Анодная защита от коррозии трубопроводов – Электрохимзащита газопровода – принцип работы ЭХЗ

alexxlab | 31.07.2019 | 567 | Разное

Содержание

Электрохимическая защита

Предохранение металла от коррозии путем наложения внешнего постоянного электрического тока, при котором радикально меняется электродный потенциал материала и изменяется скорость его коррозии, называется электрохимической защитой. Она надежно оберегает поверхности от коррозии, предотвращая разрушение подземных резервуаров, трубопроводов, днищ судов, газгольдеров, гидротехнических сооружений, газопроводов и т. п. Используется такой метод в тех случаях, когда коррозийный потенциал находится в зоне интенсивного распада или при пассивации, то есть когда происходит активное разрушение металлоконструкций.

Принцип действия электрохимической защиты

К металлической конструкции извне подключается источник постоянного электрического тока. На поверхности изделия электрический ток формирует катодную поляризацию электродов, в результате чего совершается обмен, и анодные участки трансформируются в катодные. Вследствие этого, под воздействием коррозионной среды происходит разрушение анода, а не исходного материала. Такого рода защита подразделяется на катодную и анодную, зависит это от того в какую сторону (отрицательную или положительную) сдвигается потенциал металла.

Катодная защита от коррозии

Пример : (+0,8)Au/Fe(-0,44)     

                    

Для повышения устойчивости металлических деталей при соприкосновении с какой-либо агрессивной средой или при эксплуатации с воздействием морской воды или почвы, применяется катодная защита от коррозии. При этом катодная поляризация сохраняемого металла достигается формированием микрогальванической пары с другим металлом (алюминий, цинк, магний), понижением скорости катодного процесса (деаэрация электролита) или наложением электротока от внешнего источника.

Такой прием, как правило, применяется для сохранения черных металлов, потому что из них изготавливается большая часть объектов размещающихся в почве и воде – например, пирсы, свайные сооружения, трубопроводы. Широкое применение данный метод нашел и в машиностроении, при профилактике коррозийных процессов новых и находящихся в эксплуатации машин, при обработке кузова автомобиля, полостей лонжеронов, узлов шасси и т. п. Следует заметить, что этим же способом производится эффективная защита днища автомобиля, которое наиболее часто подвергается воздействию агрессивных сред.

Катодная защита, при многих достоинствах, все же имеет и недостатки. Один из них – переизбыток защиты, такое явление отмечается при сильном смещении потенциала сохраняемого изделия в отрицательную сторону. В результате – хрупкость металла, коррозионное растрескивание материала и разрушение всех предохраняющих покрытий. Ее разновидностью является защита протекторная. При ее использовании к сберегаемому изделию присоединяется металл с отрицательным потенциалом (протектор), который впоследствии, сохраняя объект, разрушается.

Анодная защита

Пример: (-0,77)Cd/Fe(-0,44)       

Анодная защита от коррозии металла применяется для изделий, изготовленных из высоколегированных железистых сплавов, углеродистой и кислотоупорной стали, расположенных в коррозионных средах с хорошей электропроводностью. При этом способе потенциал металла сдвигается в положительную сторону до того времени, пока не достигнет стабильного (пассивного) состояния.

Анодная электрохимическая установка включает в себя: источник тока, катод, электрод сравнения и сохраняемый объект.

Для того чтобы защита была максимально эффективной для какого-либо конкретного предмета, необходимо соблюсти определенные правила:

  • свести к минимуму количество трещин, щелей и воздушных карманов;

  • качество сварных швов и соединений металлоконструкций должно быть максимальным;

  • катод и электрод сравнения должны быть помещены в раствор и находиться там постоянно

studfiles.net

Катодная защита трубопроводов от коррозии

Как бы ни был популярен пластик, но большинство магистралей, проложенных в грунте (заглубленных) монтируется из стальных или чугунных образцов. Существенным минусом таких трубопроводов, при всех неоспоримых достоинствах, является подверженность материалов коррозии. Независимо от типа (эл/химическая, вызванная блуждающими токами или иным фактором), она существенно снижает эксплуатационный срок инженерной коммуникации или отдельной ее части.

В зависимости от местных условий и экономической целесообразности на практике реализуется несколько методик защиты трубопроводов. Все они подразделяются на 2 группы – активные и пассивные. Катодная защита относится к первой. Ее особенностям, технологии обустройства, принципу функционирования посвящен данный материал.

Схема катодной защиты трубопроводов

Состав

  • Источник пром/напряжения.
  • Преобразователь тока (переменный/постоянный).
  • Анодный заземлитель (одинарный или комбинированный).
  • Соединительные элементы цепи (проводники из металла).

Дополнительно

  • Вольтметр.
  • Контрольный электрод (медно-сульфатный).

Принцип действия

Подключение

Роль катода в этой схеме играет сам трубопровод. Он присоединяется к «-» выпрямителя. Соответственно, анод – к его «+».

Условие функционирования

Наличие электролитической среды (в данном случае – почвы) и анода из токопроводящего материала. Это не обязательно должен быть металл.

Порядок работы защиты

При подаче напряжения в схему возникает электрическое поле, создающее на участке трубопровода катодную поляризацию. Не вдаваясь в тонкости протекающих процессов, достаточно сказать, что в результате от коррозии разрушается не трубопровод, а анод, так как она образуется именно в области «+» напряжения. Заземлитель через определенное время заменить гораздо легче и дешевле, чем одну или несколько труб на трассе.

Особенности схем катодной защиты

  • В качестве источника питания могут использоваться как стационарные линии, так и мобильные генераторы.
  • Максимальный потенциал защитного поля для трубопроводов, не имеющих специального покрытия, не регламентирован. В остальных случаях (например, если элементы трассы имеют полимерную изоляцию) рассчитывается индивидуально для каждой схемы.
  • В зависимости от специфики трубопровода анодные заземлители могут отличаться способом расстановки (распределенные, сосредоточенные) и положением относительно уровня грунта (протяженные, глубинные).
  • Материал анода выбирается для конкретной почвы из расчета эксплуатации без замены минимум 15 лет. Этот срок можно искусственно увеличить, если поместить заземлитель в какую-либо среду. Например, в измельченный кокс.

ismith.ru

технологических трубопроводов, резервуаров, сосудов, свай, причалов, мостов и многого другого — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Метод электрохимической защиты (ЭХЗ) от коррозии уже многие годы применяется инженерами для продления срока службы различных металлических устройств и сооружений. Однако так повелось, что наиболее широко известны технические решения по использованию ЭХЗ для противокоррозионной защиты больших металлоемких конструкций и сооружений, таких как подземные трубопроводы в нефтегазовой промышленности и в сфере ЖКХ или большие стальные резервуары, хотя принцип работы ЭХЗ универсален, и может быть успешно использован практически везде, где есть контакт металла и агрессивного электролита. В этой статье мы бы хотели дать, безусловно, очень краткий обзор других возможностей применения электрохимзащиты вокруг нас – в индустриальной, общественной и даже приватной сфере жизни современного человека.

Электрохимическая защита основана на управлении токами электрохимической коррозии, всегда возникающими при контакте любого металлического сооружения и электролита. С помощью ЭХЗ анодная разрушающаяся зона переносится с защищаемого объекта либо на специальное анодное заземление (при катодной защите), либо на отдельное изделие из более активного металла (при протекторной защите). Более подробно о физико-химических принципах катодной и протекторной защиты от коррозии можно прочитать здесь. Главное, что следует понимать при принятии решения о применении ЭХЗ – это то, что необходим обязательный контакт защищаемого объекта/системы объектов и внешнего анода (анодного заземления или протектора), как посредством проводника первого рода (металлического кабеля или прямого металлического контакта), так и посредством проводника второго рода (электролита). Электрическая цепь “сооружение – кабель – анод – электролит” обязательно должна замкнуться, иначе защитного тока в системе просто не возникнет. Простой пример – трубопровод или свая, выходящая из земли на поверхность. ЭХЗ будет работать только на подземной части. Однако есть несколько примеров, когда, на первый взгляд, это правило не работает. Например, постоянный контакт сооружения и электролита не обеспечивается в зонах переменного смачивания, таких как приливно-отливная зона свай на морских пирсах и причалах, зона волнового смачивания аналогичных сооружений пресноводных водоемов и т.д. В этих случаях приходится применять довольно хитрые схемы ЭХЗ, работающие только в моменты увлажнения коррозионно-опасных зон. Но как, например, организовать ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе? Оказывается и это возможно! Но начнем мы с более простых случаев.

Простой и очевидный пример объекта, подвергающегося электрохимической коррозии, которую можно замедлить с помощью ЭХЗ – это закопанное в землю или стоящее на земле любое металлическое сооружение: свая, резервуар, трубопровод любого назначения. Конечно, применять ЭХЗ везде и всюду нет никакой необходимости, однако если объект находится в грунте высокой коррозионной агрессивности (высокая влажность или засоленность – явные признаки такого грунта!), либо это промышленно значимый и плохо ремонтопригодный объект – ЭХЗ явно не будет лишней. Проект такой системы ЭХЗ не очень сложен. Например, если нужно защитить свайный фундамент, то достаточно станции катодной защиты малой мощности (может хватить и аккумулятора) и несколько правильно расположенных точечных анодов, или несколько небольших отрезков протяженного анода. Только нужно не забыть, что если сваи сделаны из труб, то они могут корродировать и изнутри, там, где ЭХЗ работать не будет. Одиночный, полностью закопанный резервуар также прекрасно защищается точечными анодами по периметру сооружения, а днище резервуара, стоящего на грунте – одним точечным анодом или изогнутым отрезком протяженного анода. Если есть возможность менять анодные заземления и сопротивление грунта мало, то вместо точечных анодов можно установить протекторные установки, срок эффективной работы которых обычно составляет 5-7 лет.

Теперь перейдем к не очень распространенному, но очень продуктивному способу электрохимической защиты от коррозии внутренней поверхности трубопроводов и резервуаров (сосудов) любой емкости и назначения, имеющих контакт с агрессивным водным электролитом (промышленными сточными водами или просто водой с высоким содержанием минеральных солей и кислорода). В этом случае применение ЭХЗ позволяет продлить срок безремонтной эксплуатации объекта в несколько раз. Более простой случай – внутренняя ЭХЗ резервуара, когда во внутреннем пространстве резервуара размещаются протекторы или анодные заземления. Эффективность ЭХЗ существенно повысится, если внутренняя поверхность резервуара будет дополнительно защищена изоляционным покрытием с хорошими диэлектрическими свойствами. Более сложное техническое решение применяется для внутренней электрохимической защиты трубопровода. В этом случае наиболее эффективно ввести во внутреннюю полость трубопровода протяженный гибкий анод (ПГА) из токопроводящей резины. Длина такого анода обычно равна протяженности защищаемого участка трубопровода. Определенную техническую сложность вызывает укладка такого анода в уже эксплуатируемый трубопровод, хотя это также выполнимо на практике. Иногда для защиты участков ограниченной протяженности (5-30 м) достаточно установки во внутреннюю полость единичного точечного анода или протектора.

Внутренняя ЭХЗ трубопровода с применением протекторов

Такие системы внутренней электрохимзащиты чрезвычайно эффективны, даже когда ничего больше не помогает в принципе. Например, срок службы трубопроводов и различных очистительных установок –  очень коррозионно-агрессивных сточных вод промышленных предприятий – продлевается за счет внутренней ЭХЗ в 5-20 раз!

Следующий интересный случай применения систем ЭХЗ – это причальные сооружения, основания нефтегазовых платформ, опоры мостов или любые другие металлические конструкции в морской воде. Кстати, воды некоторых пресных водоемов в нашей “экологически чистой” стране, особенно вблизи крупных городов и промышленных предприятий, по коррозионной агрессивности приближаются к морской воде, поэтому все излагаемое ниже распространяется и на них с небольшими оговорками.

Коррозия сваи в зоне переменного смачивания и забрызгивания

Итак, металлические конструкции в морской воде подвергаются активной электрохимической коррозии, которая не может быть остановлена обычной покраской. По механизму коррозионного процесса на таких объектах обычно выделяют три основных зоны:

  • зона переменного смачивания и забрызгивания;
  • зона полного погружения в воду;
  • зона погружения сваи в грунт.

Наибольшую сложность при реализации систем электрохимической защиты представляет зона переменного смачивания, где нет постоянной электрической цепи “сооружение – электролит – анод”. Для этих зон необходимы анодные заземления (протекторы) сетчатой или браслетной формы, обеспечивающие раздельную защиту локально увлажненных участков металлической конструкции. В самых сложных случаях имеет смысл обеспечить принудительное постоянное увлажнение зоны переменного смачивания конструкции, для постоянной работы средств ЭХЗ.

Электрохимзащита зоны полного смачивания металлических свай в водной среде может быть реализована в зависимости от конструкции разными способами, среди которых имеет смысл выделить следующие:

  • размещение нескольких подвесных точечных анодов, каждый из которых защищает ближайшие, окружающие его, сваи;
  • на более глубоких участках возможно использование протяженных гибких анодов, которые крепятся к тросам, закрепляемым концами на металлическом сооружении и дне водоема;
  • если нет возможности подвести электричество к защищаемому сооружению, тогда приемлемым методом электрохимической защиты будет использование больших глубинных протекторов с длительными расчетными сроками эксплуатации.

Магниевый протектор для электрохимзащиты морских сооружений

Теперь вернемся к анонсированной ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе. По своему механизму этот случай чем-то напоминает коррозию в зоне переменного смачивания – также большое количество локально-увлажненных участков, только еще более маленьких. В этом случае единственный способ обеспечить электрохимическую защиту всей поверхности защищаемого изделия – это обеспечить свою локальную систему ЭХЗ на каждом увлажненном участке. Эта цель достигается путем нанесения на поверхность изделия специального покрытия, содержащего частицы металла, обладающего защитными протекторными свойствами по отношению к стали. Обычно этим металлом является цинк. Таким образом, на каждом участке поверхности обеспечивается своя маленькая установка протекторной защиты, которая активируется при увлажнении.

В этой статье мы рассказали только о нескольких основных случаях применения электрохимической защиты разнообразных металлических конструкций. На самом деле можно привести гораздо больше таких примеров – ЭХЗ может использоваться повсеместно: кузова автомобилей, корпуса морских судов, бытовые нагреватели воды, морские трубопроводы и т.д. Иногда даже приходится обеспечивать электрохимзащиту железобетонных конструкций, но это настолько объемная тема, что требует отдельного обзора. Поэтому можно смело говорить, что пока наш век металла не сменился веком композиционных материалов, именно электрохимическая защита будет одной из наиболее важных и востребованных человечеством технологий.

transenergostroy.ru

Электрохимическая защита трубопроводов от коррозии


⇐ ПредыдущаяСтр 7 из 22Следующая ⇒

Практика показывает, что даже тщательно выполненное изоляционное покрытие в процессе эксплуатации стареет: теряет свои диэлектрические свойства, водоустойчивость, адгезию. Встречаются повреждения изоляции при засыпке трубопроводов в траншее, при их температурных перемещениях, при воздействии корней растений. Кроме того, в покрытиях остается некоторое количество незамеченных при проверке дефектов. Следовательно, изоляционные покрытия не гарантируют необходимой защиты подземных трубопроводов от коррозии. Исходя из этого, в строительных нормах и правилах отмечается, что защита трубопроводов от подземной коррозии независимо от коррозионной активности грунта и района их прокладки должна осуществляться комплексно: защитными покрытиями и средствами электрохимической защиты (ЭХЗ).

Электрохимическая защита осуществляется катодной поляризацией трубопроводов. Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной,если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.

Катодная защита

Принципиальная схема катодной защиты показана на рис. 12.14. Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток, поступающий от вдольтрассовой ЛЭП 1 через трансформаторный пункт 2, преобразуется в постоянный.

Отрицательным полюсом источник с помощью кабеля 6 подключен к защищаемому трубопроводу 4, а положительным – к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.

Принцип действия катодной защиты (рис. 12.15) аналогичен процессу электролиза. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении «анодное заземление – источник тока – защищаемое сооружение». Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор почвенного электролита, т. е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся вглубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т. е. создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.

 

Рис. 2.14. Принципиальная схема катодной защиты:

1 – ЛЭП; 2 – трансформаторный пункт; 3 – станция катодной защиты; 4 – защищаемый трубопровод; 5 – анодное заземление; 6 – кабель

Рис.12.15. Механизм действия катодной защиты

 

Считается, что для защиты от коррозии подземных металлических трубопроводов необходимо, чтобы их потенциал был не более минус 0,85 В. Минимальный защитный потенциал должен поддерживаться на границе зон действия смежных станций катодной защиты (СКЗ).

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента (рис. 12.16).

Два электрода (трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь) опущены в почвенный электролит и соединены проводником 3. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Таким образом, разрушение металла все равно имеет место. Но не трубопровода, а протектора.

Теоретически для защиты стальных сооружений от коррозии могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений левее от железа, т.к. они более электроотрицательны. Практически же протекторы изготавливаются только из материалов, удовлетворяющих следующим требованиям:

– разность потенциалов материала протектора и железа (стали) должна быть как можно больше;

– ток, получаемый при электрохимическом растворении единицы массы протектора (токоотдача), должен быть максимальным;

– отношение массы протектора, израсходованной на создание защитного тока, к общей потере массы протектора (коэффициент использования) должно быть наибольшим.

Данным требованиям в наибольшей степени удовлетворяют магний, цинк и алюминий, сплавы которых и используются для изготовления протекторов.

 

Рис. 12.16. Принципиальная схема протекторной зашиты

1 – трубопровод; 2 – протектор; 3 – проводник; 4 – контрольно-измерительная колонка

Рис. 12.17. Принципиальные схемы электрических дренажей: а – прямой; 6 – поляризованный; в – усиленный

 

Протекторную защиту рекомендуется использовать в грунтах с удельным сопротивлением не более 50 Ом • м.

Применяют защиту протекторами, расположенными как поодиночке, так и группами. Кроме того, защита от коррозии трубопроводов может быть выполнена ленточными протекторами.


Рекомендуемые страницы:

lektsia.com

47. Основные способы защиты трубопроводов от коррозии

Коррозия – это процесс, вызывающий разрушение металла или изменение его свойств в результате химического либо электрохимического воздействия окружающей среды.

Все способы, продляющие срок службы трубопровода, можно условно разделить на две группы.

Введение ингибиторов коррозии. Введение в металл компонентов, повышающих коррозионную стойкость. Метод применяется на стадии изготовления металла. Одновременно из металла удаляются примеси, понижающие коррозионную устойчивость.

Применение изоляционных покрытий – заключается в нанесении на поверхность трубы защитного изоляционного покрытия на основе битума, полимерных лент или напыленного полимера. Изоляционные покрытия должны обладать сплошностью, высокой диэлектрической способностью, адгезией, механической прочностью, водонепроница­емостью, эластичностью, биостой­костью, термостойкостью, долговечностью и недифицитностью.

В зависимости от используемых материалов различают:

-мастичные покрытия (битумные и асфальто-смолистые мастики)

– полимерные (ленты, экструдированный полиэтилен, тремоусаживающиеся материалы, полиуретановые мастики. Эпоксидные смолы и краски)

– комбинированные («Пластобит» на битумную мастику наносится ПВХ пленка, «Армопластобит» отличается армированием стеклосетки; битумно-полимерные изоляционные ленты)

Катодная защита: положительный полюс источника постоянного тока (анод) подключается к специальному анодному заземлителю, а отрицательный (катод) – к ТП. Под воздействием электрического поля начинается движение электронов от анодного заземлителя к защищаемому сооружению. Теряя электроны, атомы металла анодного заземлителя переходят в виде ионов в раствор почвенного электролита, то есть анодный заземлитель разрушается. На катоде (трубопроводе) наблюдается избыток свободных электронов (восстановление металла защищаемого сооружения).

Протекторная защита: Принцип действия протекторной защиты аналогичен гальванической паре. Два электрода – трубопровод и протектор (изготовленный из более электроотрицательного металла, чем сталь) соединяются проводником. При этом возникает разность потенциалов, под действием которой происходит направленное движение электронов от протектора-анода к трубопроводу-катоду. Таким образом, разрушается протектор, а не трубопровод.

дренажная защита: Электродренажная защита предназначена для защиты трубопровода от блуждающих токов. Источником блуждающих токов является электротранспорт, работающий по схеме «провод–земля». Если поблизости находится трубопровод с нарушенной изоляцией, ток проходит по трубопроводу до тех пор, пока не будет благоприятных условий для возвращения к минусовой шине тяговой подстанции. В месте выхода тока трубопровод разрушается. Разрушение происходит за короткое время, поскольку блуждающий ток стекает с небольшой поверхности. Электродренажной защитой называется отведение блуждающих токов от трубопровода на источник блуждающих токов или специальное заземление

studfiles.net

47. Основные способы защиты трубопроводов от коррозии

Все способы, продляющие срок службы трубопровода, можно условно разделить на четыре группы.

  • Пассивная защита. Заключается в нанесении на поверхность трубы защитного изоляционного покрытия на основе битума, полимерных лент или напыленного полимера. Изоляционные покрытия должны обладать сплошностью, высокой диэлектрической способностью, адгезией, механической прочностью, водонепроница­емостью, эластичностью, биостой­костью, термостойкостью, долговечностью и недифицитностью.

  • Введение в металл компонентов, повышающих коррозионную стойкость. Метод применяется на стадии изготовления металла. Одновременно из металла удаляются примеси, понижающие коррозионную устойчивость.

  • Воздействие на окружающую среду. Метод основан на введение ингибиторов коррозии для дезактивации агрессивной среды.

  • Активная защита. К этому методу относятся катодная, протекторная и дренажная защита.

48. Катодная защита

При катодной защите трубопровода положительный полюс источника постоянного тока (анод) подключается к специальному анодному заземлителю, а отрицательный (катод) – к защищаемому сооружению (рис. 2.24).

Рис. 2.24. Схема катодной защиты трубопровода

1- линия электропередачи;

2 – трансформаторный пункт;

3 – станция катодной защиты;

4 – трубопровод;

5 – анодное заземление;

6 – кабель

Принцип действия катодной защиты аналогичен электролизу. Под воздействием электрического поля начинается движение электронов от анодного заземлителя к защищаемому сооружению. Теряя электроны, атомы металла анодного заземлителя переходят в виде ионов в раствор почвенного электролита, то есть анодный заземлитель разрушается. На катоде (трубопроводе) наблюдается избыток свободных электронов (восстановление металла защищаемого сооружения).

49. Протекторная защита

При прокладке трубопроводов в труднодоступных районах, удаленных от источников электроэнергии, применяется протекторная защита (рис. 2.25).

1 – трубопровод;

2 – протектор;

3 – проводник;

4 – контрольно-измерительная колонка

Рис. 2.25. Схема протекторной защиты

Принцип действия протекторной защиты аналогичен гальванической паре. Два электрода – трубопровод и протектор (изготовленный из более электроотрицательного металла, чем сталь) соединяются проводником. При этом возникает разность потенциалов, под действием которой происходит направленное движение электронов от протектора-анода к трубопроводу-катоду. Таким образом, разрушается протектор, а не трубопровод.

Материал протектора должен отвечать следующим требованиям:

  • Обеспечивать наибольшую разность потенциалов металла протектора и стали;

  • Ток при растворении единицы массы протектора должен быть максимальным;

  • Отношение массы протектора, израсходованной на создание защитного потенциала, к общей массе протектора должно быть наибольшим.

Предъявляемым требованиям в наибольшей степени отвечают магний, цинк и алюминий. Эти металлы обеспечивают практически равную эффективность защиты. Поэтому на практике применяют их сплавы с применением улучшающих добавок (марганца, повышающего токоотдачу ииндия – увеличивающего активность протектора).

studfiles.net

Электрохимическая защита нефтепроводов от коррозии — КиберПедия

 

При контакте металла с грунтами, относящимися к электролитическим средам, происходит коррозионный процесс сопровождаемый образованием электрического тока и устанавливается определенный электродный потенциал. Величину электродного потенциала нефтепровода можно определить по разности потенциалов между двумя электродами: нефтепроводом и неполяризующимся медносульфатным элементом. Таким образом, значение потенциала нефтепровода представляет собой разность его электродного потенциала и потенциала электрода сравнения по отношению к грунту. На поверхности нефтепровода протекают электродные процессы определенного направления и стационарные по характеру изменения во времени.

Стационарный потенциал принято называть естественным потенциалом, подразумевая при этом отсутствие на нефтепроводе блуждающих и других наведенных токов.

Взаимодействие корродирующего металла с электролитом разделяется на два процесса анодный и катодный, которые проходят одновременно на различных участках поверхности раздела металла и электролита.

При защите от коррозии используют территориальное разделение анодного и катодного процессов. К нефтепроводу подключают источник тока с дополнительным электродом-заземлителем, с помощью которого накладывают на нефтепровод внешний постоянный ток. В этом случае анодный процесс происходит на дополнительном электроде-заземлителе.

Катодная поляризация подземных нефтепроводов осуществляется с помощью наложения электрического поля от внешнего источника постоянного тока. Отрицательный полюс источника постоянного тока подключается к защищаемой конструкции, при этом трубопровод является катодом по отношению к грунту. Искусственно созданный анод-заземлитель – к положительному полюсу.

Принципиальная схема катодной защиты показана на рис. 1. При катодной защите отрицательный полюс источника тока 2 подключен к нетфепроводу 1, а положительный – к искусственно созданному аноду-заземлителю 3. При включении источника тока от его полюса через анодное заземление поступает в грунт и через поврежденные участки изоляции 6 на трубу. Далее через точку дренажа 4 по соединительному проводу 5 ток возвращается снова к минусу источника питания. При этом на оголенных участках нефтепровода начинается процесс катодной поляризации.

 

Рис. 1. Принципиальная схема катодной защиты нефтепровода нефтепровод; 2 – внешний источник постоянного тока; 3 – анодное заземление; 4 – точка дренажа; 5 – дренажный кабель; 6 – контакт катодного вывода; 7 – катодный вывод; 8 – повреждения изоляции нефтепровода



 

Поскольку напряжение внешнего тока, приложенного между электодом-заземлителем и нефтепроводом, значительно превышает разность потенциалов между электродами коррозионных макропар нефтепровода, стационарный потенциал анодного заземления не играет определяющей роли.

С включением электрохимической защиты (j0a доп) нарушается распределение токов коррозионных макропар, сближаются значения разности потенциалов труба – земля катодных участков (j0к) с разностью потенциалов анодных участков (j0а) обеспечиваются условия для поляризации.

Рис. 2. Коррозионная диаграмма для случая полной поляризации (а) и неполной поляризации (б)

 

Катодная защита регулируется путем поддержания необходимого защитного потенциала. Если наложением внешнего тока нефтепровод заполяризован до равновесного потенциала (j0к=j0а) растворения металла (рис. 2 а), то анодный ток прекращается и коррозия приостанавливается. Дальнейшее повышение защитного тока нецелесообразно. При более положительных значениях потенциала наступает явление неполной защиты (рис. 2 б). Оно может возникнуть при катодной защите нефтепровода, находящегося в зоне сильного влияния блуждающих токов или при использовании протекторов, не имеющих достаточно отрицательного электродного потенциала (цинковые, протекторы).

Критериями защиты металла от коррозии являются защитная плотность тока и защитный потенциал.

Катодная поляризация неизолированной металлической конструкции до величины защитного потенциала требует значительных токов. Наиболее вероятные величины плотностей токов, необходимых для поляризации стали в различных средах до минимального защитного потенциала (-0,85 В) по отношению к медно-сульфатному электроду сравнения приведены в табл. 1.



Таблица 1

Плотность тока, необходимая для катодной защиты неизолированной стальной поверхности в различных средах

Среда Плотность тока, необходимая для катодной защиты, мА/м2
Стерильная нейтральная почва 4,3…16,1
Хорошо аэрируемая нейтральная почва 21,5…32,3
Сухая, хорошо аэрируемая почва 5,4…16,1
Влажная почва 16,9…64,6
Высококислая 53,8…161,4
Почва, поддерживающая активность сульфатновосстанавливающих бактерий 451,9

Обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность нефтепровода. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. Так, для катодной защиты стали с хорошим покрытием в почве требуется всего 0,01 … 0,2 мА/м2.

Защитная плотность тока для изолированных магистральных нефтепроводов не может стать надежным критерием защиты вследствие неизвестного распределения поврежденной изоляции нефтепровода, определяющую фактическую площадь контакта металла с грунтом. Даже для неизолированной трубы (патрон на подземном переходе через железные и шоссейные дороги) защитная плотность тока, определяется по геометрическим размерам сооружения, является фиктивной, т.к. остается неизвестной доля поверхности патрона, покрытая постоянно присутствующими пассивными защитными слоями (окалиной и др.) и не участвующая в процессе деполяризации. Поэтому защитная плотность тока как критерий защиты применяется при некоторых лабораторных исследованиях, выполняемых на образцах металла.

 

В качестве критерия ГОСТ Р 51164-98 «Трубопроводы стальные магистральные. Общие требования к защите от коррозии» принят защитный потенциал (табл. 2).

Таблица 2

Минимальные защитные потенциалы

 

Условия прокладки и эксплуатации трубопровода Минимальный защитный потенциал относительно насыщенного медно-сульфатного электрода сравнения, В
Поляризационный С омической составляющей
Грунты с предельным электрическим сопротивлением не менее 10 Ом×м или содержанием водорастворимых солей не более 1 г на 1 кг грунта или при температуре транспортируемого продукта не более 293 К (20°С) -0,85 -0,90
Грунты с предельным электрическим сопротивлением менее 10 Ом×м или содержанием водорастворимых солей более 1 г на 1 кг грунта, или опасном влиянии блуждающих токов промышленной частоты (50 Гц) и постоянных токов, или при возможной микробиологической коррозии, или при температуре транспортируемого продукта более 293 К (20°С) -0,95 -1,05

Примечания:

1. Для трубопроводов, температура транспортируемого продукта которых не более 278К (5°С), минимальный поляризационный защитный потенциал равен минус 0,80В относительно насыщенного медно-сульфатного электрода сравнения.

2. Минимальный защитный потенциал с омической составляющей при температуре транспортируемого продукта от 323К (50°С) до 343К (70°С) – минус 1,10В; от 343К (70°С) до 373К (100°С) – минус 1,15В.

3. Для грунтов с высоким удельным сопротивлением (более 100 Ом×м) значения минимального потенциала с омической составляющей должны быть определены экспериментально или расчетным путем в соответствии с НД.

Смещение разности потенциалов труба-земля в отрицательную сторону относительно минимально защитного с точки зрения защиты бесполезно и вызывает повышение расхода тока. Однако такое смещение разности потенциалов необходимо в местах подключений станций катодной защиты (СКЗ) к нефтепроводу, чтобы обеспечить минимальную защитную разность потенциалов на участках нефтепровода, удаленных от СКЗ. Как только разность потенциалов труба-земля достигнет величин, отрицательнее -1,10 В, на нефтепроводе (катоде) катодный процесс будет протекать с интенсивным выделением водорода, что может нарушить прилипаемость изоляции нефтепровода. Поэтому для изолированных нефтепроводов максимально допустимая разность потенциалов принята равной -1,10В (табл.3).

 

Таблица 3

Максимальные защитные потенциалы

Условия прокладки и эксплуатации трубопровода Максимальный защитный потенциал относительно насыщенного медно-сульфатного электрода сравнения, В
Поляризационный С омической составляющей
При прокладке трубопровода с температурой транспортируемого продукта выше 333К (60°С) в грунтах с удельным электрическим сопротивлением менее 10 Ом×м или при подводной прокладке трубопровода с температурой транспортируемого продукта выше 333К (60°С) -1,10 -1,50
При других условиях прокладки трубопроводов:    
с битумной изоляцией -1,15 -2,50
с полимерной изоляцией -1,15 -3,50

Примечания:

1. Для трубопроводов из упрочненных сталей с пределом прочности 0,6 МПа (6 кг/см2) и более не допускается поляризационные потенциалы более отрицательные, чем минус 1,10В.

2. В грунтах с высоким удельным сопротивлением (более 100 Ом×м) допускаются более отрицательные потенциалы с омической составляющей, установленные экспериментально или расчетным путем в соответствии с НД.

Наблюдениями установлено, что в определенных условиях изолирующее покрытие сохраняет прилипаемость к трубе и при более отрицательных разностях потенциалов. Это относится, прежде всего, к участкам, уложенным в хорошо аэрируемых грунтах с добросовестно выполненным покрытием. На участках нефтепровода, где при строительстве изоляция выполнена небрежно со слабой прилипаемостью, наблюдается отрыв ее от трубы в условиях перезащиты.

Проведены исследования почвенных условий, в которых эксплуатируются трубопроводы, в частности, влияние влажности грунтов и давления их на покрытие. Изучено поведение таких новых видов изоляционных материалов, как полимерные материалы и стеклоэмали в условиях катодной поляризации. Экспериментальными исследованиями установлена принципиальная возможность применения на подземных стальных трубопроводах катодной защиты с повышенным против нормы защитным потенциалом в тех случаях, когда трубопровод не находится в постоянном контакте с грунтовыми водами. Положительные результаты получены при повышении защитного потенциала в точке дренажа катодных станций при битумной изоляции до -2,5 В, при полимерной пленочной и силикатных эмалях – до -3,5 В. Такое повышение защитного потенциала обеспечивает увеличение экономической эффективности катодной защиты магистральных трубопроводов за счет сокращения числа катодных станций в 3 – 4 раза.

Для неизолированных стальных труб, не имеющих сближений и пересечений с другими металлическими сооружениями, смещение разности потенциалов в отрицательную сторону не ограничивается.

Потенциал подземного трубопровода со временем становится более отрицательным или более положительным. Это зависит от конкретных условий. На магистральном нефтепроводе непрерывно развиваются два процесса:

1. Разрушение изолирующего покрытия и включение в коррозионный процесс все новых, электрохимически активных участников стального нефтепровода. При этом стационарный потенциал смещается в отрицательную сторону. В том же направлении действует увеличение влажности и естественное уплотнение грунта в траншее.

2. Образование продуктов коррозии и их отложения на металлической поверхности снижают электрохимическую активность ее и смещают стационарный потенциал в положительную сторону. Этому способствует также высыхание грунта и дренирование грунтовых вод с трассы нефтепровода.

В зависимость от того, какой из этих процессов является доминирующим в условиях данного нефтепровода, и будет определяться характер сдвига потенциала.

 


cyberpedia.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *