Технология полимер – Основы технологии производства и переработки полимерных материалов

alexxlab | 05.02.2019 | 0 | Вопросы и ответы

Содержание

Изделия из полимерных материалов | Строительный портал

Полимеры окружают нас повсюду, большинство предметов общего употребления изготовлены именно из них. Существует несколько видов полимерных материалов. Об их особенностях, свойствах и характеристике поговорим далее.

Оглавление:

  1. Классификация полимерных материалов и изделий
  2. Технология производства полимерных материалов
  3. Кровельные полимерные материалы и изделия в строительной отрасли

Классификация полимерных материалов и изделий

Полимерные материалы объединяют в себе несколько групп пластика синтетического происхождения. Среди них отметим:

  • полимерные вещества;
  • пластмассовые составы;
  • ПКМ – полимерные композитные материалы.

В каждой из перечисленных групп присутствует полимерное вещество, с помощью которого можно определить характеристику того или иного состава. Полимеры являются высокомолекулярными веществами, в которые вводят специальные добавки, то есть стабилизаторы, пластификаторы, смазки и т.д.

Пластмасса – является композиционным материалом, в основе которых лежит полимер. Кроме того, в их составе содержится наполнитель дисперсного или коротковолокнистого типа. Наполнители не склонны к образованию непрерывных фаз. Различают два вида пластмассовых веществ:

  • термопластик;
  • термоактивы.

Первый вариант пластмасс склонен к расплавлению и дальнейшему использованию, второй вариант пластмассы не склонен к расплавлению под воздействием высокой температуры.

В соотношении со способом полимеризации, пластмассы добывают с помощью:

  • поликонцентрирования;
  • полиприсоединений.

Рассматривая виды полимерных веществ, выделим:

1. Вид полиоэфинов – полимеры с одинаковой химической природой относятся к данной разновидности полимеров. В их составе присутствует два вещества:

  • полиэтиленовое;
  • полипропиленовое.

Каждый год, в мире производят более ста пятидесяти тонн таких полимеров. Среди преимуществ полиоэфинных веществ отметим:

  • стойкость перед ультрафиолетовым излучением;
  • устойчивость перед окислителями и разрывом;
  • механическая стойкость;
  • отсутствие усадки;
  • изменение свойств при необходимости.

Если сравнивать полиоэфины с другими типами полимерных веществ, то первые отличаются наибольшей экологической безопасностью. Для их изготовления и переработки материалов необходимо минимальное количество энергии.

2. Полиэтилен широко распространен в процессе упаковки любых изделий. Среди преимуществ использования данного материала отметим широкую сферу применения и отличные эксплуатационные характеристики.

Строение полиэтилена довольно простое, поэтому он легко кристаллизуется.

Полиэтиленовые вещества с высоким давлением. Данный материал отличается наличием легкого матового блеска, пластичностью, наличием волнообразной текстуры. Данный вид пленки отличается высокой механической стойкостью, устойчивостью перед ударами и разрывом, прочностью даже при морозе. Для его размягчения потребуется наличие температуры около ста градусов.

Полиэтиленовые вещества с низким давлением. Пленки такого типа имеют жесткую, прочную основу, которая отличается меньшей волнообразностью, по сравнению с предыдущим вариантом полиэтилена. Для стерилизации данного вещества используется пар, а температура его размягчения составляет более ста двадцати одного градуса. Несмотря на наличие высокой стойкости перед сжатием, пленка отличается более низкими характеристиками стойкости перед ударом и разрывом. Однако, среди их преимуществ также отмечают стойкость перед влагой, химическими веществами, жиром, маслом.

Использование полиэтилена при комнатной температуре позволяет получить более мягкую и гибкую его текстуру. Однако, в морозных условиях, данные характеристики сохраняются. Поэтому полиэтилены используются для хранения замороженной продукции. Однако, при повышении температуры до ста градусов тепла, характеристики полиэтилена изменяются, он становится непригодным к использованию.

Полиэтилен низкого давления используется при изготовлении бутылок и для упаковки разного рода веществ. Он обладает отличными эксплуатационными характеристиками.

Полиэтилен высокого давления более широко применим как упаковочный полимер. У него присутствует низкая кристалличность, мягкость, гибкость и доступная стоимость.

3. Полипропилен – материал у которого присутствует отличная прозрачность, высокая температура расплавления, химическая стойкость и устойчивость перед влагой. Полипропилен способен пропускать пар, неустойчив перед кислородом и окислителями.

4. Поливинилхлорид – довольно хрупкий и не эластичный материал, который чаще всего используется в качестве добавки к полимерам. Отличается дешевой стоимостью, высоковязким расплавом, термической нестабильностью, а при нагреве, склонен выделять токсичные вещества.


Технология производства полимерных материалов

Изготовление полимеров – довольно сложный процесс, для выполнения которого следует учитывать многие технические моменты работы с данными материалами. Различают несколько разновидностей технологий изготовления материалов на полимерной основе. Полимерные материалы, изделия, оборудование, технологии, методы:

  • вальцево-каландровый метод;
  • применение трехкомпонентной технологии;
  • использование экструзии термопластиковых изделий;
  • метод литья полимеров крупной, средней и маленькой формы;
  • формирование полистирольных веществ;
  • изготовление плит из пенополистирола;
  • выдувной метод;
  • изготовление изделий на основе ППУ.

Самыми популярными методами производства изделий из полимерных материалов являются выдув и термоформировка. Для выполнения первого метода главными исходными материалами выступает полиэтилен и полипропиленовые составы. Среди основных характеристик полиэтилена отметим быструю усадку, стойкость к температурной нестабильности. С помощью выдува формируются изделия объемной формы.

С помощью термической формировки удается сделать пластиковую посуду. В таком случае, процедура изготовления изделий состоит из трех этапов. Вначале определяют количество пластика, далее он помещается в предварительно подготовленную форму, далее производится его расплавливание. Пластмасса устанавливается под прессом, далее она закрывается. В формирующей станции изделия доводится до нужной формы, на следующем этапе производится его охлаждение и затвердение. Далее изделие извлекают из формы и выбрасывают в специальный резервуар.

Использование современного оборудования для изготовления пластмассовых изделий, позволяет получить вещество, отличающееся прочностью, длительностью эксплуатации.

Выделяют оборудование автоматизированного типа, с его помощью также производят полимерные вещества. В таком случае, в процессе работы над полимерными изделиями человеческий фактор практически отсутствует вся работа проводится специальными роботами.

С помощью применения автоматизированного оборудования удается получить вещества, отличающиеся более высоким качеством, широким ассортиментом продукции и снижением расходов на их изготовление.

Различают огромное количество изделий из полимерных материалов. Они различаются между собой по величине, способу изготовления, составу, Для изготовления полимеров используют вещества в виде:

  • натуральных полиамидов с содержанием стекловолокна;
  • полипропиленов, которые делают изделия стойкими перед морозом;
  • поликарбонатов;
  • полиуретана;
  • ПВХ и т.д.

Кровельные полимерные материалы и изделия в строительной отрасли

Любая кровля должна быть долговечной и надежной. Довольно популярными отделочными материалами для кровли являются изделия на основе полимерных материалов. Среди преимуществ их использования отметим:

  • высокую степень эластичности;
  • надежность;
  • отличную прочность;
  • стойкость перед растяжением и механическими повреждениями;
  • установка практически в любом климатическом регионе;
  • легкий монтаж и простая эксплуатация;
  • длительность эксплуатации.

Использование мембранной кровли полимерного состава основывается на механическом креплении сначала теплоизоляционного и гидроизоляционного слоев. С помощью мембраны удается создать различные по форме и конфигурации кровли зданий.

Выделяют несколько видов полимерных мембран в зависимости от их состава и основных характеристик:

  • поливинилхлоридные мембраны, в составе которых присутствуют дополнительные наполнители;
  • мембраны на основе пластичных полиэфинов;
  • мембраны, в составе которых присутствует этиленпропилендиенпономер.

Первый вариант мембраны отличается особой популярностью. Основным составляющим веществом мембраны является поливинилхлорид и разного рода добавки. С их помощью состав становится более устойчив перед низкой температурой. В качества армирования пленки используется сетка из полиэстера. Она делает изделие более прочным и стойким к разрыву. Именно с помощью данных характеристик удается обеспечить механическое крепление пленки.

Если рассматривать недостатки ПВХ мембран, то стоит отметить потерю их эластичности, по прошествии определенного периода эксплуатации. Так как, добавки, присутствующие в их составе со временем теряют свойства. Кроме того, данный материал ни в коем случае не используется с гидроизоляторами на битумной основе, они между собой несовместимы. Длительность эксплуатации ПВХ мембран составляет не более тридцати лет.

Мембраны на основе термопластичных полиэфинов содержат в составе каучук и особые вещества, улучшающие их пожарную безопасность. В данном материале удается удачность скомбинировать пластичность и резину. Среди их преимуществ отметим:

  • совместимость с веществами на битумной основе;
  • длительность эксплуатации, не нуждаются в ремонте до сорока лет;
  • существует возможность ремонта поверхности, при необходимости;
  • легки в монтаже;
  • более длительный срок эксплуатации, по сравнению с материалами на основе ПВХ.

Среди недостатков отметим только более высокую стоимость такой кровли. Которая вполне перекрывается всеми ее достоинствами.

Мембраны на основе ЭПДМ отличаются отличной стойкостью перед климатическими изменениями, эластичностью и длительностью эксплуатации.

Среди большого количества полимерных строительных материалов и изделий, к особой группе относят наличную полимерную кровлю. Среди преимуществ ее применения, отмечают:

  • отличные гидроизоляционные характеристики;
  • высокий уровень прочности;
  • стойкость к изменению температуры;
  • высокий уровень морозостойкости;
  • отсутствие стыков;
  • высокая стойкость к механическим повреждениям и износу;
  • стойкость перед гниением;
  • разнообразие цветовых решений;
  • легкость выполнения монтажных работ;
  • срок эксплуатации составляет около пятнадцати лет.

Полимерная кровля наливного характера очень схожа с мембраной, однако, они различаются в технологии монтажа материала. В зависимости от технологии наливки кровли она бывает:

  • полимерной;
  • полимерно-резиновой.

Первый вариант более распространен из-за наличия в нем огромного количества преимуществ. Для нанесения данного типа кровли потребуется налить состав на поверхность и равномерно распределить его с помощью кисти или валиком. Главным преимуществом данной кровли является полная ее герметичность, эластичность и монолитность.

В соотношении с технологией установки наливной кровли, она бывает:

  • армированной;
  • неармированной;
  • комбинированной.

Наливная кровля с армированием содержит в своем составе цельную битумную эмульсию и дополнительное армирование с помощью стеклоткани. Неармированное покрытие состоит из эмульсионного материала, который наносится непосредственно на кровлю, толщиной около 1 мм. Комбинированный вариант предполагает использование полимерных мастик, гидроизоляционных материалов рулонного типа, верхнего слоя, в составе которого присутствует каменная крошка, гравий и краска на влагостойкой основе. Нижний слой кровли содержит подкладку в виде недорогого рулонного материала. При этом, армирование обеспечивается верхним слоем из каменной крошки.

В составе полимерной наливной кровли присутствует:

  • композиции полимерного типа;
  • наполнители, повышающие эксплуатационные характеристики материала;
  • грунтовка, с помощью которой выполняется подготовка основания перед нанесением кровли;
  • армирующий состав – полиэфирное волокно или стеклоткань.

Довольно распространенным вариантом является использование кровли на основе полиуретана. Она отлично ложится на поверхность и легко устанавливается на сложных участках вблизи дымохода или телевизионной антены. Полиуретан делает кровлю схожей с резиной, он придает ей таких качеств как стойкость к перепаду температур, длительность эксплуатации.

Еще одним вариантом полимера на органической основе, используемого в процессе ремонта и изготовления наливной кровли, является полимочевина. Среди ее преимуществ отметим:

  • очень быстрая полимеризация, для хождения по кровле достаточно подождать один час после нанесения материала;
  • способность проводить работы при температуре до -16 и высокой влажности;
  • отличные электроизоляционные характеристики;
  • стойкость перед ультрафиолетовым излучением;
  • пожарная безопасность и стойкость перед высокой температурой;
  • длительность эксплуатации;
  • экологическая безопасность.

Применение полимерных материалов и изделий связано с разными отраслями промышленности и общественности. Использование полимочевины особо актуально в регионах с нестабильным климатом и резкими изменениями температурного режима.

strport.ru

Производство полимеров

Производство и переработка полимеров

Производство полимероа

Изделия из пластика давно стали неотъемлемой частью нашей повседневной жизни. Именно поэтому производство полимеров – это перспективная и стремительно развивающаяся отрасль промышленности. Полимеры – это вещества, состоящие из больших макромолекул, которые соединяются из элементарных звеньев, или мономеров. Благодаря своим свойствам, полимерные материалы обрели такую популярность на сегодняшнем рынке. Производство изделий из полимеров насчитывает множество различных направлений, так как эти изделия с успехом используются практически во всех сферах нашей жизни, начиная от автомобильных запчастей и заканчивая обычной пищевой плёнкой. А производство полимеров в России особенно актуально, ведь наша страна богата на природные ресурсы, тогда как основным сырьём, применяемым в производстве полимеров, является нефть, а вспомогательным – природный газ.

Технология производства полимеров

Полимеры, используемые в промышленности, можно разделить на три группы. Природные полимеры, такие как каучук, целюллоза или казеиновый клей, не получили широкого распространения и мало используются. Химически обработанные природные полимеры – переработанные – используются немного больше, но всё равно не играют в современной промышленности значительной роли. Наиболее распространены сегодня в промышленности синтетические полимеры, их получают, объединяя мономеры в макромолекулы. Технология производства полимеров из мономеров включает в себя два основных способа: поликонденсация и полимеризация. В первом случае между двумя молекулами мономера образуется связь при отрывании от них небольшой молекулы другого вещества, например, аммиака, воды или хлористого водорода. Во втором же случае в мономерах разрываются двойные связи, что приводит к образованию полимерной цепи с межмономерными связями.

Завод по производству полимеров комплекса предприятий ООО «Пластик» обладает огромным научным потенциалом и современным оборудованием. При этом, технологическая база постоянно обновляется, поэтому полимеры, произведённые нами, и изделия из них отличаются высшим качеством, а ассортимент стремительно растёт.

Переработка полимеров

Не менее важным и остро стоящим является вопрос экологичности изделий из полимеров. Срок разложения обычной пластиковой бутылки или пищевой плёнки превышает стони лет. Именно поэтому так важна переработка полимеров. Производство изделий из пластикового вторичного сырья – один из вариантов решения данной проблемы, однако этот процесс сопряжён со значительным количеством трудностей. Главной загвоздкой становится то, что изделия, при производстве которых используется переработанный полимерный материал, получаются гораздо более низкого качества. Полимерные отходы значительно уступают исходным полимерам в их механических свойствах. Более того, по сравнению с исходными полимерами, изменяются параметры технологического процесса получения полимерной массы для производства изделий из вторичного сырья, потому что такое сырьё достаточно сильно отличается от исходного: изменяется вязкость, прочность, материал может содержать неполимерные включения. Однако, не смотря на все трудности, тенденция к производству из вторичных полимеров новых изделий постепенно развивается. Например, всё чаще каскадную переработку применяют к производству пластиковых бутылок, так как это не сказывается на их качестве.

Ещё одним вариантом решения проблемы экологичности является производство биоразлагаемых полимеров. На сегодня наибольшей популярностью среди таких пластмасс пользуется полилактид (PLA), так как он изготавливается из органических материалов. Также ведутся исследования в области придания способности к биоразложению другим широко распространённым в промышленности видам пластика, таким как полистирол, поливинилхлорид, полипропилен и другие. Одним из вариантов реализации этой задачи является добавление в полимерную массу органического концентрата, что не особенно сказывается на качестве получаемого изделия, но значительно сокращает срок его разложения.

avtoplastikp.ru

Технология – получение – полимер

Технология – получение – полимер

Cтраница 1

Технология получения полимеров поликонденсацией на границе раздела фаз в принципе очень проста: мономеры предварительно растворяют в соответствующих растворителях, а затем смешивают полученные растворы. Образовавшийся полимер выделяют из реакционной смеси, промывают, регенерируют водную и органическую фазы и возвращают их в процесс. Такая методика проведения поликонденсацин на границе раздела фаз широко применяется в лабораторной практике.  [1]

Разработаны методы и технология получения аренфеноло-форм-альдегидных полимеров ( феноформолитов) на основе стирола, фенантрена, нафталина, антрацена, аценафтилена.  [2]

В нашем институте разработана технология получения растворимого полимера на основе / дйфенилоксида, пригодного для производства термостойкого электроизоляционного пропиточного лака.  [3]

В настоящее время освоена технология получения жидких гетеро-силоксановых полимеров. Жидкий алюмосилоксановый полимер ( АС-300) является, например, высокоэффективным пеногасителем в эмульсиях для водных сред. Подобно алюмосилоксанам хромсилок-саны эффективны также в качестве пеногасителей.  [4]

Однако волокнистая природа стекловолокна создает дополнительные трудности при разработке технологии получения стеклона-полненных полимеров. При применении волокнистого наполнителя трудно достичь равномерности распределения, так как волокна могут скатываться в войлок. В этом случае особенно большое значение имеет правильный выбор метода введения наполнителя.  [5]

Для того чтобы запустить промышленное производство, нужно разработать технологию получения полимера. Но прежде чем браться за технологию, нужно как следует разобраться в теории. Нужно выяснить, какой объем экспериментальных данных надо накопить в лаборатории для того, чтобы вступить в диалог с технологами.  [6]

Ниже рассматривается применение нетеплового или ком бинированного воздействия СВЧ электромагнитных колебаний на полимерные материалы для модификации их физико-хими ческих и физико-механических свойств, создания новых высо коэффективных технологий получения полимеров с заданным.  [7]

Поликонденсация в расплаве применяется тогда, когда исходные мономеры и получаемый полимер могут длительное время подвергаться воздействию температуры без разложения в расплавленном состоянии. Технология получения полимеров состоит в следующем. Исходные мономеры смешиваются и нагреваются в реакторе в течение нескольких часов в атмосфере инертного газа во избежание их окисления. В конце процесса поликонденсации с целью полного удаления низкомолекулярных соединений из смолы в реакторе создается вакуум. Получаемый продукт направляется на дальнейшее использование.  [8]

Даны представления о статической электризации, показана зависимость ее от состава и строения полимеров, описаны методы измерения электростатических характеристик полимеров. Описана технология получения полимеров с антистатическими свойствами. Книга обобщает последние литературные данные и результаты экспериментальных исследований ( 1 – е изд.  [9]

Как видно из приведенной таблицы, тип связи между ароматическими ядрами определяет принадлежность полимеров к тому или иному классу. Характер этой связи в значительной степени влияет как на технологию получения полимеров и волокон на их основе, так и на физико-механические и термические свойства промежуточных и конечных изделий.  [10]

Каждый из указанных способов имеет свои преимущества и недостатки. Основным и очень существенным преимуществом метода полимеризации в растворе является значительное упрощение технологии получения полимера и формования из него волокна, а также возможность осуществления непрерывного процесса синтеза полимера и формования из него волокна.  [11]

Кроме того, в связи с развитием непрерывных способов производства капронового волокна ряд актуальных вопросов, относящихся к технологии получения полимера, целесообразно рассмотреть дополнительно.  [12]

Как известно, одной из выпускаемых форм ПТФЭ являются водные дисперсии с концентрацией твердой фазы 40 – 70 % и размером частиц полимера 0 05 – 0 5 мкм. Дисперсия ПТФЭ может быть переработана либо путем совмещения ее с раствором водорастворимого полимера с последующим формованием полотна по технологии получения вспомогательного полимера, спекания частиц ПТФЭ при повышенных температуре и давлении и удаления вспомогательного полимера; либо используют метод смешения дисперсии с термопластичным полимером с последующей экструзией и каландрованием смеси и экстракцией вспомогательного полимера.  [13]

В книге излагаются основные сведения из химии высокомолекулярных соединений. Даются сведения о выпускаемых промышленностью полимерах и пластмассах на их основе, включая данные по основным видам сырья и источникам их получения, по физико-химическим основам, технологии получения полимеров и пластмасс, их свойствам и областям применения. Большое внимание уделено технике безопасности.  [14]

Большинство из них пришло к выводу, что удерживание на этих материалах осуществляется не только в результате адсорбции, но и вследствие совместного адсорбционно-распределительного механизма. К недостаткам пористых полимеров относятся высокая рабочая температура колонки, уширение пиков соединений с разветвленной структурой, а также не слишком хорошая воспроизводимость параметров удерживания на адсорбентах, поставляемых различными изготовителями. Однако по мере совершенствования технологии получения полимеров эти недостатки постепенно будут изжиты.  [15]

Страницы:      1    2

www.ngpedia.ru

Новые технологии производства полимерных материалов

Технологии производства полимерных материалов в мировой практике являются разнообразными и реализуются путем использования специализированного оборудования. Если говорить о развитии технологий производства полимеров, то можно сделать правильный выбор о том, что век полимеров только начинается. За последнее десятилетие благодаря новым технологиям создания полимеров, удалось достичь в ряде областей технического прорыва. Были изобретены стрейч-пленки, термоусадочные пленки, которые сейчас широко используются для упаковки грузов. В наиболее развитых странах в сельском хозяйстве и мелиорации используются биоразлагаемые пленки и геомембраны. Настоящую революцию произвели в производстве упаковки многослойные пленки с регулируемым набором свойств. Снизить затраты на строительство можно посредством использования дышащих пленок. Для декоративных целей посредством новых технологий производства полимерных материалов были созданы металлизированные материалы, позволяющие уменьшить теплопотери и защитить от нагрева. Такие материалы также используются для изготовления зеркал, рефлекторов фар.

В производстве товаров широкого потребления, спортивных товаров, для замены стекла, металла, дерева в машиностроении, и для изготовления деталей летательных аппаратов, конструкций автомобилей все чаще можно встретить использование полимерных материалов с повышенной жесткостью и прочностью, а также теплоустойчивых материалов. Для создания плетеных мешков, сверхтонкой упаковки используются пленки с повышенной прочностью, называемые ориентированными.

Геотекстиль и пространственные георешетки считаются особенно функциональными новыми полимерными материалами, которые используются для строительства зданий, сооружений и дорог и их эксплуатации, снижая расходы. Изменить традиционные представления о конструкционных и теплоизоляционных упаковочных материалах удалось за счет производства новых полимерных материалов, таких, как пузырчатые, вспененные пленки и листы, нетканые материалы. Если в ближайшее время будут освоены широкие технологии производства композиционных материалов, то перспективы использования полимеров будут еще перспективнее. Композиционные материалы используются для создания стеклонаполненных пластиков, полимербетона, объемно-фибриллированных и волокнистых пластмасс.

www.sheg-rus.ru

Технология – полимер – Большая Энциклопедия Нефти и Газа, статья, страница 1

Технология – полимер

Cтраница 1

Технология полимеров во многом базируется на достижениях физической химии, и подробный обзор этой обширной научной дисциплины не входит в задачи этой книги.  [1]

Технология полимеров, как и других материалов, уже давно идет по пути создания композиционных материалов, в которых за счет направленного сочетания компонентов стремятся получить требуемый комплекс свойств. Возможности для этого в полимерах поистине огромны. Стеклопластики, усиленные эластомеры, ударопрочные пластики, пластики, армированные неорганическими и органическими волокнами и наполненные порошкообразными наполнителями, многокомпонентные полимерные смеси, термоэла-стопласты, полимербетоны – вот далеко не полный перечень композиционных полимерных материалов, широко применяемых в различных областях современной техники. Однако несмотря на достаточно широкое использование композиционных полимерных материалов, научно обоснованные принципы создания таких материалов с заданным комплексом свойств все еще отсутствуют. Это особенно относится к материалам, содержащим лишь полимерные компоненты, таким как смеси полимеров, блок – и привитые сополимеры и др. В связи с этим необходимо отметить, что в последние годы чрезвычайно активно проводятся работы, направленные на выяснение физико-химических факторов, обусловливающих совместимость и сегрегацию компонентов и формирование характерной микрогетерогенной структуры и морфологии, особенностей сопряжения микро – и макрофаз и их устойчивости при воздействии температур, механических напряжений и других факторов. Это позволяет надеяться, что такие принципы будут в ближайшее время разработаны.  [2]

Фактически технология полимеров развивается по пути удовлетворения индивидуальных заказов потребителей.  [3]

В технологии полимеров используются все перечисленные методы оценки уровня качества, при этом для определения номенклатуры единичных и комплексных ПКП ( исходного сырья и материалов) применительно к конкретным объектам можно руководствоваться данными табл. 1, из которой видно, что часть приведенных ПКП используется для оценки уровня качества практически всех типов полимерных материалов и композитов на их основе, а остальные специфичны лишь для определенных их видов. Примером ПКП, специфических для отдельных типов материалов, являются реокинетические характеристики, используемые для оценки технологических свойств реактопластов, резиновых смесей и реакционноспособных уретановых композиций на основе оли-гомеров.  [4]

Химия и технология полимеров ( Итоги науки, сер.  [5]

Химия и технология полимеров, Сборник № 1, Изди-тинлит, 1959, стр.  [7]

Химия и технология полимеров, Сборник ЛЬ 1, Из:: 1 пилит, 1958, стр.  [8]

Химия и технология полимеров, Сборник № 2, Издатинлит, 1959, стр.  [9]

Химия и технология полимеров, Сборник № 3, Издатинлит, 1957, стр.  [10]

Химия и технология полимеров, Сборник № 5, Издатинлит, 1957, стр.  [11]

Химия и технология полимеров, Сборник № 2, Издат-инлит, 1959, стр.  [12]

Химия и технология полимеров ( Итоги науки, сер.  [13]

Химия и технология полимеров, Сборник № 2, Издатинлит, 1957, стр.  [14]

Часто в технологии полимеров возникает обратная задача, когда полимер нужно растворить при условии ограниченной или неограниченной растворимости.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Технология полимеров (Воробьев В. А., Андрианов Р. А.)

Описание книги Технология полимеров Воробьев В. А., Андрианов Р. А.

В учебнике освещаются вопросы технологии полимеров, дается описание промышленных способов производства полимеров, свойств и области применения их в промышленности полимерных строительных материалов.

Второе издание (первое вышло в 1971 году) дополнено описанием технологии и свойств новых видов полимеров. Большое внимание уделено вопросам охраны труда.

Предназначается для студентов ВУЗов специальности «Производство строительных изделий и конструкций».


Авторы:Воробьев В. А., Андрианов Р. А.
Издательство:Химия
Издано:Москва, 1990
Код УДК66.0
Скачать бесплатно (прямая ссылка)PDF

Содержание книги Технология полимеров Воробьев В. А., Андрианов Р. А.

Введение:

  • Общие сведения.
  • Сырьевая база для производства полимеров
  • Классификация полимеров.

Технология полимеров, получаемых цепной полимеризацией

Общие закономерности реакции цепной полимеризации:
  • Радикальная полимеризация.
  • Ионная полимеризация.
  • Строение полимеризационных полимеров.
  • Способы осуществления реакции полимеризации.
Полиэтилен:
  • Сырье.
  • Получение полиэтилена при высоком давлении.
  • Получение полиэтилена при низком давлении.
  • Свойства и применение полиэтилена.
Полипропилен:
  • Сырье и получение полипропилена.
  • Свойства и применение полипропилена.
Полиизобутилен:
  • Сырье и получение полиизобутилена.
  • Свойства и применение полиизобутилена.
Поливинилхлорид:
  • Сырье и получение поливинилхлорида.
  • Свойства и применение поливинилхлорида.
Поливинилиденхлорид:
  • Сырье и получение поливинилиденхлорида.
  • Свойства и применение поливинилиденхлорида.
Политетрафторэтилен и политрифторхлорэтилен:
  • Политетрафторэтилен.
  • Политрифторхлорэтилен.
Полистирол:
  • Сырье и получение полистирола.
  • Свойства и применение полистирола.
  • Модифицированный полистирол.
Полимеры винилового спирта и его производных:
  • Поливинилацетат.
  • Поливиниловый спирт.
  • Поливинилацетали.
Полимеры производных акриловой и метакриловой кислот:
  • Сырье и получение производных акриловой и метакриловой кислот.
  • Свойства и применение производных акриловой и метакриловой кислот.
  • Полиакрилонитрил.
Кумароно-инденовые полимеры:
  • Сырье и получение кумароно-инденовых полимеров.
  • Свойства и применение кумароно-инденовых полимеров.

Технология полимеров, получаемых поликонденсацией и ступенчатой полимеризацией

Общие закономерности реакции поликонденсации и ступенчатой полимеризации:
  • Поликонденсация.
  • Ступенчатая полимеризация.
Феноло-альдегидные полимеры:
  • Сырье.
  • Закономерности поликонденсации фенолов с альдегидами.
  • Получение феноло-альдегидных олигомеров.
  • Свойства и применение феноло-альдегидных олигомеров.
Амино-формальдегидные полимеры:
  • Сырье.
  • Закономерности поликонденсации амино-формальдегидных полимеров.
  • Получение амино-формальдегидных полимеров.
  • Свойства и применение амино-формальдегидных полимеров.
Кремнийорганические полимеры:
  • Особенности химии кремния.
  • Сырье.
  • Закономерности поликонденсации кремнийорганических полимеров.
  • Получение кремнийорганических полимеров.
  • Свойства и применение кремнийорганических полимеров.
Полиуретаны и полимочевины:
  • Полиуретаны.
  • Полимочевины.
Эпоксидные полимеры:
  • Сырье.
  • Закономерности поликонденсации эпоксидных полимеров.
  • Получение диановых эпоксидных олигомеров.
  • Получение других видов эпоксидных олигомеров.
  • Модифицированные эпоксидные смолы
  • Свойства, способы отверждения и применение эпоксидных полимеров.

Простые и сложные полиэфирные полимеры:

  • Простые полиэфиры.
  • Линейные полиэфиры.
  • Поликарбонаты.
  • Алкидные полимеры.
  • Ненасыщенные полиэфиры.

Полиамиды:

  • Сырье.
  • Получение поликапролактама.
  • Получение полигексаметилендипамида.
  • Свойства и применение полиамидов.
Фурановые полимеры:
  • Получение фурфуроло-ацетонового мономера.
  • Получение фуриловых олигомеров.
  • Свойства и применение фурановых полимеров.

Модифицированые природные полимеры

Эфиры целюлозы:
  • Целлюлоза.
  • Получение сложных и смешанных эфиров целлюлозы.
  • Получение простых эфиров целлюлозы.

 

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter

mplast.by

Реферат – Технология полимерных композиционных материалов

Технология полимерных композиционных материалов

Введение

Технология как наука о способах и методах переработки ресурсов возникла в связи с развитием крупной машинной промышленности. К настоящему времени технология промышленного производства выросла в самостоятельную отрасль знаний, накопила обширный теоретический и опытный материал. Из описательной она превратилась в точную науку, широко использующую для совершенствования производственных процессов основные положения физики, химии, механики, теплотехники, кибернетики, экономики, организации и планирования производства. В результате такой тесной связи технологии с техническими и экономическими дисциплинами современное промышленное производство требует серьезных знаний экономики от технологов, а технологии от экономистов. Только разносторонняя профессиональная подготовка и широкий кругозор специалистов могут способствовать ускорению научно-технического прогресса в промышленности.

Известно, что современное промышленное производство характеризуется чрезвычайным разнообразием видов используемого сырья, методов его переработки и широким ассортиментом получаемой продукции. Такой прогресс в промышленном производстве достигнут благодаря широкому внедрению результатов научных исследований в промышленность и дальнейшему совершенствованию производственных процессов.

Современное развитие промышленности идет по пути увеличения масштабов производства, совершенствования технического оснащения существующих предприятий, возникновения новых технологических процессов. Современные заводы представляют собой сложные комбинаты, объединенные для комплексного использования сырья и выпуска различных видов полупродуктов и товарной продукции.

Производства чаще всего комбинируются по общности основных процессов и применяемой аппаратуры. Для развития промышленности сегодняшнего дня характерны две тенденции: быстрый рост числа производств и видов продукции и все возрастающая типизация процессов.

Технологические отношения охватывают взаимоотношения в процессе производства и обусловлены характером производственных операций, т.е. это есть отношения между человеком, средствами труда и предметом труда в производственном процессе. В конечном итоге, технологические отношения складываются в систему взаимодействия «человек – наука – техника – производство».

Важная роль в жизни общества принадлежит производственной технике и технологии, которые представляют существенную часть всей технической системы, ее ядро. Главными, определяющими стимулами развития технологии являются экономические, производственные потребности общества.

Для принятия в производство новой технологии необходим тщательный технико-экономический анализ, т.е. исследование взаимосвязей технических, организационных и экономических параметров и показателей, позволяющее найти наилучшее решение.

Технология получения полимерных композиционных материалов

Способы получения полимерных композитов определяются типом наполнителя (волокнистый, порошкообразный), так и агрегатным состоянием полимера (жидкий или твердый). Имеются свои различия и в методах приготовления ПКМ с наполнителем одного типа. Так, для каждого материала из армированных волокнами пластиков в соответствии с известной классификацией характерен свой способ получения.

Вот основные четыре группы полимерных композитов простой классификации:

1) слоистые пластики, или текстолиты, в которых наполнитель применяется в виде слоев волокнистой

2) литьевые и прессовочные композиции, наполненные рублеными волокнами, ровницей, нитями;

3) ориентированные армированные пластики, образующиеся при укладывании стеклянных или синтетических волокон, прядей, нитей, жгутов и пр. параллельно друг другу при одновременном нанесении на них связующего;

4) стеклопластики на основе предварительно формованных стеклянных волокон или холстов (матов), которые получают методом прессования при низком давлении.

Таким образом, в зависимости от способа введения волокна в полимерную матрицу готовят материалы, или обладающие ярко выраженной анизотропией свойств, или практически изотропные.

Что касается дисперсных наполнителей, то большинство способов получения ПКМ на их основе включает стадию изготовления так называемых пресс-порошков либо мокрым методом, например пропиткой смолами, либо сухим методом, например вальцеванием.

В случае использования жидких связующих методы получения композитов различны в зависимости от способа формования. При мокром способе формования в форму укладывают волокнистый или дисперсный наполнитель, который пропитывают жидким олигомерным связующим. Олигомеры по размерам молекул являются промежуточными между мономерами и полимерами. Так, если исходное состояние связующего — твердое (высокомолекулярный твердый полимер), то предварительно готовят раствор связующего. После пропитки и удаления растворителя проводят процесс отверждения, обычно заключающийся в прессовании под небольшим давлением при повышенных температурах.

При сухом способе формования в форму помещают предварительно пропитанный связующим и высушенный наполнитель. Последнюю стадию — отверждение — осуществляют, как правило, таким же образом, как и при мокром способе формования.

Одним из неприятных явлений, наблюдающихся при изготовлении композитов, являются так называемые усадочные процессы. Дело в том, что в качестве связующего часто используют олигомеры, которые при повышении температуры или при добавлении отверждающего агента превращаются (полимеризуются или поликонденсируются) в полимеры сетчатого строения. Процессы полимеризации и поликонденсации всегда сопровождаются уменьшением объема. Такое уплотнение при переходе от мономера или олигомера к полимеру связано с сокращением межмолекулярных расстояний от 3—4 до ~1,54 А (длина валентных связей). Например, при полимеризации непредельных соединений на каждый моль олефина объем уменьшается примерно на 20 см3. Изменение объема связующего в процессе переработки может привести к искажению формы изделия и возникновению внутренних напряжений, которые губительно сказываются на прочностных характеристиках изделия. Лишь при использовании связующих с минимальной усадкой могут быть получены высококачественные композиционные материалы.

Другой серьезный недостаток использования жидких полимеризующихся соединений состоит в том, что вязкость связующего в процессе полимеризации резко возрастает. Поэтому для обеспечения равномерного распределения наполнителя в массе связующего приходится ступенчато повышать давление формования.

Имеются свои особенности в процессе изготовления волокнистых ПКМ типа намоточных изделий. Например, стекловолокно пропускают через ванну с раствором олигомера или полимера такой вязкости, которая обеспечивает необходимое количество связующего, остающегося на колонне. Затем растворитель удаляют и проводят отверждение обычными методами.

Всеми названными выше способами изготовления ПКМ занимаются в основном специалисты по переработке пластмасс. Применяют они для этого разные варианты одного весьма традиционного метода — смешения. И применяют с успехом во всех тех случаях, когда степень наполнения полимера не слишком велика (до 50%). При более высоких степенях наполнения неизбежно появляются неоднородность и неравномерность распределения армирующей добавки в полимерной матрице. Указанных недостатков можно избежать с помощью нового способа получения композиционных материалов — норпластов — на основе термопластичных полимеров и разнообразных минеральных наполнителей, разработанного в 1980 г. под руководством академика Н.С. Ениколопова. В чем же особенность нового метода получения ПКМ?

Специфика его состоит в том, что наполнитель сначала обрабатывают инициатором полимеризации (газообразным или жидким), который адсорбируется на поверхности частиц неорганического наполнителя. Затем подготовленный таким образом наполнитель обрабатывают газообразным или жидким мономером. Сразу же на поверхности, частиц наполнителя начинается полимеризация, в результате которой они обрастают полимерной пленкой, словно шубой. После достижения нужной толщины пленки полимеризацию обрывают добавлением ингибитора. Таким простым способом химикам удалось получить термопласты с содержанием минеральных наполнителей до 90 и даже 95%. Для создания полимерной матрицы рекомендуется использовать самые дешевые и доступные мономеры: этилен, пропилен, бутадиен, винилхлорид, стирол.

Новый метод изготовления ПКМ, названный полимеризационным наполнением, позволяет получать качественно новые материалы. Их основное отличие от традиционных — исключительная равномерность и однородность распределения наполнителя в массе полимерного связующего, так как газообразный или жидкий мономер смешивается с мелкодисперсным порошком наполнителя намного легче, чем высоковязкий олигомер или полимер. В результате каждая минеральная частица становится «укутанной» однородной пленкой полимера, при «том макромолекулы химически связаны с поверхностью наполнителя. Традиционные способы получения ПКМ, о которых шла речь раньше, не позволяют получать материалы такого рода.

Этот метод чрезвычайно расширил возможности специалистов по созданию новых ПКМ. Главное — резко увеличился круг потенциальных наполнителей. В их числе самые различные твердые тела — от пылевидных отходов стройматериалов до блоков и плит, включая органические и неорганические волокна. Полученные на их основе композиты обладают прекрасными тепло- и звукоизоляционными свойствами, и, что особенно важно, такие ПКМ дешевы.

Итак, создание нового весьма перспективного метода получения высоконаполненных полимерных композитов имеет место, теперь задача организовать промышленное производство новых материалов.

Физико-химические аспекты упрочнения полимеров

Характер взаимодействия полимера с наполнителем в армированных пластиках (как и вообще в наполненных полимерных материалах) чрезвычайно сложен и до конца не выяснен. По взглядам на происхождение этого взаимодействия специалисты разделились на две группы.

Одни, как и некоторые зарубежные исследователи, считают, что основная роль в упрочнении, или усилении, полимеров принадлежит физическим силам (трения и давления) на границе раздела полимер—наполнитель, которые и определяют свойства композиции. Откуда же возникают силы трения и давления? По мнению этих ученых, они появляются вследствие разницы в усадке полимера и наполнителя при отверждении, в результате чего частицы наполнителя оказываются прочно закрепленными в полимерной матрице.

Такая точка зрения отводит весьма незначительную роль адгезии полимера к поверхности наполнителя и отрицает возможность образования химических связей между связующим и наполнителем. Часто сторонников «физического» подхода спрашивают: как же тогда объяснить роль аппретов, существенно улучшающих контакт между матрицей и армирующей добавкой и тем самым способствующих усилению полимеров? Основная роль аппретов сводится не к образованию химических связей между матрицей и армирующей добавкой, а к улучшению смачиваемости наполнителя полимером, к снижению напряжений, возникающих на границе раздела, и т. д. Сторонники «химического» подхода обосновывают, что основную роль в механизме усиления играет адгезия полимера к поверхности наполнителя. Доводы этих ученых, к которым относилось большинство советских специалистов, представляются весьма убедительными. Вначале упомянем о некоторых недостатках воззрений сторонников «физического» подхода. Во-первых, признавши ведущую роль усадки, следует предположить, что полимерный материал будет тем прочнее, чем больше усадка при отверждении. На практике наблюдается обратная картина: любые напряжения в ПКМ, способствуют появлению неравновесных состояний, неизбежно снижают прочность композитов. Во-вторых, с точки зрения этих представлений совершенно не ясны ни роль поверхностной обработки наполнителя, ни роль механических свойств самого полимера.

–PAGE_BREAK–

Сторонники химического подхода подходят к механизму усиления полимеров в ПКМ с позиций теории, разработаной академиком П. А. Ребиндером. Применительно к композитам следует предположить, что упрочняющий эффект наполнителя связан с его ориентирующим действием и переходом полимера в состояние тонких пленок па поверхности частиц наполнителя. ПКМ можно рассматривать как слоистую систему, составленную из чередующихся слоев наполнителя и ориентированных слоев полимера. Такой модели вполне отвечает экспериментально наблюдаемый факт: прочность композитов повышается с ростом величины активной поверхности компонентов до определенного максимума, соответствующего предельно ориентированному бимолекулярному слою связующего.

Сторонник «химического» подхода В. А. Каргин считает, что введение в полимерную матрицу армирующих волокон создает условия для реализации, с одной стороны высоких прочностных свойств, присущих волокнам, а с другой — упругости, присущей полимерному связующему. Связующее в таких системах обеспечивает одновременность работы под нагрузкой всех волокон в армированном полимере. Поскольку связующее склеивает волокна и защищает их от воздействия внешней среды, то в усилении полимеров первостепенное значение имеют процессы адгезии.

Как же объяснить факт усиления, отталкиваясь от этих соображений? Пусть к волокнистому ПКМ приложена некоторая нагрузка. Понятно, что армирующие волокна при этом удлиняются и одновременно испытывают поперечное сжатие. Но ведь наполнитель окружен со всех сторон связующим, поэтому деформация волокна неизбежно повлечет за собой деформацию полимера. При поперечном сжатии пленка полимера, прилегающая к волокну, растягивается или даже отрывается от волокна. Строго говоря, удлинение при растяжении приводит к появлению в плоскости, перпендикулярной приложенной силе, растягивающего напряжения, препятствующего поперечному сжатию волокна.

Отсюда следует простой вывод: для разрушения ПКМ под нагрузкой требуется преодолеть не только суммарную прочность армирующих волокон, но и силы, препятствующие поперечному сжатию. Нетрудно догадаться, что эти силы тем больше, чем лучше адгезия связующего к поверхности наполнителя и чем выше упругие свойства полимерной среды. Вероятно, полимерная матрица, обладающая значительной прочностью в объеме, еще более упрочняется в тонких слоях.

Сторонники «химического» подхода к усилению полимеров львиную долю упрочняющего эффекта в ПКМ приписывают склеиванию частиц наполнителя с полимером. Правда, экспериментальные данные, подтверждающие эту точку зрения, были получены не на пластиках, а на эластомерах, точнее, на бутадиеновом каучуке СКВ. Напомним, что разница между пластиком и эластомером кроется в природе состояния полимера при температурах его эксплуатации. Если полимер в рабочем диапазоне температур находится в стеклообразном или кристаллическом состоянии, то он — пластик, если в высокоэластическом состоянии, то он — эластомер (каучук). В основном ПКМ изготавливают из полимеров-пластиков. Но, как утверждают исследователи, многие представления об усилении полимеров одинаково справедливы как для каучуков, так и для пластиков.

Каучуки, на примере которых исследована роль склеивания в усилении, наполняли порошкообразными стеклом, мелом и печной сажей. Были измерены и сопоставлены между собой параметры, характеризующие адгезию этих наполнителей к каучуку СКВ (сопротивление расслаиванию материала), и коэффициенты усилениякомпозитов СКВ — наполнитель. Сходная природа явлений усиления и адгезии подтверждена тем, что с увеличением сопротивления расслаиванию возрастает и коэффициент усиления.

Кроме того, известно, что прочность склеивания с уменьшением толщины слоя полимерного связующего сначала возрастает, а затем падает. Так вот, аналогичную картину ученые наблюдали и в случае усиления. Действительно, при увеличении содержания наполнителя каучуке, приводящем к снижению толщины полимерной прослойки между частицами наполнителя, прочность материала до определенного предела повышалась, а затем снижалась.

Перечень подобных доказательств можно было бы продолжить. Скажем лишь, что все они подтверждают корреляцию между адгезией и усилением полимеров. Одна из популярных теорий, объясняющих усиление эластомеров мелкодисперсными наполнителями, предполагает образование в наполненном полимере цепочек из частиц наполнителя. «Адгезионный» подход к явлению усиления, учитывающий определяющую роль склеивания истиц наполнителя с помощью полимера, служит прекрасным объяснением упрочняющего действия таких цепочек.

В самом деле, создание точечного контакта между соседними частицами совсем не исключает склеивания этих частиц в зазоре вокруг контакта. Сделан вывод, то в наполненных каучуках одна и та же макромолекула связующего может переходить от поверхности одной частицы наполнителя к поверхности другой не один, как предполагалось ранее, а много раз. Большая роль в развитии теории усиления полимеров принадлежит работам академика АН УССР Ю.С. Лидако: коэффициент усиления — отношение прочности наполненного материала к прочности исходного полимера. В настоящее время ПКМ, армированные полимерными волокнами, получили достаточно широкое распространение в различных областях техники. Тем не менее, количество работ, посвященных детальному исследованию взаимодействия наполнитель—связующее в этих системах, очень мало в сравнении е аналогичными исследованиями по стеклопластикам. Поэтому создание теории такого взаимодействия и выяснение путей, позволяющих регулировать свойства полимер-полимерных композитов в заданном направлении,— дело будущего.

Литература

1. Мозберг Р.К. Материаловедение.М.: В.ш., 1991. – 448с.

2.Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1972. – 510с.

3. Технология металлов и других конструкционных материалов. Скобников К.М. и др. М.: Машиностроение, 1972. – 520с.


www.ronl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *