti и их сплавов) и легированных сталей.

Аргон используется в плазменной сварке как плазмообразующий газ. При микроплазменной сварке большинство металлов сваривают в непрерывном или импульсном режимах дугой прямой полярности, горящей между вольфрамовым электродом плазмотрона и изделием в струе плазмообразующего инертного газа – (чаще всего) аргона.

Аргонодуговая сварка

Дугoвaя cвapкa, пpи кoтopoй в кaчecтвe зaщитнoгo гaзa иcпoльзуeтcя apгoн.

ГОСТ 2601-84 Свapкa мeтaллoв. Тepмины и oпpeдeлeния ocнoвныx пoнятий (c Измeнeниями N 1, 2)

ISO 14555:1998 Свapкa. Дугoвaя пpивapкa шпилeк из мeтaлличecкиx мaтepиaлoв

www.gas-weld.ru

характеристика элементов. Элемент 18.помогите с химией пожалуйста???

Арго&#769;н — элемент главной подгруппы восьмой группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 18. Обозначается символом Ar (лат. Argon). Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму. Простое вещество аргон (CAS-номер: 7440-37-1) — инертный одноатомный газ без цвета, вкуса и запаха. Аргон Аргон (лат. Argon), Ar, химический элемент VIII группы периодической системы Менделеева, относится к инертным газам; атомный номер 18, атомная масса 39,948. При обычных условиях Аргон - газ без цвета, запаха и вкуса. К открытию Аргона привело обнаруженное в 1892 году Дж. Рэлеем превышение на 0,0016 г/л (при 0°С и 101325 н/м2) плотности азота из воздуха по сравнению с плотностью азота, полученного из его соединений. В 1894 Рэлей и У. Рамзай выделили из азота воздуха газ, обладающий химические инертностью (греч. argos - бездеятельный) . После открытия других инертных газов они были объединены в отдельную нулевую группу периодической системы; теперь общепринято рассматривать их как главную подгруппу VIII группы. В природе Аргон присутствует только в свободном виде. Атмосфера содержит 16·1012т Аргон, земная кора 0,165·1012т, вода 0,752·1012 т. Объемная концентрация Аргон в воздухе 0,93%. Атмосферный Аргон состоит из трех стабильных изотопов: 36Аr (0,337%),38Аr (0,063%) и 40Аr (99,600%). Преобладание тяжелого изотопа связано с его образованием при радиоактивном распаде природного калия 40К (в результате общее количество Аргона в атмосфере непрерывно возрастает) . Вследствие высокого содержания 40Аr атомная масса Аr больше, чем у следующего за ним в таблице Менделеева Калия. Из искусственно полученных радиоактивных изотопов Аргон для радиоактивной метки наиболее пригоден 37Аr с периодом полураспада 35,0 дней. Плотность Аргона (при 0°С и 101325н/м2) 1,7839 кг/м3, tпл - 189,2°С, tкип -185,8°С. В 1 л воды при нормальных условиях растворяется 51,9 см3 Аргона. В металлах Аргон практически не растворим. Молекула Аргона одноатомна. Энергия первичной ионизации Аргона (Аr0 &#8594; Аr+) велика (15,755 эв или 2,5241·10-18 Дж) , сродством к электрону Аргон не обладает. Все попытки получить валентные соединения Аргона оканчивались неудачей. Аргон способен образовывать соединения включения (клатраты) с веществами, имеющими в своих кристаллических решетках полости с размерами, приблизительно соответствующими диаметру атома Аргона (Н2О, D2O, фенол, гидрохинон) . Наиболее полно изучен Аr·6Н2О, впервые синтезированный в 1896 году П. Вийаром при кристаллизации воды в атмосфере Аргона (давление Аргона 15,5 Мн/м2). температура разложения Аr·6Н2О при 101325 Па 42,0°С. Аргон с фенолом дает соединение Аr·ЗС6H5ОН. В соединениях включения, например в SO2·6h3O, можно SO2 изоморфно заместить Аr (работы Б. А. Никитина и других) , что дает возможность синтезировать Аr·6Н2О при нормальном давлении. В промышленности Аргон получают в процессе разделения воздуха при глубоком охлаждении. Возможно получение Аргона из продувочных газов колонн синтеза аммиака. Отделять Аргон от других инертных газов лучше всего газохроматографическими методами. Аргон широко используется при термической обработке легко окисляющихся металлов. В защитной атмосфере из Аргона проводят, например, сварку и резку различных редких и цветных металлов, плавку Ti, W, Zr и т. д. В атмосфере Аргона выращивают кристаллы полупроводниковых материалов. Аргоном заполняют электрические лампочки (Аргон снижает скорость испарения вольфрама и позволяет увеличить светоотдачу) . Аргоновые трубки применяют для рекламы (сине-голубое свечение) . На определении отношения 40Аr:40К основан один из методов определения возраста минералов. Радиоактивный Аргон иногда применяют для контроля вентиляционных систем.

touch.otvet.mail.ru

Аргон: свойства, характеристика, использование

АРГОН, Ar (лат. Argon * а. argon; н. Argon; ф. argon; и. argon), — химический элемент главной подгруппы VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 18, атомная масса 39,948. Состоит из трёх стабильных изотопов, основной — 40Ar (99,600%). Выделен из воздуха в 1894 английскими учёными Дж. Рэлеем и У. Рамзаем.

Аргон в природе

В природе аргон существует только в свободном виде. При обычных условиях аргон — газ без цвета, запаха и вкуса. Твёрдый аргон кристаллизуется в кубические сингонии. Плотность аргона 1,78 кг/м3, t плавления — 189,3°С, t кипения — 185,9°С, критическое давление 48 МПа, критическая температура — 122,44°С. Первый потенциал ионизации 15,69 эВ. Атомный радиус 0,188 нм (1,88Е).

Свойства аргона

Химические соединения не получены (известны лишь соединения включения). В 1 л дистиллированной воды при нормальных условиях растворяется 51,9 см3 аргона. Образует кристаллогидраты типа Ar • 6Н2О. Весовой кларк в земной коре 4 • 10-4; содержание в атмосфере 0,9325 объёмных % (6,5 • 1016 кг), в изверженных породах 2,2 • 10-5 см3/г, в океанической воде 0,336 см3/л. В мантии продуцировано 5,3• 1019 кг 40Ar, средняя скорость накопления 40Ar в земной коре 2 •107 кг/год.

Из минералов атомы аргона мигрируют по дислокациям в зоны нарушения кристаллической структуры и затем по микротрещинам и порам поступают в пластовые воды, нефтяные и газовые залежи. На измерении отношения содержаний 40Ar/40K в калийсодержащих минералах основан метод определения возраста геологических объектов. Аргоновым методом определяют возрасты изверженных (по слюдам, амфиболам), осадочных (по глауконитам, сильвинам), метаморфизованных пород, для которых также с известным приближением даётся возраст метаморфизма. Разработан активационный метод датирования, основанный на измерении отношения 40Ar/39Ar.

Получение и применение аргона

В промышленности аргон получают в процессе разделения воздуха при глубоком охлаждении. Возможно получение аргона из продувочных газов колонн синтеза аммиака. Отделение аргона от других инертных газов наиболее полно осуществляется газохроматографическим методом.

Аргон используется при термической обработке легко окисляющихся металлов. В защитной атмосфере аргона проводят сварку и резку редких и цветных металлов, плавку титана, вольфрама, циркония и др., выращивают кристаллы полупроводниковых материалов. Радиоактивный изотоп (37Ar) применяют для контроля вентиляционных систем.

www.mining-enc.ru

АРГОН (Ar)

Свойства атома Аргона

Название

Аргон / Argon

Символ

Ar

Номер

18

Атомная масса (молярная масса)

39,948 (1) а. е. м. (г/моль)

Электронная конфигурация

[Ne] 3s2 3p6

Радиус атома

? (71) пм

Химические свойства Аргона

Ковалентный радиус

106 пм

Радиус иона

154 пм

Электроотрицательность

4,3 (шкала Полинга)

Электродный потенциал

0

Степени окисления

0

Энергия ионизации (первый электрон)

 1519,6 (15,76) кДж/моль (эВ)

Термодинамические свойства простого вещества

Плотность (при н. у.)

1,784·10−3 г/см3

Плотность при т. п.

1,40 г/см3

Температура плавления

83,8 К (-189,35 °C)

Температура кипения

87,3 К (-185,85 °C)

Уд. теплота плавления

7,05 ккал/кг кДж/моль

Уд. теплота испарения

6,45 кДж/моль кДж/моль

Молярная теплоёмкость

20,79 Дж/(K·моль)

Молярный объём

24,2 см3/моль

Кристаллическая решётка простого вещества

Структура решётки

кубическая гранецентрированая

Параметры решётки

5,260 Å

Температура Дебая

85 K

Прочие характеристики Аргона

Теплопроводность

(300 K) 0,0164 вт/м×град Вт/(м·К)

infotables.ru

Аргон в сварке

Общие сведения

Аргон — инертный одноатомный газ без цвета, вкуса и запаха. Третий по распространённости элемент в земной атмосфере (после азота и кислорода) — 0,93 % по объёму и 1,29 % по массе. Аргон — самый распространённый инертный газ в земной атмосфере, в 1 м3 воздуха содержится 9,34 л аргона (для сравнения: в том же объеме воздуха содержится 18,2 см3 неона, 5,2 см3 гелия, 1,1 см3 криптона, 0,09 см3 ксенона). Есть аргон и в воде, до 0,3 см3 в литре морской и до 0,55 см3 в литре пресной воды. Его среднее содержание в земной коре (кларк) — 0,04 г на тонну, что в 14 раз больше, чем гелия, и в 57 — чем неона. Получается, что на Земле аргона намного больше, чем всех прочих элементов его группы, вместе взятых.

Содержание аргона в мировой материи оценивается приблизительно в 0,02 % по массе. Аргон (вместе с неоном) наблюдается на некоторых звездах и в планетарных туманностях. В целом его в космосе больше, чем кальция, фосфора, хлора, в то время как на Земле существуют обратные отношения.

 

Физические свойства

Аргон — одноатомный газ с температурой кипения (при нормальном давлении) -185,9 °C (немного ниже, чем у кислорода, но немного выше, чем у азота). Температура плавления -189,4°С. В 100 мл воды при 20 °C растворяется 3,3 мл аргона, в некоторых органических растворителях аргон растворяется значительно лучше, чем в воде.

 

Химические свойства

Название «аргон» (от греч.  — ленивый, медленный, неактивный) - подчеркивает важнейшее свойство элемента — его химическую неактивность.

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

 

Получение

Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород – из пространства над конденсатором. Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией).

Классификация аргона по сортам

Аргон обеспечивает хорошую защиту сварочной ванны. В зависимости от назначения и содержания этот газ делится на три сорта. Высший сорт аргона (99,99% Ar) используется для сварки, химически активных металлов, циркония, титановых сплавов, молибдена, сплавов на их основе, ответственных конструкций из нержавеющих сталей. Первый сорт аргона (99,98% Ar) применяется для сварки неплавящимся электродом, магния, алюминия, магниевых и алюминиевых сплавов, менее чувствительных к примесям кислорода и азота. Второй сорт аргона (99,95% Ar) используется для сварки нержавеющих сталей, жаропрочных сплавов и чистого алюминия. Для сварки могут также использоваться смеси аргона с другими газами (кислородом, углекислым газом).

 

Хранение и транспортировка аргона

Хранится и транспортируется аргон в газообразном виде в стальных баллонах под давлением 150 ат, то есть в баллоне находится 6,2 м3 газообразного аргона в пересчете на темературу 20˚С и давление 760 мм рт. ст. Возможна также транспортировка аргона в жидком виде в специальных цистернах или сосудах Дьюара с последующей его газификацией. Эксплуатация баллонов должна проводиться в соответствии с правилами безопасной эксплуатации сосудов, которые работают под давлением.

 

Влияние аргона на человека

При содержании аргона в воздухе свыше 70% на человека будет действовать эффект наркоза. Он тяжелее воздуха и может накапливаться в плохо проветриваемых местах снижая при этом концентрацию кислорода, что может вызвать кислородную недостаточность. При выполнении работ в среде аргона необходимо пользоваться изолирующими приборами и противогазами.

 

weldsib.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *