Трансформатор тока высокочастотный – Высокочастотные трансформаторы тока | BETRONIK

alexxlab | 04.06.2020 | 0 | Вопросы и ответы

Содержание

Высокочастотные трансформаторы тока | Экран для высокочастотного трансформатора

Высокочастотные трансформаторы тока применяется с целью передачи измерительных сведений в предохранительные установки, а также устройства управления. За счет этого гарантируется защита ключей от перезагрузки по току. В качестве последних выступают транзисторы.

Такие трансформаторы функционируют на высоких частотах, показатель способен достигать 1 МГц. Они в обязательном порядке должны гарантировать корректную и оперативную транспортировку импульсов во вторичную цепь, что изолируется от первичной на полное функционирующее напряжение.

Основные виды и характеристики

Данная разработка относится к электрометрии, а именно, к индуктивному нагреванию. Она эффективно используется для контроля и корректировки режима нагрева. Известны следующие типы трансформаторов:

  • Галетные с магнитопроводом замкнутого типа. Чтобы корректировать коэффициент трансформации необходимо переключить витки обмоток.
  • Для высокочастотного нагрева с сердечником незамкнутого типа (ферритовым). Главный минус применения такого агрегата заключается в незначительном диапазоне эксплуатации при высокочастотном нагреве с незначительным изменением индуктивных нагрузок в результате неожиданного уменьшения КПД в условиях функционирования корректировки показателей с более значительным диапазоном.
  • Высокочастотный, что идет с первичной обмоткой, сделанную как спиральная катушка. А вторичная идет одновитковой. Последняя характеризуется наличием вспомогательных выводов, необходимых при подсоединении.

Такие установки представляется возможность приобрести на сайте Родник-4 по выгодной цене.

Экраны ВЧ трансформаторов

Экран для высокочастотного трансформатора изготавливают из стального материала и как правило делаю его в несколько слоев. Таким образом он предстает в виде кожуха.

Экран трансформатора качественно и надежно защищает от емкостных, а также индуктивных наводок. Тем не менее, экранирование проводов способно привести к ряду сложностей. Это связано с увеличением паразитной емкости монтажа, которые способствуют фазовым сдвигам, а также в ослаблениям.

В соответствии с изложенным, рекомендуется первоначально произвести оценку наводки, после чего произвести экранирование только самых небезопасных проводников.

Также требуется в обязательном порядке гарантировать безопасное, качественное заземление.

Трансформаторы напряжения

Высокочастотные трансформаторы напряжения 2-х и 3-ообмоточные используются с целью измерения мощности, энергии, а также применяются для:

  • питания цепей автоматики;
  • предохранения линий электрических передач от замыканий на землю;
  • сигнализации.

Такие установки различают по:

  • количеству фаз;
  • числу обмоток;
  • способу охлаждения;
  • принципу установки;
  • классу точности.

Приобретение высокочастотных трансформаторов тока и напряжения возможно на выгодных для клиента условиях на сайте производства.

rodnik4.ru

Страничка эмбеддера » Трансформатор тока

Иногда нужно узнать – какой ток течет в электрической цепи. Если ток небольшой, для этого можно использовать простой резистор. Если-же ток достигает неприличных величин (к примеру, как в трансформаторах Тесла), приходится искать другие методы измерения. Один из таких методов – использование трансформатора тока.

 

Что это такое?

Трансформатор тока, для краткости будем называть его ТТ, используется повсеместно. К примеру, в электросчетчиках и на подстанциях. Мы-же будем рассматривать то, как его можно использовать для измерения тока в импульсных источниках питания – сварочных аппаратах, трансформаторах Тесла итп. Стоит сразу обратить внимание, что с помощью ТТ можно измерять только переменный ток, но никак не постоянный!

Итак, ТТ позволяет нам измерять очень большой ток. Чем-же ТТ отличается от обычного трансформатора? А вот ничем! Название придумали из-за области применения и характерной конструкции – катушка на тороидальном сердечнике, через которую пропущен провод.

ТТ преобразует проходящий через него ток в пропорциональное напряжение. К примеру, если через трансформатор проходит 100А, то он выдает 1В, а если проходит 200А, то на выходе мы получим 2В.

 

Основные соотношения

Проделав нехитрые математические выкладки, можно убедиться, что для токов в обмотках ТТ с очень большим коэффициентом трансформации по напряжению и  с короткозамкнутой вторичной обмоткой действует такой закон для тока в обмотках:

Для того, чтобы преобразовать ток в напряжение, используют обычный резистор. Типичная схема включения ТТ:

Напряжение, падающее на резисторе R, согласно закону Ома, равно E=IR. Таким образом, зависимость выходного напряжения ТТ от тока определяется простым выражением:

К примеру, рассмотрим трансформатор Тесла, где через ТТ течет ток в 500А. Если у нас 1 виток в первичной обмотке ( да, просто пропущенный через кольцо провод считается за один виток), а во вторичной обмотке — 1000 витков, то ток во вторичной обмотке окажется равным 0.5А. Если мы возьмем сопротивление R1 = 2ом, то при полном токе на нем будет падать 1вольт.

Просто? Еще-бы!

 

Применения

Раз мы уже знаем, что такое токовый трансформатор, давайте подумаем куда его можно всунуть. Кроме того, что можно измерять большие токи, можно еще строить автогенераторы с обратной связью по току. Практически все DRSSTC являются именно такими. Можно также организовывать защиту от превышения тока, без такой защиты большинство импульсных блоков питания являются ”живыми мертвецами”.

 

Запаздывание по фазе

Для автогенераторного применения важна еще одна характеристика ТТ – задержка сигнала.

Запаздывание сигнала может произойти из-за таких факторов

  • Индукция рассеяния ТТ вместе с выходным резистором образует ФНЧ.

  • Межвитковая емкость в ТТ может стать причиной сдвига фазы.

Для анализа обоих этих ситуация, я набросал простую модель в SWCad’е.

Для предыдущего примера с трансформатором Тесла, возьмем сердечник R25.3 из материала N87 фирмы Epcos. В качестве паразитной емкости, возьмем 1нФ. Не спрашивайте, откуда такая емкость. Мне она кажется значительно большей, чем может возникнуть в любой реальной ситуации. Модель выглядит так:

Результаты симуляции при к. связи = 1

К. связи = 0.5

 

Как видно, отличаются только амплитуды. Сигнала. Никакого запаздывания нет в обоих случаях. Такое поведение сохраняется вплоть до очень высоких частот и до очень маленьких коэффициентов связи. Таким образом, можно сделать вывод, что фаза сигнала практически не зависит от паразитных параметров.

 

Каскадирование токовых трансформаторов

Люди всегда были ленивыми. Некоторым лениво встать из-за компа, а некоторым – мотать тысячи витков в ТТ. Поэтому придумали соединять трансформаторы последовательно. Решение спорное, и поэтому попробуем его проанализировать при помощи того-же симулятора. Включим последовательно два трансформатора на том-же сердечнике с обмоткой по 33 витка на каждом. Замечу, что паразитная емкость в каждом из трансформаторов сильно уменьшилась, что не удивительно.

Результаты симуляции очень похожи на одиночный трансформатор. Никакого запаздывания нет. Только амплитуда становится немного менее предсказуемая – она определяется произведением коэффициентов связи в обоих трансформаторах.

Вывод – в подавляющем большинстве случаев можно применять несколько ТТ, включенных последовательно.

 

Прямоугольный выходной сигнал

Часто необходимо получить прямоугольный выходной сигнал из синусоиды, выдаваемой ТТ. Конечно, это можно сделать с помощью компаратора, однако быстродействующие компараторы дороги и требуют особых навыков от разработчика. Проще собрать следующую, уже почти ставшую стандартом, схему:

 

 

Для чего такие сложности? Стабилитроны – очень медленные устройства. Для повышения быстродействия ограничителя, к ним добавлены диоды Шоттки. Когда напряжение меняет полярность – диоды Шоттки быстро закрываются и не дают стабилитронам испортить сигнал. Такой ограничитель выдает сигнал +-5 вольт. Замечу, что сигнал нужно обязательно ограничивать симметрично, иначе произойдет сдвиг фазы.

Далее идет диодная “вилка” которая защищает вход последующей микросхемы от пробоя отрицательным напряжением.

Диодную вилку нельзя поставить сразу после ТТ, потому, как выбросы из силовой части преобразователя попадут в чувствительные цепи управляющей электроники.

 

Конструкция

Заметьте, что ТТ работает как источник тока, и чем больше витков вы намотаете, тем ближе ТТ будет к идеальному источнику тока и тем точнее будут показания. Также, чем больше витков, тем меньше ток течет через резистор, а значит, уменьшается рассеиваемая на нем мощность. Именно предельная мощность на резисторе обычно является определяющим факторов для количества витков в любительских конструкциях.

Для того, чтобы сделать коэффициент трансформации побольше, первичную обмотку обычно делают всего из одного витка, а во вторичной мотают порядка тысяч.

Проблема насыщения сердечника очень редко проявляется в токовых трансформаторах. Что такое насыщение и как с ним бороться, можно прочитать в статье о GDT.

Чем больше проницаемость сердечника, тем больше к. связи и точнее показания, однако больше становится и паразитная индуктивность, добавляемая в измеряемые цепи. Это часто нежелательно. На практике, в качестве сердечника для ТТ может использоваться практически любой феррит, работающий на необходимой частоте. Для низкочастотных применений используют обычное трансформаторное железо.

В качестве проволоки для вторичной обмотки стоит выбирать проволоку с наибольшим возможным сечением – так уменьшается погрешность измерения.

 

Промышленные ТТ

Естественно, промышленность выпускает громаднейший ассортимент токовых трансформаторов. Они хорошо настроены и могут быть использованы для точных измерений.  Естественно, есть проблемы с доставабельностью в неэпических количествах. К примеру, в киеве, несколько ТТ я видел в магазине “радиомаг”

http://www.rcscomponents.kiev.ua/modules.php?name=Asers_Shop&s_op=viewproduct&cid=236

 

Еще почитать

К моему удивлению, материалов по ТТ очень мало. Но википедия, все-же, знает, что это такое.

http://ru.wikipedia.org/wiki/Трансформатор_тока

Привенение ТТ в электросчетчиках. Там-же описывается немного теории.

http://www.eltranstech.ru/aspect.php

bsvi.ru

Электрический высокочастотный трансформатор

Изобретение относится к электротехнике, к электрическим высокочастотным трансформаторам для устройств передачи электрической энергии. Технический результат заключается в снижении потерь на сопротивлении обмоток трансформатора при работе на повышенной частоте и увеличении добротности высоковольтной обмотки. Электрический высокочастотный трансформатор содержит низковольтную и высоковольтную обмотку, выполненные в виде спиральной катушки с длиной высоковольтной обмотки, равной четверти длины волны тока и напряжения. Спиральная обмотка состоит из нескольких последовательно соединенных секций изолированного проводника, площадь сечения которого различна для каждой секции и уменьшается по мере удаления секции от начала спиральной обмотки согласно уравнению:

где cosϕi – нормированное значение тока i-й секции равно Ii/I0, где Ii – ток в i-й секции, I0 – ток в начале первой секции; S

i – сечение проводника в i-й секции, 0≤ϕi≤π/2. Начало спиральной обмотки соединено с концом низковольтной обмотки и через емкость – с одним из выводов высокочастотного генератора. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области электротехники, в частности к конструкции электрических высокочастотных трансформаторов для устройств передачи электрической энергии.

Известен трансформатор напряжения – электромагнитный статический преобразователь электрической энергии, содержащий первичную и вторичную обмотки. Мощность из одной обмотки в другую передается электромагнитным полем. Для усиления связи обмотки располагают на ферромагнитном сердечнике – магнитопроводе. В трансформаторах имеет место высокий коэффициент электромагнитной связи С=0,93-0,999.

где M – взаимная индуктивность между первичной и вторичной обмоткой,

L1, L2 – индуктивности первичной и вторичной обмоток.

Для создания магнитного поля в трансформаторе используется реактивная мощность, которая затрачивается на создание поля взаимной индукции и полей рассеяния первичной и вторичной обмоток. Часть активной мощности расходуется на потери в меди в первичной и вторичной обмотке (Копылов И.П. Электрические машины. М.: Логос, 2002 г., стр.131-239).

Недостатком известного устройства является симметрия напряжения на выводах вторичной обмотки, что не позволяет использовать электрический трансформатор для передачи электрической энергии по однопроводниковой линии.

Известно устройство для преобразования и передачи электрической энергии по однопроводной линии на большое расстояние, разработанное Н.Тесла в 1897 году. Согласно изобретению Н.Тесла устройство состоит из двух трансформаторов, один для повышения, а другой для уменьшения потенциала тока, указанные трансформаторы имеют вывод обмотки с проводом большой длины, соединенный с линией, и другой вывод этой обмотки, примыкающий к обмотке из провода более короткой длины, соединен электрически с ней и с землей.

Известен электрический трансформатор, который имеет первичную обмотку, соединенную с электрическим генератором повышенной частоты. Первичная обмотка намотана на вторичную высоковольтную обмотку, длина провода которой значительно больше длины первичной обмотки и приблизительно равна четверти длины волны электромагнитного поля в линии. В этом случае потенциал одного внутреннего вывода высоковольтной обмотки равен нулю, а потенциал другого наружного вывода будет максимальный. Внутренний конец высоковольтной вторичной обмотки соединен с линией передачи электрической энергии, а наружный конец вторичной обмотки и прилегающий вывод первичной обмотки в целях электробезопасности соединен с землей (Н.Тесла Электрический трансформатор. Пат. США №593138 от 02.11.1897 г.).

Недостатком известного устройства являются потери мощности на высокой частоте из-за потерь на сопротивлении высоковольтной обмотки.

Известен высоковольтный высокочастотный трансформатор, содержащий однослойную спиральную катушку, которая выполнена однослойной с электрической длиной, равной четверти длины волны, и подключена к генератору и нагрузке несимметрично (Пат. РФ 2033651 от 22.04.1988 г.).

Недостатком известного устройства является использование для получения резонансных колебаний собственной емкости спиральной обмотки.

Задачей изобретения является повышение эффективности преобразования и передачи электрической энергии. Технический результат заключается в снижении потерь на сопротивлении обмоток трансформатора при работе на повышенной частоте и увеличении добротности высоковольтной обмотки.

Указанный результат достигается тем, что в электрическом высокочастотном трансформаторе, содержащем низковольтную и высоковольтную обмотку, выполненные в виде спиральной катушки с длиной высоковольтной обмотки, равной четверти длины волны тока и напряжения, спиральная обмотка состоит из нескольких последовательно соединенных секций изолированного проводника, площадь сечения которого различна для каждой секции и уменьшается по мере удаления секции от начала спиральной обмотки согласно уравнению:

где cosϕi – нормированное значение тока i-й секции; где Ii – ток в i-й секции, I0 – ток в начале первой секции; Si – сечение проводника в i-й секции; а начало спиральной обмотки соединено с концом низковольтной обмотки и через емкость – с одним из выводов высокочастотного генератора.

В варианте исполнения электрического высокочатотного трансформатора в качестве нормированного тока I-ой секции используют среднее значение тока в секции и соответствующее среднему току сечение проводника в секции.

В другом варианте конструкции электрического высокочастотного трансформатора в качестве нормированного тока i-й секции используют максимальное значение тока в этой секции и соответствующее максимальному току максимальное сечение проводника секции.

Сущность изобретения иллюстрируется на фиг.1, 2. На фиг.1 представлена электрическая схема устройства и на фиг.2 показано распределение тока в секциях высоковольтной обмотки высокочастотного трансформатора.

Согласно фиг.1 высокочастотный генератор 1 через емкости 2 подключен к низковольтной обмотке 3 высокочастотного трансформатора 4. Высоковольтная обмотка 5 выполнена в виде спиральной катушки с длиной проводника, равной длины волны тока и напряжения.

где С – скорость электромагнитной волны.

При частоте генератора f0=25 кГц:

Высоковольтная обмотка 5 состоит из секций С1, С2, C3, C4 с разным сечением проводника.

На фиг.2 показано распределение волны тока в четвертьволновой линии спиральной высоковольтной обмотки 5. Средняя плотность тока j

i в каждой секции Сi равна:

где Ii=I0cosϕI – средний ток в i-й секции,

I0 – ток в начале первой секции,

Si – сечение проводника в i-й секции. Считая плотность тока ji=A постоянной вдоль проводника высоковольтной обмотки, получим уравнение:

где A=const, постоянная величина.

Так как I0 – фиксированная величина тока для данного трансформатора и режима передачи электроэнергии, разделим обе части равенства на I0, получим уравнение (I):

где В – новая постоянная величина, а cosϕI – нормированное значение тока в i-й секции спиральной обмотки.

На фиг.2 высоковольтная спиральная обмотка четвертьволновой линии длиной 3000 м при частоте 25 кГц содержит три секции по 1000 м каждая. Принимая средние значения нормированных токов для секции С1, ϕ1=15° cosϕ1=0,996; для секции С2 ϕ2=45° cos ϕ2=0,707; для секции C3 ϕ3=75° cos ϕ3=0,26.

Для выполнения условия (1) одинаковой плотности токов во всех секциях обмотки 5 получаем соотношения для сечений проводника в секциях:

S1=0,966B, где B – const;

S2=0,707B;

S3=0,26B;

Выбирая для третьей секции сечение проводника S3=1 мм2, получим S2=2,72 мм2, S3=3,71 мм2.

В варианте исполнения в качестве Ii берут максимальный ток в i-й секции. Тогда для первой секции I1=I0, cos ϕ1=1.

Пример выполнения высокочастотного трансформатора.

Число витков в низковольтной обмотке 3 W1=25.

Число витков в высоковольтной спиральной обмотке 5 W2=1244 витков, число слоев – 21, общая длина обмотки 5 lв=2474,019 м. Обмотка имеет 3 секции. Первая секция выполнена из провода ПВЗ-10 длиной 355,63 м, сечением 10 мм2; вторая секция из провода ПЗ-6 сечением 6 мм2, длиной 409,61 м и третья секция из провода ПВВ-1 сечением 1 мм2, длиной 2100,524 м. Сопротивление обмотки 5 на частоте f0=1 кГц, R=450 кОм, индуктивность L=0,93 Гн, емкость обмотки 26,82 нФ, добротность Q1=129.

При выполнении высоковольтной обмотки 5 только из провода ПВВ-1 сечением 1 мм2 длиной 2100,524 м добротность снизилась в 3,28 раза и составила Q2=39,3.

Таким образом, по сравнению с известным трансформатором, у которого высоковольтная обмотка выполнена из проводника минимального сечения, одинакового по всей длине высоковольтной обмотки, выполнение высоковольтной спиральной катушки из нескольких секций, в которых сечение проводника уменьшается в соответствии с соотношением (1), снижает потери на сопротивлении обмоток, увеличивает добротность и эффективность преобразования электромагнитной энергии в высокочастотном трансформаторе.

1. Электрический высокочастотный трансформатор, содержащий низковольтную обмотку, подключенную через емкость к высокочастотному генератору и высоковольтную обмотку, выполненную в виде спиральной катушки с длиной обмотки, равной четверти длины волны тока и напряжения, отличающийся тем, что спиральная обмотка состоит из нескольких секций изолированного проводника, площадь сечения которого различна для каждой секции и уменьшается по мере удаления секции от начала спиральной обмотки согласно уравнению

где cosϕi – нормированное значение тока i-й секции;

где Ii – ток в i-й секции, I0 – ток в начале первой секции; Si – сечение проводника в i-й секции;

а начало спиральной обмотки соединено с концом низковольтной обмотки и через емкость – с одним из выводов высокочастотного генератора.

2. Электрический высокочастотный трансформатор по п.1, отличающийся тем, что в качестве нормированного тока i-й секции используют среднее значение тока в секции и соответствующее среднему значению тока сечение проводника в секции.

3. Электрический высокочастотный трансформатор по п.1, отличающийся тем, что в качестве нормированного тока i-й секции используют максимальное значение тока в этой секции и соответствующее максимальному току максимальное сечение проводника секции.

www.findpatent.ru

Высокочастотный трансформатор – ток – Большая Энциклопедия Нефти и Газа, статья, страница 1

Высокочастотный трансформатор – ток

Cтраница 1

Применяемые высокочастотные трансформаторы тока также могут либо встраиваться в измеритель ( р ис.  [1]

Приводятся различные конструкции термопреобразователей, высокочастотных трансформаторов тока и термоприборов в целом, дана область их применения. Рассмотрены основные расчетные соотношения элементов схемы термоприбора и дается анализ погрешностей, вносимых этими элементами как при работе термоприбора на промышленной частоте, так и при работе на высоких частотах.  [2]

Добавочное устройство типа П23, состоящее из высокочастотного трансформатора тока и вакуумного термопреобразователя, оформлено в металлическом корпусе, служащем электромагнитным экраном, устраняющим влияние внешних полей.  [3]

Поэтому для токов большой силы обязательны специальные приборы с нагреваемой лентой и многожильными соединительными проводами, или специальные высокочастотные трансформаторы тока.  [4]

Расширение пределов измерения по току до 1 а осуществляется применением термопреобразователей на различные значения номинального тока, для измерения тока свыше 1 а широкое распространение получили высокочастотные трансформаторы тока. Расширение пределов измерения у термовольтметров осуществляется безреактивными добавочными сопротивлениями ( например, твердоугольными или бороуглеродистыми прецизионными типа БЛП), подключенными последовательно с нагревателем термопреобразователя.  [5]

В каждом из генераторных блоков ГБ располагаются четыре эк-ситрона инверторного моста с блоками собственных нужд, смещения и сеточными импульсными трансформаторами, обратные диоды, элементы коммутирующего контура ( катушки, разделительные и коммутирующие конденсаторы), высокочастотные контакторы для ступенчатого изменения монщости генератора, высокочастотный трансформатор тока, элементы электромеханической блокировки.  [7]

Расширение пределов измерения по току до 1 а осуществляется применением термопреобразователей на различные токи при использовании одного и того же милливольтметра. При измерении больших токов для расширения пределов измерения термоамперметров применяют специальные высокочастотные трансформаторы тока.  [8]

В машинном зале установлены пять преобразователей частоты 1 – 5Г типа ВГО-500 / 2500 ( 700 в, 680 а, 2 500 гц) и преобразователь 6Г типа ВГО-250 / 2500 ( 700 в, 340 а, 2500 гц), работающие параллельно на сборные шины. КВ-1225; а фидерах генераторов установлены также; разъединители 4Р – 9Р типа РВО-10 / 1000; разрядники / – 6РЗ и аппаратура измерения и защиты: высокочастотные трансформаторы тока 9 – 14ТТ типа ТКЧ-2-3, высокочастотные трансформаторы типа НОСВ-1-6ТН, измерительные приборы в. Схема включения генератора на сборные шины, так же как и схема включения приводного двигателя, предусматривает отключение генератора и двигателя от шин при снижении давления или отсутствии охлаждающей воды в радиаторах преобразовательного агрегата ( реле давления воды РД и 1РД типа СПОС-6), а также дверную блокировку дверей в. Схемы включения генераторов и схемы включения их двигателей связаны блок-контактами выключателей нагрузки ВН-1 так, что включение соответствующего генератора на общие шины возможно только после включения его приводного двигателя.  [9]

Характерной особенностью новых универсальных приборов является увеличение количества измеряемых величин и пределов измерения. Различными путями, в том числе применением растяжек, уменьшается потребление мощности, повышаются частотные пределы приборов. Пределы измерения высокочастотных приборов с германиевыми выпрямителями расширяются при помощи высокочастотных трансформаторов тока с ферритовыми сердечниками и емкостных делителей напряжения.  [10]

Наиболее чувствительными к сигналам ЧР являются электрические датчики, подключенные к высоковольтной шине контролируемого оборудования через конденсатор связи. Однако конденсатор связи имеет большие габариты и вес и практически не может использоваться при полевых работах. Поэтому электрические датчики обычно подключаются к ПИНам или измерительным выводам высоковольтных вводов ( емкость которых используется как конденсатор связи) или к высокочастотным трансформаторам тока, надетым на провода заземления элементов высоковольтного оборудования, имеющих емкостную связь с высоковольтной шиной.  [11]

Страницы:      1

www.ngpedia.ru

высокочастотный трансформатор | Расчет высокочастотного трансформатора

В качестве эффективной и высокомощной преобразовательной техники в системах электропитания и построения генераторов широко применяется высокочастотный трансформатор. Его конструкция включает две чередующиеся первичные и вторичные обмотки, формирующие отделения, расположенные в торцевой части первичек.

Особенности устройства

Все секционные обмотки изготавливают, соблюдая оптимальное соотношение длины и диаметра намотки. Подобное строение трансформатора дает возможность просто и с минимальными затратами времени заменить секции в процессе ремонта. Если в установке силового оборудования предусмотрен воздушный зазор, удается без особых усилий настроить выравнивание выходного напряжения.

Трансформаторы, преобразовывающие напряжение с высокой частотой переменного тока, состоят из:

  • сердечника;
  • первички;
  • вторичной обмотки.

Высокий коэффициент полезного обусловлен наличием магнитопровода, имеющего форму полукруга. При данной конфигурации для любой электрической цепи будет характерно снижение рассеивания магнитного поля, показателя удельных потерь. С подобными задачами превосходно справляется современный высокочастотный трансформатор с небольшими размерами и легким весом.

Устройство легко монтируется, не занимая много полезного пространства.

Высокочастотный трансформатор с дисковой обмоткой

Преобразователь высоких частот, оснащенный дисковой обмоткой, используется с целью индукционного нагрева.

Первичка дисковая состоит из двух частей. А вторичная обмотка содержит чередующиеся листовые витки, имеющие изоляционное покрытие. Оно защищает элементы намотки от нежелательных контактов между собой.

На обеих обмотках имеются специальные отверстия, куда частично или полностью вставлен магнитный провод. Все секции первички локализуют над наружными поверхностями листов вторичной обмотки. Связи между витками имеют последовательный кондуктивный характер.

Выполнение конструкции и поверхностей сердечника реализуется с учетом необходимости передвижения вдоль оси обмоток или снабжения катушкой с электромагнитной индукцией.

Данные расчета

Расчет высокочастотного трансформатора осуществляется с использованием множества входных данных:

  • амплитуда индукции;
  • частота преобразования;
  • сопротивление канала;
  • напряжение насыщения;
  • питание плотность тока и др.

Вычисления производятся для того, чтобы узнать оптимальную габаритную и потребляемую мощность, индуктивности и число витков первичной и вторичной обмотки.

Приобрести высокочастотный трансформатор

Целесообразно подобрать оптимальное устройство для стабилизации напряжения с переменной частотой вам помогут в нашем магазине. Высокочастотный трансформатор, купить который на сайте компании «Родник 4» можно по довольно низкой цене, обеспечит существенную экономию электроэнергии и безопасность работы каждого прибора в электрической сети.

rodnik4.ru

RFCT – датчики трансформаторного типа, работающие в HF диапазоне частот

Датчики серии «RFCT» (Radio Frequency Current Transformer), предназначенные для регистрации частичных разрядов в изоляции различного высоковольтного оборудования, представляют собой измерительные трансформаторы тока, эффективно работающие в высокочастотном (HF) диапазоне частот.

В отличие от обычных измерительных трансформаторов тока сердечник «RFCT» датчиков изготавливается не из листовой электротехнической стали, а из специализированных высокочастотных материалов – ферритов. В результате датчики этого типа малочувствительны к токам промышленной частоты, но позволяют хорошо регистрировать периодические и импульсные сигналы в диапазоне частот от сотен кГц до десятков МГц, в зависимости от используемого материала сердечника.

Уровень частичных разрядов в высоковольтной изоляции находится примерно в одном диапазоне, составляет от десятков пикокулон до десятков нанокулон, и мало зависит от типа контролируемого высоковольтного оборудования. Поэтому датчики типа «RFCT», в отличие от измерительных трансформаторов тока промышленной частоты, имеют одинаковую чувствительность для всех практических применений, определяемую только особенностями их конструкции.

Датчики регистрации частичных разрядов типа «RFCT», как и все другое диагностическое оборудование, используемое для этих целей, после изготовления не поверяются, а только тестируются на работоспособность и общее соответствие требованиям технических условий на изготовление. Необходимая калибровка чувствительности датчиков типа «RFCT» всегда производится «на месте» проведения измерений, с учетом особенностей созданной измерительной схемы. При этом автоматически учитывается не только реальная чувствительность датчиков, но и степень затухания импульсов частичных разрядов внутри контролируемого оборудования, в соединительных кабелях и во входных цепях измерительных приборов.

По своей конструкции датчики «RFCT» делятся на три типа:

  • Неразъемные стационарные датчики кольцевой конструкции, монтируемые на заземляющих проводах и шинах на отключенном оборудовании. Обычно такие датчики поставляются со стационарно подключенным сигнальным кабелем.
  • Датчики с разъемным сердечником, легко монтируемые на проводниках и шинах даже работающего контролируемого оборудования, обычно используемые для проведения оперативных измерений частичных разрядов. Подключение сигнального кабеля к таким датчикам производится при помощи коаксиального разъема.
  • Модульные датчики частичных разрядов, предназначенные для измерений в слаботочных цепях, включаемые в разрыв соединительного провода (на отключенном оборудовании). Такой тип конструкции применяется и для комплексных датчиков, предназначенных, кроме контроля частичных разрядов, для измерения дополнительных параметров оборудования.

Изоляция корпусов, соединительных кабелей и выходных разъемов датчиков типа «RFCT» конструктивно рассчитана на напряжение до 1000В. По этой причине датчики частичных разрядов трансформаторного типа всегда устанавливаются только на проводниках или шинах заземления (с внешней изоляцией или без изоляции) высоковольтного оборудования (корпусов, баков, обмоток, экранов и т. д.). Установка датчиков частичных разрядов типа «RFCT» на высоковольтных токоведущих проводах высокого напряжения или в точках оборудования, где высокое напряжение может возникнуть даже кратковременно, например, в изолированной нейтрали трехфазной цепи, категорически запрещена.

В настоящее время фирмой «DIMRUS» серийно производятся девять разновидностей высокочастотных трансформаторов тока типа «RFCT». Основная справочная информация о конструкции этих датчиков, их частотные характеристики и особенности практического применения приведены ниже.

Таблица 1. Габаритные и весовые параметры основных семи датчиков серии «RFCT», выпускаемых фирмой «DIMRUS»

  Ширина, мм Высота, мм Длина, мм Масса, кг
RFCT-1 83 52 21 0,10
RFCT-2 50 82 51 0,12
RFCT-3 40 40 13 0,04
RFCT-4 145 160 24 0,72
RFCT-5 77 170 23 0,18
RFCT-6 26 285 (65 без ручки) 60 0,28
RFCT-7 122 114 28 0,48

Датчик частичных разрядов марки «RFCT-1»

Трансформаторный датчик марки «RFCT-1» предназначен для использования в системах регистрации и анализа частичных разрядов в изоляции высоковольтного оборудования. Основное назначение датчика – проведение измерения частичных разрядов в системах непрерывного или периодического контроля состояния высоковольтного оборудования.

Датчик марки «RFCT-1» может быть использован для регистрации высокочастотных импульсов от частичных разрядов в высоковольтных выключателях, ячейках КРУ, в подходящих к ним кабельных линиях, в цепях нейтрали силовых трансформаторов и в других высоковольтных объектах. Для проведения регистрации частичных разрядов датчик устанавливается на проводниках и шинах заземления контролируемого оборудования. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока в контролируемом проводнике от высокого потенциала «к земле».

Датчик марки «RFCT-1», в соответствии с требуемыми условиями монтажа и заказной спецификацией, может поставляться с соединительным коаксиальным разъемом (марки BNC или TNC) или с «глухо» подключенным коаксиальным кабелем длиной 15 метров. Длина соединительного кабеля может варьироваться в соответствии с утвержденными требованиями заказной спецификации.

Датчик «RFCT-1» не требует периодической поверки. Для него достаточно калибровки на объекте контроля и периодической проверки его работоспособности.

Датчик частичных разрядов марки «RFCT-2»

Основное назначение датчика «RFCT-2» – регистрация импульсов от частичных разрядов в генераторах, трансформаторах, ячейках КРУ и других высоковольтных объектах.

Внутри изолированного корпуса датчика «RFCT-2» расположен залитый компаундом маломощный сигнальный высокочастотный трансформатор. Первичная обмотка трансформатора подключена к входному винтовому соединителю М4 через разделительный высоковольтный конденсатор. Вторичная обмотка трансформатора, к которой подключается измерительный прибор, выведена на стандартный коаксиальный разъем типа BNC.

Датчик «RFCT-2» предназначен для измерения частичных разрядов, которые можно зарегистрировать между двумя прямо не связанными частями высоковольтного оборудования. Особенностью является то, что между этими частями оборудования возможно возникновение потенциала до десятков вольт, при замыкании которого возможно протекание уравнительных токов большой величины.

Это может быть, например, измерение частичных разрядов между корпусом высоковольтного генератора и экраном отходящего от него токопровода. Или же это может быть измерение частичных разрядов между корпусами (баками) двух силовых трансформаторов (или отдельных фаз группового силового трансформатора), потенциал между которыми, в случае протекания значительных уравнительных токов по цепям заземления, может достигать величины нескольких вольт и даже десятка вольт.

Датчик «RFCT-2» поставляется в пластиковом (АВС) корпусе, в котором располагается высокочастотный трансформатор и разделительные конденсаторы. Весь свободный внутренний объем внутри датчика заливается эпоксидной смолой или специализированной силиконовой резиной, в зависимости от условий будущей эксплуатации.

Благодаря использованию в конструкции датчика высокочастотного разделительного трансформатора, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, а присутствуют только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства, в основном обусловленные импульсами частичных разрядов в изоляции.

Датчик частичных разрядов марки «RFCT-3»

Датчик частичных разрядов марки «RFCT-3» является вспомогательным, обычно он используется для создания гальванической развязки между контролируемой цепью и измерительным прибором. Это бывает нужным для устранения уравнительных токов промышленной частоты и для организации безопасности проведения работ при измерении частичных разрядов в изоляции.

Внутри изолированного корпуса датчика «RFCT-3», залитого компаундом, располагается только разделительный высокочастотный трансформатор с коэффициентом трансформации, равным единице, подключенный к двум разъемам марки BNC.

Разделительный конденсатор, смонтированный в первичной цепи датчика марки «RFCT-2», здесь отсутствует. Поэтому через входную цепь датчика «RFCT-3» могут протекать токи промышленной частоты (величиной не более 1А). По этой причине датчик марки «RFCT-3», включаемый в разрыв контролируемой цепи, не препятствует протеканию токов промышленной частоты, имеющих место в контролируемой цепи.

По своей амплитудно-частотной характеристике датчик «RFCT-3» соответствует датчику «RFCT-2», так как в них используется одинаковый высокочастотный разделительный трансформатор на ферритовом сердечнике.

Некоторое время датчик «RFCT-3» поставлялся в комплекте со специализированными соединительными проводами под торговой маркой «DBT-1». Этот комплект был предназначен для проведения тестовых испытательных измерений и позволял проводить регистрацию частичных разрядов в силовых трансформаторах. С этой целью через первичную обмотку замыкался на землю измерительный вывод высоковольтных вводов трансформаторов. Практика проведения измерений показала, что в этом случае не удается измерить ток проводимости ввода, что снижало эффективность таких испытаний. В настоящее время для этих целей предлагаются датчики марки «DB-2» различных модификаций.

Датчик частичных разрядов марки «RFCT-4»

Датчик «RFCT-4» предназначен для регистрации частичных разрядов в системах постоянного и периодического мониторинга состояния изоляции высоковольтного оборудования – в высоковольтных выключателях, ячейках КРУ, подходящих к ним и отдельно расположенных кабельных линиях, в цепях нейтрали силовых трансформаторов и в другом оборудовании.

Отличительной конструктивной особенностью датчика марки «RFCT-4» является то, что он выполнен разъемным, состоящим из двух половин. Это позволяет оперативно монтировать датчики на оборудовании, не разрывая контролируемую электрическую цепь. Кроме того, датчик имеет сравнительно большой внутренний диаметр, позволяющий монтировать его на токоведущих элементах большого сечения, которые часто применяются в составе мощного высоковольтного оборудования.

Половинки датчика, при использовании в составе системы постоянного контроля, стационарно соединяются между собой «скрытыми болтами». При использовании датчика в составе переносных измерительных систем применяются другие болты, более удобные для быстрой фиксации половинок датчика между собой без использования инструмента.

Как и все другие датчики этой серии «RFCT-4» предназначен для установки только в цепях заземления высоковольтного оборудования, поэтому его электрическая изоляция рассчитана на напряжение до 1000 Вольт.

Кроме того, датчик марки «RFCT-4» имеет увеличенное сечение ферритового сердечника, поэтому мощные высокочастотные импульсы в контролируемом проводнике приводят к импульсам большой энергии во вторичной цепи, представляющим опасность для персонала и диагностического измерительного оборудования. Этот факт необходимо учитывать при разработке и создании измерительной схемы, всегда предусматривая дополнительные защитные и заземляющие устройства во входных цепях измерительных приборов регистрации частичных разрядов. Для снижения влияния этого фактора в датчик встроена защита от импульсных токов (коммутационных) с ограничением выходного напряжения на уровне 15 В.

Поскольку датчик марки «RFCT-4» чаще всего монтируется на проводниках большого сечения, по которым возможно протекание токов промышленной частоты, то может происходить насыщение сердечника сильными внешними магнитными полями, что приводит к снижению чувствительности датчика. Для снижения уровня насыщения магнитопровода датчика в зазор сердечника между половинами датчика должна вставляться изолирующая прокладка толщиной до 2 мм, в зависимости от величины тока, протекающего по проводнику заземления. При этом уменьшается степень насыщения сердечника токами промышленной частоты.

Датчик производится в литом пластиковом (АВС пластик) корпусе, в двух половинах которого располагается разрезанный высокочастотный сердечник большого сечения и диаметра. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной. При наружной установке датчика с ним поставляется комплект крепления, дополнительно защищающий пластиковый корпус датчика от солнечной радиации.

Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. В выходном сигнале датчика присутствуют только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства, в основном обусловленные импульсами частичных разрядов в изоляции.

Датчик монтируется на заземляющих шинах, проводах, трубах. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике.

Датчик не требует проведения независимой периодической поверки и калибровки. Это производится на объекте, после монтажа.

Для стационарных систем датчик выпускается с разъемом марки TNC (винтовое крепление) или с «глухо подключенным кабелем длиной 15 м, а для систем периодического мониторинга, использующих переносные приборы, с разъемом BNC.

Датчик частичных разрядов марки «RFCT-5»

Датчик «RFCT-5» предназначен для использования в системах периодического мониторинга состояния изоляции высоковольтного оборудования. Назначение датчика «RFCT-5» – регистрация импульсов от частичных разрядов в высоковольтных выключателях, ячейках КРУ и подходящих к ним кабельных линиях, в цепях нейтрали силовых трансформаторов и т. д.

Датчик «RFCT-5» производится в литом пластиковом (АВС пластик) корпусе, в котором располагается высокочастотный сердечник. Конструктивно датчик представляет собой «разъемные» высокочастотные измерительные клещи, позволяющие проводить измерения частичных разрядов в проводниках с максимальным диаметром до 24 мм. Габаритные размеры датчика «RFCT-5» – 200 * 100 * 25 мм. Вес датчика – 0,5 кг.

Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. Датчик регистрирует только сигналы от высокочастотных импульсов, протекающих по контролируемой цепи заземления высоковольтного устройства.

Оптимальный рабочий диапазон частот для датчика составляет от 0,1 до 10 МГц. Этого диапазона вполне достаточно для систем регистрации импульсов частичных разрядов в высоковольтном оборудовании в диапазоне HF.

Датчик производит измерения интенсивности частичных разрядов в любых цепях с рабочим напряжением до 1000 В. Направление стрелки на боковом корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике, от высокого потенциала к «земляному».

Калибровка чувствительности датчика «RFCT-5» производится только в составе всей измерительной цепи – объект, емкостная связь, датчик и входные цепи прибора. Датчик не требует проведения периодической поверки и калибровки. Калибровка датчика, в комплексе с переносным измерительным прибором, производится однократно перед измерением, с учетом реального объекта, при помощи калибровочного генератора.

Датчик частичных разрядов марки «RFCT-6»

Датчик «RFCT-6» предназначен для использования в переносных системах периодического контроля состояния изоляции различного высоковольтного оборудования. Основное технологическое назначение датчика «RFCT-6» – проведение оперативных измерений частичных разрядов без вывода контролируемого оборудования из работы.

Для измерения частичных разрядов датчик «RFCT-6» необходимо приблизить к заземляющим проводникам и шинам так, чтобы направление тока в проводнике совпадало с направлением стрелки на корпусе датчика. При этом корпус датчика будет располагаться перпендикулярно проводнику. По принципу своей работы датчик «RFCT-6» представляет собой «одну половину» датчика марки «RFCT-5» – высокочастотных токовых клещей.

Использование датчика марки «RFCT-6» с переносным прибором эффективно тогда, когда необходимо оперативно провести сравнительное измерение частичных разрядов в большом количестве точек. Это датчик «индикаторного» типа.

Датчик «RFCT-6» производится в металлическом корпусе, в котором располагается высокочастотный сердечник в форме полукольца. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной. Для удобства практического применения датчик «RFCT-6» комплектуется дополнительной изолированной ручкой.

При помощи датчика марки «RFCT-6» можно производить измерения интенсивности частичных разрядов в изолированных цепях с рабочим напряжением до 1000 В. Датчик имеет металлический корпус, поэтому его приближение к оголенным проводникам и участкам оборудования с любым напряжением категорически запрещено.

Датчик марки «RFCT-6», по условиям своего практического применения, не может быть поверен, и даже не может быть откалиброван. Причиной этого является то, что амплитуда выходного сигнала зависит от способа установки датчики относительно контролируемого проводника. Чем дальше датчик будет удален от контролируемого проводника или смещен вбок от проводника, тем меньше будет амплитуда выходного сигнала.

Датчик частичных разрядов марки «RFCT-7»

Датчик «RFCT-7» предназначен для использования в системах постоянного и периодического мониторинга состояния изоляции высоковольтного оборудования. Наиболее эффективно использовать этот датчик для регистрации частичных разрядов в заземляющих проводниках высоковольтных кабельных линий.

Для удобства монтажа датчик сделан разъемным, состоящим из двух половин, соединяемых при помощи двух болтов. Это позволяет оперативно монтировать его на токоведущих элементах большого сечения, значительно расширяет возможности его практического применения.

Датчик производится в литом пластиковом (АВС пластик) корпусе, в двух половинах которого располагается разрезанный высокочастотный прямоугольный сердечник большого сечения. Весь свободный внутренний объем датчика заливается эпоксидной смолой или специализированной силиконовой резиной.

Благодаря использованию в конструкции датчика высокочастотного сердечника, в выходном сигнале датчика отсутствуют токи промышленной частоты 50 Гц, датчик на них не реагирует. Для исключения насыщения сердечника датчика токами промышленной частоты в нем, в полукольце без обмотки, монтируется немагнитная прокладка. В зависимости от толщины этой изолирующей прокладки, датчик «RFCT-7» без значительной потери точности измерений частичных разрядов допускает протекание токов различной амплитуды.

Для удобства маркировки толщины немагнитной прокладки, на ответной части датчика с прокладкой ставятся цветные метки, определяющие максимально допустимый ток промышленной частоты.

  • Зеленая маркировка – Максимальный ток в проводнике 500 А
  • Оранжевая маркировка – Максимальный ток в проводнике 1000 А

Учитывая наличие сердечника сравнительно большого сечения, в датчик «RFCT-7» встроена защита от импульсных токов (коммутационных) с ограничением выходного напряжения на уровне 15 В. Это сделано для защиты персонала и защиты входных цепей измерительных приборов.

Корпусная изоляция датчика «RFCT-7» рассчитана на напряжение до 1000 В.

Датчик «RFCT-7», как и все другие датчики серии «RFCT», монтируется только на заземляющих шинах, проводах, трубах. Направление стрелки на корпусе датчика должно совпадать с направлением протекания тока «к земле» в контролируемом проводнике.

Датчик марки «RFCT-7» не требует проведения поверки и калибровки после изготовления. Калибровка должна производиться на объекте контроля после завершения монтажа датчика.

Датчик «SCM» для регистрации ЧР в изоляции и емкостных токов в экранах кабельных линий

Датчики марки «SCM» предназначены для регистрации частичных разрядов в изоляции высоковольтных кабельных линиях.

При помощи датчика «SCM» обычно контролируется состояние изоляции кабельной линии, соединительных муфт, а также всех высоковольтных устройств и аппаратов (высоковольтные выключатели, статоры электрических машин и т. д.), подключенных к данной кабельной линии. Максимальная длина контролируемой кабельной линии зависит от степени затухания частичных разрядов в силовом кабеле, но обычно не превышает 2000 м.

Фирмой «DIMRUS» выпускаются две модификации датчика данного типа – «SCM-1» и «SCM-3». По внешнему виду эти датчики не имеют каких-либо отличий, кроме различной маркировки.

В датчике марки «SCM-1» располагается один высокочастотный трансформатор тока марки «RFCT», а в датчике марки «SCM-3» дополнительно смонтирован измерительный трансформатор тока с обычным стальным сердечником, предназначенный для регистрации токов промышленной частоты. Это дает возможность одновременно, при помощи одного датчика, контролировать частичные разряды и емкостные токи утечки изоляции кабельной линии.

Датчик импульсов частичных разрядов марки «SCM» конструктивно выполнен так, чтобы можно было легко осуществлять его монтаж в разрыв цепи заземления экрана кабеля или соединительной муфты. В процессе монтажа датчика заземляющая жила (экран) кабельной линии отключается от «земли». На освободившееся место монтируется датчик, а заземляющая шина кабеля подключается ко второму «посадочному месту» датчика. Конструктивное исполнение датчика таково, что он имеет практически нулевое внутреннее сопротивление и может, без ухудшения своих параметров, пропускать большие токи, возникающие во время коммутационных и переходных процессов в заземляющих жилах кабельных линий.

Датчик ЧР марки «DRTD-3» для измерений в статорах электрических машин

Датчик «DRTD-3» предназначен для регистрации частичных разрядов в обмотках статоров крупных электрических машин, генераторов и высоковольтных электродвигателей.

При использовании для регистрации частичных разрядов в изоляции обмотки статора термометров сопротивления, встроенных в пазы статора между секциями обмотки и предназначенных для контроля температуры обмотки, необходимо использовать датчики марки «DRTD-3».

Датчик состоит из трех малогабаритных высокочастотных трансформаторов серии «RFCT-3», залитых компаундом в отдельные корпуса, и расположенных на одной плате с винтовыми клеммами. Каждый модуль датчика включается в разрыв проводов, идущих от одного термометра сопротивления внутри обмотки к измерительному прибору контроля температуры. Соединительных проводов от каждого датчика внутри обмотки статора может быть три или четыре, в зависимости от используемой схемы включения термометров сопротивления.

Высокочастотные сигналы от частичных разрядов в изоляции обмотки статора наводятся в самом термометре сопротивления и в соединительных проводах, проложенных внутри паза статора между секциями обмотки. Благодаря наличию высокочастотного трансформатора тока измерительные цепи контроля частичных разрядов гальванически не связаны с измерителем температуры. Сигналы от частичных разрядов с выхода трансформатора тока по коаксиальному кабелю передаются в измерительный прибор для регистрации и анализа.

Монтировать датчик «DRTD-3» желательно максимально близко к месту выхода проводников от термометров сопротивления из корпуса статора электрической машины, чтобы максимально избежать затухания сигналов от частичных разрядов в соединительном кабеле. Плату датчика «DRTD-3» необходимо обязательно заземлять, используя для этого специальное крепежное отверстие.

Если термометр сопротивления подключен по трехпроводной схеме, то нужно не задействовать нижние клеммы. Необходимо помнить, что нельзя изменять последовательность жил кабеля на входе и выходе датчика, чтобы не нарушить работу прибора измерения температуры.

Для проведения калибровки датчиков типа «DRTD-3» необходимо использовать отключенный режим работы электрической машины, хотя само подключение датчика можно производить и в процессе работы оборудования.

Скачать документацию по датчикам «RFCT»

Похожие материалы:

dimrus.ru

Высокочастотный трансформатор

 

Изобретение относится к электротермии, в частности к индукционному нагреву. Сущность изобретения заключается в том, что высокочастотный трансформатор содержит выполненную из двух частей первичную дисковую обмотку, вторичную обмотку, состоит из двух последовательно соединенных листовых витков с отверстиями, в которые частично или полностью вставлен магнитопровод, причем части первичной обмотки располагают над внешними поверхностями листов вторичной обмотки и соединяют с ними кондуктивно последовательно, а магнитопровод выполняют с возможностью перемещения вдоль оси обмоток или снабжают катушкой подмагничивания. Изобретение уменьшает потери в магнитопроводе и выводах вторичной обмотки и упрощает конструкцию. 2 ил., 1 табл.

Настоящее изобретение относится к электротермии, в частности, к индукционному нагреву, и может быть использовано для согласования источника питания высокой частоты с низкоомной нагрузкой, а также для регулирования режима нагрева.

Известен трансформатор галетного типа с замкнутым магнитопроводом [1]. Галета состоит из дисковой первичной обмотки, изолированной термостойкой изоляцией и залитой алюминием. Заливка образует виток вторичной обмотки. Изменение коэффициента трансформации производится переключением витков первичной и вторичной обмоток. Недостатком указанного устройства является сложность его изготовления, ограничение по частоте до 10 кГц и снижение КПД при уменьшении коэффициента мощности индуктора. Известен трансформатор для высокочастотного нагрева с незамкнутым ферритовым сердечником [2] , недостатком которого является узкий диапазон его использования при высокочастотном нагреве с небольшим изменением индуктивностей нагрузок (не более чем в 2-3 раза) ввиду резкого снижения КПД при работе в более широком диапазоне изменения параметров. Известен высокочастотный трансформатор [3], содержащий первичную обмотку, выполненную в виде спиральной катушки, и вторичную одновитковую обмотку, соединенную последовательно с первичной и имеющую дополнительные выводы для подключения нагрузки. Трансформатор имеет элементы из ферромагнитного или электропроводного материала, установленные внутри обмоток ассиметрично с возможностью перемещения вдоль обмоток. Недостатком указанного устройства является более низкий КПД, чем у трансформаторов других типов, и узкий диапазон изменения нагрузок. Прототипом настоящего изобретения следует считать трансформатор для высокочастотного нагрева с дисковыми обмотками и замкнутым магнитопроводом [4], в котором путем переключения дисков первичной и вторичной обмоток возможно менять коэффициент трансформации в широких пределах. Основным недостатком устройства по прототипу является ограничение его использования в диапазоне частоты тока до 10 кГц. Это происходит потому, что при повышении частоты тока свыше 10 кГц резко увеличиваются потери в магнитопроводе, который выполнен из листовой электротехнической стали. Другим недостатком устройства по прототипу следует считать сложность конструкции и повышенные потери в выводах вторичной обмотки и контактных приспособлениях для переключения дисков. Повышенные потери во вторичной обмотке возникают из-за того, что ток во вторичной обмотке протекает вследствие эффекта близости по узким сторонам диска, обращенным друг к другу. В связи с указанными техническими и технологическими недостатками использования устройства по прототипу существует задача создания устройства, работающего в более широком диапазоне изменения частоты тока, осуществляющего согласование высокочастотного источника питания с нагрузкой, в том числе с низкоомной нагрузкой, с возможностью плавного регулирования режима работы при изменении параметров нагрузки, обладающего при этом простотой конструкции и эксплуатации, при снижении массогабаритных показателей и улучшении энергетических параметров. Поставленная задача решается авторами следующим образом. В известном устройстве, высокочастотном трансформаторе для индукционного нагрева, содержащем дисковые обмотки и магнитопровод, первичную дисковую обмотку выполняют из двух частей, вторичную обмотку выполняют состоящей из двух последовательно соединенных листовых витков с отверстиями, в которые частично или полностью вставлен магнитопровод, причем части первичной обмотки располагают над внешними поверхностями листов вторичной обмотки и соединяют с ними кондуктивно последовательно, а магнитопровод выполняют с возможностью перемещения вдоль оси обмоток и/или снабжают катушкой подмагничивания. Технический результат от применения предлагаемого устройства состоит в возможности его применения при частоте тока как до 10 кГц, так и более, в возможности согласования высокочастотного источника питания с нагрузкой, включая низкоомную нагрузку, а также в упрощении конструкции и снижении стоимости при повышении энергетических показателей, таких как КПД, коэффициент связи и др. Основным техническим преимуществом настоящего изобретения по сравнению с прототипом является возможность его применения в широком диапазоне изменения частоты тока за счет того, что потери во вторичной обмотке малы из-за большой ширины пути протекания тока и малого зазора, потери во вторичной обмотке малы благодаря вытеснению тока к центру обмотки магнитопроводом, а потери в магнитопроводе малы благодаря применению для его изготовления магнитодиэлектрических материалов с малыми потерями, в частности высокочастотного феррита. При больших мощностях все элементы конструкции трансформатора легко выполнить водоохлаждаемыми. Другим техническим преимуществом настоящего изобретения по сравнению с прототипом является возможность плавного регулирования режима работы и поддержания оптимального согласования высокочастотного источника питания при изменении параметров нагрузки в широком диапазоне, включая низкоомную нагрузку. Это происходит благодаря тому, что согласование осуществляется изменением сопротивления обмоток трансформатора путем перемещения магнитопровода относительно обмоток и/или путем изменения тока намагничивания катушки, надетой на магнитопровод. Техническим преимуществом настоящего изобретения по сравнению с прототипом является также уменьшение массогабаритных показателей, упрощение конструкции, удобство при эксплуатации и ремонте, благодаря чему достигается удешевление предлагаемого устройства за счет уменьшения расхода дорогостоящих материалов обмоток и магнитопровода. Это происходит благодаря тому, что из-за малой величины зазора между первичной и вторичной обмотками магнитопровод можно значительно уменьшить в размерах, поместив его в отверстие в обмотках, таким образом, предлагаемая конструкция позволяет уменьшить размеры магнитопровода, увеличить его эффективность. Сущность изобретения поясняется чертежами, на которых схематически изображен высокочастотный трансформатор: на фиг. 1 – вид устройства с продольным разрезом; на фиг. 2 – вид сверху по А. На чертежах показано: 1 – первичная дисковая обмотка, витки которой изолированы друг от друга и от витков вторичной обмотки; 2 – вторичная обмотка, состоящая из двух листовых витков с отверстием; 3 – магнитопровод, имеющий возможность перемещения в отверстии относительно первичной и вторичной обмоток; 4 – катушка подмагничивания; 5 – изоляция, препятствующая контактированию витков вторичной обмотки друг с другом; 6 – выводы подключения первичной обмотки к высокочастотному источнику питания; 7 – выходные шины вторичной обмотки, подсоединяемые к нагрузке (нагрузка не показана). Предлагаемое устройство работает следующим образом. При подключении источника высокочастотной энергии к выводам 6 первичной обмотки 1 по ней течет ток, создающий магнитный поток, сцепленный с витками вторичной обмотки 2 и проходящий по магнитопроводу 3, вставленному в отверстия в обмотках и имеющему возможность перемещения вдоль оси отверстий, изменяя величину магнитного сопротивления потоку. Во вторичной обмотке наводится ЭДС, под действием которой во вторичной обмотке 2 течет ток, величина которого зависит от состояния ее выводов 7. Если к выводам 7 подключена нагрузка (не показана), ток во вторичной обмотке равен сумме тока нагрузки и тока первичной обмотки. Из-за малого расстояния между витками вторичной обмотки и большой ширины пути протекания тока активное сопротивление и индуктивность вторичной обмотки могут иметь очень малую величину даже при большой частоте тока. Индуктивность первичной и вторичной обмоток может изменяться плавно в широких пределах путем перемещения магнитопровода и/или изменяя ток в катушке подмагничивания и надетой на магнитопровод 3, что позволяет использовать устройство в широком диапазоне изменения нагрузки и частоты тока источника. Пример реализации изобретения Изготовлен высокочастотный трансформатор для согласования источника питания мощностью 10 кВт и частотой тока 66 кГц с петлевым индуктором для пайки. Индуктивность нагрузки составляет 0,06 Гн. Массогабаритные и энергетические параметры трансформатора приведены в таблице. Напряжение на первичной обмотке составляет 800 В, ток первичной обмотки 20 А. Напряжение на вторичной обмотке 17,4 В, ток вторичной обмотки 325 А. Магнитопровод выполнен из феррита 2000 Н . Режим нагрева и мощность, передаваемая индуктором в деталь, регулируется двумя способами: 1) перемещением магнитопровода вдоль оси обмоток; 2) изменением тока в катушке подмагничивания, надетой на магнитопровод. Катушка запитывается от внешнего стандартного регулируемого источника питания напряжением от 0 до 30 В с током до 2,5 А. Данный образец высокочастотного трансформатора подтвердил все технические преимущества настоящего изобретения. Источники информации 1. Шамов А. Н., Бодажков В.А. Проектирование и эксплуатация высокочастотных установок. Издание 2-е, Л.: Машиностроение, 1974, 280 с. 2. Пейсахович В.А., Мирский Н.Л. Высокочастотный трансформатор с незамкнутым ферритным сердечником. Промышленное применение токов высокой частоты. Вып. 11. Л.: Машиностроение, 1965, 320 с. 3. А. с. N 1488885, кл. H 01 F 19/04. Бюл. 23. 4. Вологдин Bс.В. Трансформаторы для высокочастотного нагрева. Вып. 7. Издание 3-е. М.-Л.: Машиностроение. 1965, 100 c.

Формула изобретения

Высокочастотный трансформатор для индукционного нагрева, содержащий дисковые обмотки и магнитопровод, отличающийся тем, что первичную дисковую обмотку выполняют из двух частей, вторичную обмотку выполняют состоящей из двух последовательно соединенных листовых витков с изоляцией, препятствующей контактированию витков вторичной обмотки друг с другом, при этом обе обмотки выполняют с отверстиями, в которые частично или полностью вставляют магнитопровод, причем части первичной обмотки располагают над внешними поверхностями листов вторичной обмотки и соединяют с ними кондуктивно последовательно, а магнитопровод выполняют с возможностью перемещения вдоль оси обмоток или снабжают катушкой подмагничивания.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *