Манометры дифференциальные – виды, принцип работы и производители

alexxlab | 27.05.2016 | 0 | Вопросы и ответы

принцип действия, типы и виды. Как выбрать дифференциальный манометр

Давление в газообразных и жидких средах относится к важнейшим показателям, измерение которых требуется для обслуживания коммуникационных и технологических систем. К рабочим объектам относятся различные фильтры, трубопроводные комплексы, устройства для кондиционирования и вентиляции. Используя дифференциальный манометр, пользователь выявляет не только характеристики действующего давления, но также получает возможность фиксировать разность между динамическими показателями. Знание этих данных облегчает контроль системы и повышает надежность эксплуатации. Помимо того, дифманометры применяются и для измерения расхода жидкости, газа или сжатого воздуха.

Принцип работы

В большинстве манометров технология определения и расчета данных базируется на деформационных процессах в специальных измерительных блоках, например, в сильфонном. Этот элемент выступает индикатором, воспринимающим перепады давления. Блок становится и преобразователем разности в показателях давления – пользователь получает информацию в виде перемещения стрелки указателя на приборе. Кроме того, данные могут быть представлены в Паскалях, охватывая весь измерительный спектр. Такой способ отображения информации, к примеру, обеспечивает дифференциальный манометр Testo 510, который в процессе измерения избавляет пользователя от необходимости держать его в руке, так как на задней стороне прибора предусмотрены специальные магниты.

В механических же устройствах главным индикатором служит расположение стрелки, контролируемое рычажной системой. Движение указателя происходит до момента, пока перепады в системе не перестанут оказывать воздействие определенной силы. Классический пример данной системы показывает дифференциальный манометр ДМ серии 3538М, который обеспечивает пропорциональное преобразование дельты (разности давления) и предоставляет результат оператору в виде унифицированного сигнала.

Классификация

Ввиду сложности процессов измерения давления, характеристик рабочих сред и дальнейшего преобразования существует несколько вариантов дифференциальных манометров для работы в разных условиях. Кстати, дифференциальный манометр, принцип действия которого во многом определяется его конструкцией, по своему устройству ориентируется на возможность применения в конкретных средах – следовательно, из этого производится и классификация. Итак, производители выпускают следующие модели:

  • Группа жидкостных дифференциальных манометров, в которую входят поплавковые, колокольные, трубные и кольцевые модификации. В них измерительный процесс происходит на основе показателей жидкостного столба.
  • Цифровые дифманометры. Считаются наиболее функциональными, поскольку дают возможность измерять не только характеристики перепадов давления, но и скорость потоков сжатого воздушного, показатели влажности и температуры. Ярким представителем этой группы является дифференциальный манометр Testo, который также применяется в системах мониторинга окружающих сред, в аэродинамических и экологических исследованиях.
  • Категория механических устройств. Это сильфонные и мембранные версии, обеспечивающие измерение посредством отслеживания характеристик чувствительного к давлению элемента.

Двухтрубные модели

Данные приборы используются для измерения показателей давления и определения разностей между ними. Это устройства с видимым уровнем, который обычно представлен в U-образной форме. По конструкции такой дифференциальный манометр представляет собой установку из двух вертикальных сообщающихся трубок, которые фиксируются на деревянной или металлической основе. Обязательным компонентом устройства является и пластинка со шкалой. В ходе подготовки к измерению трубы заполняют рабочей средой.

Далее в одну из труб начинается подача измеряемого давления. Одновременно с этим вторая труба взаимодействует с атмосферой. В процессе измерения дельты обе трубки испытывают измеряемое давление. Двухтрубный дифференциальный манометр с жидкостным заполнением используется для измерения показателей разрежения, давления неагрессивных газов и воздушных сред.

Однотрубные модели

Однотрубные дифманометры обычно используются, если необходимо получить результат высокой точности. В таких устройствах применяется и широкий сосуд, на который действует давление с наибольшим коэффициентом. Единственная же трубка фиксируется к пластинке со шкалой, демонстрирующей данные разности, и сообщается с атмосферной средой. В процессе измерения перепадов давления с ней взаимодействует наименьшее из давлений. Рабочая среда заливается в манометр дифференциального давления до того момента, пока не будет достигнут нулевой уровень.

Под воздействием давления определенная доля жидкости перетекает в трубку из сосуда. Так как объем рабочей среды, которая переместилась в измерительную трубку, соответствует объему, вышедшему из сосуда, однотрубный дифманометр предусматривает измерение высоты лишь одного жидкостного столба. Иными словами, сокращается погрешность измерения. Тем не менее, и приборы этого типа не избавлены от недостатков.

Отклонения от оптимальных значений могут быть обусловлены температурным расширением в измерительных компонентах прибора, плотностью рабочей среды и другими погрешностями, которые, впрочем, характерны для всех разновидностей дифманометров. Например, дифференциальный манометр цифровой даже с учетом поправок на показатели плотности и температурные коэффициенты также имеет определенный порог погрешности.

Мембранные дифманометры

Главный подтип механических дифференциальных манометров, который также разделяется на устройства с металлическими и неметаллическими измерительными элементами. В приборах с плоской мембраной из металла расчеты происходят на основе фиксации характеристик прогибов в измерительном компоненте. Распространен и дифференциальный манометр, в котором мембрана выступает разделительной перегородкой для камер. В момент деформации противодействующая сила формируется цилиндрической спиральной пружиной, разгружающей измерительный элемент. Так происходит сопоставление двух разных величин давления.

Также некоторые модификации мембранных устройств снабжаются защитой от одностороннего воздействия – эта особенность конструкции позволяет их применять в измерении показателей избыточного давления. Несмотря на активное внедрение электроники в метрологическую отрасль в целом, мембранные средства измерения остаются востребованными и даже незаменимыми в некоторых областях. Например, высокотехнологичный дифференциальный манометр ДМЦ-01м цифрового типа, несмотря на эргономичность и высокую точность, имеет ряд ограничений по использованию в условиях, где возможна эксплуатация мембранных устройств.

Сильфонные версии

В таких моделях измерительных элементом выступает гофрированный короб из металла, дополненный спиральной пружиной. Плоскость прибора разделяется сильфоном на две части. Наибольшее воздействие давления приходится на камеру вне сильфона, а наименьшее – во внутреннюю полость. В результате воздействия давлений с разными силами чувствительный элемент деформируется в соответствии с величиной, пропорциональной искомому показателю. Это классические манометры дифференциальные, показывающие результаты измерений стрелкой на циферблате. Но есть и другие представители этого семейства.

Другие механические версии

Менее распространены кольцевые, поплавковые и колокольные устройства измерения разности давлений. Хотя среди них встречаются относительно точные бесшкальные и самопишущие модели, а также приборы с контактными электрическими устройствами. Передача данных в них обеспечивается дистанционно опять же, посредством электрической связи или за счет пневматики. Для определения расходных показателей на основе переменных разностей также выпускают механические приборы с суммирующими и интегрирующими дополнениями.

Цифровые дифманометры

Устройства этого типа кроме основных функций измерения разницы в давлении способны определять динамические показатели рабочих сред. Такие приборы обозначаются маркировкой ДМЦ-01м. Дифференциальный манометр цифровой, в частности, используется в системах контроля вентиляции производственных объектов, позволяет рассчитывать показатели потребления газа, учитывая температурные корректировки, а также вести учет средних расходов по измеренным позициям. Устройство снабжено микропроцессором, который автоматически ведет учет измерений и накопления информации по газоходу. Все получаемые сведения о результатах работы отображаются на дисплее.

Рекомендации по выбору

Расчетные операции с показателями давления требуют использования надежного прибора, максимально соответствующего условиям эксплуатации. В связи с этим важно определиться с перечнем функций, которые будет выполнять прибор. К примеру, дифференциальный манометр Testo 510 способен обеспечивать точные показания с температурной компенсацией и предоставлять данные на цифровом дисплее. В некоторых случаях требуется сигнализирующая модель, поэтому следует учитывать наличие данной опции.

Для максимально корректных данных заранее нужно сопоставить характеристики устройства с возможностью эксплуатации в конкретной рабочей среде. Не все приборы могут применяться в кислородных, аммиачных и фреоновых средах. По крайней мере, их точность может быть низкой.

fb.ru

Что такое манометр дифференциального давления


Вступление

Различные типы и виды измерений буквально окружают нашу жизнь. Мы сталкиваемся с измерительной аппаратурой буквально на каждом шагу, используя данные измерений, как что-то обыденное, как данность. Согласитесь, что смотря на спидометр своего автомобиля или электрический счетчик квартиры, вы вряд ли задумываетесь, что это измерительные приборы. Другое дело специалисты. Они должны знать, зачем и для чего нужен тот или иной измерительный прибор, как он работает и как им пользоваться.

Манометр дифференциального давления

Таким пространным вступлением, я хотел представить новую серию статей про различные измерительные приборы, самого широкого назначения. Далее читаем про манометр дифференциального давления или сразу выбирайте манометры деформационные дифференциального давления для своих нужд.

Назначение дифманометра, заложено в его названии. Манометр это прибор для измерений давления газа или жидкости. Дифференциальный означает, что прибор измеряет разницу двух величин сравнением. Читателям этого сайта хорошо знакомо понятие дифференциального тока, есть такое понятие и для давления. В отличие от абсолютного давления, нолём измерения которого является вакуум, дифференциальное давление сравнивает два давления, одно из которых выбрано за контрольное.

Например, у вас бак с закачанной в него жидкостью или газом. Жидкость (газ) находится под давлением величиной X. Со временем, уровень жидкости понизился, это значит, что давление упало до значения Y. Разница между этими давлениями и будет дифференциальное давление, которое должен показать манометр дифференциального давления.

Во многих технологических процессах падение давления технологически недопустимо и даже опасно. Дифференциальные манометры следят за этим, более того при достижении минимальных величин, манометры могут управлять отключением процесса или сигнализировать о проблеме.

Работает манометр дифференциального давления в газообразных средах и жидкостях. Идеально подходят и активно используются для измерений потерь давления в фильтрах кондиционирования, а также в системах вентиляции. Используются дифференциальные манометры в системах отопления и водоснабжения, для измерения разницы давлений при прохождении насосов и фильтров.

Как работает дифференциальный манометр

Механический  дифференциальный манометр работает, сравнивая два давления, воспринимаемые упругой мембраной расположенной в манометре. При изменении давления с одной стороны мембраны она сдвигается, приводя в движение стрелку манометра.

В некоторых моделях дифманометра есть выводы на электронные контакты, которые позволяют подключить системы автоматики или сигнализации. Сигнализирующие устройства манометра могут быть с магнитным и без магнитным поджатием, с индуктивными или электронными размыкателями.

Манометры из нержавеющей стали могут работать в агрессивных средах.

Есть манометры дифференциального давления с встроенными в корпус элементами Холла, который преобразует механическое движение стрелки в электрический выходной сигнал.

Вывод

Из статьи мы узнали, что такое манометр дифференциального давления. Общая познавательная информация. Ссылка вначале статьи рабочая и имеет практическое значение для профессионалов.

©ehto.ru

Еще статьи


Похожие статьи:

ehto.ru

Дифференциальные манометры – книга «МАНОМЕТРЫ» от НПО «ЮМАС»

    Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3,  являются названием  отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

· расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных  гидро- и аэродинамических препятствиях;

· перепада – разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

· уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров  должны приниматься из следующего ряда:

10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа; 

1; 1,6; 2,5; 4; 6,3 МПа.

У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

 

                      А = а × 10n,                                (2.7)

 

где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8;

n – целое (положительное или отрицательное) число или нуль.

Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

25; 40; 63; 100; 160; 250; 400 и 630 кПа;

1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

Нижние пределы измерений дифманометров-расходомеров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

     Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как    

 

ДСП 160 (0…630 кПа)-32 МПа-1,5.

 

После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

 Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать  десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

В приборах такого типа (рис. 2.16) на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом  образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя

2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор  передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления. 

«Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

 

                    

                              а                     

в

         б

Рис. 2.16. Схема (а, б) и вид (в) дифференциального показывающего манометра на основе трубчатой пружины:

1 и 2 – держатели;
3 и 4 – трубчатые пружины; 5 и 8 – трибки; 6 – стрелка «плюсового» давления;  7 и 9 – шкалы избыточного  давления;  10 – стрелка  «минусового» давления

 

 

Дифференциальное давление, т. е. разность давлений р  отсчитывается стрелкой на шкале циферблата.

Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

jumas.ru

Дифференциальные манометры – НПО «ЮМАС»

    Дифференциальные манометры (далее – дифманометры), как отмечалось в разделе 1.3,  являются названием  отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

    Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

· расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных  гидро- и аэродинамических препятствиях;

· перепада – разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

· уровня жидких сред по величине гидростатического столба.

    Согласно ГОСТ 18140–84/2-27/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров  должны приниматься из следующего ряда:

10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа; 

1; 1,6; 2,5; 4; 6,3 МПа.

У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением: 

А = а × 10n, 

где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

      Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

25; 40; 63; 100; 160; 250; 400 и 630 кПа;

1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

     Дифманометры могут иметь условные обозначения, предложенные в методике разделе 1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как     

ДСП 160 (0…630 кПа)-32 МПа-1,5. 

После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

 Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать  десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/2-27/.

Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

В приборах такого типа (рис. 2.58) на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом  образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор  передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления. 

«Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра. 

                                     

             

                                   а)                                                          б)

                                  в)

 

                                    г)

Рис. 2.58. Схема (а, б) и вид (в) дифференциального показывающего манометра на основе трубчатой пружины: 1 и 2 – держатели; 3 и 4 – трубчатые пружины; 5 и 8 – трибки; 6 – стрелка «плюсового» давления;  7 и 9 – шкалы избыточного  давления;  10 – стрелка  «минусового» давления 

Дифференциальное давление, т. е. разность давлений Dр  отсчитывается стрелкой на шкале циферблата.

Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.    

jumas.ru

Дифманометры (дифференциальные манометры) – НПО «ЮМАС»

Малые величины дифференциального давления могут измеряться приборами на основе упругих и вялых мембран, сильфонов, а также комбинированных с другими упругими элементами конструкциями. Конструкций достаточное количество, однако они имеют свои особенности.

Одной из наиболее простых, универсальных и получивших широкое применение являются дифнапоромеры (дифманометры) с конструкциями на основе мембран и мембранных коробок/2-18/. В одном из вариантов (рис. 2.73) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.


 

 

 

 

Рис. 2.73. Показывающий дифференциальный манометр на основе мембранной коробки:

1 – мембранная коробка; 2 – держатель «плюсового» давления; 3 – держатель «минусового» давления; 4 – корпус;      5 – передаточный    механизм; 6 – стрелка; 7 – циферблат

«Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.

Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности составляет, как правило, 2,5 или 1,5.

Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь; для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь различных марок.

Приборы могут изготавливаться в корпусах малых (63 мм), средних (100мм), и больших (160 мм) диа-

метров.

К недостаткам дифманометров (дифнапоромеров) на основе мембранной коробки следует отнести высокие требования к герметичности корпуса и небольшие рабочие избыточные давления, ограниченные прочностью корпуса.

Дифманометр с вертикальной мембраной (рис. 2.74) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление. 

 

 

 

  

 

Рис. 2.74. Мембранные показывающие дифференциальные манометры с вертикальной мембраной: 1 – «плюсовая» камера; 2 – «минусовая» камера; 3 – чувствительная гофрированная мембрана; 4 – передающий шток; 5 – передаточный механизм; 6 – предохранительный клапан

Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.

 Высокая стоимость защитных фланцев мембраны, а также сложность вывода за пределы зоны давления механического перемещения центра этой мембраны приводят к относительно высокой стоимости изделия и, соответственно, не широкому его использованию.

В конструкции  показывающего дифференциального манометра с горизонтальной мембраной (рис. 2.75) линейное перемещение центра мембраны вынесено за пределы измерительной области с помощью металлических сильфонов. 

 

 

 

 

 

Рис.2.75. Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

1 – «плюсовая» камера; 2 – «минусовая» камера; 3 – входной блок; 4 – чувствительная гофрированная мембрана; 5 – толкатель;  6 – сектор;  7 – трибка;   8 – стрелка;   9 – циферблат; 10 – разделительный сильфон

 Традиционные плюсовая 1 и минусовая 2 камеры, соответственно, помещены в единый защитный блок 3, состоящий из двух частей, между которыми установлена гофрированная мембрана 4. В центре этой мембраны закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.

Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.

В конструкции дифманометра с горизонтальной мембраной дополнительная установка двух металлических сильфонов повышает надежность конструкции, но существенно снижает ее метрологические характеристики.

Разновидностью дифманометра с горизонтальной мембраной и двумя металлическими сильфонами является конструкция, представленная на рис.2.76.  Мембрана 1 закреплена между двумя фланцами 2 и 3. На центре мембраны 1 установлен толкатель 4, конец которого подвижно соединен с коромыслом 5. Смещение центра мембраны 1 через толкатель 4 передается на коромысло 5, перемещение конца которого является индикатором величины измеряемого перепада. Отделение зоны измеряемого давление от внешней среды осуществляется с помощью эластичного уплотнителя 6.

 В последующем перемещение конца коромысла 5 на указательную стрелку передается с помощью трибко-секторного механизма.

Плюсовое давление подается на вход 7, минусовое – на вход 8. 


Рис. 2.76. Схема мембранного дифманометра с эластичным уплотнением выхода: 1 – мембрана; 2 – фланец нижний; 3 – фланец верхний; 4 – толкатель; 5 – коромысло; 6 – эластичный уплотнитель; 7 – плюсовой вход; 8 – минусовой вход.

 

В конструкции мембранного дифманометра с эластичным уплотнением выхода максимальное рабочее избыточное давление определяется свойствами уплотнения коромысла.  Чем выше механические свойства такого уплотнения, тем больше величина рабочего избыточного давления, но хуже метрологические характеристики.

Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.77. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.

Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при не очень высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.

Магнитомеханический принцип преобразования дифференциального давления в систему отсчета показаний по круговой шкале и организации системы контроля из-за удобства и простоты конструкции, относительно низкой стоимости и высокой надежности получил активное применение в современных измерительных приборах.

 

 

 

 

 

 

 

 

Рис.2.77. Мембранный двухкамерный показывающий дифманометр:

1 – «плюсовая» камера; 2 – «минусовая» камера; 3 – передающий шток; 4  – сектор;  5 – трибка;  6 – коромысло

 

 Принцип работы дифманометра с магнитомеханической системой преобразования сигнала/2-28/ представлен на рис. 2.78. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Механический поршень 4 с закрепленным на нем магнитом, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Механический поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь, поджимаемая диапазонной пружиной 8.

 

Рис. 2.78. Схема дифманометра с магнитомеханическим преобразователем: 1 – поворотный магнит; 2 – стрелка; 3 – корпус; 4 – механический поршень с закрепленным на нем магнитом; 5 – фторопластовый сальник; 6 – рабочий канал;  7 – пробка;  8 – диапазонная пружина; 9 – блок электрических контактов.

 

Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на механический поршень и перемещает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Перемещение механического поршня 4 с закрепленным на нем магнитом приводит к связанному с ним магнитным взаимодействием угловому перемещению поворотного магнита 1 и, соответственно, указательной стрелки 2. Таким образом  измеряемая разность давлений преобразовывается в угловое перемещение указательной стрелки.

Согласование диапазона шкалы с угловым перемещением указательной стрелки достигается подбором упругих характеристик диапазонной пружины 8.

В ряде конструкций фторопластовый сальник 5 заменяется на эластичную мембрану, что повышает надежностные характеристики прибора.

В дифманометре с магнитомеханическим преобразователем предусмотрен блок 9, замыкающий или размыкающий соответствующие электрические контакты при прохождении вблизи его механического поршня с магнитом. Принцип работы таких контактов более подробно описан в разделе 3.1.

Одной из основных конструктивных проблем дифманометров, работающих при больших избыточных давлениях, является возможность передачи линейного перемещения чувствительного элемента или его части через защитную оболочку прибора. При измерении малых перепадов давления чувствительные элементы – это, как правило, мембраны, развивают очень малые переустановочные усилия, что конструктивно затрудняет передачу их линейных перемещений через защитную оболочку прибора. 

Приборы с магнитомеханической системой преобразования линейного перемещения поршня в осевое вращение трибки и установленной на ней показывающей стрелки обеспечивают передачу линейного перемещения поршня через защитную оболочку прибора путем взаимодействия магнитных полей и последующего преобразования в механическое перемещение вне этой оболочки.  

Повышение чувствительности приборов с магнитомеханической системой преобразования достигается увеличением площади элемента, разделяющего «плюсовое« и «минусовое» давления. Таким элементом, являющимся разделителем разных давлений и одновременно первичным преобразователем, может служить мембрана, как в конструкции, представленной на рис.2.79. Основные элементы системы идентичны представленным на рис.2.78. Отличие состоит в мембране 10, которая разделяет «плюсовое» и «минусовое» давления. Перемещение центра этой мембраны через толкатель 11 передается на поршень с закрепленным на нем магнитом. 

 

    Рис.2.79. Схема дифманометра с магнитомеханическим преобразователем для измерения малых перепадов давления:

10 – мембрана; 11 – толкатель; 12 – пробка. 

Пробка 12 служит для сервисного обслуживания прибора, монтажа или смены диапазонной пружины.

Приборы с магнитомеханическими преобразователями отличаются устойчивостью к воздействию высокого статического давления – до 40 МПа. При этом обеспечивают измерение и контроль дифференциального давления от 0 до 0,25 кПа…7 МПа с относительно небольшой погрешностью (около 2 %).

Корпус прибора изготавливается из металлических немагнитных металлов таких как нержавеющая сталь, сплав Монел, алюминий, медные сплавы, синтетические массы. Материал выбирается исходя из условий эксплуатации, свойств измеряемой среды. Также определяется материал уплотнения магнитного поршня, мембраны. Здесь применяется нержавеющая сталь (SS316,SS302)  для пробки и диапазонной пружины, нитрилкаучук (Buna-N), фторированный каучук (Viton) этилен-пропиленовые (EPDM) каучук.

Варьированием используемых в конструкции приборов материалов обеспечивает применяемость таких приборов для различных газов, включая горючие типа пропан-бутан, разных по агрессивности сред.

 Модели приборов с магнитомеханической системой в корпусах 63, 80, 100, 150 мм  обеспечивают функционирование индикации (отображение на цифровой шкале с определенной погрешностью) измеряемого перепада давления, а также могут дополняться блоками электрических контактов в различных исполнениях. Более детально конструкции  сигнализирующих групп приборов с магнитомеханическими системами описаны в разделе 3.1.

Как пример на рис.2.80 показан вид дифференциального  манометра ДП в корпусе 63 мм (ДП63). 

                        

        Рис.2.80. Вид дифференциального показывающего манометра с магнитомеханическим

преобразователем

Активно дифференциальные манометры с магнитомеханическим преобразователем применяются для контроля засорения фильтров на проточных линиях, появления дополнительных гидро- и аэродинамических сопротивлений на работающем оборудовании, включая расходомеры, запорные устройства и др.

jumas.ru

дифференциальный манометр – это… Что такое дифференциальный манометр?

 

дифференциальный манометр
дифманометр

Манометр для измерения разности двух давлений.
Примечание
Дифманометр с верхним пределом измерения не более 40000 Па (4000 кгс/м2) называется микроманометром.
[ГОСТ 8.271-77]

дифференциальный манометр

[Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание – М.: РУССО, 1995 – 616 с.]

EN

differential-pressure gage
(engineering) Apparatus to measure pressure differences between two points in a system; it can be a pressured liquid column balanced by a pressured liquid reservoir, a formed metallic pressure element with opposing force, or an electrical-electronic gage (such as strain, thermal-conductivity, or ionization).

[http://www.answers.com/topic/differential-pressure-gage#ixzz1gzzibWaQ]

Малые значения дифференциального давления могут измеряться приборами на основе мембран и сильфонов.
Манометры дифференциальные сильфонные показывающие типа ДСП-160 нашли широкое применение на территории СНГ. Принцип их действия основан на деформации двух автономных сильфонных блоков, находящихся под воздействием «плюсового» и «минусового» давления. Эти деформации преобразовываются в перемещение указательной стрелки прибора. Перемещение стрелки осуществляется до установления равновесия между «плюсовым» сильфоном, с одной стороны, и «минусовым» и цилиндрической пружиной – с другой.


Рис. 2.23

Дифференциальный сильфонный манометр:

а – схема привода стрелки;
б – блок первичного преобразования;
1 – «плюсовый» сильфон;
2 – «минусовый» сильфон;
3 – шток;
4 – рычаг;
5 – торсионный вывод;
6 – цилиндрическая пружина;
7 – компенсатор;
8 – плоскостный клапан;
9 – основание;
10 и 11 – крышки;
12 – подводящий штуцер;
13 – манжета;
14 – дросселирующий канал;
15 – клапан;
16 – рычажная система;
17 – трибко-секторный механизм;
18 – стрелка;
19 – регулировочный винт;
20 – натяжная пружина;
21 – пробка;
22 – уплотнительное резиновое кольцо

«Плюсовый» 1 и «минусовый» 2 сильфоны (рис. Рис. 2.23, б) соединены между собой штоком 3, функционально связанным с рычагом 4, который, в свою очередь, неподвижно закреплен на оси торсионного вывода 5. К концу штока на выходе «минусового» сильфона присоединена цилиндрическая пружина 6, закрепленная нижним основанием на компенсаторе 7 и работающая на растяжение. Каждому номинальному перепаду давления соответствует определенная пружина.

«Плюсовый» сильфон состоит из двух частей. Его первая часть (компенсатор 7, состоящий из трех дополнительных гофр и плоскостных клапанов 8) предназначена для уменьшения температурной погрешности прибора из-за изменения объема жидкости-наполнителя, обусловленного варьированием температуры окружающего воздуха. При изменении температуры окружающей среды и соответственно рабочей жидкости ее увеличивающийся объем перетекает через плоскостный клапан во внутреннюю полость сильфонов. Вторая часть «плюсового» сильфона рабочая и идентична по конструкции «минусовому» сильфону.

«Плюсовый» и «минусовый» сильфоны присоединены к основанию 9, на котором установлены крышки 10 и 11, образующие вместе с сильфонами «плюсовую» и «минусовую» камеры с соответствующими подводящими штуцерами 12 давления р + и р

Внутренние объемы сильфонов, так же как и внутренняя полость основания 9, заполняются: жидкостью ПМС-5 для обычного и коррозионно-стойкого исполнений; составом ПЭФ-703110 – в кислородном варианте; дистиллированной водой – в варианте для пищевой промышленности и жидкостью ПМС-20 – для газового исполнения.

В конструкциях дифманометров, предназначенных для измерения давления газа, на шток одета манжета 13, движение среды организовано через дросселирующий канал 14. Регулированием размера проходного канала с помощью клапана 15 обеспечивается степень демпфирования измеряемого параметра.

Дифманометр работает следующим образом. Среды «плюсового» и «минусового» давления поступают через подводящие штуцеры в «плюсовую» и «минусовую» камеры соответственно. «Плюсовое» давление в большей степени воздействует на сильфон 1, сжимая его. Это приводит к перетоку находящейся внутри жидкости в «минусовый» сильфон, который растягивается и разжимает цилиндрическую пружину. Такая динамика происходит до уравновешивания сил взаимодействия между «плюсовым» сильфоном и парой – «минусовый» сильфон – цилиндрическая пружина. Мерой деформации сильфонов и их упругого взаимодействия служит перемещение штока, которое передается на рычаг и соответственно на ось торсионного вывода. На этой оси (рис. 2.23,а) закреплена рычажная система 16, обеспечивающая передачу вращения оси торсионного вывода к трибко-секторному механизму 17 и стрелке 18. Таким образом, воздействие на один из сильфонов приводит к угловому перемещению оси торсионного вывода и затем к повороту указательной стрелки прибора.
Регулировочным винтом 19 с помощью натяжной пружины 20 производится корректировка нулевой точки прибора.

Пробки 21 предназначены для продувки импульсных линий, промывки измерительных полостей сильфонного блока, слива рабочей среды, заполнения измерительных полостей разделительной жидкостью при вводе прибора в работу.
При односторонней перегрузке одной из камер происходит сжатие сильфона и перемещение штока. Клапан в виде уплотнительного резинового кольца 22 садится в гнездо основания, перекрывает переток жидкости из внутренней полости сильфона, и таким образом предотвращается его необратимая деформация. При непродолжительных перегрузках разность «плюсового» и «минусового» давления на сильфонный блок может достигать 25 МПа, а в отдельных типах приборов не превышать 32 МПа.
прибор может выпускаться как в общетеническом, так и в аммиачном (А), кислородном (К), коррозионно-стойком-пищевом (Пп) исполнениях.
 


Рис. 2.24

Показывающий дифференциальный манометр на основе мембранной коробки:

1 – мембранная коробка;
2 – держатель «плюсового» давления;
3 – держатель «минусового» давления;
4 – корпус;
5 – передаточный механизм;
6 – стрелка;
7 – цифербла

Достаточно широкое распространение получили приборы на основе мембран и мембранных коробок. В одном из вариантов (рис. 2.24) мембранная коробка 1, внутрь которой через подводящий штуцер держателя 2 поступает «плюсовое» давление, является чувствительным элементом дифманометра. Под воздействием этого давления смещается подвижный центр мембранной коробки.
«Минусовое» давление через подводящий штуцер держателя 3 подается внутрь герметичного корпуса 4 прибора и воздействует на мембранную коробку снаружи, создавая противодействие перемещению ее подвижного центра. Таким образом «плюсовое» и «минусовое» давления уравновешивают друг друга, а перемещение подвижного центра мембранной коробки свидетельствует о величине разностного – дифференциального давления. Этот сдвиг через передаточный механизм передается на указательную стрелку 6, которая на шкале циферблата 7 показывает измеряемое дифференциальное давление.
Диапазон измеряемого давления определяется свойствами мембран и ограничивается, как правило, в пределах от 0 до 0,4…40 кПа. При этом класс точности может составлять 1,5; 1,0; 0,6; 0,4, а в некоторых приборах 0,25.

Обязательная конструктивная герметичность корпуса определяет высокую защищенность от внешних воздействий и определяется в основном уровнем IP66.

В качестве материала для чувствительных элементов приборов используется бериллиевая и другие бронзы, а также нержавеющая сталь, для штуцеров, передаточных механизмов – медные сплавы, коррозионно-стойкие сплавы, включая нержавеющую сталь.
Приборы могут изготавливаться в корпусах малых (63 мм), средних (100 мм), и больших (160 мм) диаметров.

Мембранные показывающие дифференциальные манометры, как и приборы с мембранными коробками, используются для измерения малых значений дифференциального давления. Отличительная особенность – устойчивая работа при высоком статическом давлении.
 


Рис. 2.25

Мембранные показывающие дифференциальные манометры с вертикальной мембраной:

1 – «плюсовая» камера;
2 – «минусовая» камера;
3 – чувствительная гофрированная мембрана;
4 – передающий шток;
5 – передаточный механизм;
6 – предохранительный клапан

Дифманометр с вертикальной мембраной (Рис. 2.25) состоит из «плюсовой» 1 и «минусовой» 2 рабочих камер, разделенных чувствительной гофрированной мембраной 3. Под воздействием давления мембрана деформируется, в результате чего перемещается ее центр вместе с закрепленным на нем передающим штоком 4. Линейное смещение штока в передаточном механизме 5 преобразуется в осевое вращение трибки, и соответственно указательной стрелки, отсчитывающей на шкале прибора измеряемое давление.

Для сохранения работоспособности чувствительной гофрированной мембраны при превышении максимального допустимого статического давления предусмотрен открывающийся предохранительный клапан 6. Причем конструкции этих клапанов могут быть различны. Соответственно такие приборы не могут использоваться, когда не допускается контакт сред из «плюсовой» и «минусовой» камер.


Рис. 2.26

Мембранный показывающий дифференциальный манометр с горизонтальной мембраной:

1 – «плюсовая» камера;
2 – «минусовая» камера;
3 – входной блок;
4 – чувствительная гофрированная мембрана;
5 – толкатель;
6 – сектор;
7 – трибка;
8 – стрелка;
9 – циферблат;
10 – разделительный сильфон

Дифманометр с горизонтальной чувствительной мембраной показан на рис. 2.26. Входной блок 3 состоит из двух частей, между которыми устанавливается гофрированная мембрана 4. В ее центре закреплен толкатель 5, передающий перемещение от мембраны, через сектор 6, трибку 7 к стрелке 8. В этом передаточном звене линейное перемещение толкателя преобразуется в осевое вращение стрелки 8, отслеживающей на шкале циферблата 9 измеряемое давление. В этой конструкции применена сильфонная система вывода толкателя из зоны рабочего давления. Разделительный сильфон 10 своим основанием герметично закрепляется на центре чувствительной мембраны, а верхней частью также герметично прикрепляется к входному блоку. Такая конструкция исключает контакт измеряемой и окружающей сред.
Конструкция входного блока предусматривает возможность промывки или продувки «плюсовой» и «минусовой» камер и обеспечивает применение таких приборов для работы даже в условиях загрязненных рабочих сред.


Рис. 2.27

Мембранный двухкамерный показывающий дифманометр:

1 – «плюсовая» камера;
2 – «минусовая» камера;
3 – передающий шток;
4 – сектор;
5 – трибка;
6 – коромысло

Двухкамерная система измерения дифференциального давления применена в конструкции прибора, показанного на рис. 2.27. Измеряемые потоки среды направляются в «плюсовую» 1 и «минусовую» 2 рабочие камеры, основными функциональными элементами которых являются автономные чувствительные мембраны. Преобладание одного давления над другим приводит к линейному перемещению передающего штока 3, которое через коромысло 6 передается соответственно на сектор 4, трибку 5 и систему стрелочной индикации измеряемого параметра.
Дифманометры с двухкамерной системой измерения используются для измерения малых дифференциальных давлений при высоких статических нагрузках, вязких сред и сред с твердыми вкраплениями.


Рис. 2.28.

Дифманометр с магнитным преобразователем:

1 – поворотный магнит;
2 – стрелка;
3 – корпус;
4 – магнитный поршень;
5 – фторопластовый сальник;
6 – рабочий канал;
7 – пробка;
8 – диапазонная пружина;
9 – блок электроконтактов

Принципиально иной показывающий дифманометр изображен на рис. 2.28. Поворотный магнит 1, на торце которого установлена стрелка 2, размещен в корпусе 3, выполненном из немагнитного металла. Магнитный поршень, уплотненный фторопластовым сальником 5, может передвигаться в рабочем канале 6. Магнитный поршень 4 со стороны «минусового» давления подпирает пробка 7, в свою очередь поджимаемая диапазонной пружиной 8.
Среда «плюсового» давления через соответствующий подводящий штуцер воздействует на магнитный поршень и сдвигает его вместе с пробкой 7 по каналу 6 до уравновешивания такого смещения противодействующими силами – «минусовым» давлением и диапазонной пружиной. Движение магнитного поршня приводит к осевому вращению поворотного магнита и соответственно указательной стрелки. Такой сдвиг пропорционален перемещению стрелки. Полное согласование достигается подбором упругих характеристик диапазонной пружины.
В дифманометре с магнитным преобразователем предусмотрен блок 9, замыкающий и размыкающий соответствующие контакты при прохождении вблизи его магнитного поршня.

Приборы с магнитным преобразователем устойчивы к воздействию статического давления (до 10 МПа). Они обеспечивают относительно невысокую погрешность (примерно 2 %) в диапазоне функционирования до 0,4 Мпа и используются для измерения давления воздуха, газов, различных жидкостей.

[http://jumas.ru/index.php?area=1&p=static&page=razdel_2_3_2]

 

    
    Показывающий дифференциальный манометр на основе трубчатой пружины

1 и 2 – держатели;
3 и 4 – трубчатые пружины;
5 и 8 – трибки;
6 – стрелка «плюсового» давления;
7 и 9 – шкалы избыточного давления;
10 – стрелка «минусового» давления

В приборах такого типа на автономных держателях 1 и 2, соединенных вместе, установлены трубчатые пружины. Каждый держатель вместе с трубчатым чувствительным элементом образовывают автономные измерительные каналы. Среда «плюсового» давления поступает через входной штуцер держателя 2 в трубку 4, деформирует ее овал, в результате чего перемещается наконечник трубки и это перемещение через соответствующий зубчатый сектор передается на трибку 5. Эта трибка соответственно приводит к отклонению указательной стрелки 6, которая показывает на шкале 7 значение «плюсового» избыточного давления.

«Минусовое» давление посредством держателя 1, трубчатой пружины 3, трибки 8 приводит к перемещению циферблата 9, объединенного со стрелкой 10, которая на шкале 7 отслеживает значение измеряемого параметра.

Дифференциальные манометры (далее – дифманометры), как отмечалось в п.1.3, являются названием отнесенным в нашей стране к показывающим приборам. (Устройства, обеспечивающие электрический выходной сигнал, пропорциональный измеряемому дифференциальному давлению имеют название измерительных преобразователей разности давлений). Хотя отдельные производители, а также некоторые специалисты-эксплуатанционщики измерительные преобразователи разности давлений также называют дифманометрами.

Дифманометры нашли основное применение в технологических процессах для измерения, контроля, регистрации и регулирования следующих параметров:

· расхода различных жидких, газообразных и парообразных сред по перепаду давления на разного рода сужающих устройствах (стандартных диафрагмах, соплах, включая сопла Вентури) и дополнительно вводимых в поток гидро- и аэродинамических сопротивлениях, например на преобразователях типа Annubar или на нестандартных гидро- и аэродинамических препятствиях;

· перепада – разности давления, вакуумметрических, избыточных, в двух точках технологического цикла, включая потери на фильтрах систем вентиляции и кондиционирования воздуха;

· уровня жидких сред по величине гидростатического столба.

Согласно ГОСТ 18140–84/23/, предельные номинальные перепады давления дифманометров-расходомеров, верхние пределы или сумма абсолютных значений верхних пределов измерений дифманометров-перепадомеров должны приниматься из следующего ряда:

10; 16; 25; 40; 63; 100; 160; 250; 400; 630 Па;

1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 40; 63; 100; 160; 250; 400; 630 кПа;

1; 1,6; 2,5; 4; 6,3 МПа.

У дифманометров-расходомеров верхние пределы измерений выбираются из ряда, определяемого выражением:

А = а × 10n, (2.7)

где а – одно из чисел следующего ряда: 1; 1,25; 1,6; 2,0; 2,5; 3,2; 4; 5; 6,3; 8; n – целое (положительное или отрицательное) число или нуль.

Верхние пределы измерений или сумма абсолютных значений верхних пределов измерений дифманометров-уровнемеров следует выбирать и ряда:

0,25; 0,4; 0,63; 1,0; 1,6; 2,5; 4,0; 6,3; 10; 16; 25; 40; 63; 100 и 160 метров.

Одной из важных характеристик дифманометров является предельно допустимое рабочее избыточное давление, т. е. избыточное давление, которое могут выдержать рабочие каналы без необратимой деформации чувствительных элементов. Такое значение параметра принимается из следующего ряда:

25; 40; 63; 100; 160; 250; 400 и 630 кПа;

1; 1,6; 2,5; 4; 6,3; 10; 16; 25; 32; 40 и 63 МПа.

Нижние пределы измерений дифманометров-расходо-меров из-за неустойчивости работы стандартных сужающих устройств при малых Числах Рейнольдса измеряемого потока не должны превышать 30 % шкалы прибора. У преобразователей Annubar этот предел не превышает 10 % при сохранении объявленного класса точности (1,0).

Классы точности дифманометров принимаются из ряда: 0,25; 0,5; 1,0; 1,5.

Дифманометры должны иметь линейную шкалу при измерении уровня или перепада, линейную или квадратичную – при измерении расхода.

Дифманометры могут иметь условные обозначения, предложенные в методике п.1.4. Указываются модель прибора, причем на первом месте в обозначении фиксируется измеряемый параметр – тип измерителя (дифманометр), затем – принцип измерения и функция, предельный номинальный перепад, избыточное рабочее давление, класс точности. Например, дифманометр сильфонный показывающий в корпусе диаметром 160 мм, на предельный номинальный перепад давления 630 кПа, с рабочим избыточным давлением 32 МПа, класса точности 1,5 обозначается как

ДСП 160 (0…630 кПа)-32 МПа-1,5.

После этого допускается указывать дополнительные обозначения, например исполнение по «IP», измеряемой среде, присоединительным линиям и т. д.

Специфика измерения дифференциального давления обусловливает наличие в дифманометрах устройств продувки импульсных линий без необходимости демонтажа прибора или его узлов.

При испытаниях, а также в нормальных условиях отечественные дифманометры, согласно требований производителя, должны обеспечивать заданные метрологические характеристики после выдержки не менее 6-ти часов при температуре окружающей среды:

20 ± 2 или 23 ± 2 оС – для приборов классов точности 0,5; 0,6 и 1;

20 ± 5 или 23 ± 5 оС – для приборов класса точности 1,5.

Современные конструкции из-за снижения металлоемкости и совершенствования преобразователей позволяют сокращать время температурной адаптации у некоторых моделей до нескольких десятков минут.

Конкретная температура приведена в ТУ на измеритель и должна регистрироваться в техническом описании или паспорте на прибор.

Дифманометры, не защищенные от одностороннего воздействия, должны выдерживать перегрузку со стороны среды «плюсового» давления, превышающую предельные номинальные перепады на 10…50 %. «Плюсовым», в противовес «минусовому», называют большее из двух давлений среды, поступающей на вход дифференциального манометра.

Конструкции, у которых предусмотрены односторонние перегрузки, должны выдерживать десятикратные, стократные или двухсот пятидесятикратные односторонние перегрузки/23/.

Показывающие дифференциальные манометры на основе трубчатой пружины находят широкое применение для визуализации расхода различных сред, гидродинамических потерь в системах теплового отопления.

Дифференциальное давление, т. е. разность давлений р отсчитывается стрелкой на шкале циферблата.

Дифманометры такого типа, исходя из особенностей трубчатых пружин, обеспечивают работоспособность в промышленных условиях в диапазоне от 0 до 100 МПа.

[http://jumas.ru/index.php?area=1&p=static&page=razdel2_2_4]

Тематики

  • средства измерения давления

Синонимы

EN

  • differential gauge pressure
  • differential manometer
  • differential pressure gage
  • differential pressure indicator
  • differential-pressure gage

DE

FR

normative_ru_fr.academic.ru

Особенности дифференциальных манометров

Разность давлений – это явление наблюдается как у человеческого организма, так и в различных технологических системах. Разность давления может быть как отрицательным явлением, так и положительным, то есть  вредным или положительным. В некоторых ситуациях не важна величина этого давления, а важна именно разность (дельта) давления между двумя различными средами. Для замера этой разности и послужил дифманометр дм – это прибор преобразующий разность давлений в выходной сигнал.Он является линейной зависимостью постоянного тока. Величина разности давлений в системе выводится на цифровое табло, благодаря чему оператор может контролировать давление в гидравлической системе или пневматической. В гидравлических системах рабочим телом выступает жидкость. В замкнутой системе, то есть нет связи с атмосферой, рабочее тело в основном находится под давлением, так как оно выполняет какую-то работу. На выполнение работы требуется накопление энергии и чтоб контролировать эту энергию (в виде давления) нужны дифференциальные манометры. Также эти приборы могут измерять расход рабочего тела. В роли рабочего тела чаще всего выступает жидкость или пар (вода), но бывают другие случаи, в системах которых протекает газ, нефть, бензин или просто сжатый воздух, а также много других веществ.

Принцип работы

Принцип действия дифференциальных манометров основан на деформации сильфонного блока, который воспринимает тот самый перепад давления в системе, о котором речь шла выше. Сильфонный блок, в свою очередь, преобразовывает разность давлений в угловое перемещение стрелки указателя или пера. За перемещение указателя отвечает рычажный механизм. Стрелка указателя двигается до тех пор, пока воздействует сила, которая возникает в результате воздействия перепада давления в системе, это происходит до тех пор пока сила не уравновесится силами упругой деформации двух сильфонов и противодействующих пружин блока и торсионной выводной трубки. Также существуют дифманометры с пневматической системой передачи силы возде2йствия разности давлений на указательную стрелку. У таких дифманометров принцип действия основан на преобразовании перепада давления в системе в пропорциональную ему величину давления сжатого воздуха. Еще один тип – дифманометров (например ДМ) с металлической мембранной, принцип основан на упругой деформации мембраны, которая разделяет полости с разными давлениями.

Также существуют дифманометры ДМ с внешними электрическими соединениями – вторичными приборами ЭПИД. Такого типа дифманометры очень распространены, а принцип действия основан на преобразовании величины давления в системе, которое пропорционально изменяется величине давлению сжатого воздуха, который подсоединяется к прибору. Такие дифференциальные манометры работают с вторичными регулирующими приборами  агрегатной унифицированной системы (АУС), и ещё может быть в связке с другими (вторичными) пневматическими приборами.

Дифманометр мембранный пневматический, ещё один тип измерительных приборов, чувствительным элементом в таких устройствах выступает устройство измерительного блока, который компенсирует усилие разности давлений в системе.

dm-3583.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *