Ацетилен и углерод: АЦЕТИЛЕН | Энциклопедия Кругосвет
alexxlab | 19.04.2023 | 0 | Разное
Российские химики полностью расшифровали механизм реакции получения бензола из ацетилена
Реакция превращения ацетилена в бензол на угольных катализаторах известна уже более полутора сотен лет, однако детали этого процесса до недавних пор оставались неясны. Недавно в них удалось разобраться группе российских химиков из Института органической химии им. Н. Д. Зелинского РАН. Они последовательно описали все стадии превращения, в том числе и самый «проблемный» момент — отщепление готового продукта и обновление каталитического центра. Также удалось показать, что при достаточном нагреве ацетилен может образовывать графеновые хлопья, которые сами могут служить катализатором тримеризации.
Рис. 1. Схема реакции и портрет Николая Дмитриевича Зелинского. Рисунок с сайта phys.org
Ацетилен (C2H2) — газообразный (при нормальных условиях) углеводород, в котором два атома углерода связаны тройной связью. Ацетилен очень легко вступает в реакции и широко используется в органическом химическом синтезе как исходное соединение для получения многих веществ. А в начале XX века (до того, как химики освоили крекинг нефти и научились получать всё из нее) значение ацетилена было еще больше, поскольку это было одно из немногих органических веществ, которые можно было получать из неорганических: ацетилен умели синтезировать из карбида кальция и воды при помощи реакции Вёлера. Поэтому превращение ацетилена в различные вещества активно изучалось учеными по всему миру.
В частности, в 1924 году российский химик Николай Дмитриевич Зелинский вместе со своим коллегой Борисом Александровичем Казанским показал, что ацетилен можно превратить в другой углеводород бензол (C6H6). Бензол — жидкий циклический углеводород (все атомы углерода в его молекуле соединены в один шестичленный цикл). Это одно из важнейших веществ в органической химии, оно до сих пор используется как исходное соединение для многих промышленно важных реакций. Чтобы получить бензол, Зелинский нагревал ацетилен до температуры 600 градусов Цельсия над раскаленным активированным углем — пористым углеродным материалом, который был впервые получен в его лаборатории в 1915 году. Зелинский ожидал, что благодаря большой площади поверхности активированный уголь будет хорошо адсорбировать ацетилен и таким образом препятствовать детонации при нагревании. При этом на поверхности активированного угля молекулы ацетилена будут соединяться по три штуки (тримеризоваться), превращаясь в молекулы бензола. А вот активированный уголь ни во что превращаться не будет, в данной реакции он является катализатором — веществом, которое ускоряет протекание реакции, но не расходуется в ней.
Эксперименты Зелинского показали, что с помощью такого процесса можно превратить около 35% ацетилена в бензол, а еще часть ацетилена разлагается с образованием твердых продуктов, которые оседают на поверхность катализатора. Однако точный механизм этой реакции (и, в частности, роль в нем угольного катализатора) Зелинский в своих работах не описал, и с тех пор его так и не удавалось полностью изучить. В 1948 году немецкий химик Реппе предложил более выгодный способ превращать ацетилен в бензол (использование катализаторов из соединений никеля при 60°C), а в наши дни бензол в основном получают крекингом нефти. Реакция Зелинского утратила свое прикладное значение, но ее механизм продолжал интересовать ученых — как занимательная химическая загадка. Время от времени выходили статьи с описанием предполагаемого механизма (см., например, G. Jones, Z. Krebs, 2017. The trimerization of acetylenes involves a cascade of biradical and pericyclic processes), но окончательной ясности не было.
Дело в том, что механизмы катализа — не самая простая тема для изучения. С известной долей упрощения можно сказать, что катализатор реагирует с исходными веществами (реагентами), образуя более реакционноспособные промежуточные продукты, которые потом легче вступают в последующие превращения. Но вот как именно действует тот или иной катализатор понять непросто, ведь все они не похожи между собой и даже один и тот же катализатор может в разных процессах вести себя по-разному.
Условно все катализаторы можно поделить на две большие группы: гомогенные (катализатор и реагенты находятся в одной фазе, чаще всего — растворе) и гетерогенные (нерастворимые твердые частицы катализатора погружают в раствор или газовую смесь реагентов). В случае гомогенного катализа в распоряжении ученых еще есть некоторые методы, чтобы пытаться «засечь» механизм — например, можно провести in situ анализ методом ЯМР-спектроскопии, который иногда позволяет определить структуру промежуточных продуктов. В случае гетерогенного катализа этот метод не работает — для него нужен однородный раствор. Поэтому для изучения механизма таких реакций в распоряжении ученых остаются в основном теоретические методы. Взаимодействие молекул и входящих в их состав атомов и электронов они пытаются смоделировать на компьютере. Сейчас существуют методы, которые позволяют сделать это весьма точно, однако требуют большой вычислительной мощности, — нередко ученым приходится обращаться к суперкомпьютерам, а если такой возможности нет, то остается только ждать результатов моделирования неделями и даже месяцами.
Кроме того, углеродные материалы долгое время были в катализе «притесняемым меньшинством». Большая часть современных катализаторов — металлы и их соединения. Нередко это редкие и дорогостоящие металлы (золото, металлы платиновой группы), некоторые из них к тому же токсичны. Разные формы углерода (сначала активированный уголь, позже — нанотрубки и другие наноматериалы) в основном использовались как носитель, на поверхность которого наносят металл или его соединения. Однако в последние 10 лет в связи с активным исследованием графена и других 2D-форм углерода, многие научные группы стали активно (иногда даже чересчур активно — см. новость Любое ли гуано усилит электрокаталитические свойства графена?, «Элементы», 11.02.2020) изучать и каталитические свойства чисто углеродных материалов. В перспективе такие катализаторы будут гораздо выгоднее, чем металлические: они дешевы, просты в изготовлении, и их не нужно утилизировать после использования. Знаний про их работу у нас пока не так много, однако ученые активно работают в этом направлении.
Полностью описать механизм тримеризации ацетилена на угольном катализаторе ученые сумели только в этом году. Этот большой шаг в изучении работы углеродных катализаторов сделала группа российских химиков из Института органической химии им. Зелинского под руководством Валентина Павловича Ананикова (см. Ananikov Lab). В их работе были использованы теоретические расчеты с использованием теории функционала электронной плотности. В таких расчетах главным параметром изучаемой системы (молекулы, иона, фрагмента твердого тела и т. д.) является ее электронная плотность — распределение вероятности нахождения электрона в данной точке пространства. Искомые свойства системы — строение (взаимное расположение ее частей), энергия, и некоторые другие — могут быть записаны как функционал (то есть функция от функций) от электронной плотности. Сама же плотность связана взаимно однозначным соответствием с внешним потенциалом, который действует на электроны. Метод функционала плотности хорошо показал себя в изучении механизмов химических реакций и при этом позволяет проводить расчеты относительно быстро.
Итак, в начале работы авторы смоделировали строение исходных углеродных частиц. В качестве модели катализатора авторы они рассматривали так называемые графеновые хлопья — небольшие кусочки углеродного листа толщиной в один атом. Такие листочки — своеобразная «универсальная единица» углеродных материалов: их можно рассматривать как фрагмент нанотрубки, графенового/графитового листа или частичку активированного угля.
Графеновая плоскость состоит из углеродных шестиугольников. Углерод — элемент четвертой группы, у него четыре валентных электрона, значит он может образовывать четыре связи с другими атомами (для каждой связи используется один электрон). В «глубине» графенового листика так и есть: каждый атом углерода образует с соседями две одинарные связи и одну двойную. А вот атом на крае листа будет связан только с двумя соседями, а еще один или два (в зависимости от расположения) валентных электрона у него оказываются свободны (рис. 2). Такой атом со свободной электронной парой называют карбеновым — по имени молекулы карбена (:CH2), которая тоже имеет два свободных электрона. Он будет чрезвычайно реакционно-способным — то есть с легкостью сможет образовать связи с другими молекулами.
Рис. 2. Схематичное изображение фрагмента графенового листа. Каждый атом в глубине листа образует четыре связи. Атомы на нижнем и верхнем краях (так называемые зигзагообразные края) имеют по два свободных электрона; атомы на левом и правом краях — по одному свободному электрону
Авторы протестировали хлопья разных размеров от — 6 до 361 атомов углерода. Часть данных они поместили в дополнительные материалы, а в самой статье главным героем сделали частицу с формулой С35H14. На ее зигзагообразном крае один из атомов несет на себе два неспаренных электрона. При этом расчеты подтверждают, что неспаренные электроны не перераспределяются по всей молекуле, а остаются локализованы именно на этом атоме углерода. Чтобы не усложнять расчеты, все остальные краевые атомы авторы «запечатали» атомами водорода (в реальных частицах такие атомы тоже могут образовывать связи с водородом, кислородом и другими примесями). Получилась частица, которая нарисована в верхнем правом углу на рис. 3. Карбеновый реакционный центр обозначен двумя звездочками.
Российские химики полностью расшифровали механизм реакции получения бензола из ацетилена
Реакция превращения ацетилена в бензол на угольных катализаторах известна уже более полутора сотен лет, однако детали этого процесса до недавних пор оставались неясны. Недавно в них удалось разобраться группе российских химиков из Института органической химии им. Н. Д. Зелинского РАН. Они последовательно описали все стадии превращения, в том числе и самый «проблемный» момент — отщепление готового продукта и обновление каталитического центра. Также удалось показать, что при достаточном нагреве ацетилен может образовывать графеновые хлопья, которые сами могут служить катализатором тримеризации.
Ацетилен (C2H2) — газообразный (при нормальных условиях) углеводород, в котором два атома углерода связаны тройной связью. Ацетилен очень легко вступает в реакции и широко используется в органическом химическом синтезе как исходное соединение для получения многих веществ. А в начале XX века (до того, как химики освоили крекинг нефти и научились получать всё из нее) значение ацетилена было еще больше, поскольку это было одно из немногих органических веществ, которые можно было получать из неорганических: ацетилен умели синтезировать из карбида кальция и воды при помощи реакции Вёлера. Поэтому превращение ацетилена в различные вещества активно изучалось учеными по всему миру.
В частности, в 1924 году российский химик Николай Дмитриевич Зелинский вместе со своим коллегой Борисом Александровичем Казанским показал, что ацетилен можно превратить в другой углеводород бензол (C6H6). Бензол — жидкий циклический углеводород (все атомы углерода в его молекуле соединены в один шестичленный цикл). Это одно из важнейших веществ в органической химии, оно до сих пор используется как исходное соединение для многих промышленно важных реакций. Чтобы получить бензол, Зелинский нагревал ацетилен до температуры 600 градусов Цельсия над раскаленным активированным углем — пористым углеродным материалом, который был впервые получен в его лаборатории в 1915 году. Зелинский ожидал, что благодаря большой площади поверхности активированный уголь будет хорошо адсорбировать ацетилен и таким образом препятствовать детонации при нагревании. При этом на поверхности активированного угля молекулы ацетилена будут соединяться по три штуки (тримеризоваться), превращаясь в молекулы бензола. А вот активированный уголь ни во что превращаться не будет, в данной реакции он является катализатором — веществом, которое ускоряет протекание реакции, но не расходуется в ней.
Эксперименты Зелинского показали, что с помощью такого процесса можно превратить около 35% ацетилена в бензол, а еще часть ацетилена разлагается с образованием твердых продуктов, которые оседают на поверхность катализатора. Однако точный механизм этой реакции (и, в частности, роль в нем угольного катализатора) Зелинский в своих работах не описал, и с тех пор его так и не удавалось полностью изучить.
Дело в том, что механизмы катализа — не самая простая тема для изучения. С известной долей упрощения можно сказать, что катализатор реагирует с исходными веществами (реагентами), образуя более реакционноспособные промежуточные продукты, которые потом легче вступают в последующие превращения. Но вот как именно действует тот или иной катализатор понять непросто, ведь все они не похожи между собой и даже один и тот же катализатор может в разных процессах вести себя по-разному.
Условно все катализаторы можно поделить на две большие группы: гомогенные (катализатор и реагенты находятся в одной фазе, чаще всего — растворе) и гетерогенные (нерастворимые твердые частицы катализатора погружают в раствор или газовую смесь реагентов). В случае гомогенного катализа в распоряжении ученых еще есть некоторые методы, чтобы пытаться «засечь» механизм — например, можно провести in situ анализ методом ЯМР-спектроскопии, который иногда позволяет определить структуру промежуточных продуктов. В случае гетерогенного катализа этот метод не работает — для него нужен однородный раствор. Поэтому для изучения механизма таких реакций в распоряжении ученых остаются в основном теоретические методы. Взаимодействие молекул и входящих в их состав атомов и электронов они пытаются смоделировать на компьютере. Сейчас существуют методы, которые позволяют сделать это весьма точно, однако требуют большой вычислительной мощности, — нередко ученым приходится обращаться к суперкомпьютерам, а если такой возможности нет, то остается только ждать результатов моделирования неделями и даже месяцами.
Кроме того, углеродные материалы долгое время были в катализе «притесняемым меньшинством». Большая часть современных катализаторов — металлы и их соединения. Нередко это редкие и дорогостоящие металлы (золото, металлы платиновой группы), некоторые из них к тому же токсичны. Разные формы углерода (сначала активированный уголь, позже — нанотрубки и другие наноматериалы) в основном использовались как носитель, на поверхность которого наносят металл или его соединения. Однако в последние 10 лет в связи с активным исследованием графена и других 2D-форм углерода, многие научные группы стали активно (иногда даже чересчур активно — см. новость Любое ли гуано усилит электрокаталитические свойства графена?, «Элементы», 11.02.2020) изучать и каталитические свойства чисто углеродных материалов. В перспективе такие катализаторы будут гораздо выгоднее, чем металлические: они дешевы, просты в изготовлении, и их не нужно утилизировать после использования. Знаний про их работу у нас пока не так много, однако ученые активно работают в этом направлении.
Полностью описать механизм тримеризации ацетилена на угольном катализаторе ученые сумели только в этом году. Этот большой шаг в изучении работы углеродных катализаторов сделала группа российских химиков из Института органической химии им. Зелинского под руководством Валентина Павловича Ананикова (см. Ananikov Lab). В их работе были использованы теоретические расчеты с использованием теории функционала электронной плотности. В таких расчетах главным параметром изучаемой системы (молекулы, иона, фрагмента твердого тела и т. д.) является ее электронная плотность — распределение вероятности нахождения электрона в данной точке пространства. Искомые свойства системы — строение (взаимное расположение ее частей), энергия, и некоторые другие — могут быть записаны как функционал (то есть функция от функций) от электронной плотности. Сама же плотность связана взаимно однозначным соответствием с внешним потенциалом, который действует на электроны. Метод функционала плотности хорошо показал себя в изучении механизмов химических реакций и при этом позволяет проводить расчеты относительно быстро.
Итак, в начале работы авторы смоделировали строение исходных углеродных частиц. В качестве модели катализатора авторы они рассматривали так называемые графеновые хлопья — небольшие кусочки углеродного листа толщиной в один атом. Такие листочки — своеобразная «универсальная единица» углеродных материалов: их можно рассматривать как фрагмент нанотрубки, графенового/графитового листа или частичку активированного угля.
Графеновая плоскость состоит из углеродных шестиугольников. Углерод — элемент четвертой группы, у него четыре валентных электрона, значит он может образовывать четыре связи с другими атомами (для каждой связи используется один электрон). В «глубине» графенового листика так и есть: каждый атом углерода образует с соседями две одинарные связи и одну двойную. А вот атом на крае листа будет связан только с двумя соседями, а еще один или два (в зависимости от расположения) валентных электрона у него оказываются свободны (рис. 2). Такой атом со свободной электронной парой называют карбеновым — по имени молекулы карбена (:CH Он будет чрезвычайно реакционно-способным — то есть с легкостью сможет образовать связи с другими молекулами.
Авторы протестировали хлопья разных размеров от — 6 до 361 атомов углерода. Часть данных они поместили в дополнительные материалы, а в самой статье главным героем сделали частицу с формулой С35H14. На ее зигзагообразном крае один из атомов несет на себе два неспаренных электрона. При этом расчеты подтверждают, что неспаренные электроны не перераспределяются по всей молекуле, а остаются локализованы именно на этом атоме углерода. Чтобы не усложнять расчеты, все остальные краевые атомы авторы «запечатали» атомами водорода (в реальных частицах такие атомы тоже могут образовывать связи с водородом, кислородом и другими примесями). Получилась частица, которая нарисована в верхнем правом углу на рис. 3. Карбеновый реакционный центр обозначен двумя звездочками.
Затем авторы разбили реакцию тримеризации ацетилена на стадии. Для каждой стадии превращения они рассчитали два параметра — изменение свободной энергии Гиббса и энергию активации.
Первый параметр — свободная энергия Гиббса — показывает какая часть от полной внутренней энергии системы может быть использована для химических превращений или получена в их результате, и таким образом позволяет определить, возможно ли в данных условиях протекание процесса. Если изменение энергии Гиббса отрицательно (ΔG < 0), такой процесс термодинамически выгоден и протекает самопроизвольно (то есть без притока энергии извне). Чем меньше значение, тем выгоднее такой процесс, и тем больше шансов, что он осуществится, если в системе возможно протекание сразу нескольких процессов. Если же ΔG > 0, то для протекания процесса необходим приток энергии извне (например, в виде тепла). Чем больше изменение, тем больше энергии надо подвести и тем труднее осуществить такой процесс.
Второй параметр — энергия активации реакции или активационный барьер — величина, которая показывает, сколько энергии в среднем не хватает молекулам исходных реагентов для того, чтобы между ними произошло взаимодействие. Дело в том, что в процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией, чем исходное (например, необходимо преодолеть межмолекулярное отталкивание, разорвать связи для создания новых связей и т. д.). То есть молекулы должны преодолеть некий энергетический барьер, а если этого не произойдет, то реакция не начнётся. Отметим, что этот параметр характеризует не принципиальную возможность процесса, а только его скорость. Даже если средний уровень свободной энергии намного ниже, чем необходимо — например, температура системы очень низкая, — взаимодействие все равно возможно. Всегда найдутся молекулы с энергией выше средней, которые смогут преодолеть активационный барьер, просто их будет немного, поэтому процесс будет очень медленным. В отличие от изменения энергии Гиббса, которое может быть и положительным, и отрицательным, энергия активации всегда только положительная. Чем она меньше, тем легче и быстрее протекает превращение.
Если затем отложить все полученные значения на одном графике — получится так называемый энергетический профиль реакции (он и показан на рис. 3). Чем ниже расположено вещество на графике, тем оно стабильнее и тем выгоднее его образование. Промежуточные состояния для каждого шага на этом профиле представлены небольшими холмиками (максимумами), чем выше холмик — тем больше энергетический барьер данного превращения.
Итак, вернемся к нашим частицам катализатора и ацетилену. Рассчитав строение исходных частиц, авторы стали добавлять в систему по одной молекуле ацетилена и отслеживать, какие продукты при этом могут образоваться.
Оказалось, что первая молекула ацетилена присоединяется к реакционному центру очень легко: активационный барьер процесса всего 11,3 ккал/моль, а разница относительной энергии образования составляет −29,7 ккал/моль. На образование связи с ацетиленом нужно два электрона (любая связь — это два электрона): один из той самой пары на катализаторе, а другой предоставит ацетилен, разорвав свою тройную связь. В итоге в получившемся промежуточном продукте (на рис. 3 у него номер 3), один неспаренный электрон будет локализован на концевом атоме углерода, а второй — делокализован (размазан) по частице катализатора. Атом на конце цепи с неспаренным электроном тоже будет реакционноспособным, поэтому вторая молекула ацетилена присоединится к нему. Этот шаг пройдет так же легко, как и первый (барьер 10,5 ккал/моль, разница относительной энергии образования −35,8 ккал/моль). После этого реакционный центр снова мигрирует на концевой атом (промежуточный продукт номер 5). Третий шаг в точности повторяет первые два — цепь удлиняется еще на два атома, реакционный центр опять переместится на ее конец. Величина энергетического барьера 11,2 ккал/моль, разница относительной энергии образования −35,1 ккал/моль — оба значения также близки к соответствующим значениям двух предыдущих шагов. А вот дальше начинается самое интересное.
Радикал номер 7 может либо присоединить еще одну молекулу ацетилена, либо замкнуться в шестичленный цикл, «укусив» себя за хвост (точнее — за место прикрепления цепи к частице катализатора). Образование шестичленного цикла в органической химии — процесс предпочтительный, и в данном случае расчеты тоже показывают, что циклизация будет выгоднее и с термодинамической (разница относительной энергии образования меньше на 12,4 ккал/моль), и с кинетической (барьер 5 ккал/моль против 11,4 ккал/моль для удлинения) точки зрения. Таким образом, результатом четырех шагов будет структура под номером 9, в которой шестичленный цикл (это будущая молекула бензола, но в ней пока не хватает одной двойной связи) прикреплен к частице катализатора. Один неспаренный электрон все так же делокализован на частице катализатора, а второй — на атомах углерода в цикле.
Чтобы процесс шел дальше, шестичленный «недобензол» нужно от катализатора оторвать, а сам катализатор вернуть к первоначальному состоянию — с карбеновым углеродом и двумя электронами на нем. Это опять-таки может произойти двумя путями. Первый вариант — диссоциация или отщепление. Связь между циклом и катализатором порвется, один из составляющих ее электронов останется на оторвавшемся цикле, окончательно превратив его в бензол, а второй — останется на катализаторе. После этого, согласно расчетам, неспаренные электроны перераспределятся, и снова окажутся сосредоточены на краевом атоме — то есть наш катализатор вернется к своему первоначальному состоянию и будет готов к новым циклам. Второй вариант — ассоциация или замещение. К бывшему карбеновому атому на частице катализаторе (тому самому атому, с которого все и начиналось) присоединяется новая молекула ацетилена. Такое соединение (номер 11) будет крайне нестабильным, поэтому шестичленный цикл от него сразу же оторвется (все так же забрав с собой один электрон и превратившись в бензол). Расчеты показывают, что отрыв шестичленного цикла в данном случае выгоднее, чем отрыв только что присоединившегося ацетилена и возвращение назад к структуре №9. В итоге на полученной частице неспаренный электрон будет локализован на концевом атоме ацетилена. То есть мы начнем новый цикл реакции, сразу попав на его второй шаг (структура №3 на рис. 3).
Заметим, что хотя диссоциативный путь в данном случае выглядит несколько более выгодным, для обоих случаев изменение свободной энергии будет положительным (для диссоциации — 7 ккал/моль, для ассоциации — 26 ккал/моль). То есть процесс отрыва готового бензола от катализатора в любом случае несамопроизвольный, требующий вливания энергии извне. Причина этого — в высокой стабильности связи «углерод–углерод». Тем не менее требуемое количество энергии не так велико, и нагревание до 650°C может его обеспечить. Полученные данные показывают, что полностью исключить ассоциативный путь в данном случае нельзя, и скорее всего реализуются оба пути.
Кроме того, авторы сравнили между собой графеновые хлопья разного размера и строения и показали, что для некоторых из них обновление реакционного центра и вовсе невозможно. Только частицы с реакционным центром, который расположен на графеновом крае и имеет два электрона, способны к перераспределениям электронной плотности и в итоге — к обновлению карбенового центра. Если же реакционный центр располагается на другом крае и изначально имеет один электрон, такого не происходит. Поэтому реакция останавливается после первого цикла.
Чтобы подтвердить результаты моделирования, авторы также провели и «реальный» эксперимент. Они пропустили ацетилен через пучок тонких полых стеклянных трубочек при 650°C. Изначально трубочки не содержали никаких катализаторов, но могли адсорбировать ацетилен на свою внутреннюю поверхность — как активированный уголь в эксперименте Зелинского. Через 20 минут непрерывного пропускания ацетилена стеклянная трубочки покрылись изнутри черным налетом. В то же время на выходе из реакционной камеры (рис. 4) осела смесь бесцветных жидких и твердых веществ. ЯМР-анализ показал, что среди продуктов были бензол (55%) и нафталин (12%) — другой ароматический углеводород, который может образовываться по похожему механизму. Общий выход бензола составил 25% от изначального количества ацетилена.
Черный налет авторы аккуратно извлекли из трубок и проанализировали методами рамановской спектроскопии и просвечивающей/сканирующей электронной микроскопии. Оказалось, что он в основном состоит из ароматических «хлопьев» разного размера, весьма похожих на те, которые были описаны в теоретической части статьи. То есть в данном случае ацетилен выступает как «сам себе катализатор» — вначале небольшая его часть разлагается с образованием хлопьев, которые затем служат катализатором для дальнейшей реакции. Образовывались ли подобные хлопья у Зелинского (вспомним, что он писал про разложение ацетилена с образованием твердых продуктов) и если да, то вносили ли они вклад в катализ, мы уже доподлинно не узнаем (авторы в тексте тоже осторожно обошли этот момент). Однако принципиальных ограничений для такого процесса точно не было.
Таким образом, авторы продемонстрировали, как протекает тримеризация ацетилена на углеродном катализаторе. В том числе ими были описаны самые «проблемные» места в работе углеродного катализатора: механизмы разрыва связи «углерод–углерод» и обновления каталитического центра. Кроме того, было показано, что разложение ацетилена может давать углеродные хлопья, которые в дальнейшем выступают как катализатор тримеризации. На мой взгляд, статью хорошо бы дополнило рассмотрение механизмов образования этих хлопьев. Также было бы интересно узнать, происходит ли образование хлопьев только в начале реакции, потом уступая место тримеризации, или же два процесса протекают параллельно.
И конечно, нельзя не отметить историческую значимость этой работы. Один из наиболее известных русских химиков-органиков, Николай Зелинский, был не только выдающимся ученым, но и талантливым педагогом. Он всю жизнь уделял большое внимание воспитанию новых поколений исследователей, в том числе активно участвовал в организации Института Органической Химии — того самого, в котором сейчас работают Анаников и его научная группа. Это безусловно знаковый момент, что именно ученым из института имени Н. Д. Зелинского удалось в конце концов прояснить механизм этой реакции. Можно сказать, что новая статья прокладывает своеобразный мостик между работами этого выдающегося ученого и использованием углеродных катализаторов в будущем.
Источник: Evgeniy G. Gordeev, Evgeniy O. Pentsak, and Valentine P. Ananikov. Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization // Journal of the American Chemical Society. 2020. DOI: 10.1021/jacs.9b10887.
Наталия Самойлова
Циклическая электрохимическая стратегия производства ацетилена из CO2, Ch5 или альтернативных источников углерода
Циклическая электрохимическая стратегия производства ацетилена из CO
2 , CH 4 или альтернативных источников углерода †Джошуа М. Макинани, ‡ и Брайан А. Рор, ‡ и Адам С. Ниландер, и Аюш Р. Сингх, и Лори А. Кинг, и Йенс К. Норсков* абв и Томас Ф. Харамильо * аб
Принадлежности автора
* Соответствующие авторы
и SUNCAT Центр исследования поверхности раздела и катализа, факультет химического машиностроения Стэнфордского университета, Shriram Center, 443 Via Ortega, Стэнфорд, Калифорния 94305, США
Электронная почта: jaramillo@stanford. edu
б SUNCAT Center for Interface Science and Catalysis, Национальная ускорительная лаборатория SLAC, 2575 Sand Hill Road, Menlo Park, CA 94025, США
с Кафедра физики Датского технического университета, DK-2800 Kongens Lyngby, Дания
Аннотация
Электрохимическая трансформация сильнодействующих парниковых газов, таких как CO 2 и CH 4 для производства полезных продуктов на основе углерода является очень желательной целью устойчивого развития. Однако в водных электрохимических процессах остаются проблемы селективности, поскольку селективное восстановление CO 2 до желаемых продуктов затруднено, а электрохимическое окисление CH 4 часто протекает с очень низкой скоростью. Образование продуктов, связанных с С-С, в этих областях особенно желательно, поскольку это открывает путь для производства дорогостоящих видов топлива и химикатов. Мы разработали циклическую электрохимическую стратегию, которая может производить ацетилен, продукт связи С-С, из таких источников углерода и воды с подходящей плотностью тока и селективностью. Эта стратегия иллюстрируется литий-опосредованным циклом: активный Li 0 surface is electrochemically generated from LiOH, the newly formed Li 0 reacts with a carbon source to form Li 2 C 2 , and Li 2 C 2 гидролизуется с образованием ацетилена и регенерацией LiOH.
Мы демонстрируем этот процесс, прежде всего, используя газ CO 2 , достигая текущей эффективности 15% по отношению к ацетилену (что составляет 82% от максимума, основанного на стехиометрическом производстве окисленных побочных продуктов, напр. LiCO 3 и/или Li 2 O), что подтверждается газовой хроматографией и исследованиями инфракрасного излучения с преобразованием Фурье. Мы также исследуем CH 4 , CO и C в качестве альтернативных предшественников в синтезе ацетилена. Примечательно, что использование графитового углерода при более высоких температурах привело к более чем 55% эффективности тока по сравнению с ацетиленом с возможностью дальнейшей оптимизации. Важно отметить, что этот метод циклирования позволяет избежать образования обычных побочных продуктов, наблюдаемых во время электрохимического CO 9 в водной среде.0060 2 и CH 4 Окислительно -восстановительные реакции, такие как H 2 , CO, HCO 2 – , OR – , или CO 3 – .
Теоретические соображения объясняют осуществимость и общую применимость этого цикла, а этапы процесса охарактеризованы с помощью конкретных электрохимических методов и методов химии материалов. Дальнейшее развитие этой стратегии может привести к созданию жизнеспособного пути устойчивого производства углеродного топлива и химикатов, связанных с углеродом и углеродом.
Конверсия диоксида углерода в ацетилен в микромасштабе
Конверсия диоксида углерода в ацетилен в микромасштабе
Скачать PDF
Ваша статья скачана
Слайдер с тремя статьями на слайде. Используйте кнопки «Назад» и «Далее» для перемещения по слайдам или кнопки контроллера слайдов в конце для перемещения по каждому слайду.
Скачать PDF
- Опубликовано:
- УИЛЬЯМ ДЖ. ЭРОЛ 1 и
- РАЙМОНД ГЛАСКОК 1
Природа том 159 , страница 810 (1947)Цитировать эту статью
739 доступов
8 Цитаты
Сведения о показателях
Abstract
В качестве подготовки к будущим попыткам синтеза в очень малых масштабах биологически важных соединений, содержащих радиоактивный углерод C 14 или C 11 , мы разработали метод преобразования небольших количеств углекислого газа в ацетилен. Оба изотопа углерода 1,2 удобнее всего получать в химической форме двуокиси углерода, но ацетилен является лучшим исходным веществом для ряда синтезов. В наших экспериментах чистый металлический барий нагревали в вакуумной печи специальной конструкции из нержавеющей стали в присутствии углекислого газа, который поглощался с образованием карбида бария.
Ссылки
Ruben and Kamen, Phys. , 59 , 349 (1941).
Артикул ОБЪЯВЛЕНИЯ КАС Google Scholar
Yost, Ridenour and Shinohara, J. Chem. физ. , 3 , 133 (1933).
Артикул ОБЪЯВЛЕНИЯ Google Scholar
Скачать ссылки
Author information
Authors and Affiliations
College of the Pharmaceutical Society, University of London, 17 Bloomsbury Square, London, W.
C.1
WILLIAM J. ARROL & RAYMOND GLASCOCK
Authors
- WILLIAM J ARROL
Посмотреть публикации автора
Вы также можете искать этого автора в PubMed Google Scholar
- RAYMOND GLASCOCK
Посмотреть публикации автора
Вы также можете искать этого автора в PubMed Google Scholar
Права и разрешения
Перепечатка и разрешения
Об этой статье
Эта статья цитируется
Радиоуглеродное датирование: крупномасштабное получение ацетилена из органического материала
- Х. БАРКЕР
Природа (1953)
Микросинтез C14-меченого этилйодида
- У.
- У.