Арматура в бетоне: выбор, подготовка и пути создания сетки

alexxlab | 01.11.1975 | 0 | Разное

Содержание

выбор, подготовка и пути создания сетки

Железобетон – это один из самых старых стройматериалов. Несмотря на период использования больше одного века, он применяется и сегодня. Это можно объяснить наличием в нем арматуры, которая повышает прочность железобетонных объектов. Железобетонные постройки приобретают все большую популярность как в промышленном строительстве, так и бытовом. Именно его использование в разных направлениях делает железобетон лидером среди подобных материалов. Давайте попробуем выяснить в чем же заключается суть арматурной работы в бетоне, ее предназначение и особенности.

Бетон и сталь – их соотношение

Каждая строительная компания имеет уникальное соотношение армирующего и бетонного материалов, установленное на практике. Это объясняется рядом преимуществ их сочетания. Среди них можно выделить:

  • повышение эксплуатационных свойств конструкции в результате объединения;
  • повышение свойств прочности бетона под воздействием стали;
  • крепость материала зависит от его возможности сдвига, растяжения и оказанного давления на материал.

Бетон имеет высокие показатели прочности на сжатие. В случае больших нагрузок применение железобетона обязательно. 

Растяжение стали не влияет на ее прочность. Вследствие этого, возможно строительство высокопрочных конструкций. Связь между бетонным раствором и сталью играет главную роль в определении крепости постройки. Сжатие бетона определяет уровень его прочности. Исходя из этого, железобетон обязательно применяется во избежания разрушения стен под действием нагрузок.

Вернуться к оглавлению

Правила железобетонных материалов

С целью полного соответствия конструкции установленным требованиям, стальные и бетонные материалы должны тесно взаимодействовать между собой. Этот процесс происходит в ходе их адгезии, вследствие чего бетонная смесь затвердевает. В случае слабого сцепления происходит скольжение арматуры в бетоне, и как результат, конструкция рушится.

С целью повышения адгезионных свойств, поверхность прутьев оборудуется специальными выступами. Данная процедура происходит либо во время проката, либо в ходе сплющивания двух стержней перпендикулярно по отношению друг к другу с применением специального оборудования.

Кроме того, на концах арматурных стержней оборудуются крюки для еще большего сцепления. Металлические сетки и каркасы имеют более надежное сцепление с бетоном благодаря неподвижности отдельных стержней.

Перед использованием должна быть проведена полная очистка арматуры от загрязнений и ржавчины, поскольку они препятствуют адгезии.

Пример взаимодействия арматуры и бетона.

Обязательным условием для предотвращения появления ржавчины является создание плотного и толстого бетонного слоя вокруг каждого за прутьев. Бетон, который расположен между сеткой и поверхностью строения, работает в качестве защиты не только от арматурного ржавления, но и обеспечивает ее огнеупорность. Данное свойство возможно в случаях применения плотного бетона, который не пропускает воздух.

В случае несоблюдения нужной толщины слоя защитного бетона возможна потеря огнеупорности материалов и появления ржавчины на армирующей сетке. В свою очередь, слишком толстый защитный слой приведет к снижению прочности строения вследствие смещения арматуры.

Следует отметить, что железобетон не теряет свои качества в случае перепадов температуры. Бетон и арматура обладают почти одинаковым температурным коэффициентом расширения, что позволяет им одновременно удлиняться или укорачиваться при повышении или понижении температуры соответственно.

Вернуться к оглавлению

Выбор стальной арматуры

Железо и бетон – основные составляющие железобетона. Существуют некоторые правила выбора материалов, которые обязательны к выполнению. Согласно этим правилам, арматура может быть создана из таких стройматериалов, как:

  • сталь мягкой прочности;
  • высоко- и среднеуглеродистая сталь;
  • проволока из стали, созданная в ходе холодной протяжки.

Перед выходом в эксплуатацию стержни проходят процедуры по повышению прочности и холодному свертыванию. Обязательной особенностью металла должно быть наличие поверхности с неровностями и зазубринами. Это служит дополнительным сцеплением металла и бетона.

После соединения стержней под углом 90 градусов, они образуют армирующую сетку. Процесс соединения происходит с применением сварочных агрегатов или вязки. Расположение сетки также имеет особенности, она должна покрывать всю площадь железобетонного объекта.

Выделяют еще один вид арматуры под названием листовая. Этот материал являет собой стальной лист, который превращается в своего рода сетку путем прорезания на нем отверстий. Правила расположения листа идентичны вышеупомянутым правилам расположения сетки. Данная арматура применяется в бетонных плитах перекрытий и стен конструкции.

Вернуться к оглавлению

Подготовка стержней к связке

Сначала арматуру проверяют на коррозию.

Работа по арматуре – сложный и длительный процесс. Перед его проведением необходимо подготовить и проверить стержни. Они обязаны быть пригодными к использованию и прочными. После того, как вы убедитесь в качестве материала, можно приступать к работе.

В первую очередь происходит проверка стали на наличие коррозии и соответствие параметрам и свойствам. Следует обязательно учитывать физические дефекты. К расположению сетки в бетоне следует подходить ответственно, поскольку даже небольшое отклонение может привести к необратимым последствиям.

При проверке учитывается сильная разрушающая коррозия стержня. В случае если ржавчиной покрыты небольшие участки прутьев, арматура может быть использована. Однако обработка антикоррозийным раствором такого металла обязательна.

Следующий этап — сгибание стержня. Это необходимо при армировании сложных конструкций, что будут оборудоваться в бетон. Данная процедура проводится при помощи специальных станков. После окончания подготовительных процедур создается арматурная сетка путем связки или сварки. Сетка создается при помощи таких материалов, приспособлений и правил:

  • прутья из стали – подготовленные, проверенные и по необходимости изогнутые;
  • проволока из металла – при создании сетки путем связки;
  • аппарат для сварки – при изготовлении арматуры путем сварки;
  • ровная поверхность – в случае сдвига связки или сварки возможно нарушение конструкции;
  • механизм для подъема – используется при закреплении конструкции из стали;
  • ограничительные приспособления и прокладки – контроль за соблюдением ровной связки и предотвращают смещение арматуры.
Вернуться к оглавлению

Пути создания сетки

Специалист работает с арматурой, а именно ее креплением путем сварки или вязки.

Вернуться к оглавлению

Связка

Этот способ применяется чаще. Это объясняется небольшими финансовыми затратами. В то же время соединительные качества от этого ухудшаются. Однако это не мешает связке быть популярной. Связка происходит отдельно от установленной опалубки. Связка должна проделываться на ровной поверхности во избежание смещений. Для соблюдения ровности применяются прокладочные и ограничительные материалы. Их устанавливают в процессе соединения прутьев.

Крепление должно производиться тщательно и аккуратно, поскольку исправить неточности крайне сложно. Это возможно лишь путем разбора секции арматуры и повторной связки. Вязка может производиться различными материалами. Наиболее распространенным среди них является мягкая, но в то же время прочная металлическая проволока. Кроме того, возможно применение пружинных креплений. Благодаря им крепление происходит быстрее.

Для достижения качественного сцепления с бетоном необходимо правильно рассчитать толщину бетонного слоя, который накладывается поверх сетки. Этот слой защищает арматуру от негативного воздействия воздуха и влаги. Следует подходить ответственно к определению толщины защитного пласта бетона.

Вернуться к оглавлению

Сварка деталей

Если каркас из арматуры достаточно высокий, то для придания ему жесткости делается выбор в пользу сварки.

Еще одним способом конструирования армирующего материала является сварка. Ее популярность объясняется повышенными прочностными качествами, которые положительно сказываются на свойствах железобетона.

Наиболее часто применяется электродуговая сварка. Ее простота и качество являются главными особенностями материала. Сварка может проводиться внахлест под углом или на одной прямой путем соединения двух стержней. Первый способ не требует особого контроля. А второй необходимо контролировать для достижения нужной прочности. Преимущества сварки:

  • соединение внахлест необязательно;
  • поперечное сечение соединений уменьшается;
  • каркас обладает высокой жесткостью.

Это список не исчерпывающий. Стыки стержней необходимо зачистить перед началом работ. Поверхность должна быть обязательно ровной или обработанной для сварки конкретного типа сечения прутьев. На практике часто применяется оборудование, контролирующее горизонтальное и вертикальное расположение стержней.

Контроль за качеством работы должен проводиться на всех этапах и при любом виде работ. Нельзя не упомянуть предварительное сваривание для проверки материала. Данная процедура осуществляется путем сваривания нескольких прутьев и их проверки на прочность.

Вернуться к оглавлению

Поведение железобетона

Каждая конструкция имеет свои особенности, которые являются ключевыми при создании железобетона. Так, давление на балку не является одинаковым. Ее нижняя часть всегда подвержена растяжению. Поэтому арматура должна применяться именно в этом месте.

После армирования давление на балку будет неизменным. Однако благодаря стали, прочность бетона повышена. Сталь обеспечивает сопротивление бетона нагрузкам. Бетонная плита имеет особенности. Опирание этого элемента конструкции может происходить двумя или даже четырьмя ее сторонами. Самое большое растяжение происходит в средине плиты. Исходя из этого, арматура оборудуется с двух сторон плиты.

Вернуться к оглавлению

Заключение

Армирование бетона – это лучшее средство для повышения прочности бетона. Оно помогает добиться надежности конструкции при самых больших нагрузках. От выбора материала зависит качество результата.

Правильное построение схемы работы обеспечит железобетон со всеми надлежащими свойствами.

Арматура для бетона: виды, расход, применение

Тяжелый бетон это прочный материал, который обладает высокой «несущей» способностью «на сжатие». В то же время его способность воспринимать растягивающие и изгибающие напряжения оставляют желать лучшего.

СодержаниеСвернуть

Поэтому для обеспечения стойкости сооружений ко всем видам механических нагрузок применяется арматура для бетона, закладываемая сооружение на этапе подготовки к заливке. Бетон без арматуры может воспринимать лишь незначительные нагрузки на изгиб и растяжение. При превышении определенной величины, измеряемой в МПа или кгс/см2 конструкция начинает идти трещинами или полностью разрушается.

Арматура под бетон: виды и классификация

Арматура, применяющаяся в современном строительстве, классифицируется в соответствии со следующими факторами:

  • Материал изготовления – углеродистая сталь или стеклопластик.
  • Технология производства и физическое состояние: стержневая, канатная и проволочная.
  • Вид профиля сечения: круглый, гладкий или рифленый.
  • Работа арматуры в бетоне: напрягаемая или ненапрягаемая.
  • Назначение: рабочая, распределительная и монтажная.
  • Способ установки: сварная или связанная мягкой стальной, медной или алюминиевой проволокой.
Диаметр арматуры, ммПрофильНазначение
6гладкиймонтажная/для формирования хомутов
8монтажная/возможно применение в качестве армирующих элементов буронабивных свай
10периодический (рифленый, ребристый)рабочая/используется для небольших построек с учетом параметров грунта
12
рабочая/самые распространенные варианты для возведения ленточного или плитного железобетонного основания
14
16рабочая/используется для больших домов на сложном грунте

Также армирование бетона арматурой может быть иметь поперечный или продольный характер:

  • Поперечное армирование исключает образование наклонных трещин от скалывающих механических нагрузок и связывает бетон сжатой зоны с арматурой в «растянутой» зоне.
  • Продольное армирование воспринимает нагрузку на «растяжение» и препятствует возникновению вертикальных трещин в нагруженной зоне.

Какой вид, тип, диаметр и количество арматуры использовать в каждом конкретном случае, указывается в проектной документации на то или иное здание или сооружение. Тем не менее, многих застройщиков, которые возводят дома, и сооружения без проекта интересует распространенный вопрос: какой расход арматуры на 1 м3 бетона необходимый для обеспечения долговечности сооружения. Рассмотрим расход арматуры на куб бетона подробнее.

Сколько арматуры нужно на куб бетона

Этот законный вопрос задают себе многие застройщики частных и дачных домов, возводящих объекты капитального строительства без разработки дорогостоящего проекта.

При определении количества арматуры на куб бетона учитываются следующие факторы: условия эксплуатации в конкретном регионе России (состояние грунта, глубина промерзания почвы и высота стояния грунтовых вод), вес сооружения, тип конструкции и технические характеристики доступной арматуры.

Приблизительные нормы расхода стального армирования диаметром 12 мм на ленточный фундамент частного дома следующих габаритов 9х6 метров – 18,7 кг на 1 м3 тяжелого бетона.

Отмечая, что расчет характеристики – расход арматуры на м3 бетона должен производиться в каждом конкретном случае индивидуально. В соответствии с требованиями действующего нормативного документа СНиП 52-01-2003, в общем случае количество продольной арматуры не может быть меньше 0,1% от площади поперечного сечения конструкции.

В качестве примера рассмотрим сечение ленточного фундамента частного дома высотой 1 метр и шириной 0,5 метра.Для его усиления потребуется 1х0,5= 0,05 м2 арматуры соответствующего сечения.

Абстрагируясь от нормативных документов регламентирующих количество арматуры на 1 м3 бетона, сообщим читателям этой публикации практические нормы расхода, обеспечивающие высокий уровень прочности и долговечности частного здания.

Образец расчета арматуры для фундамента

Правильно уложенная на фундамент рабочая арматура увеличит его прочность на разрыв и изгиб. Есть еще и вспомогательная арматура, устанавливаемая вертикально. Она обеспечивает прочностью на срез.

В обоих вариантах используются различные виды армирования, что следует учитывать:

  • Первые шаги начинаются с того, что по периметру опалубки, собранной в ленточном котловане, вбиваются вертикально прутья. При этом выдерживаются одинаковые расстояния между стержнями – 50-80 см. Диаметр самой арматуры находится в пределах 0,8-1 см, а высота прутьев равна глубине котлована.
  • К вспомогательным прутам вяжут внизу и вверху горизонтальные пояса, количество прутьев в которых выбирают с учетом рекомендаций, приведенных в таблице:
Ширина пояса, смКоличество прутьев
Не более 40 см2
Более 40 см3

При достаточно глубоком котловане допускается в горизонтальных поясах прокладывать по четыре прута.

  • Расстояние от наружного края пояса до оконечной точки вертикального стержня не должно превышать 10 см.
  • Чтобы армировочный каркас был единой неподвижной конструкцией, особое внимание нужно уделять соединению углов. Здесь лучше использовать систему перекрестных лент, объединив между собой пруты двух горизонтальных поясов. Не помешает для усиления углов и использование арматурной сетки.

Нужно взять во внимание и такой момент – арматура для ленточного фундамента не должна ложиться на землю. Рекомендуется использовать бетонную подложку. До того, как будет выполняться окончательная сборка каркаса, делают первую заливку толщиной в 5-7 см. Когда бетон застынет, можно выполнять сварку (или привязку) друг с другом нижнего и верхнего поясов.

Немного математики

До того, как приступать к укреплению ленточного фундамента, необходимо произвести расчет арматуры. Это позволит заранее запастись нужным количеством материала и выбрать правильные параметры.

Сначала рассматривают схему будущего дома, чтобы определиться с количеством лент под фундамент. У стандартного здания четыре наружные стены и несколько внутренних (в нашем случае пусть будет две несущих), значит, всего лент фундамента – шесть.

Математические вычисления можно рассмотреть на конкретном варианте.

К примеру, строится дом квадратного типа с длиной стены 10 м. Количество прутьев в каждом из основных поясов берется по 2. В данном случае расчет арматуры будет выглядеть так:

  1. Длина дома умножается на количество лент и количество прутьев в двух поясах:
    10 х 6 х 4 = 240 м – общая длина основной арматуры с прутьями d=12 мм.
  2. К периметру дома прибавляют длину внутренних стен (допустим, каждая по 10 м):
    40 + 2 х 10 = 60 м – общая длина ленты.
  3. Предыдущий параметр умножают на 5,4 – средний коэффициент на каждый метр ленты:
    60 х 5,4 = 324 м – общая длина вспомогательной арматуры

Расчет производился для ленты высотой 80 см и шириной 40 см. Математические действия достаточно просты, так что рассчитать нужное количество прутьев не составит труда.

Если идет речь о фундаменте, то это арматура диаметром не менее 12 мм сваренная или связанная в формате ячейки габаритами 50х50 миллиметров. Стены здания из бетона допускается армировать в продольном направлении с шагом 0,4-0,5 метра. При этом сцепление арматуры с бетоном обеспечивается ее конструктивными особенностями – продольным и поперечным рифлением.

Заключение

В заключение повествования стоит отметить, что системных рецептов по армированию конструкций приемлемых для всех возможных случаев нет и не может быть. Частный застройщик, принимающий решение, сколько арматуры на 1 м3 бетона должен руководствоваться климатическими условиями и массой планируемого сооружения.

Это переменные величины, нуждающиеся в уточнении в каждом конкретном случае строительства здания и сооружения.

как «работает» арматура в бетоне

Железобетон используется при строительстве сооружений различной конфигурации уже более 100 лет. Несмотря на то, что сегодня разработано множество новых материалов и технологий возведения зданий, железобетон не теряет свой актуальности. Все дело в прочности этого материала. А она достигается, прежде всего, за счет наличия в составе железобетона, арматуры. В этой статье я расскажу, как она помогает бетону стать очень прочным. 

Бетон и сталь – крепкий союз

Союз бетона и стали стал возможен благодаря усиливающим друг друга характеристикам этих материалов. Сталь значительно улучшает физические характеристики бетона, а бетон дополняет сталь. Прежде всего, такой союз влияет на прочность получаемого материала. Железобетон прочнее бетона и стали взятых в отдельности. По таким параметрам как сжатие и растяжение «союз бетона и стали» значительно превосходит материалы из которых он сделан. Что помогает использовать железобетон там, где по отдельности бетон и сталь использовать нельзя. 

Особенно важен железобетону такой фактор как «растяжение». Там, где помимо сжатия на бетон влияет этот фактор, возможно использование только железобетона. Это обусловлено тем, что сталь, из которой производится арматура, очень прочный материал. Правильное использование арматуры при изготовлении железобетона, правильно созданная связь между ней и бетоном, позволяет создать сверхпрочный материал. Материал, без которого немыслимо современное строительство. 

Как выбрать арматуру

В производстве железобетона используется различные виды арматуры. Их выбор обусловлен назначением железобетона и прописан в специальных нормативных строительных документах. Исходя из них, для изготовления арматуры применяемой в железобетоне может использоваться: 

  • Стальная проволока;
  • Мягкая сталь;
  • Высоко- и среднеуглеродистая сталь. 

Арматура, использующаяся в железобетоне, должна иметь рифленую поверхность. Благодаря такой форме поверхности арматуры обеспечивается наилучшая связь между ней и бетоном. Выбрать и приобрести арматуру можно на http://prstroi.com/metalloprokat/armatura/ указанном сайте. 

При производстве железобетона из стальной арматуры изготавливается сетка по всей площади материала. Прутья в такой сетке должны быть соединены между собой под прямым углом. Соединение прутьев может быть изготовлено путем сварки или вязки. Для предотвращения пагубного влияния коррозии, перед заливкой бетона ее покрывают специальным составом, препятствующим развитию ржавчины. 

Благодаря наличию в составе железобетона арматуры, этот материал становится не только долговечным, но и не боится сильных перепадов температуры, большой влажности и не подвергается биологическому влиянию. Кроме того, этот материал обладает еще одним преимуществом – низкой стоимостью.

Поделиться с друзьями:

Другие статьи

Зачем бетону нужна арматура, деформация бетонной конструкции

Обычный бетон обладает некоторыми недостатками, которые сохраняются независимо от используемой марки цемента и тщательности подбора примесей. Один из таких недостатков – недостаточная прочность несущих конструкций из чистого бетона. Однако материал сам по себе слишком хорош, чтобы отказываться от него в пользу металлических конструкций, к тому же, он гораздо дешевле. Железобетон решает проблему прочности и экономичности при производстве бетона. Именно укрепленный арматурой бетон становится основной для многоэтажных зданий и обширных промышленных площадок.
 

Деформация конструкции вследствие сжатия и растяжения


Как именно арматура помогает сделать железобетон таким прочным? Любая несущая конструкция из бетона подвергается нагрузкам на сжатие и растяжение, что вызывает временную или постоянную деформацию. Чтобы понимать, как работает деформация, можно представить на месте железобетонной плиты большой блок резины, который сжимается, растягивается и сгибается по определенным правилам. Бетон подвержен почти тем же законам физики, хотя его деформация менее заметна глазу. А чрезмерная деформация недостаточно укрепленного бетона вызовет разрушение конструкций, что чревато приведением здания в аварийный вид.

Чистый бетон, хоть и выглядит довольно прочным, разрушается при относительно малых усилиях. Поэтому его используют там, где предполагается лишь один вид деформации в один момент времени. Несущие конструкции в зданиях требуют большей прочности и гибкости. Стержень арматуры из стали выдерживает значительные нагрузки по сравнению с твердым бетоном, он выдерживает в сто раз более сильное растяжение, чем самый крепкий неармированный бетон. Таким образом, стержни из стали способны удерживать целые бетонные плиты от сильной деформации, принимая на себя многие виды нагрузок, в том числе резкие вибрации. 

Важно подбирать арматуру определенного сечения, чтобы она хорошо укладывалась в бетон, не создавая полостей или слабых областей в плите. Сцепление может быть усилено длительным выдерживанием бетона после заливки, а также повышением исходной шероховатости стальных стержней. Сама же сталь отлично сцепляется с бетоном, при этом они имеют примерно одинаковые физические свойства в плане изменения температуры – например, они одинаково меняют свой объем. Дополнительное укрепление происходит при усадке бетона – он так плотно сжимает стальные прутья, что они практически становятся неотъемлемой частью готовой железобетонной плиты. Железобетон становится частью прочных стен, полов и потолочных плит в жилых и промышленных зданиях.

Так как бетон является слабым проводником тепла, стальная арматура надежно защищена от одного из своих главных недостатков – хрупкости при резком изменении температур. Арматура внутри железобетонной плиты практически не испытывает влияния температуры в самые жаркие или холодные сезоны года.

Зачем арматура в бетоне - почему при заливке используют арматуру

Армирование бетона используется для придания материалу дополнительного укрепления, прочности. Этот метод успешно применяют уже не один десяток лет. Несмотря на постоянное развитие технологий, разработку новых материалов, бетон, как и много лет назад, является ключевым стройматериалом, заменить который ничем невозможно. Он обладает рядом достоинств – прочность, долговечность, легкий монтаж/демонтаж. Вот только есть один важный нюанс — характеристики его ухудшаются при растяжении раз в 10.

Неравномерные нагрузки в местах растяжения провоцируют появление трещин, которые впоследствии приводят к разрушению конструкции. Чтобы увеличить долговечность и надежность здания, строения, не допустить возникновения коррозии и используют метод армирования. Тандем стали и бетона позволяет создавать долговечные и надежные постройки.

В чем секрет наличия арматуры в бетоне?

Бетон дополняет сталь, выполняет защитную функцию — не допускает коррозии, перегрева. Использование арматуры в бетоне повышает устойчивость к деформации, температурным перепадам, позволяет правильно распределить нагрузку. Одним словом, сделать строение надежным.

К ключевым показателям конструкций из бетона можно отнести растяжение, сжатие, сдвиг. Материал деформируется в зависимости от параметров, условий эксплуатаций. Например, при сжатии бетон достаточно прочный и может использоваться для перекрытий, которые выдерживают сильное сжатие. Если же «подключается» еще и растяжение, то тогда обязательно использовать арматуру, так как такое «испытание» нагрузкой только бетон выдержать не сможет.

Бетон армированный имеет гораздо больший запас прочности на растяжение. Связано это с тем, что арматуру производят из высокопрочной стали, а при правильном соединении элементов достигаются максимальные показатели прочности и надежности.

Есть ли альтернатива стальной арматуре?

Бетонную конструкцию укрепить можно не только стальной арматурой. Пластиковая арматура для фундамента – это современный материал, который превосходит по своим характеристикам стальные изделия. Стоимость ее практически такая же, но вот работать с пластиковым материалом значительно удобнее и проще. Кроме того, прочность на растяжение его в 2-3 раза больше стального. И еще важное преимущество — при армировании фундамента стеклопластиком трещины не образуются, так как бетон и стеклопластик имеют похожие коэффициенты теплового расширения.

Союзу арматура/бетон быть!

Этот тандем позволяет возводить прочные строения. Преимущества железобетонной конструкции:

  • Возможность выдерживать удары, изгиб, растяжения, усадку.
  • Жесткость.
  • Придание конструкции разной формы без потери прочности.
  • Долгий срок службы.
  • Устойчивость к температурным перепадам, влаге.

Но не только преимущества есть у этого союза. К недостаткам можно отнести большой вес конструкции, так как стальная арматура ее существенно утяжеляет (исключение — использование стеклопластиковых изделий). Это обязательно нужно принимать во внимание на этапе проектирования и тщательно просчитывать все показатели. Перестроить армированную конструкцию также будет непросто, как и изменить ее.

Собственно, недостатки не такие и значительные при правильном подходе. Армирование – верный и пока единственный способ укрепить любую конструкцию, возвести ее на века.

Армирование бетона

Назначение бетонной арматуры

Строительство зданий и сооружений проводится при помощи железобетона, железобетонных плит, железобетонных монолитных конструкций.

Бетон достаточно прочный материал, но при растяжении его свойства резко ухудшаются, а добавление в него стального прута (арматуры) увеличивает прочность конструкции в несколько раз.

Составным элементом железобетона является арматура, которая размещается внутри бетона.

Для чего применяется арматура? Располагаясь внутри бетона, она увеличивает его прочность и, соответственно, воспринимаемые нагрузки. Какую именно прочность увеличивает арматура в бетоне? Усилия, которые действуют на бетон, делят на три составляющие. Они могут действовать на бетон как по отдельности, так и в комплексе. Характер создаваемого усилия может создавать:

Виды арматуры : 1-2. Арматура периодического профиля. 3. Проволока периодического профиля. 4. Семипроволочная прядь. 5. Двухпрядный канат.

  • сжатие;
  • растяжение;
  • сдвиг.

Бетон сам по себе выдерживает достаточное усилие на сжатие, а вот при растяжении его свойства ухудшаются примерно в 10-12 раз. Добавление в бетон металла в виде стального прута позволяет улучшить его характеристики. При этом немаловажным фактором является хорошая связь бетона и металла.

Стеновые бетонные панели в своей конструкции содержат вертикальные и горизонтальные направляющие арматуры. Их располагают внутри бетона поближе к внутренней и внешней поверхностям стен. Если сечение стен резко изменяется, в углах уменьшения или увеличения сечений предусматривают дополнительные направляющие. Такое изменение можно встретить, например, по углам дверных и оконных проемов. Применяемая стальная арматура в железобетонных изделиях делится на несколько типов по конструктивным особенностям.

Вернуться к оглавлению

Типы применяемой арматуры

Армирование бетона проводится мягкой сталью с допустимым напряжением в металле, указанным в соответствующих СНиП. В качестве арматуры применяют также:

  • среднеуглеродистую сталь;
  • высокоуглеродистую сталь;
  • холоднокатаную стальную проволоку.

В качестве арматуры используют деформированные стержни с зазубринами. Неровность стержня позволяет обеспечить лучшую механическую связь арматуры и бетона. Эффективность такой связи небольшая и увеличивается, если между составными элементами происходит напряжение на сдвиг. Чем выше усилие на сдвиг, тем выше сопротивление материала за счет лучшего сцепления. Арматура с деформированной поверхностью самостоятельно не применяется, так как присутствует опасность сколов бетона. Чаще всего такая арматура применяется дополнительно со стальной проволокой.

В качестве арматуры для бетона применяется арматурная сетка, которая изготавливается из стальной проволоки. Для соединения проволоки применяется электросварка. Для изготовления сетки могут применяться витые стержни с прочным соединением в местах пересечения. Использование таких стержней позволяет не использовать электросварку. Применяется сетка чаще всего при изготовлении железобетонных плит, используемых как при строительстве домов, так и при строительстве дорог.

Схема работы железобетона при сжатии.

Еще один тип арматуры для бетона – листовая стальная арматура. Конструктивно такая арматура представляет собой пластину листовой стали, в которой делают прорези с их последующим отгибанием. Получается что-то в виде сита. Ячейки такого сита могут иметь различную конструкцию.

Применяется арматура такой конструкции для проведения армирования плит перекрытия, а также стеновых панелей. Стальной лист с прорезями может содержать небольшую шероховатость, которая создаст лучшее сцепление штукатурки с плитой.

Вернуться к оглавлению

Характеристики и работа с арматурой

Прежде чем приступать к проведению установки арматуры в бетон фундамента или стен, следует проверить ее качество и состояние. В первую очередь проверяется наличие ржавчины и ее количество. Не является плохим показателем наличие небольшого слоя ржавчины, так как металл подвержен коррозии при воздействии на него окружающей среды. Но если при протирании жесткой щеткой от металла отделяются достаточно большие кусочки ржавчины, такая арматура попадает под брак. Использовать ее не рекомендуется.

Следующий параметр, на который следует обратить внимание – это диаметр стержня, очень часто при длительном хранении и коррозийном воздействии это значение уменьшается и не соответствует заводской маркировке и значениям, указанным в проекте строения.

Например, при хранении арматуры на складе с химически агрессивной средой значение толщины арматуры может уменьшаться на 1 мм в течении полугода.

При проведении армирования бетона применяют следующие приемы ее обработки:

Схема армирования ленточного фундамента.

  • гнутье;
  • вязка;
  • сварка.

Гнутье арматуры проводится вручную, с использованием специального гибочного станка. Если количество арматуры слишком большое, например, в объемах завода ЖБИ, используют специальные механические станки. Большое внимание уделяется радиусу изгиба арматуры, значение которого указывается в СНиП. Неправильное расположение в бетон арматуры может вызвать его раскалывание. Особенно такое раскалывание возможно в тонких элементах, например, в балках.

Вязка арматуры – не менее важный этап работ при армировании бетона. Во-первых, правильно должно быть выбрано расположение арматуры. Во-вторых, установленная арматурная сетка должна быть зафиксирована, чтобы не было смещений в горизонтальной и вертикальной плоскостях. Упрощается работа по вязке, если проводить ее отдельно от бетонируемой конструкции, но усложняется процесс перемещения. При достаточно массивной конструкции потребуются специальные подъемные механизмы.

Для вязки арматуры применяется специальная мягкая стальная проволока, так называемая вязальная. Можно найти специальные крепления в виде пружин. Использование пружин позволит ускорить процесс.

При проведении вязки арматуры следует правильно выбрать расстояние между стержнями. Значение расстояния выбирается согласно диаметру стержня и не должно быть не менее его диаметра. Если используются различные диаметры, то расстояние принимается относительно самого большого из них. В вертикальной плоскости между главными стержнями должно выдерживаться не менее 12 мм. Исключение составляют только те места, где происходит сращивание или пересечение с поперечными стержнями.

Сварка арматуры широко применяется в настоящее время. Сварку арматуры делят на два вида:

Схема сварки арматурных соединений.

  • сварка «вприхватку»;
  • встык.

При сварке «вприхватку» требуется особая прочность сварного шва. Выполняется сварка путем соединения стержней, находящихся под разными углами.

Проведение сварки встык требует большего внимания, так как сварной шов принимает на себя усилия от растяжения и сжатия.

Для того чтобы сварной шов получился прочным, следует соблюдать основные требования:

  • выполнение работ должно проводиться опытным специалистом;
  • необходимо найти специально предназначенные для работ электроды и оборудование;
  • шов должен подвергаться качественной проверке, особенно на заполнение металлом;
  • значение силы тока для сварки должно быть достаточно высоким.

Для сварки арматуры применяют газовую, электродуговую сварки, а также сварку сопротивлением. Самой приемлемой в плане экономии и качества является электродуговая.

Вернуться к оглавлению

Защита от коррозии

Арматура для бетона должна быть защищена от коррозии. Находясь внутри бетона, стальной стержень фактически не подвергается коррозии, поэтому следует правильно выбирать толщину защитного слоя.

Для того чтобы толщина была выдержана, прежде чем заливать бетон следует проверить правильность расположения арматуры, найти неточности и устранить их.

Толщина защитного слоя должна составлять:

  • для продольной балки – не менее 25 мм;
  • для плит – не менее 1 мм;
  • для конца стержня арматуры – не менее 25 мм;
  • во всех остальных вариантах не менее 1 мм или не меньше диаметра арматуры.

Несоблюдение требований и невыдерживание значения толщины защитного слоя приведет к появлению трещин, коррозии металла и разрушению строения.

Отдельные элементы арматуры могут потребовать дополнительную защиту от коррозии. Это касается тех элементов, которые выходят на поверхность. Для защиты использую шеллак, лак или инертную краску. Применение меди допустимо, но только в тех случаях, если в окружающей среде не присутствует хлористый кальций. Элементы, покрытые цинком, свинцом, кадмием или алюминием в свежем бетоне подвержены коррозии, поэтому использовать такую защиту не рекомендуется.

Разрушение металла ускоряется, если в бетоне присутствуют блуждающие электротоки, чаще всего они возникают при возникновении влажности.

Стальная арматура для железобетонных конструкций

Стальная арматура необходима для укрепления железобетонных конструкций. Это изделие берет на себя внутренние и внешние напряжения, которые могут возникнуть под влиянием больших нагрузок. Стальная арматура для железобетонных конструкций классифицируется на монтажную и рабочую. Стержни изделий рабочего вида являются основными. Монтажная стальная арматура для армирования, видео которой можно дополнительно посмотреть, создана для удержания рабочей арматуры в заданном положении.

Устройство армирования

Стержни объединятся в каркасы на основе использования сварки. Благодаря такому методу соединения конструкция не нарушается при осуществлении операций по заливке бетоном. Стальная арматура, цена за метр которой различна, и конструкции из нее могут быть гибкими или жесткими. Жесткие изделия представлены разнообразными уголками, швеллерами и двутаврами. А гибкая стальная арматура для армирования, фото которой представлено, имеет различные стержни, с диаметром в диапазоне в диапазоне от 6 до 40 мм.

Поверхность прутьев может иметь различное покрытие. Оно может быть кольцевым, серповидным, четырехсторонним или смешанным.  Четырехстороннее и смешанное покрытие способно обеспечить высокие показатели прочности сцепления. Производство стальной арматуры кольцевого и серповидного вида широко востребовано. Элементы, оснащенные концевым покрытием незаменимы для крупных конструкций. Серповидные изделия подходят для конструкций с небольшой толщиной. Если прутья не соединяются между собой, то они называются штучными. Она в большинстве случаев применяется для подгонки каркасов. Стальная арматура для армирования, отзывы на которую в основном только положительные, значительно продлевает срок службы конструкции.

А вы знаете, что кроме стального армирования ещё существует фиброармирование бетона?

Армирование бетона: особенности

Армирование бетона арматурой необходимо для дополнительного укрепления. В качестве основного элемента может выступать прут различного диаметра. Для того чтобы возводимая конструкция получилась прочной необходимо строго соблюсти соотношение стали и заполнителей.  Стальная арматура в армировании бетона применение имеет широкое. Для разных изделий применяется определенный вид армирования. Так, напольная и потолочная поверхность армируется на основе использования армирующей сетки. Ленточные фундаменты армируются при помощи использования элементов, которые связаны между собой в квадраты (также будет полезна статья о выборе арматуры для ленточного фундамента).

Основные правила укладки

Если вопрос о том, для чего используют арматуру и какого вида она бывает решен, то можно приступить к изучению основных правил укладки. При проведении укладки важно контролировать, чтобы материал не соприкасался с опалубкой. В среднем расстояние между узловыми стержнями должно находиться в пределах 25-30 сантиметров.

Важно! Армирование — это сложный и трудоемкий процесс, поэтому перед проведением этой работы важно провести тщательный расчет нагрузки для выбора правильного типа и класса материала.

Эту работу лучше доверить высококвалифицированному специалисту с опытом работы. Скрепляться детали могут при помощи сварки или вязальной проволоки.

Стальная арматура для армирования  используется на основе соблюдения всех требований выбранного участка. Прутья или сетка должны быть расположены по всей поверхности равномерно. Нередко требуется расположение прутьев не только по центру, но и по бокам. Это необходимо для равномерного распределения нагрузки. Расстояние между всеми элементами рассчитывается заранее. Когда все элементы укреплены и выложены, то выполняется заливка смесью. Также полезно знать об армировании бетонного пола.

Особенности расчета расхода на куб.м?

При  расчете расхода арматуры необходимо учитывать тип используемого бетона, его плотность.  Плотность во многом зависит от тех добавок, которые входят в его состав.  Также следует взять во внимание тип стали. Наиболее часто используется сталь типа А3. В каждом конкретном случае армирование бетона арматурой расход имеет разный. Армирование бетона арматурой, нормы расхода которой рассчитываются индивидуально, регулируется стандартами, предназначенными для железобетонных конструкций.

Важно! Кроме того, при осуществлении расчета важно брать во внимание и  используемый размер арматуры.

В большинстве случаев используется стальная запорная арматура с диаметром от 8 до 14 мм, оснащенная ребристой поверхностью. Благодаря такой поверхности обеспечивается высокое сцепление с материалом. В среднем на один куб идет около 150-200 кг арматуры при возведении фундамента.  На колонны требуется около 200 кг на один куб. Вес стальной арматуры определяется диаметром поперечного сечения.

Армирование бетона арматурой, чертежи которого разрабатываются заранее, помогает значительно увеличить свойства бетона, защищая его от разрушений при различных нагрузках на изгиб. Кроме того, этот строительный материал выступает в качестве связующего элемента, который не дает сооружению деформироваться. Арматура в бетоне, изготовленная из стали, устойчива к коррозии. В качестве арматуры, как правило, применяют высококачественную углеродистую сталь.

Вывод

Выбирая этот строительный материал, важно взять на вооружение следующий совет — площадь сечения арматуры должна быть подобрана в соответствии с нагрузками, которые оказывают влияние на изделие. Не рекомендуется использовать сталь, покрытую ржавчиной, так как такой металл является недолговечным.

Рекомендуем к прочтению статью о свайно-винтовом фундаменте.

Почему бетон армируют сталью: полное руководство

Железобетон - один из самых распространенных строительных материалов в мире. Однако сам по себе бетон на самом деле намного более хрупкий, чем можно было ожидать, и вряд ли пригоден для каких-либо целей, кроме очень небольшого числа ограниченных областей применения. Однако при армировании сталью бетон можно использовать для изготовления плит, стен, балок, колонн, фундаментов, рам и т. Д.

Бетон устойчив только к силам сжатия и имеет низкую прочность на разрыв и пластичность.Армирующие материалы необходимы, чтобы выдерживать сдвиговые и растягивающие усилия на бетон. Сталь используется, потому что она хорошо сцепляется с бетоном, а также расширяется и сжимается под действием температуры с одинаковой скоростью.

Если вы углубитесь в науку о том, как сталь и бетон ведут себя по отдельности, вы быстро увидите, что их свойства дополняют друг друга, что делает их уникальными для совместного использования. Их комбинированные свойства полезны в том смысле, что железобетон является чудесным материалом, из которого строятся впечатляющие конструкции, такие как плотина Гувера.

Нужно ли армировать бетон сталью?

Бетон выглядит чрезвычайно прочным. По сути, это камень, который выращивают из порошковой смеси. В некотором смысле бетон действительно очень прочный, но только если давление прилагается в одном конкретном направлении. Когда сила прикладывается в любом другом направлении, что чаще всего имеет место в большинстве строительных конструкций, бетон оказывается на удивление хрупким.

Существует три основных типа стресса:

  1. сжатие (сдвиг),
  2. растяжение (растяжение) и
  3. сдвиг (скольжение по линии или плоскости).

Бетон прочен против сил или сжатия, но слаб против сил растяжения и сдвига. С другой стороны, сталь устойчива ко всем трем типам напряжений.

  1. Сжатие

Бетон устойчив к силам сжатия. Вот почему это такая мощная база. Даже в древние времена римские строители могли использовать ранние формы бетона (который никак не укреплялся) для таких конструкций, как купола, акведуки, арены и колизеи.

Во всех этих ранних примерах бетон использовался только таким образом, чтобы использовать его прочность по отношению к силам сжатия. Вес конструкции только давил на бетон, который сдвигал бетон вместе и который бетон мог легко выдержать.

Тот факт, что древние римские сооружения, такие как Колизей и Парфенон, простояли тысячи лет, свидетельствует о прочности бетона на сжатие. Даже цилиндр, сделанный из цементной смеси с большим количеством воды, может выдержать давление сжатия в 1000 фунтов (450 кг).Другие смеси могут выдерживать даже большее давление.

  1. Натяжение

Натяжение фактически противоположно сжатию в том смысле, что это сила, которая раздвигает объект. Бетон является слабым по отношению к силам растяжения, а это означает, что он имеет низкую прочность на разрыв.

Когда цилиндр, сделанный из той же самой высоководной смеси бетона, описанной выше, был испытан путем подвешивания к нему груза, образец сломался, когда было подвешено около 80 фунтов (36 кг). Это означает, что бетон менее чем на 10 процентов противостоит силам растяжения и сжатию.

Может быть не сразу очевидно, почему это проблема использования бетона в качестве строительного материала. Похоже, это всего лишь указывает на то, что бетон не следует использовать в качестве веревки. Однако, если вы посмотрите на внутренние напряжения в бетоне, вы увидите, что при сжатии часто возникает также и растяжение.

Представьте себе горизонтальную бетонную балку, на которую сверху оказывается давление. Это было бы похоже на прогулку по бетонному второму этажу. В верхней части бетонной балки действует сила сжатия, так как бетон прижимается друг к другу.Однако внизу, когда балка изгибается, бетон разрывается под действием силы натяжения. Вот где не получается простой бетон.

  1. Сдвиг

Бетон также является слабым по отношению к силам сдвига, которые заставляют материал перемещаться по линии или плоскости. Неармированная бетонная стена рухнет, если на нее будет воздействовать слишком большая сила сдвига от:

  • Ветер
  • Землетрясения
  • Напряжение сдвига

Как мы видим, простой бетон полезен, если вы прикладываете вес только непосредственно к нему, например к основанию статуи.Однако современные здания должны выдерживать давление со стороны источников многих типов во всех направлениях. Без армирования простой бетон в этих условиях просто выйдет из строя.

Типы отказов

Когда обычный бетон выходит из строя, это происходит внезапно. В один момент бетон не поврежден, а в следующий момент, когда сила больше, чем он может выдержать, он крошится или разваливается на куски. Это внезапное нарушение известно как отказ в хрупком состоянии .

Основным недостатком этого типа неисправности является отсутствие визуальных предупреждающих знаков. Если вы не знаете удельную прочность материала и активно не измеряете величину напряжения, приложенного к материалу (условия, которые абсолютно невозможны за пределами лабораторных условий), невозможно предсказать отказ.

Железобетон, с другой стороны, подвержен пластическому разрушению в моде . Это означает, что трещины начинают образовываться еще до того, как бетон полностью разрушится.Это связано с тем, что, хотя бетон был растянут дальше, чем он может стоять отдельно, стальная арматура по-прежнему удерживает конструкцию вместе.

Если конструкция подвергается только сжимающим силам (например, плита пола), эти трещины могут не иметь большого значения. Если вода не проникает в трещину и не разрушает конструкцию из-за ржавчины арматуры или расширения трещины при замерзании, трещины просто сожмутся друг с другом путем дальнейшего сжатия. В других случаях трещины означают необходимость ремонта участка.

Почему используется сталь

Как мы узнали, простой бетон полезен только в очень ограниченных областях, поскольку он устойчив к силам сжатия, но слаб против сил растяжения и сдвига. Чтобы бетон был таким же универсальным, он должен быть усилен материалом, который преодолевает эти недостатки. Сталь используется для армирования бетона чаще, чем любой другой материал.

Причина, по которой сталь используется для армирования бетона, заключается в том, что сталь обладает рядом свойств, которые делают ее особенно подходящей для этого применения.

Сталь очень пластичная

Пластичность - это мера того, насколько материал может подвергнуться деформации перед разрушением. Бетон имеет очень низкую пластичность. Если вы скручиваете кусок бетона с достаточной силой, он рассыпается у вас в руках. Например, древесина довольно пластична, потому что ее можно немного согнуть, прежде чем она сломается. Однако сталь очень пластичная. Если вы его согнете, он просто останется согнутым.

Пластичность стали полезна перед заливкой цемента, потому что ее можно согнуть, придав ей любую форму, которая лучше всего поддерживает заливку.Благодаря этому легко создать сетку из арматурной стальной арматуры любой формы, необходимой для конструкции здания.

Пластичность стали

также полезна, если она входит в состав железобетона. Когда к конструкции приложено достаточно силы, чтобы ее деформировать, бетон может треснуть, но стальная арматура останется неизменной в деформированной форме. Часто сталь все еще может поддерживать конструкцию до тех пор, пока ее не отремонтируют или не заменит.

Бетон и сталь имеют одинаковые коэффициенты теплового расширения

Когда твердые тела нагреваются, молекулы внутри материалов движутся быстрее.Эти более активные атомы занимают больше места, чем быстрее они движутся, поэтому каждая молекула и, следовательно, материал в целом расширяются. Обратное происходит, когда твердое тело охлаждается. В конечном итоге твердые частицы расширяются при нагревании и уменьшаются в размерах при охлаждении.

Хотя это универсально верно для твердых тел, это происходит с разной скоростью для разных материалов. По очень случайному совпадению, сталь и бетон имеют очень похожие коэффициенты теплового расширения. Это означает, что когда они подвергаются воздействию тепла (или холода), они расширяются (или сжимаются) практически с одинаковой скоростью.

Если бы это было не так, сталь была бы плохим выбором для армирования бетона. Представьте, например, корн-дог. Если при приготовлении хот-дог увеличится вдвое, а кукурузный хлеб только немного подрастет, хот-дог быстро прорвется через кукурузную муку. И наоборот, если кукурузный хлеб расширяется быстрее, чем хот-дог, вокруг приготовленного хот-дога будет большой воздушный карман.

В то время как любой из этих сценариев приведет к структурно слабой корн-доге, это не то, что происходит в случае бетона, армированного сталью.Два материала расширяются и сжимаются почти с одинаковой скоростью, обеспечивая прочное соединение при любой температуре.

Сталь подвергается той же деформации, что и бетон

Связь между бетоном и сталью настолько прочна, что железобетон действует как новый, более прочный материал, чем просто комбинация бетона и стали. Это еще больше усиливается за счет создания арматурного стержня с множеством выступов, вокруг которых цемент приобретет твердость при высыхании.

Другие причины использования стали включают:

  1. Легко сваривать
  2. Легко перерабатывать
  3. Дешево и доступно .
1. Сталь легко сваривается

Поскольку железобетон используется во многих различных ситуациях, часто бывает необходимо построить довольно сложные внутренние каркасы из стальной арматуры перед заливкой цемента. Даже если форма не уникальна, размер проекта может потребовать, чтобы арматурный стержень перекрывал длину, намного превышающую возможную для изготовления.

В этих сценариях можно сварить стальную арматуру, чтобы опора надежно находилась там, где она необходима.Сталь - один из наиболее часто свариваемых металлов, поскольку она легко плавится, не прожигая и не передавая тепло слишком далеко от места сварки. Этот процесс также не оказывает отрицательного влияния на свойства, которые делают его таким хорошим выбором для армирования бетона.

2. Сталь легко перерабатывать

Железобетон рассчитан на долгие годы, что делает его отличным строительным материалом для долговечных конструкций. Однако, когда настанет время демонтажа, вам будет приятно узнать, что его также легко переработать.

При наличии надлежащего оборудования железобетон можно легко измельчить, чтобы отделить стальную арматуру от бетона. Бетон может быть дополнительно измельчен и повторно использован как часть смеси крупных и мелких заполнителей, составляющих от 60 до 75 процентов цементной смеси. Сталь можно переплавить и преобразовать в новую стальную арматуру для усиления следующего проекта.

3. Сталь дешевая и высокодоступная

Довольно удачно, что металл, обладающий столькими полезными свойствами для армирования бетона, также недорог и в изобилии.Если бы все эти совместимые функции были у золота или бриллиантов, это, вероятно, не было бы таким полезным.

Сталь

, однако, легко доступна по относительно низкой цене.

Предварительно напряженный и пост-напряженный бетон

Каким бы прочным ни был железобетон, он все же может треснуть. Хотя этот вязкий режим разрушения не приводит к немедленному разрушению конструкции (в отличие от разрушения в хрупком режиме), это первая фаза разрушающего процесса, известного как «скалывание».

Когда вода просачивается в трещины в железобетоне, она может повредить структурную целостность здания тремя способами.

1. Поскольку жидкость может заполнить любой карман, в который ей позволено, вода может легко просочиться и заполнить любые трещины в железобетоне. Если температура упадет ниже 32 градусов по Фаренгейту (0 градусов по Цельсию), он замерзнет.

Когда вода замерзает, она образует структуру из переплетенных кристаллов льда.Эти кристаллы льда занимают больше места, чем молекулы жидкой воды, а это означает, что лед занимает больше места, чем вода. Это означает, что по мере замерзания вода давит на бетон и расширяет трещины еще шире.

Когда лед тает, трещина становится шире, позволяя большему количеству воды заполнить промежуток, который затем замерзает, чтобы расшириться еще больше. Этот цикл не только физически раздвигает бетон, но и позволяет все большему и большему количеству воды проникать в конструкцию, увеличивая количество повреждений, вызванных двумя другими формами повреждений.

2. Со временем трещины станут достаточно широкими и глубокими, чтобы вода и воздух достигли стальной арматуры, встроенной в железобетон. Это обнажение может привести к коррозии арматуры. В присутствии воды кислород воздуха взаимодействует с железом в стали, образуя ржавчину.

Отслаивающееся покрытие на поверхности ржавой арматуры не защищает внутренние слои железа от процесса коррозии (способ, которым образование слоя патины предотвращает дальнейшую коррозию медных поверхностей), поэтому арматуру можно постоянно ухудшается до тех пор, пока он не перестанет выдерживать силы натяжения, действующие на конструкцию.

Верным признаком того, что происходит коррозия этого типа, является появление на бетоне коричневых пятен. Этот цвет возникает из-за того, что частицы ржавчины становятся коричневыми и стекают через трещины в железобетоне.

3. Когда вода проникает в железобетон, она может изменить pH-баланс окружающей среды и вызвать химические реакции в бетоне. Этот риск усугубляется тем фактом, что на дорожных покрытиях и мостах использование соли для удаления льда с дорог зимой означает, что проникающая вода, скорее всего, будет сильно щелочной.

Эти щелочи в воде могут реагировать с кремнеземом в заполнителях бетона, вызывая образование новых кристаллов. Эти новые кристаллы занимают место и физически раздвигают железобетон так же, как замерзающий лед в примере 1. Разница в том, что кристаллы не тают, поэтому бетон непрерывно раздвигается.

Понятно, что железобетон лучше не растрескивать. Однако, поскольку сталь настолько пластична, она будет растягиваться или гнуться, что приведет к растрескиванию окружающего бетона.Это, конечно, если только что-то не будет сделано для предотвращения такого поведения стали.

Предварительно напряженный бетон

Чтобы предотвратить растрескивание, стальную арматуру можно растянуть перед заливкой цемента. Это называется предварительным напряжением (или предварительным напряжением), потому что оно добавляет усилие натяжения к стали до того, как будет сформирован армированный бетон. Таким образом, сталь находится в постоянном состоянии, возвращаясь к своей естественной форме, втягивая окружающий бетон внутрь под действием силы сжатия.

Сохранение бетона в этом предварительно напряженном состоянии фактически делает его более прочным, потому что бетон устойчив к силам сжатия. Это что-то вроде мышцы, которая в напряжении сильнее.

Благодаря предварительному напряжению железобетона материал становится более прочным по двум причинам.

  1. Меньше вероятность образования трещин. Поскольку сталь уже стягивает бетон, ей не разрешается растягиваться так далеко, как если бы сталь не была предварительно напряжена.
  2. Любые образовавшиеся трещины постоянно закрываются силой стали, пытающейся вернуться в расслабленное состояние. Это ограничивает количество воды, которая может проникнуть в железобетон и вызвать коррозию.

Бетон после напряженного состояния

Такого же эффекта можно добиться, затягивая сталь после того, как бетон начал затвердевать. Кажется, что бетон затвердевает в течение нескольких часов, но на самом деле для правильного отверждения требуется около месяца, и он продолжает затвердевать и укрепляться в течение как минимум пяти лет после заливки.

Предварительно напряженный и пост-напряженный бетон не только приводит к меньшему растрескиванию, но и на самом деле настолько прочнее, чем обычный железобетон, что меньшие и более тонкие участки предварительно напряженного или пост-напряженного бетона могут нести ту же нагрузку, что и ненапряженный железобетон.

Почему бы просто не использовать сталь?

Если вы посмотрите на особенности того, как работает железобетон, вы можете начать задумываться, почему мы вообще пытаемся использовать бетон в процессе. Бетон, в конце концов, силен только против сил сжатия, а сталь - против:

  • Сжатие
  • Напряжение
  • Сдвиг

Фактически, сталь в 100–140 раз прочнее бетона по прочности на разрыв.

Обычный бетон сам по себе не очень полезен. Только железобетон и предпочтительно предварительно напряженный (или пост-напряженный) бетон является чудесным строительным материалом, о котором мы думаем, когда представляем современную архитектуру. Поскольку бетон на самом деле относительно бесполезен без стальной арматуры, почему бы просто не построить его из стали?

Бетон предлагает множество преимуществ для строительства, которые делают его лучшим строительным материалом, чем обычная сталь.

  1. Коррозия
  2. Масса
  3. Стоимость
1.Коррозия

Как мы видели, когда сталь подвергается воздействию воздуха и влаги, она ржавеет. Хотя существуют способы предотвращения этого окисления, они требуют гораздо большего ухода, чем это возможно. Например, стальную арматуру часто обрабатывают перед заливкой цемента, чтобы защитить ее от элементов, даже если вскоре она будет залита бетоном. Даже в этом случае, как мы видели, он все еще может ржаветь.

Бетон, с другой стороны, довольно устойчив к коррозии. Сначала должны образоваться трещины, и часто требуется несколько лет проникновения воды, замерзания и повторного замерзания, чтобы нарушить структурную целостность железобетона.Если проводятся регулярные осмотры, это дает достаточно времени для ремонта или замены корродирующей части.

2. Масса

Сталь очень тяжелая, и ее необходимо полностью транспортировать на строительную площадку. Бетон, с другой стороны, примерно на треть плотнее стали, и его можно транспортировать в гораздо более легких композитных частях.

У этого есть двоякая польза. Первое преимущество - это транспорт. Сталь нужно будет доставить на строительную площадку, а затем сварить вместе, чтобы сформировать конструкцию.Это было бы очень дорого, так как сталь тяжелая. Бетон, с другой стороны, гораздо легче транспортировать, так как его составные части, затем смешиваются и заливаются на месте, затвердевая до окончательной формы.

Второе преимущество - это вес окончательной конструкции. Поскольку бетон на треть плотнее стали (и даже содержит от 5 до 10 процентов захваченного воздуха), общий вес здания из железобетона намного меньше, чем здания, полностью построенного из стали. Железобетон обычно на 1–4% состоит из стали, поэтому в конечном итоге он весит намного меньше.

3. Стоимость

Сталь, хотя и относительно дешевая и широко распространенная, намного дороже бетона. Просто имеет смысл армировать бетон сталью, потому что вы можете получить преимущества прочности стали, сохраняя при этом низкую стоимость и простоту использования бетона.

История железобетона

Хотя использование ранних форм цемента было задокументировано в древних культурах, возникших много тысяч лет назад, именно древние римляне представили самую раннюю форму бетона в том виде, в каком мы ее знаем сегодня.Во время добычи известняка римляне случайно обнаружили минерал, содержащий кремнезем и глинозем, на склонах Везувия.

При смешивании с известняком и обжиге он давал цемент, который, в свою очередь, можно было смешать с водой и песком, чтобы получить раствор, который был более твердым, прочным и более адгезионным, чем обычный известковый раствор. Эта смесь могла затвердеть как под водой, так и на воздухе, как сегодня бетон. В 2000 году до нашей эры римляне использовали тип бетона под названием пуццолана, в котором использовался вулканический пепел, для строительства Колизея и Пантеона в Риме.

Тогда, примерно с 400 по 1750 год нашей эры, нет никаких свидетельств использования бетона. Фактически это стало «темным веком» бетона, который длился с момента падения Римской империи до тех пор, пока английский инженер Джон Смитон не открыл заново, как производить «гидравлический» цемент при строительстве маяка в Плимуте, Англия.

Железобетон был изобретен и запатентован французом Жозефом Монье в 1867 году н.э., но он применил эту технику только для цементирования цветочных горшков. Железобетон не стал широко используемым строительным материалом, пока в 1880-х годах не были разработаны витая арматура и предварительно напряженный бетон.

Первая бетонная дорога была проложена в 1891 году в Беллефонтене, штат Огайо. Плотина Гувера, самая большая бетонная конструкция, которую когда-либо пытались построить до того момента, была построена в 1936 году. Американский архитектор Фрэнк Ллойд Райт построил множество знаковых бетонных зданий в 1950-х годах. Брутализм, архитектурный стиль, в котором подчеркивался открытый бетон, был популярен с 1950-х по 1970-е годы.

Заключение

Бетон - удивительный строительный материал, который был обнаружен тысячи лет назад, но затем забыт.Это невероятно полезный строительный материал, потому что его можно смешивать с порошком, чтобы создавать каменные конструкции любой формы.

Однако его полезность ограничена тем фактом, что бетон прочен только против сил сжатия и легко крошится под действием сил растяжения и сдвига. Однако, армируя бетон, вы можете создать материал, который намного прочнее, чем его компоненты. Сталь особенно хорошо подходит в качестве арматуры, поскольку она хорошо сцепляется с бетоном и с той же скоростью расширяется.

В сочетании сталь и бетон образуют новый строительный материал - железобетон. Этот новый материал более полезен, чем любой из его отдельных компонентов по отдельности, поскольку он сочетает в себе прочность стали с простотой использования и относительно низким весом бетона.

Что случилось с бетоном, армированным волокном?

Укрепляет ли бетон добавление фибры или как?

Бетон, армированный сталью, является основой нашего современного общества.Армирование в бетоне создает композитный материал, при этом бетон обеспечивает прочность против напряжения сжатия, в то время как арматура обеспечивает прочность против напряжения растяжения. Но, хотя стальная арматура устраняет одно из величайших ограничений бетона, она создает совершенно новую проблему: коррозия встроенной стальной арматуры является наиболее распространенной формой разрушения бетона. Так что мы с этим делаем?

Эй, я Грейди, и это практическая инженерия. В сегодняшнем выпуске мы тестируем некоторые инновации в армировании бетона.

Хотя незащищенная сталь естественно склонна к коррозии или ржавчине, когда она погружается в бетон, определенные факторы обычно работают для ее защиты. Во-первых, это очевидная защита, заключающаяся в простом экранировании от внешней среды относительно непроницаемым и прочным материалом. Вода и загрязнения обычно не проходят через бетон к стали.

Вторая форма защиты - щелочная среда. Высокий pH нормального бетона создает тонкий оксидный слой на стали, который обеспечивает защиту от коррозии.

Но в некоторых случаях этой защиты недостаточно. Одним из основных источников коррозии арматуры является соль. Будь то воздействие соленой воды вблизи морской среды или применение солей для защиты от обледенения, чтобы сделать дороги более безопасными в зимний период, эти ионы хлора могут проникать через бетон, разъедая стальную арматуру. А когда сталь корродирует, образуется оксид железа, который расширяется внутри бетона. Это расширение создает напряжение, которое иногда называют окислительным подъемом, и является одной из основных причин разрушения бетона.

Трещины в крышке

Итак, как же предотвратить попадание ионов хлора и других загрязняющих веществ в сталь и появление коррозии? Первая линия защиты - укрытие.

Покрытие - это минимальное расстояние между внешней поверхностью бетона и арматурной сталью.

И, в зависимости от воздействия и области применения, определенные коды указывают разное количество бетонного покрытия, обычно от 25 до 75 миллиметров или от 1 до 3 дюймов. Укрытие - одна из причин, по которой хорошая бетонная работа требует так много усилий, прежде чем бетон когда-либо появится на стройплощадке.Установка прочной опалубки и большого количества проволоки, связывающей всю арматуру вместе, помогает быть абсолютно уверенным в том, что, несмотря на все толчки, ходьбу и общий хаос, который возникает, когда пора на самом деле укладывать бетон, арматурный стержень остается там, где он был задуман. встроены в конечный продукт. Пренебрежение этими действиями может привести к тому, что арматурный стержень опустится на дно плиты или окажется слишком близко к внешней поверхности до того, как бетон застынет, что в конечном итоге приведет к преждевременной коррозии арматуры из-за отсутствия покрытия.

Но даже при наличии подходящего покрытия любая трещина в бетоне может привести к прямому контакту загрязняющих веществ и воды с арматурой. И вас не удивит, что трещины в бетоне встречаются не так уж и редко. Большая часть бетона дает усадку при отверждении, что может привести к образованию трещин. Изменения температуры также вызывают расширение и сжатие, что может привести к растрескиванию. Бетон также может треснуть при нормальных ожидаемых условиях нагружения из-за того, как сталь воспринимает напряжения в материале.

Одним из способов решения этой проблемы является предварительное напряжение арматурного стержня. Эту тему я кратко обсуждал в предыдущем видео, и я хотел бы углубиться в нее в будущем. Но сегодня я хочу показать еще один вариант уменьшения этих трещин.

Бетон, армированный волокнами

Бетон, армированный фиброй, - это во многом именно то, что вы ожидаете. Это ни в коем случае не новая идея, но наше понимание и использование различных видов волокон в бетонной смеси продолжает расти.Добавление стекла, стали или синтетических волокон в бетон может дать много преимуществ, но одним из наиболее важных является контроль трещин .

Я построил три почти идентичных железобетонных балки, чтобы показать, как это работает, и дал им отвердеть около недели. У первого в качестве арматуры используется только стальная арматура. Я использую свой гидравлический пресс, чтобы проверить прочность каждой балки и посмотреть, как она работает до выхода из строя. И я использую тонны в качестве меры силы, действующей на эти балки, просто потому, что это то, что говорит датчик, но единицы измерения совершенно произвольны для демонстрации.(Если вы предпочитаете SI [Système Internationale, или метрическую систему], просто представьте, что это метрические тонны.)

Когда я увеличиваю нагрузку на балку, вы видите трещины, начинающиеся всего с 3 тонн. Эти трещины образуются из-за того, что сталь немного растягивается, принимая на себя растягивающее напряжение в бетоне. Балка прекрасно выдерживает нагрузку и даже не близка к разрушению, но бетон не может растягиваться вместе со сталью, поэтому он должен треснуть. Вы можете себе представить, как эти трещины могут позволить воде и воздуху контактировать с арматурой и в конечном итоге разрушить бетон.

(Эти трещины - важная часть этой демонстрации, но я пошел дальше и увеличил нагрузку до тех пор, пока балка не сломалась, потому что, эй, это то, для чего подходят гидравлические прессы, верно?)

Для следующих двух балок я включил волокна в бетонную смесь: одна балка имеет стальные волокна, а другая - стекловолокна. Стальная арматура и волокна объединяются, чтобы противостоять растягивающим напряжениям в балках. Арматурный стержень обеспечивает крупномасштабное армирование, чтобы противостоять растяжению по всему элементу конструкции, а волокна обеспечивают мелкомасштабное армирование, чтобы противостоять локальному напряжению, которое вызывает растрескивание.

Когда я нагружаю эти балки по 3 тонны, не видно ни единой трещины. Фактически, для обоих этих балок я не заметил образования трещин почти вдвое больше. и даже тогда трещины были намного меньше. Обе балки вышли из строя примерно при той же нагрузке, что и первая, чего я и ожидал. Как я уже сказал, волокна на самом деле не добавляют большой прочности балке, но вы легко можете видеть, что они могут иметь большое значение для предотвращения коррозии стальной арматуры.

Альтернативы стальной арматуре

Вы можете спросить, почему мы вообще используем сталь для армирования? Сталь относительно недорогая, хорошо испытанная и прочная, но существует множество других материалов с превосходными механическими свойствами, которые не подвержены коррозии.Для очень агрессивных сред мы иногда используем арматуру с эпоксидным покрытием или даже нержавеющую сталь, но есть некоторые новые альтернативы, такие как армированные волокном полимеры или стержни из стеклопластика. Это арматура из базальта, переплавленного вулканического камня, пропущенного через крошечные сопла для создания чрезвычайно прочных волокон.

Такие варианты часто стоят дороже, чем стальная арматура, а в некоторых случаях намного дороже. Но главное препятствие для использования этих новых, более инновационных типов арматуры - это не только стоимость.Легко видеть, что эти дополнительные затраты могут быть компенсированы увеличением срока службы бетона. Еще одно препятствие происходит из-за отсутствия широкого применения. Инновации в гражданском строительстве происходят медленно, потому что последствия неудач очень высоки. Обретение уверенности в конструкции имеет такое же отношение к инженерной теории, как и к простому наблюдению за тем, насколько хорошо аналогичные конструкции работали в прошлом.

Но многие инженерные катастрофы произошли не из-за плохого дизайна, а из-за плохого обслуживания, поэтому долговечность может быть так же важна для общественной безопасности, как и другие критерии проектирования.В будущем мы обязательно увидим более инновационные способы армирования бетона, в том числе варианты, которые я упомянул в этом видео.

Спасибо за просмотр и дайте мне знать, что вы думаете!

—Это видео взято с канала YouTube Practical Engineering, на котором гораздо больше видео с пояснениями по инженерным вопросам.


Железобетонные конструкции: обычный железобетон и предварительно напряженный бетон

Термины, которые вы должны знать:

  • Пост-натяжение: метод предварительного напряжения, при котором стальные пряди натягиваются после заливки бетона
  • предварительно напряженный: бетон, который подвергается внутренним напряжениям от арматурных стальных нитей, чтобы компенсировать растягивающее напряжение будущих нагрузок
  • предварительное натяжение: метод предварительного напряжения, при котором стальные пряди натягиваются перед заливкой бетона
  • Арматура
  • : название арматурного стержня, который используется для повышения прочности бетона на разрыв
  • арматурный стержень (арматура): стальные стержни, пряди или металлическая ткань, помещенные в бетонные плиты, балки или колонны для увеличения их прочности.
  • железобетон (RC): композит из двух материалов: бетона и арматурной стали (стержней и сетки), использующий лучшее из обоих свойств.

Механика материалов

Механика материалов - это термин, используемый для описания поведения различных типов материалов под воздействием напряжений.В этой статье основное внимание уделяется тому, как бетон ведет себя при сжимающих и растягивающих напряжениях. Мы также рассмотрим некоторые методы, применяемые для устранения недостатков материала, которые, в результате, делают бетон прочным и, следовательно, обычным материалом, используемым в качестве структурного компонента в коммерческих зданиях.

Стандартный бетон хорошо реагирует на напряжение сжатия, но плохо - на напряжение растяжения; поэтому армирование используется для повышения прочности материала. Бетон выдерживает напряжение сжатия, а арматура обеспечивает прочность против напряжения растяжения.

ПРИМЕЧАНИЕ: Бетон расширяется или растягивается под действием растягивающего напряжения и сжимается или укорачивается под действием сжимающего напряжения .

Бетон обычно считается хрупким материалом; таким образом, без армирования он будет испытывать хрупкое разрушение как вид разрушения. Хрупкое разрушение - это режим разрушения при растяжении, означающий, что до полной потери прочности материал практически не проявляет никаких признаков того, что что-то не так. Окончательный провал происходит относительно внезапно.Армирование в бетоне изменяет режим разрушения при хрупком разрушении на вязкое разрушение; поэтому до полной потери прочности станут видны трещины. Следовательно, есть видимое предупреждение перед окончательным отказом.

Механика бетона говорит нам, что бетон сам по себе не является хорошим конструкционным материалом, тем более что бетон в процессе эксплуатации подвержен значительным растягивающим напряжениям и различным нагрузкам. Таким образом, весь бетон армирован, чтобы противостоять приложенным растягивающим усилиям и контролировать развитие растрескивания под нагрузкой.

Железобетон

Железобетон (ЖБИ) представляет собой смесь двух материалов: бетона и арматурной стали (стержней и сетки). Арматурная сталь, также называемая арматурой, заделывается в бетон, так что два материала могут вместе противостоять приложенным силам. Обратите внимание, что стальную арматуру, установленную таким образом, часто называют обычной или обычной арматурой.

Обычная арматура - это форма пассивной арматуры, при которой арматурная сталь не сопротивляется растяжению до тех пор, пока не растягивается, что часто означает, что бетон должен растрескаться, прежде чем арматурная сталь сможет противостоять растягивающему напряжению.Другими словами, растрескивание может активировать прочность арматурной стали, поэтому прогиб бетона может присутствовать, но для материала поддается регулированию. Арматурную сталь часто кладут сверху и снизу плит.

Традиционно армированный бетон можно также дополнить прядями стальной арматуры для предварительного или последующего натяжения. Когда эти методы применяются, материал в совокупности называется предварительно напряженным бетоном. Это форма активного армирования, которая, как следует из названия, означает, что бетон подвергается предварительному напряжению перед вводом в эксплуатацию.Оно предварительно напряжено путем растяжения (натяжения) стальных стержней арматуры.

Два метода предварительного напряжения описаны ниже:

  1. Предварительное натяжение: Бетон заливается вокруг предварительно натянутых прядей стальной арматуры. Эти пряди натянуты на бетонный каркас между двумя точками анкерного крепления. Бетон приклеивается к стальным прядям, и как только бетон достигает заданной прочности на сжатие, стальные арматурные стержни освобождаются. В этом методе, когда бетон затвердевает и стальные стержни арматуры, предварительно натянутые на растяжение, высвобождаются, напряжение передается внутри бетона в виде сжатия за счет трения с арматурой.
  2. Последующее натяжение: Бетон заливается вокруг рукавов или каналов, и пряди стальной арматуры для предварительного натяжения продеваются через них. Как только бетон достигает заданной прочности на сжатие, пряди стальной арматуры растягиваются с помощью гидравлических домкратов и прочно закрепляются на каждом конце. Рукава или трубки обычно заполняются раствором. Пост-натяжение также достигается за счет предоставления стальным арматурным стержням в некоторой степени свободы перемещения внутри бетона. В этом случае прядь стальной арматуры смазывается антикоррозийной смазкой и покрывается оболочкой.Это называется пост-натяжением без сцепления. В этом методе к бетону прикладывается постоянное сжатие, когда стальная арматура постоянно закреплена.

В обоих методах предварительного напряжения растяжение прядей является формой напряжения, которое сжимает бетон. Это, в свою очередь, создает внутренние напряжения, которые противодействуют напряжению растяжения от будущих эксплуатационных нагрузок. Подводя итог, предварительное напряжение увеличивает прочность бетона на растяжение, поскольку будущие эксплуатационные нагрузки должны нейтрализовать предварительное напряжение сжатия.Предварительно напряженный бетон часто используется в проектах гражданского строительства, таких как настилы мостов, а также в следующих элементах коммерческих зданий: балконы, перемычки, плиты перекрытия, балки, фундаментные слои и конструкции парковок.

Общие дефекты железобетона

Трещины - это часто встречающийся и легко заметный дефект железобетона. Инспекторам следует учитывать, что не все наблюдаемые трещины могут отрицательно повлиять на структурную целостность бетонных элементов.Один тип растрескивания называется оседанием пластика, и обычно он образуется над стальной арматурой и выравнивается по ней. Другой тип растрескивания называется коррозией арматуры, и он также образуется над арматурой. Некоторые дефекты появляются в течение нескольких часов после затвердевания бетона, в то время как на развитие других уходят годы. В любом случае инспекторы должны сообщать о признаках трещин в соответствии с их местонахождением и характеристиками.

Требуется ли усиление бетона как элемента конструкции?

Стандартный бетон без армирования не подходит в качестве конструктивного элемента в коммерческих зданиях, так как он имеет низкую прочность на разрыв и под нагрузкой развивается растрескивание.Естественно, бетон хорошо реагирует на сжимающее напряжение; таким образом, арматура используется для обеспечения прочности против растягивающего напряжения и для подавления растрескивания (и полного разрушения).

При этом бетон, который испытывает значительные приложенные нагрузки, должен иметь армирование. Но хотя армирование делает бетон более прочным, некоторые бетонные конструкции и элементы могут не иметь армирования или нуждаться в нем. Сюда входят подъездные пути к жилым домам, этажи гаражей и ступеньки.

Заключение

Решения о том, какие материалы использовать при строительстве различных типов коммерческих сооружений, принимаются на стадии предварительного проектирования.Бетонные структурные компоненты могут включать балки и колонны, рамы, диафрагмы и / или стены, работающие на сдвиг. Инспекторам по коммерческой недвижимости важно понимать основные принципы работы с распространенными материалами и методами, включая предварительное напряжение бетона, чтобы компетентно проверять и составлять отчеты о большинстве коммерческих структур.

Бетонные конструкции и методы, применяемые для их строительства, могут быть довольно сложными. Инспекторы по коммерческой недвижимости должны иметь в своей группе специализированных консультантов профессионального инженера или специалиста по ремонту и обслуживанию бетона.Некоторые инженеры проводят всю свою карьеру, изучая и специализируясь на методах строительства из бетона.

Дополнительные ресурсы для инспекторов по коммерческой недвижимости:

Что такое железобетон? | Программное обеспечение SkyCiv Cloud для структурного анализа

Что такое железобетон?

Железобетон - это общий термин, обозначающий бетонный элемент (или плиту), который содержит стальную арматуру (обычно в виде стальных стержней) для увеличения прочности конструкции.Материал, получаемый в результате комбинации бетона и арматурных стержней, называется железобетонным (ЖБИ). Во время строительства арматурная сталь сначала помещается в опалубку либо в виде сборного стального каркаса, либо в виде стальных арматурных стержней, которые скрепляются между собой и подключаются на месте. Затем бетон заливается в опалубку и подвергается вибрации с помощью соответствующих устройств, чтобы гарантировать высокий уровень взаимодействия между двумя материалами.


Рис. 1. Прямоугольная бетонная балка со стальной арматурой является примером железобетонного элемента.

Почему важно армирование бетона?

Одним из основных недостатков бетона является его очень низкая прочность на разрыв, которая практически превышается при малых нагрузках.Это приводит к растрескиванию бетонных поверхностей, что, в свою очередь, приводит к эстетическим проблемам (большой прогиб балок или плит) для предельного состояния эксплуатационной пригодности, а также к проблемам структурной целостности в предельном состоянии. С другой стороны, арматурная сталь имеет довольно высокий предел прочности на разрыв и симметричный закон материи при растяжении и сжатии. Однако только арматурный стержень, который подвергается сжатию, преждевременно выходит из строя из-за потери устойчивости. По этим причинам использование арматуры в RC-секции приводит к эффективному поведению конструкции, поскольку арматурные стальные конструкции эффективно работают при растяжении, а бетон эффективно работает при сжатии и ограничивает сжатие арматуры.На рисунке 1 показана диаграмма изгибающего момента неразрезной балки при вертикальных нагрузках, а также места, где должна быть размещена арматурная сталь.


Рис. 2: Трехпролетная неразрезная балка при равномерной нагрузке: (а) диаграмма изгибающего момента и (б) места основного армирования.

Важно отметить, что сотрудничество между бетоном и арматурной сталью облегчается тем фактом, что оба материала имеют одинаковый коэффициент теплового расширения, а это означает, что изменение температуры не вызывает дополнительных внутренних напряжений на границе раздела бетон-арматура.

Где применяется железобетон?

В настоящее время железобетон широко используется в современном строительстве, в основном для зданий и мостов. Такие проекты могут включать в себя большое количество участников, например:

  • Пластинчатые элементы: горизонтальных пластин (плиты, плиты настила мостов и плиты фундамента) или вертикальных (например, поперечные стены и основные стены вокруг лестничных клеток или лифтов)
  • Элементы линейного типа: , такие как балки, колонны или сваи.

При вертикальной нагрузке пластинчатые элементы обеспечивают жесткость и прочность более чем в одном направлении в плане элемента, в то время как линейные элементы придают прочность и жесткость в основном в одном направлении.

Какие примеры (сечения) ЖБИ?

Поперечные сечения вертикальных линейных элементов, таких как колонны и опоры, имеют довольно простую геометрию (чаще всего квадратную, прямоугольную или круглую - см. Рисунок 2), продиктованную тем фактом, что эти элементы должны оказывать одинаковое или подобное сопротивление во всех горизонтальных направлениях.Кроме того, такая геометрическая конфигурация снижает затраты на опалубку. Поперечные сечения балок, используемых в строительных проектах, имеют обычную прямоугольную форму, в то время как поперечные сечения мостовых балок имеют в основном двутавровую форму, чтобы уменьшить вес и обеспечить размещение арматуры после натяжения.


Рисунок 3: Типовые железобетонные секции

Программное обеспечение SkyCiv для проектирования железобетона

SkyCiv предлагает простое в использовании программное обеспечение для проектирования железобетонных конструкций, которое помогает анализировать и проектировать железобетонные элементы.Используя программное обеспечение SkyCiv Beam, вы можете проанализировать нагрузки на элемент, а затем спроектировать свой бетонный элемент с помощью нашего программного обеспечения для проектирования железобетонных конструкций.

Программное обеспечение для железобетона

Проблема с железобетоном

Сам по себе бетон является очень прочным строительным материалом. Великолепный Пантеон в Риме, крупнейший в мире купол из неармированного бетона, находится в отличном состоянии спустя почти 1900 лет. И все же многие бетонные конструкции прошлого века - мосты, шоссе и здания - рушатся.Многие бетонные конструкции, построенные в этом столетии, к его концу устареют.

Учитывая сохранившиеся древние постройки, это может показаться любопытным. Решающее отличие - это современное использование стальной арматуры, известной как арматура, скрытая внутри бетона. Сталь в основном состоит из железа, и одно из неизменных свойств железа - ржавчина. Это ухудшает долговечность бетонных конструкций, что трудно обнаружить и дорого ремонтировать.

Хотя ремонт может быть оправдан для сохранения архитектурного наследия знаковых зданий 20-го века, например, спроектированных пользователями железобетона, такими как Фрэнк Ллойд Райт, сомнительно, будет ли это доступным или желательным для подавляющего большинства сооружений.Писатель Роберт Курланд в своей книге Concrete Planet оценивает затраты на ремонт и восстановление бетонной инфраструктуры только в Соединенных Штатах в триллионы долларов, которые будут оплачиваться будущими поколениями.

Для замены старых мостов нужны новые деньги. 1stPix Фила / Flickr.com, CC BY-NC

Стальная арматура была кардинальным нововведением 19 века. Стальные стержни добавляют прочности, позволяя создавать длинные консольные конструкции и более тонкие плиты с меньшей опорой.Это сокращает время строительства, поскольку для заливки таких плит требуется меньше бетона.

Эти качества, продвигаемые напористым, а иногда и двуличным продвижением бетонной промышленности в начале 20 века, привели к его огромной популярности.

Железобетон конкурирует с более прочными строительными технологиями, такими как стальной каркас или традиционные кирпичи и строительный раствор. Во всем мире он заменил экологически чувствительные, низкоуглеродные варианты, такие как сырцовый кирпич и утрамбованную землю - исторические практики, которые также могут быть более долговечными.

Инженеры начала 20 века думали, что железобетонные конструкции прослужат очень долго - возможно, 1000 лет. На самом деле продолжительность их жизни больше примерно 50-100 лет, а иногда и меньше. Строительные нормы и правила обычно требуют, чтобы здания сохранялись в течение нескольких десятилетий, но разрушение может начаться всего через 10 лет.

Многие инженеры и архитекторы указывают на естественную близость стали и бетона: они имеют схожие характеристики теплового расширения, а щелочность бетона может помочь предотвратить ржавчину.Но по-прежнему отсутствуют сведения об их составных свойствах - например, в отношении изменений температуры, связанных с воздействием солнца.

Многие альтернативные материалы для армирования бетона, такие как нержавеющая сталь, алюминиевая бронза и фибро-полимерные композиты, пока не получили широкого распространения. Доступность простой стальной арматуры привлекает застройщиков. Но многие проектировщики и разработчики не принимают во внимание дополнительные расходы на обслуживание, ремонт или замену.

Дешево и эффективно, по крайней мере, в краткосрочной перспективе. Луиджи Кьеза / Wikimedia Commons, CC BY-SA

Существуют технологии, которые могут решить проблему коррозии стали, например, катодная защита, при которой вся конструкция подключается к антикоррозийному электрическому току. Существуют также интересные новые методы контроля коррозии с помощью электрических или акустических средств.

Другой вариант - обработать бетон составом, ингибирующим ржавчину, хотя он может быть токсичным и не подходящим для зданий.Есть несколько новых нетоксичных ингибиторов, включая соединения, извлеченные из бамбука, и «биомолекулы», полученные из бактерий.

По сути, однако, ни одно из этих достижений не может решить присущую ему проблему, заключающуюся в том, что размещение стали внутри бетона разрушает его потенциально большую долговечность.

Экологические затраты на реконструкцию

Это имеет серьезные последствия для планеты. Бетон является третьим по величине источником выбросов углекислого газа после автомобилей и угольных электростанций.Только на производство цемента приходится примерно 5% мировых выбросов CO₂. Бетон также составляет самую большую долю отходов строительства и сноса и составляет около трети всех отходов свалок.

Переработка бетона сложна и дорога, снижает его прочность и может катализировать химические реакции, ускоряющие распад. Миру необходимо сократить производство бетона, но это будет невозможно без строительства долговечных конструкций.

Рекультивация арматуры: дорогостоящая работа.Анна Фродезиак / Wikimedia Commons

В недавней статье я предполагаю, что повсеместное признание железобетона может быть выражением традиционного, доминирующего и, в конечном счете, разрушительного взгляда на материю как на инертную. Но железобетон на самом деле не инертен.

Бетон обычно воспринимается как каменный, монолитный и однородный материал. Фактически, это сложная смесь вареного известняка, глиноподобных материалов и широкого спектра каменных или песчаных заполнителей.Сам известняк представляет собой осадочную породу, состоящую из раковин и кораллов, на формирование которых влияют многие биологические, геологические и климатологические факторы.

Это означает, что бетонные конструкции, несмотря на все их каменные поверхностные качества, на самом деле состоят из скелетов морских существ, вымоченных в скалах. Этим морским существам требуются миллионы и миллионы лет, чтобы жить, умереть и превратиться в известняк. Этот временной масштаб резко контрастирует с продолжительностью жизни современных зданий.

Сталь также часто считается инертной и упругой. Такие термины, как «железный век», предполагают древнюю долговечность, хотя артефакты железного века сравнительно редки именно потому, что они ржавеют. Если видна строительная сталь, ее можно обслуживать - например, если мост Харбор-Бридж в Сиднее неоднократно красится и перекрашивается.

Однако, когда сталь заделана в бетон, она скрыта, но тайно активна. Влага, проникающая через тысячи крошечных трещин, вызывает электрохимическую реакцию.Один конец арматуры становится анодом, а другой - катодом, образуя «батарею», которая обеспечивает преобразование железа в ржавчину. Ржавчина может расширить арматурный стержень до четырех раз, увеличивая трещины и заставляя бетон расколоться в процессе, называемом скалыванием, более известным как «рак бетона».

Конкретный рак: некрасиво. Саранг / Wikimedia Commons

Я предлагаю изменить наше мышление и признать бетон и сталь яркими и активными материалами.Это не случай изменения каких-либо фактов, а скорее переориентация того, как мы понимаем эти факты и действуем в соответствии с ними. Чтобы избежать отходов, загрязнения окружающей среды и ненужного восстановления, потребуется мыслить далеко за рамки дисциплинарных представлений о времени, и это особенно верно для строительной отрасли.

Разрушенные цивилизации прошлого показывают нам последствия краткосрочного мышления. Мы должны сосредоточиться на строительстве структур, которые выдержат испытание временем, чтобы не получить громоздкие, заброшенные артефакты, которые не больше подходят для своего первоначального назначения, чем статуи острова Пасхи.

Железобетон - обзор

1.6.5.1 Характеристики текстильно-армированного бетона

TRC [21] состоит из мелкозернистого цементного вяжущего и стойкого к щелочам стеклоткани. Значение предварительного напряжения текстиля для его лучшего использования демонстрируется путем проведения испытания на растяжение. Основываясь на преимуществах, которые дает предварительное напряжение ткани, в справочниках. [21,26–29] иллюстрируют пригодность предложенного метода для достижения улучшенных характеристик RC-балок при их усилении с помощью TRC.

Мелкозернистое цементное связующее, состоящее из ПК (578 кг / м 3 ), FA (206 кг / м 3 ), SF (41 кг / м 3 ), кварцевого песка (589 кг / м). м 3 ), кварцевый порошок (QP) (354 кг / м 3 ), вода (330 кг / м 3 ) и СП на основе поликарбоксилата. Расходы, измеренные с помощью аппарата minislump, имеют начальное значение более 150% и 80% через 1 час. Прочность смеси на сжатие куба составляет 44,5 МПа (± 4,2%).

Стеклоткань, которая используется в качестве армирования, представляет собой щелочно-стойкую арматуру сетчатого типа с размером ячеек 25 × 25 мм.Определение характеристик одноосного растяжения проводилось на текстильных образцах длиной 500 мм и шириной 60 мм. Замечено, что максимальная несущая способность текстиля на единицу ширины составляет около 45 кН / м, и наблюдалась слабина в начальном отклике текстиля (см. Отклик только текстиля на рис. 1.10). Более подробную информацию о характеристиках текстиля можно увидеть в другом месте [21]. Исследования показали, что определенное усилие натяжения необходимо для выпрямления пряжи во время литья TRC для достижения лучшего действия композита.

Рисунок 1.10. Типичное напряжение-деформация для текстиля.

В исследованиях [21,26–30], предварительное напряжение / механическое растяжение было обеспечено текстильным изделиям во время литья TRC. Соответственно, чтобы определить вклад текстиля в TRC, были отлиты и испытаны прямоугольные образцы размером 500 (длина) × 60 (ширина) × 8 мм (толщина) с механически растянутым текстилем. Подробности о методологии и испытаниях на механическое растяжение сообщает Гопинатх [21]. Сравнение результатов с результатами TRC с непрессованными тканями показано на рис.1.10, где образцы TRC имели три и четыре слоя текстиля, помещенные в форму без приложения какой-либо механической силы во время литья образца, а в других случаях механическая сила была приложена к текстильным слоям с использованием специально разработанного устройства во время литья. На основании зависимости нагрузки от смещения номинальное напряжение для текстиля было получено в соответствии с процедурами, указанными в ACI 549 [31], путем деления нагрузки на площадь поперечного сечения текстильного армирования, равную 33,58 мм 2 / м.Напряжение в зависимости от деформации трех- и четырехслойного армированного предварительно напряженного и непрессованного текстиля в TRC показано на рис. 1.10. Кроме того, деформация была получена путем деления смещения LVDT на измерительную длину 350 мм.

Ответы также были наложены на различное поведение ткани в TRC, полученное в одноосном тесте (см. Рис. 1.10). Когда TRC отливают без придания текстильному материалу какого-либо механического растяжения (без напряжения), можно заметить, что наклон многократного растрескивания и стабилизированного состояния параллелен наклону ткани, как показано на рис.1.10. Однако необходимо получить пиковую деформацию, поскольку текстильные материалы в TRC не удлиняются до тех пор, пока не будет достигнута деформация разрушения в текстиле. Когда текстильные изделия подвергаются предварительному напряжению / механическому растяжению, наклон поведения текстиля в состоянии множественного растрескивания параллелен наклону ткани. Однако, как только TRC переходит в стабилизированное состояние, наклоны голого текстиля и ткани в TRC не параллельны. Замечено, что есть особое пятно (0,8%), где напряжение в голом текстиле совпало с напряжением, испытываемым тканью в TRC.Это указывает на то, что до этого момента используется весь потенциал текстиля, а за пределами которого преимущественно используется только способность текстиля к удлинению. При деформации более 0,8% жесткость текстиля в TRC ниже, чем у голого текстиля, что указывает на дефицит жесткости, вызванный преждевременным разрушением определенной части нитей и преждевременным разрывом нитей сердцевины. Это было дополнительно подтверждено с помощью рентгеновского КТ-анализа, который поясняется в следующем разделе.

Из проведенных исследований [21,26–29] сообщается, что прочность на разрыв чистого текстиля выше по сравнению с прочностью текстиля в TRC как в предварительно напряженных, так и в непрессованных случаях. Это связано с тем, что текстильные нити, а также их расположение очень неоднородны, и поэтому они создают частично прерывистое распределение напряжений в нити в сочетании с TRC. Это иллюстрирует низкую пластичность одиночных нитей. Было обнаружено, что TRC с предварительно напряженным текстилем испытывает большее напряжение (около 60%) по сравнению с TRC с непрессованным текстилем.Это указывает на то, что предварительное напряжение может улучшить характеристики композита и привести к лучшему использованию текстиля в TRC. Предел прочности голого текстиля составляет около 1400 МПа. Текстильные изделия при предварительном напряжении демонстрируют предельное напряжение около 900 МПа, тогда как в случае не подвергавшегося предварительному напряжению TRC максимальное испытанное напряжение составляет всего 400 МПа, что указывает на недоиспользование текстиля. Чтобы использовать преимущества, предлагаемые предварительно напряженным TRC, эту концепцию можно расширить для усиления изгиба ж / б балок с помощью TRC.

Железобетон | Что такое железобетон? | Бетонный подрядчик | Walnut Creek, CA

Армированный бетон (RC) (также известный как армированный цементный бетон или RCC) - это строительный материал, в котором арматура с более высокой прочностью на разрыв или пластичностью противодействует сравнительно низкой прочности на разрыв и пластичности бетона. Обычно, но не всегда, арматура представляет собой стальную арматуру (арматуру) и обычно пассивно вставляется в бетон до тех пор, пока бетон не схватится.

Несколько различных типов зданий и структурных элементов могут быть построены из железобетона, включая плиты, стены, балки, колонны, опоры, рамы и многое другое.

Железобетон может называться сборным или монолитным.

Разработка и внедрение наиболее эффективной системы перекрытий важны для строительства оптимальных строительных конструкций. Небольшие улучшения в конструкции системы полов могут иметь огромное влияние на стоимость материалов, график строительства, общую мощность, эксплуатационные расходы, заполняемость и конечное использование здания.

Без армирования было бы невозможно строить новые здания из бетонных материалов.

Армированные конструкции из бетона спроектированы таким образом, что оба компонента вместе выдерживают приложенные силы. Прочность бетона на сжатие и прочность стали на растяжение создают прочную связь, способную выдерживать определенные нагрузки в течение длительного времени. В большинстве строительных проектов простой бетон не подходит, так как он не может легко выдерживать нагрузки, вызванные вибрациями, ветром или другими силами.

Какое значение имеет армирование в бетоне?

Одним из больших недостатков бетона является его очень низкая прочность на растяжение, которая практически достигается при низких скоростях нагружения. Это приводит к растрескиванию бетонных поверхностей, что, в сущности, приводит к эстетическим проблемам (большой прогиб балок или плит) для максимального удобства эксплуатации, а также к проблемам структурной целостности на максимальном уровне. С другой стороны, при напряжении и сжатии армированная сталь обладает очень высоким сопротивлением растяжению и несимметричной структурой.Тем не менее, изгиб приводит к преждевременному разрушению только арматурного стержня, который подвергается сжатию. По этой причине использование арматуры в RC-секции приводит к эффективному поведению конструкции, так как арматурные стальные конструкции эффективно работают при растяжении, а бетон эффективно работает при сжатии и ограничивает сжатие арматуры. На рисунке 1 показана диаграмма изгибающих моментов неразрезной балки при вертикальных нагрузках, а также места, где должна быть установлена ​​арматурная сталь.

Производство железобетона

Бетон состоит из смеси цемента и каменных заполнителей, образующих прочный каркас с добавлением воды.После заделки в бетон, сталь с высокой прочностью на разрыв композитный материал может выдерживать напряжения сжатия, изгиба и растяжения. Из такого материала можно сделать любой размер и форму, в строительстве.

Ключевым преимуществом железобетона является сходство его коэффициента теплового расширения со сталью, что снижает внутренние напряжения, вызванные изменчивостью теплового расширения или сжатия.

Кроме того, поскольку цементное тесто затвердевает внутри бетона, оно соответствует поверхностным свойствам стали, что позволяет эффективно переносить напряжения между двумя материалами.Шероховатость стальных стержней усиливает бесшовность между сталью и бетоном.

В-третьих, из-за щелочной атмосферы, создаваемой известью, на стали образуется пленка, благодаря которой сталь становится сверхкоррозионной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *