Классы стали – Классификация стали

alexxlab | 09.09.2019 | 0 | Вопросы и ответы

Содержание

Классификация стали по ГОСТ Р 54384-2001 (EN 10020:2000)

Современная классификация изложена в ГОСТ Р 54384-2011, который является национальной адаптацией европейского стандарта EN 10020:2000 «Definition and classification of grades of steel».

Стали подразделяют:

  • по химическому составу;
  • по основным свойствам или области применения.

1 Термин «сталь»

Сталью называют сплав железа с углеродом, в котором массовая доля железа больше, чем массовая доля любого другого элемента, а массовая доля углерода составляет менее 2 %. 

У небольшого количества хромистых сталей массовая доля (содержание) углерода может превышать 2 %. Эти 2 % являются условной границей между сталью и литейным чугуном.

2 Классы стали по химическому составу

По химическому составу стали подразделяют на:

  • нелегированные;
  • легированные.

Легированные стали дополнительно подразделяют на:

  • нержавеющие;
  • другие легированные стали.

2.1 Граница между нелегированными и легированными сталями 

К нелегированным сталям относятся стали, в которых содержание любого химического элемента не достигает предела, указанного в таблице 1. См. подробнее.

Таблица 1 – Граница между нелегированными и легированными сталями
по содержанию легирующих элементов

2.2 Нержавеющие стали

Нержавеющие стали – это стали с минимальным содержанием хрома 10,5 % и углерода  — 1,2 %. У некоторых легированных нержавеющих сталей минимальное содержание хрома составляет 7,5 %.

2.3 Другие легированные стали

Другие легированные стали – это стали, которые не относятся к нержавеющим, но имеют химический состав, в котором хотя бы один элемент достигает пределов, указанных в таблице 1. К этой категории легированных сталей относятся также стали, в которые для получения особых свойств вводят серу, фосфор и азот.  

3 Классификация стали по основным классам качества

По классам качества стали подразделяют на:

  • нелегированные специальные;
  • нелегированные качественные;
  • нержавеющие;
  • легированные специальные;
  • легированные качественные.

3.1 Нелегированные специальные стали

Нелегированные специальные стали – это стали, удовлетворяющие хотя бы одному из следующих требований:

  • нормированная ударная вязкость;
  • гарантированная прокаливаемость или нормированная глубина поверхностного закаленного слоя;
  • нормированное содержание неметаллических включений;
  • нормированный верхний предел содержания фосфора и серы;
  • нормированное значение ударной вязкости KCV при температуре испытания минус 50 °С;
  • для сталей, применяемых в ядерных реакторах — ограничение содержания в сталях для ядерных реакторов: меди – не более 0,10 %; кобальта – не более 0,05 %; ванадия – не более 0,05 %;
  • гарантированная удельная электропроводность более 9 См ∙ м/мм2;
  • для дисперсионно-твердеющей стали — нормированный нижний предел содержания углерода 0,25 %; нормированная феррито-перлитная микроструктура; нормированное содержание некоторых легирующих элементов;
  • арматурные стали.

3.2 Нелегированные качественные стали

Нелегированные качественные стали – это стали, которые не являются специальными нелегированными сталями.

3.3 Нержавеющие стали

Нержавеющие стали подразделяются по следующим категориям:
а) по массовой доле никеля:

  • менее 2,5 %;
  • 2,5 % и более;

б) по основным свойствам:

  • коррозионно-стойкие;
  • жаростойкие;
  • жаропрочные.

3.4 Легированные качественные стали

3.4.1 Свариваемые легированные мелкозернистые конструкционные стали для сосудов под давлением и труб, удовлетворяющие следующим условиям:

  • предел текучести не менее 380 Н/мм2 при толщине продукции не более 16 мм;
  • содержание легирующих элементов меньше предельных значений, указанных в таблице 2;
  • значение ударной вязкости KCV при температуре минус 50 °С – не менее 34 Дж/см2 для продольных образцов и 20 Дж/см2 – для поперечных образцов.

3.4.2 Стали для изготовления рельсов, шпунтовых стоек и рудничных креплений

3.4.3. Стали для изготовления горячекатаной и холоднокатаной листовой продукции под холодную объемную штамповку (кроме мелкозернистой стали по 3.4.1).

3.4.4. Стали, легированные только медью.

3.4.5. Электротехнические стали – стали, которые легированы в основном кремнием и алюминием.

Таблица 2 – Свариваемые легированные мелкозернистые стали.
Граница по содержанию легирующих элементов
между качественными и специальными легированными сталями

3.5 Легированные специальные стали

К легированным специальным сталям относятся все стали, которые не вошли в категорию качественных сталей (3.4), в том числе:

  • конструкционные стали для машиностроения;
  • конструкционные стали для сосудов под давлением;
  • подшипниковые стали;
  • инструментальные стали;
  • быстрорежущие стали;
  • ферритные никелевые стали;
  • стали с особыми показателями электрического сопротивления.

steel-guide.ru

Стали. Состав, строение, свойства. Классификация сталей

Поиск Лекций

Основные свойства материалов. Определение механических , технологических, химических свойств. Основные показатели свойств. Оборудование и методы определения осн характеристик материалов.

Основные свойства материалов являются механические , технологические и химические свойства.

К механическим св-вам относятся: 1) прочность – способность материала сопротивляться разрушению и появлению остаточных деформаций под действием внешних сил. 2) твердость – сопротивление тел деформации в поверхностном слое при местном, силовом и контактном воздействии. 3) упругость – св-во материала восстанавливать свою форму после прекращения действия сил вызвавших ее изменение. 4) пластичность – св-во металла деформироваться без разрушения под действием внешних сил и сохранять свою форму после прекращения их действия. 5) хрупкость – св-во металла разрушаться под действием внешних сил.

К технологическим св-вам относятся: 1) обрабатываемость резанием – способность металла подвергаться обработке резаньем; 2) свариваемость – способность материала при сварке образовывать прочный сварочный шов . 3) ковкость – способность подвергаться обработке давлением без разрушения. 4) антифрикционность – св-во материала оказывать сопротивление истиранию при трении. 5) литейные свойства материалов : а) жидкотекучесть – способность жид металла заполнять литейную форму и воспроизводить ее очертания; б) усадка – уменьшение объема жид металла при затвердевании; в) склонность ликвации . Ликвация – неоднородность хим св-ва в различных частях затвердевшего металла.

К хим св-вам относятся: окисляемость, растворимость, хим активность, коррозионная стойкость – способность металла противостоять действию агрессивной среды. Хим активность – способность металла вступать в взаимодействие с др веществами.

Способы испытания мех св-в: 1) статические – испытания происходят при постепенном увеличении нагрузки. Испытание на растяжение проводят с целью определения прочности, пластичности и упругости материала. 2) динамические – нагрузка возрастает с большой скоростью. Испытание на ударный изгиб. Работа поглощаемая при разрушении образца наз. ударной вязкостью.3) циклические нагрузки – нагрузка многократно изменяется по величине и направлению действия. Св-во металла выдерживать большое кол-во циклов нагрузки наз сопротивление усталости. Усталость – процесс накопления повреждений в материале под действием периодически изменяющихся нагрузок, кот приводят к образованию трещин, а затем к разрушению материала.

Испытание Твердости : 1) метод Бринелля – в поверхность образца вдавливается стальной закаленный шарик диаметром 2,5; 5; 10мм и по размерам отпечатка определяет твердость. Применяют для металлов невысокой и средней твердости.2) метод Роквелла – разность глубин отпечатков при предварительной и окончательной нагрузке, полученных от вдавливания алмазного конуса или стального закаленного шарика диаметром 1,599мм. Алмазный конус с углом 120 градусов применяют для определения твердости закаленной стали при нагрузке 150кг, и твердость сверхтвердых материалов, твердых сплавов тонких поверхностных слоев с нагрузкой 60кг. А шариком определяют твердость цветных металлов и незакаленных сталей с нагрузкой 100кг.3) метод Виккерса – индентором служит 4-хгранная алмазная пирамида с углом 136градусов. Применяют для измерения твердости поверхностных слоев после ХТО с нагрузкой от 1-100кг и для определения твердости фольги, проволоки с нагрузкой от 5-500гр.

Стали. Состав, строение, свойства. Классификация сталей

Сталь — сплав железа с углеродом. Содержание углерода в стали от 0,1 до 2,14 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы: малоуглеродистые – менее 0,3% С; среднеуглеродистые – 0,3…0,7% С; высокоуглеродистые – более 0,7 %С.

Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Сr, Ni, Мо, Wo, V, Аl, В, Тl и др.), а также Mn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:

· низколегированные – менее 2,5%;

· среднелегированные – 2,5…10%;

· высоколегированные – более 10%.

По качеству, то есть по способу производства и содержанию примесей, стали и сплавы делятся на четыре группы:

1. Обыкновенного качества – S – 0,04…0,06%; Р – 0,035…0,07%;

2. Качественные – S – 0,025…0,04%; Р – 0,025…0,035%;

3. Высококачественные – S – 0,015…0,025%; Р – менее 0,025%;

4. Особовысококачественные – S – менее 0,015%; Р – менее 0,025%;

Стали обыкновенного качества (рядовые) по химическому составу -углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах. Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов.

Стали качественные по химическому составу бывают углеродистые или легированные. Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более строгих требований к составу шихты, процессам плавки и разливки.

Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные – в электропечах с электрошлаковым переплавом или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.

Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора.

Классификация стали по назначению

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, износостойкие стали.

Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных марок стали 08пс и 08кп.

Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН, 18ХГТ).

К улучшаемым сталям относят стали, которые подвергают улучшению – термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором, хромоникелевые и др.

Высокопрочные стали – это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей.

Пружинные (рессорно-пружинные) стали сохраняют в течение длительного времени упругие свойства, поскольку имеют высокий предел упругости, высокое сопротивление разрушению и усталости. К пружинным относятся углеродистые стали (65, 70) и стали, легированные элементами, которые повышают предел упругости – кремнием, марганцем, хромом, вольфрамом, ванадием, бором (50ХГС, 55ХГР).

Подшипниковые (шарикоподшипниковые) стали имеют высокую прочность, износоустойчивость, выносливость. Обычно шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1%) и наличием хрома (ШХ9, ШХ15).

Автоматные стали используют для изготовления неответственных деталей массового производства (винты, болты, гайки и др.) обрабатываемых на станках-автоматах. повышения обрабатываемости резанием за счет повышенного содержания серы и фосфора. К автоматным сталям относятся такие стали, как А12, А20.

Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, ковши экскаваторов и др.)

Коррозионно-стойкие (нержавеющие) стали – легированные стали с большим содержанием хрома (не менее 12%) и никеля. Хром образует на поверхности изделия защитную (пассивную) оксидную пленку. Углерод в нержавеющих сталях – нежелательный элемент, а чем больше хрома, тем выше коррозионная стойкость. (12X13, 20X13, 20Х17Н2, 30X13, 40X13, 95X18 ,15X28)

Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.

Стали для режущих инструментов должны быть способными сохранять высокую твердость и режущую способность продолжительное время, том числе и при нагреве. В качестве сталей для режущих инструментов применяют углеродистые, легированные инструментальные, быстрорежущие стали.

Углеродистые инструментальные стали содержат 0,65-1,32% углерода. Например, стали марок У7, У7А, У13, У13А. К данной группе, помимо нелегированных углеродистых инструментальных сталей, условно относят также стали с небольшим содержанием легирующих элементов, которые не сильно отличаются от углеродистых.

Легированные инструментальные стали, содержащие легирующие элементы в количестве 1-3%. Легированные инструментальные стали имеют повышенную (по сравнению с углеродистыми инструментальными сталями) теплостойкость – до +300°С. Наиболее широко используют стали 9ХС (сверла, фрезы, зенкеры), ХВГ (протяжки, развертки), ХВГС (фрезы, зенкеры, сверла больших диаметров).

Быстрорежущие стали применяют для изготовления различного режущего инструмента, работающего на высоких скоростях резания, так как они обладают высокой теплостойкостью – до +650°С. Наибольшее распространение получили быстрорежущие стали марок Р9, Р18, Р6М5, Р6М5К5.

Инструментальные стали для измерительных инструментов (плиток, калибров, шаблонов) помимо твердости и износостойкости должны сохранять постоянство размеров и хорошо шлифоваться. Обычно применяют стали У8…У12, X, 12X1, Х12Ф1. Измерительные скобы, шкалы, линейки и другие плоские и длинные инструменты изготовляют из листовых сталей 15, 15Х. Для получения рабочей поверхности с высокой твердостью и износостойкостью инструменты подвергают цементации и закалке.

Штамповые стали обладают высокой твердостью и износостойкостью, прокаливаемостью и теплостойкостью.

Стали для штампов холодного деформированиядолжны обладать высокой твердостью, износостойкостью и прочностью, сочетающейся с достаточной вязкостью, также должны быть теплостойкими.( Х12Ф1, Х12М, Х6ВФ, 6Х5ВЗМФС, 7ХГ2ВМ, быстрорежущие стали).

Стали для штампов горячего деформированиядолжны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать износостойкостью, окалиностойкостью, разгаростойкостью и высокой теплопроводностью. Примером таких сталей могут служить стали 5ХНМ, 5ХНВ, 4ХЗВМФ, 4Х5В2ФС.

Рекомендуемые страницы:

poisk-ru.ru

Структурные классы легированной стали

Легированные стали применяются очень широко. Их использование обусловлено, как правило, теми свойствами, которые им придают специально добавленные легирующие элементы. Легированные стали в зависимости от примесей и их количества имеют различную структуру, определяющую не только их свойства, но также и классификацию легированной стали на различные структурные классы, которых насчитывается пять. Структурные классы легированной стали включают в себя перлитный, мартенситный, аустснитный, ферритный и карбидный классы. Легированная сталь перлитного класса имеет структуру перлита, а также может иметь структуру одной из разновидностей перлита: сорбита или троостита. Стали мартенситного класса имеют пониженную скорость закалки, а стали аустснитного класса имеют пониженную температуру распада аустснита – он сохраняется даже при комнатной температуре. Стали ферритного класса отличаются тем, что способны сохранять свою структуру при очень высоких температурах, а также при расплавлении и последующем охлаждении, причем с любой скоростью. Структура карбидных легированных сталей отличается повышенным содержанием различного рода карбидообразующих элементов.

 

 

Высокопрочные стали

Высокопрочными называют стали, имеющие предел прочности более 1500 МПа, который достигается подбором химического состава и оптимальной термической обработки. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях, (30ХГСН2А,40ХН2МА), применяя закалку с низким отпуском (при температуре 200…250oС) или изотермическую закалку с получением структуры нижнего бейнита.

После изотермической закалки среднеуглеродистые легированные стали имеют несколько меньшую прочность, но большуюпластичность и вязкость. Поэтому они более надежны в работе, чем закаленные и низкоотпущенные. При высоком уровне прочности закаленные и низкоотпущенные среднеуглеродистые стали обладают повышенной чувствительностью к концентраторам напряжения, склонностью к хрупкому разрушению, поэтому их рекомендуется использовать для работы в условиях плавного нагружения.

Легирование вольфрамом, молибденом, ванадием затрудняет разупрочняющие процессы при температуре 200…300 oС, способствует получению мелкого зерна, понижает порог хладоломкости, повышает сопротивление хрупкому разрушению.

Стали 30ХГСА, 38ХН3МА после низкотемпературной термомеханической обработки имеют предел прочности 2800 МПа,относительное удлинение и ударная вязкость увеличиваются в два раза по сравнению с обычной термической обработкой. Это связано с тем, что частичное выделение углерода из аустенита при деформации облегчает подвижность дислокаций внутри кристаллов мартенсита, что способствует увеличению пластичности.

 

 

Износостойкие стали

характеризуются высокой устойчивостью против истирания. В эту группу входят шарикоподшипниковые, высокомарганцовые и другие стали.

Износостойкие стали способны сопротивляться процессу изнашивания.

Износостойкие стали могут быть весьма различными по своим механическим свойствам и строению. Различают износ контактный и абразивный. Контактный износ имеет место при трении одной поверхности о другую, сопровождаемом давлением или ударами. Абразивным износом называют истирание металлической поверхности в результате трения о нее твердых частиц, движущихся в струе жидкости или газа вдоль этой поверхности. [3]

Износостойкие стали обладают большим сопротивлением износу. Износостойкость сталь приобретает в результате легирования ее марганцем. Наиболее распространенной маркой стали является высокомарганцевая сталь Г13 содержащая 1 0 – 1 3 % углерода, 12 – 14 % марганца и другие элементы. Эта износостойкая и одновременно высокопластичная сталь применяется для изготовления звеньев гусениц ( траки), козырьков ковшей экскаваторов и землечерпалок, стрелок и крестовин рельсов, а также других деталей, работающих на удар и подверженных интенсивному износу. [4]

Износостойкие стали обладают большим сопротивлением износу. Износостойкость сталь приобретает в результате легирования ее марганцем. [5]

Большинство износостойких сталей имеет мартенситную основу с равномерно распределенными включениями карбидов. Для сталей, работающих в условиях высоких циклических контактных нагрузок ( шарикоподшипниковая сталь), особую роль играет при этом тонкость строения мартенсита, дисперсность и равномерность распределения карбидной фазы. [6]

 

Коррозионноустойчивые стали

Устойчивость против коррозии повышается при введении в состав стали хрома,алюминия, кремния. Эти элементы образуют непрерывную прочную оксидную пленку и повышают электродный потенциал, т. е. увеличивают электроположительность стали. Алюминий и кремний повышают хрупкость стали и применяются реже хрома. При содержании хрома более 12 % сталь резко изменяет электродный потенциал с электроотрицательного (–0,6 В) на электроположительный (+0,2 В). На поверхности образуется плотная защитная пленка оксида Сr2О3.

Сталь, содержащая 12 – 14 % Сr, устойчива против коррозии в атмосфере, морской воде, ряде кислот, щелочей и солей. Кроме хрома, в состав коррозионностойких сталей вводят также другие элементы – чаще никель. С ростом содержания хрома коррозионная стойкость стали растет.

Коррозионностойкие стали (corrosion-resistant steel) обычно делят на хромистые ферритные, содержащие 12 – 25 % Сr и 0,07 – 0,2 % С и хромистые мартенситные, содержащие 12 – 18 % Сr и 0,15 – 1,2 % С, а также аустенитные стали, содержащие 12 – 18 % Сr, 8 – 30 % Ni и 0,02 – 0,25 % С.

Хромистые стали коррозионностойки при температуре до 300°С в водопроводной воде, влажной атмосфере, растворах азотной кислоты и многих органических кислотах. В морской воде хромистые стали подвержены коррозионному растрескиванию под напряжением.

Содержание углерода в коррозионностойких аустенитных сталях ограничено, и желательно, чтобы оно было ниже предела растворимости углерода в легированном никелем аустените при 20°С, составляющего 0,04 %. Присутствие в стали более высоких концентраций углерода может приводить к образованию карбидов хрома типа Сr23С6, вследствие чего твердый раствор обедняется хромом и создается двухфазная структура. При этом снижается коррозионная стойкость стали. Для предотвращения образования карбидов хрома, особенно при технологических нагревах, связанных с проведением операций сварки или пайки и опасностью возникновения межкристаллитной коррозии, в сталь вводят дополнительно титан, ниобий или тантал. Эти элементы связывают углерод в карбиды типа TiC, NbC, TaC, оставляя хром в твердом растворе. Необходимое количество титана для введения в сталь определяют по формуле

Ti = (С – 0,02)*5 – (6.9)

где С – содержание углерода в стали.

Стали, не склонные к межкристаллитной коррозии, называют стабилизированными. Эффект стабилизации может быть достигнут, помимо введения сильных карбидообразующих элементов, снижением содержания углерода ниже 0,04 %.

Хромоникелевые коррозионностойкие стали содержат дефицитный и дорогостоящийникель и поэтому имеют высокую стоимость. В ряде случаев применяют более дешевые стали, в которых весь никель или часть его заменены марганцем. Например, до температур –196°С и в слабоагрессивных средах вместо стали 12Х18Н10Т может быть использована сталь 10Х14Г14Н4Т.

Азот повышает стабильность аустенита, поэтому для повышения коррозионной стойкости можно использовать более высокие концентрации хрома и молибдена, не увеличивая склонность стали к выделению интерметаллидных фаз. Примером может служить сталь 03Х20Н16АГ6, используемая в криогенной технике.

 

Жаропрочные стали

Жаропро́чная сталь — это вид стали, который используется в условиях высоких температур (от 0,3 части от температуры плавления) в течение определённого времени, а также в условиях слабонапряжённого состояния.

Главной характеристикой, определяющей работоспособность стали, является жаропрочность.

Жаропрочность — это способность стали работать под напряжением в условиях повышенных температур без заметной остаточной деформации и разрушения. Основными характеристиками жаропрочности являются ползучесть и длительная прочность. Сопротивление стали разрушению при длительном воздействии температуры характеризуется длительной прочностью.

Длительная прочность — это условное напряжение, под действием которого сталь при данной температуре разрушается через заданный промежуток времени

Жаропрочные свойства в первую очередь определяются температурой плавления основного компонента сплава, затем его легированием и режимами предшествующей термообработки, определяющими структурное состояние сплава. Основой жаропрочных сталей являются твёрдые растворы или пересыщенныё раствор, способные к дополнительному упрочнению вследствие дисперсионного твердения.

Для кратковременной службы применяются сплавы с высокодисперсным распределением второй фазы, а для длительной службы — структурно-стабильные сплавы. Для длительной службы выбирается сплав несклонный к дисперсионному твердению.

Самым распространённым легирующим элементом в жаропрочных сталях является хром (Cr), который благоприятно влияет на жаростойкостьи жаропрочность.

Высоколегированные жаропрочные стали из-за различных систем легирования относятся к различным классам:

ферритные (08Х17Т, 1Х13Ю4, 05Х27Ю5),

мартенситные (20Х13, 30Х13),

мартенситно-ферритные (15Х12ВН14Ф),

аустенитные (37Х12Н8Г8МФБ).

Внутри каждого класса различаются стали с различным типом упрочнения:

карбидным,

интерметаллидным,

смешанным (карбидно-интерметаллидным).

Для котельных установок, работающих длительное время (10 000—100 000 часов) при температурах 500—580 °C, рекомендуются сталиперлитного класса, введение молибдена в которые повышает температуру рекристаллизации феррита и тем самым повышает его жаропрочность.

Однако бо́льшую часть жаропрочных сталей, работающих при повышенных температурах, составляют аустенитные стали на хромоникелевой и хромомарганцевой основах с различным дополнительным легированием. Эти стали подразделены на три группы:

гомогенные (однофазные) аустенитные стали, жаропрочность которых обеспечивается в основном легированностью твёрдого раствора;

стали с карбидным упрочнением;

стали с интерметаллидным упрочнением.

 

 




infopedia.su

Химический состав и классификация сталей по назначению

Сталь является металлом, широко используемым в машиностроении, самолетостроении, строительстве и других отраслях производства. Популярность материала обусловлена сочетанием его отличных технологических и физико-механических свойств. К сталям относят железоуглеродистые соединения, химический состав которых предполагает содержание углерода в количестве менее 2,14%, а помимо этого компонента присутствуют вредные и полезные примеси.

Сочетание характерной циклической прочности в статическом состоянии и жесткости достигается путем изменения содержания углерода и легирующих компонентов. Различные качества стали получаются в результате применения в производстве определенных химических и термических технологий.

Классификация углеродистых сталей

Углеродистые сплавы подразделяют по следующим характеристикам:

  • количеству содержащегося углерода;
  • назначению;
  • структуре в состоянии равновесия;
  • степени раскисления.

В зависимости от количества углерода материал делят на категории:

  • высокоуглеродистые — больше 0,7%;
  • среднеуглеродистые — 0,3−0,7%;
  • низкоуглеродистые — до 0,3%.

В результате полученного качества стальные сплавы делят на:

  • высококачественные;
  • обыкновенные;
  • качественные.

Из металла в жидком состоянии удаляют кислород для уменьшения хрупкости при горячем формировании, этот процесс называется раскислением. По характеру отвердевания и степени раскисления материал классифицируется как кипящий, полуспокойный и спокойный.

В зависимости от полученной структуры в равновесном состоянии материал делят на:

  • эвтектоидные, характеризующиеся структурой из перлита;
  • доэвтектоидные, содержащие перлит и феррит;
  • заэвтектоидные — со вторичным цементитом и перлитом.

По назначению использования металл подразделяется на группы:

  • конструкционные (улучшаемые, высокопрочные, цементируемые, рессорно-пружинные), применяемые в строительстве, приборостроении, машиностроении и самолетостроении;
  • инструментальные для штампов горячей (200˚С) и холодной прессовки, измерительного и режущего инструмента).

Конструкционные металлы

Обыкновенные по качеству стали выпускаются в виде балок, прутков, листового материала, швеллеров, труб, уголка и другого проката и делятся на категории А, В, Б. В наименовании присутствуют буквы Ст и цифра, обозначающая номер марки, с увеличением значения числа увеличивается показатель содержания углерода. Для материалов категорий В и Б, но не А, перед Ст ставится искомая буква для указания принадлежности.

Группа раскисления обозначается СП, ПС, КП — спокойные, полуспокойные и кипящие, соответственно. Категория, А используется для производства деталей, получаемых холодной обработкой, Категория Б применяется для элементов, изготавливаемых сваркой, ковкой, по методу термической обработки. Стали В по стоимости дороже предыдущих категорий, используются для производства ответственных конструкций и сварочных элементов.

Из всех трех категорий обыкновенных углеродистых сталей делают металлические конструкции и детали в приборостроении и машиностроении со слабой нагрузкой, в тех случаях, когда работоспособность обусловлена требуемой жесткостью. Металлы в виде арматуры вкладывают в железобетонные конструкции. Из категорий В и Б делают сварные фермы, рамы и металлические узлы, которые затем укрываются цементным раствором.

Среднеуглеродистые группы с большим запасом прочности используют для рельсов, колес железнодорожных вагонов, шкивов, валов и шестеренок механических приспособлений и машин. Некоторые материалы этой группы разрешаются к термической обработке.

Качественные стали углеродистой группы применяют в слабонагруженных деталях, они маркируются цифрами от 05 до 85, обозначающими процентную концентрацию углерода. К углеродистым материалам относятся стали с увеличенным содержанием марганца, которые отличаются повышенной прокаливаемостью. За счет изменения количества углерода, марганца и выбора соответствующего способа термической обработки получают различные технологические и механические качества.

Низкоуглеродистые сплавы отличаются хорошей пластичностью при холодной обработке, но имеют небольшой запас прочности. Их выпускают в виде листов, материал мягкий, легко штампуется, тянется, сюда относят жесть и металл для эмалированных предметов быта. При цементировании сталей в производстве увеличивается показатель поверхностной прочности, что дает возможность изготавливать малонагруженные колеса зубчатой передачи, кулачки и др.

Среднеуглеродистые металлы и аналогичные составы с увеличенным процентом марганца отличаются средними показателями прочности, но пластичность и вязкости при этом снижается. По условиям работы запчастей определяется метод усиления сталей в виде нормализации, низкоотпускной и ТВЧ закалки и др. Из них делают высокопрочную проволоку, рессоры, пружины и повышенными требованиями к износостойкости.

Автоматные виды

Эти материалы маркируются литерой, А и цифрами, указывающими на концентрацию углерода в сотых процента. Легирование свинцом добавляет букву С после А. Введение селена, марганца, теллура позволяет сократить применение режущего инструмента при обработке. На степень обрабатываемости также влияет добавка фосфора, серы и кальция, последний вводится в виде силикальцита в жидкий сплав.

Содержание фосфора и серы снижает показатели качества, сера снижает антикоррозионные свойства, сульфидов ведут к нарушению однородности металла. Их этого класса сталей делают детали сложной формы и поверхности, крепежные элементы, рассчитанные на небольшую нагрузку.

Легированные типы

К ним относят металлы с содержанием легирующих добавок в количестве до 2,5%. Буквенные обозначения марки включают литеры, указывающие на определенные примеси, а цифра после них говорит о процентном содержании элемента. Если его содержание менее 1,5%, то в обозначении добавка не ставится.

Содержание углерода в этой группе сталей нормируется количеством 0,1−0,3%, к основным свойствам после термической, химической обработки и низкого отпуска после закалки относят:

  • высокую твердость материала на поверхности;
  • уменьшенную прочность средних слоев и повышенную вязкость.

Стали используют для производства деталей машин и приборов, предназначенных для работы с ударными и переменными нагрузками в условиях повышенной изнашиваемости.

Цементируемые материалы

Для повышения показателей твердости, выносливости при контакте, износостойкости, прокаливаемости используют хром, магний, никель, последний элемент повышает вязкость и снижает предел хладноломкости. Цементируемые составы делят на две группы:

  • средней прочности с порогом текучести меньше 700 МПа;
  • повышенной прочности с аналогичным показателем в пределах 700−1100 МПа.

По содержанию добавок различают виды:

  • хромистые составы и хромованадиевые, цементируемые на глубину менее 1,5 мм;
  • хромомарганцевые составы включают титана 0,06%, марганца и хрома по 1%, имеют особенность внутренне окисляться при газовой цементации, что ведет к уменьшению прочностных характеристик;
  • хромоникельмолибденовые сплавы являются представителями мартенситного класса и отличаются уменьшенным короблением, что обусловлено воздушной закалкой, легированием редкоземельными металлами, повышающими прокаливаемость, статическую прочность и сопротивление ударам.

Пружинно-рессорные сплавы

Детали работают в условиях упругой деформации и подергаются циклическим нагрузкам, поэтому от сталей требуются высокие показатели текучести, пластичности и сопротивления излому. В состав входят:

  • марганец — менее 1,2%;
  • кремний — менее 2,7%;
  • ванадий — до 0,26%;
  • хром — до 1,25%;
  • никель — менее 1,75%;
  • вольфрам — менее 1,2%.

В процессе обработки уменьшаются размеры зерен, увеличивается сопротивление металла. Для транспортного производства особо ценными являются кремнистые сплавы, если технология не позволяет им в производстве обезуглероживаться, то выносливость материала остается на уровне заданных параметров. Введение ванадия, хрома, ванадия, никеля помогает затормозить излишний рост зерен при нагревании и повысить прокаливаемость. Из высокоуглеродистых холоднотянутых проволок, аустенитных нержавеек и высокохромистых мартенситных сталей, также делают пружины и другие упругие элементы.

Инструментальные стали

Для обеспечения надежной работы инструментов сталь должна обладать специальными свойствами, которые проявляются у каждой группы материалов по-разному в зависимости от производства и технологии введения добавок.

Шарикоподшипниковые формы

Сплавы при производстве очищаются от неметаллических примесей, использование технологии вакуумно-дугового или электрошокового переплава уменьшает пористость металла. При производстве подшипников и их узлов применяют хромистые шарикоподшипниковые стали с добавками хрома. Дополнительное легирование осуществляется марганцем и кремнием с целью увеличить показатель прокаливаемости. Чтобы детали можно было изготавливать методом холодной штамповки и резать применяется отжиг металла на твердость.

Закалка деталей (роликов, шарикоподшипников и колец) проводится в масляной ванне при температуре 850−870˚С, их охлаждают с целью обеспечения стабильности до 25˚С перед отпуском. Так как подшипниковые и подобные элементы при эксплуатации испытывают сильные динамические нагрузки, то их делают из металлов с дальнейшей термической обработкой и цементацией.

Износостойкие виды

Сопротивление износу повышается с увеличением показателя поверхностной твердости материала. Для долговременной эксплуатации важны такие качества сплава:

  • сопротивление разрушению при абразивном трении;
  • долговременная эксплуатация в условиях высокого давления и ударных нагрузок.

Износостойкие металлы применяют при изготовлении гусеничных траков, дробильных плит камнедробильного оборудования, раздавливающих щек. Работа в таких условиях эффективна благодаря свойству сталей набирать прочность и твердость в условиях пластической холодной деформации, достигающей 70%. Добавки фосфора больше 0,027% приводят к увеличению хладноломкости сырья.

Литая сталь имеет структуру аустенита, у которого на границах зерен выделяется излишний марганца карбид, ведущий к уменьшению прочности и вязкости. Чтобы получить аустенитную однофазную структуру заготовки закаливают в водной среде при температуре около 1100˚С.

Сопротивляющиеся коррозии

Эти материалы используют для изготовления элементов приборов, работающих в условиях электрохимической коррозии, их называют нержавеющими. Стойкость к коррозии развивается после введения добавок, ведущих к образованию поверхностных пленок с хорошей адгезией к металлу. Эти слои уменьшают непосредственное взаимодействие сталей с внешними раздражающими факторами и повышают потенциал в электрохимической среде.

Нержавеющие металлы делят на хромоникелевые и хромистые. Хромистые составы используют для пластичных деталей, которые изготавливают штамповкой и методом сварки. Этот вид подразделяют на ферритные, мартенситно-ферритные и мартенситные сплавы. Для повышения сопротивления ударам их закаливают в масле при температуре около 1000˚С в условиях высокого отпуска с показателями температуры в пределах 600−800˚С.

Жаропрочные сплавы

Применяют для изготовления элементов, работающих при температуре выше 500˚С, составы низколегированные, содержащие до 0,25% С и других легирующих добавок: хрома, вольфрама, никеля. Закалка и нормализация осуществляется в масле при температуре около 890−1050˚С. Из перлитных сталей делают детали, подвергающиеся в работе режиму ползучести при малых нагрузках, например, паронагревательные трубы, арматура котлов с паром, крепежные детали.

tokar.guru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *