Чтение электросхем станков: Электрические схемы станков с ЧПУ

alexxlab | 19.04.1978 | 0 | Разное

Содержание

Электрические схемы станков с ЧПУ

Работа современного металлообрабатывающего оборудования, в особенности станков с ЧПУ и гибких производственных систем на базе ЭВМ немыслима без создания схем нового электрооборудования со значительно улучшенными показателями.

В соответствии с Единой системой конструкторской документа­ции схемы электрооборудования станков подразделяются на:

  • структурные, определяющие основные части электрооборудования, их состав и взаимосвязь;
  • функциональные, разъясняющие определенные электрическиепроцессы, протекающие в отдельных узлах или во всем электрообо­рудовании станка;
  • принципиальные, определяющие полный состав элементов и свя­зей между ними и, как правило, дающие детальное представление о принципах работы электрооборудования;
  • соединения (монтажные), показывающие, как и с помощью чего соединяются составные части электрооборудования и элементы, а также места их присоединения и ввода;
  • подключения, показывающие внешние электрические связи;
  • расположения, определяющие относительное расположение сос­тавных частей электрооборудования, а также проводов, жгутов и кабелей.

Рис. 1.1. Принципиальная электрическая схема силового электрооборудования станка

где: М1 — двигатель привода шпинделя, М2 — двигатель транспортера стружки, МЗ — двигатель насоса охлаждения, М4 — двигатель ускоренного переме¬щения, М5 — двигатель привода подач.

Все электрические схемы выполняются без соблюдения масштаба и действительного расположения отдельных элементов.

В состав основной технической документации станков чаще всего включаются принципиальные электрические схемы и схемы располо­жения электрооборудования.

На принципиальной схеме изображаются все элемен­ты электрооборудования для осуществления и контроля заданных процессов. Обычно силовые цепи размещают слева и выделяют жир­ными линиями, а цепи управления — справа и выделяют более тон­кими линиями. При составлении схемы полагают, что электрообору­дование находится в отключенном положении. Элементы, входящие в состав электрооборудования, показывают условно, и каждый из них имеет свое позиционное обозначение, составленное из букв (напри­мер, электродвигатель—М) и порядкового номера (М1, М2,…).

Пример выполнения электрической принципиальной схемы силового электрооборудования станка приведен на рис. 1.1.

На схемах расположения элементы и устройства, относящиеся к электрооборудованию, изображаются в масштабе, а соединительные провода и кабели — упрощенно одной линией.

Схемы расположения электрооборудования выполняются как для станций и пультов управления, электрошкафов, так и для станков и их отдельных механизмов. На рис. 1.2 показан пример выполнения схемы расположения элементов электрооборудования на панели станции управления. На схе­ме указывают размеры пане­ли, ориентировочные рас­стояния между элементами, их габаритные размеры, на­значение которых объясня­ется их позиционным обо­значением.

Необходимо отметить, что чтение схем современ­ного электрооборудования станков довольно затрудни­тельно. Это связано с тем, что в них наряду с тради­ционными электромеханиче­скими устройствами (элек­тродвигателями, пускателя­ми, контакторами, реле и т. д.) имеются сложные средства автоматики, вычи­слительной техники и другая микроэлектронная аппарату­ра, содержащая в себе огро­мное количество элементов.

Хотя электрооборудова­ние различных групп станков имеет много общего — элек троприводы, защита,блокировки, системы управления различается сво­ими особенностями для разных станков, которые рассмотрены ниже.

Рис. 1.2. Схема расположения элементов электрооборудования на панели станции управления

Читать электросхему будет просто – Весёлый Карандашик

Когда Вам предстоит заглянуть внутрь Вашего ‘заболевшего’ автомобиля, не включающегося телевизора, плеера или найти место возможной неисправности домашней электропроводки, Ваши мысли направляют Ваши действия на поиск схемы, изображающей принцип работы или действия устройства или агрегата.

Хорошо, когда есть принципиальная электрическая схема и хоть малейший опыт в её чтении. А как быть тому, кто не имеет даже представления об этом? Приходиться ломать голову над решением проблемы или обращаться к знатокам и к специалистам.

Электричество на схеме.

Наука говорит, что электрический ток — это упорядоченное движение электрических зарядов. Электрический заряд одного электрона ничтожно мал, но если бо́льшее количество электронов заставить двигаться внутри тела в одну сторону, получится то, что мы называем электрическим током.

Что бы доставить заряд энергии в определённую точку, применяются проводники — такие материалы, которые способны передать электричество к потребляющему объекту без потерь и внутренних помех.

Пешеход пользуется дорогой, для перемещения по воде пользуются лодкой, птица летает по воздуху, вода в кран подаётся по трубам, а наши электроприборы получают электричество по электрическим проводникам. Эти примеры показывают, что для перемещения определённого элемента существует и определённый путь.

В сборках электроустройств используются металлические проводники: монтажные шины, провода, проводники на печатном монтаже сборных конструкций. Между проводниками находятся соединения. Это  сварные(сюда входит спаивание или сварка проводников) и контактные,  которые могут коммутироваться  механизмом, смыкающим или размыкающим между собой проводники, электронным коммутатором или быть связанными между собой болтовым соединением.

Электрическая схема на рисунке.

Совокупность всех элементов устройства с соединяющими их проводниками можно изобразить графически в виде условных значков, символов, обозначений и линий.

Графические электрические схемы делятся на принципиальные, структурные и функциональные.

Структурная электросхема — отображает основные функциональные части изделия (группы, элементы и устройства). Рядом на карте схемы в таблице указываются расшифровки состава электросхемы  с указанием их обозначений. Могут размещаться диаграммы, формы величины импульсов, формулы математической зависимости.

Соединения указываются стрелками, указывающие направление  действующих величин тока или обработки сигнала. Элементы схемы обозначаются кубиками или цифрами.

Функциональная электросхема — отображает только функциональные части изделия и электрической связи между ними или самого изделия в целом. Элементы обозначаются условными обозначениями либо прямоугольниками, обозначенными внутри своей позицией в группе, узле или изделия.

Принципиальная электрическая схема — отображает полностью все электрические соединения блоков, модулей, дополнительных устройств и принцип их взаимодействия в общей схеме главного, основного устройства (телевизор, автомобиль, квартира, станки, компьютер) или механизма. Такая схема является основной и главной для изделия.

И совсем не факт, что здесь выложена точная формулировка видов электросхем, главное, получить начальный опыт в чтении электросхем.

Что бы иметь возможность читать все типы, нам необходимо ознакомиться с обозначениями, используемые в схемах.

Учимся читать электросхемы.

Любая причина неработающего электроустройства — это лишний контакт или его отсутствие.

Проводники в электросхемах имеют вид линии, соединяющей определённый элемент. Соединение элементов  между собой проводниками называется электрической цепью или участком цепи, входящим в единую общую схему. В замкнутой электрической цепи всегда течёт электрический ток. В разомкнутой — электрический ток не течёт, то есть устройство не работает.

Изображение проводников на принципиальных  схемах всегда одинаково. Разница может быть в обозначении цепей, участвующих в обработке сигнала, размещением указателей на них или цветовой маркировкой. Отличие лишь составляет линейная схема, на которой одной линией может указываться целая группы проводников, задействованных в одной функции и изображается жирной  или цветной линией.

Когда схема в себе содержит большое количество элементов, проводники не изображаются полностью, а отрезками и разрывами, с указанием места подключения или соединения, имеющими  символьные обозначения точки подключаемого участка, модуля , блока или элемента.

Соединения проводников в принципиальных электрических схемах изображаются точкой или разомкнутой(сомкнутой) линией на коммутирующем устройстве.

Обозначения на электрической схеме будут для Вас легкочитаемы, когда встречаемые знаки и символы в ней будут представлять Вам всю функциональность электрического прибора, аппарата или узла.


“Читать электросхему будет просто”

Изображение проводников на принципиальных  схемах всегда одинаково. Разница может быть в обозначении цепей, участвующих в обработке сигнала, размещением указателей на них или цветовой маркировкой. Отличие лишь составляет линейная схема, на которой одной линией может указываться целая группы проводников, задействованных в одной функции и изображается жирной  или цветной линией. Когда схема в себе содержит большое количество элементов, проводники не изображаются полностью, а отрезками и разрывами, с указанием места подключения или соединения, имеющими  символьные обозначения точки подключаемого участка, модуля , блока или элемента.

Игорь Александрович

“Весёлый Карандашик”

Чтение схем и чертежей электроустановок

Методические указания.

Б. В. Гетлинг «Чтение схем и чертежей электроустановок» Высшая школа, 1980 год, 120 стр. (1,11 мб. djvu)

Научится читать схемы и чертежи электроустановок не так сложно, как это может показаться на первый взгляд. Для начала следует изучить теоретические основы электротехники (базовые понятия и основные электротехнические законы). Затем принцип работы и обозначения применяемые на схемах для электротехнических аппаратов и компонентов (пускатели, електродвигатели, контакторы, предохранители, трансформаторы и т.д). Рассмотреть структуры существующих типов схем (структурные, однолинейные, принципиальные, монтажные и т.д.). Узнать технологические особенности электрооборудования схемы которых предстоит изучать (схемы станков, тяговых и электросиловых устройств, котельных установок и т.д.). Изучить нормативную документацию в объеме необходимом для данной конкретной электроустановки. Эта небольшая по объему книга несмотря на то, что она издавалась в 1980 году содержит информацию необходимую для начального ознакомления с приемами чтения схем и чертежей электроустановок.

Оглавление книги

Глава первая Общие сведении о чертежи к правилах их выполнения 6

Глава вторая. Электрические схемы 12
§ I. Назначение схем 12
§ 2. Условные обозначения, применяемые в схемах 13
§ 3. Содержание и назначение структурных схем 14

§ 4. Содержание и назначение функциональных схем 16
§ 5. Содержание и назначение принципиальных (полных) схем 16
§ 6. Принципиальные схемы энергетических устройств 18
§ 7. Принципиальные схемы электропривода 30
§ 8. Содержание и назначение схем соединений (монтажных) 44
§ 9. Методические указания по чтению схем вспомогательных цепей 48
§ 10. Содержание и назначение схем электрических цепей с элементами электроники 48
§ II. Методические указания по чтению схем цепей с элементами электроники 51

Глава третья. Чертежи электроустановок и электросетей 53
§ 12. Общая характеристика чертежей электрических устройств 53
§ 13. Чертежи трансформаторных подстанций и распределительных устройств напряжением выше 1000 В 53
§ 14. Монтажные чертежи н чертежи крепления различной аппаратуры 65
§ 15. Чертежи распределительных устройств до 1000 В 69
§ 16. Чертежи опор электрических линий до 1000 В я выше 71
§ 17. Методические указания по чтению чертежей электроустановок 75

§ 18. Общая характеристика и условные обозначения чертежей электрических сетей 77
§ 19. Чертежи силовых электросетей 79
§ 20. Чертежи электроосветительных сетей 82
§ 21. Методические указания по чтению чертежей электрических сетей 85
Приложения 65

Скачать книгу бесплатно1,11 мб. djvu

Как читать электрические схемы. Видео

Похожая литература

1 448

https://www.htbook.ru/ehlektrotekhnika/ehlektrooborudovanie/chtenie-shem-i-chertezhej-elektroustanovokЧтение схем и чертежей электроустановокhttps://www.htbook.ru/wp-content/uploads/2016/01/Чтение-схем.jpghttps://www.htbook.ru/wp-content/uploads/2016/01/Чтение-схем.jpgЭлектрооборудованиеэлектросхемы,ЭлектротехникаМетодические указания. Б. В. Гетлинг ‘Чтение схем и чертежей электроустановок’ Высшая школа, 1980 год, 120 стр. (1,11 мб. djvu) Научится читать схемы и чертежи электроустановок не так сложно, как это может показаться на первый взгляд. Для начала следует изучить теоретические основы электротехники (базовые понятия и основные электротехнические законы). Затем принцип работы…YakovLukich [email protected]Техническая литература

как научиться читать, какие виды бывают

Электрическая схема представляет собой детальный рисунок с указанием всех электронных компонентов и комплектующих, которые взаимосвязаны между собой проводниками. Знание принципа функционирования электрических цепей является залогом грамотно собранного электроприбора. То есть сборщик должен знать, как обозначаются на схеме электронные элементы, какие значки, буквенные или цифровые символы им соответствуют. В материале разберемся в  ключевых обозначениях и основах, как научиться читать электрические принципиальные схемы.

Любая электрическая схема включается ряд деталей, состоящих из более мелких элементов. Приведем в качестве примера электрический утюг, который содержит внутри нагревательный элемент, датчик температуры, лампочки, предохранители, а также имеет провод с вилкой. В прочих бытовых приборах предусмотрена усовершенствованная конфигурация с автоматическими выключателями, электромоторами, трансформаторами, а между ними имеются соединители для полноценного взаимодействия компонентов прибора и выполнения предназначения каждого из них.

Поэтому часто возникает проблема, как научиться расшифровывать электрические схемы, в которых содержатся графические обозначения. Принципы чтения схем важны для тех, кто занимается электромонтажом, ремонтом бытовой техники, подключением электрических устройств. Знание принципов чтения электросхем необходимо, чтобы понимать взаимодействие элементов и функционирования приборов.

Виды электрических схем

Все электрические схемы представлены в виде изображения или чертежа, где наряду с оборудованием указаны звенья электроцепи. Схемы отличаются по назначению, на основании чего разработана классификация разных  электрических схем:

  • первичные и вторичные цепи.

Первичные цепи создаются для подачи основного электрического напряжения от источника тока к потребителям. Они генерируют, трансформируют и распределяют при передаче электроэнергию. Такие цепи предполагают наличие основной схемы и цепей для различных нужд.

Во вторичных цепях напряжение не выше 1 кВт, они используются для обеспечения задач автоматики, управления и защиты. Благодаря вторичным цепям выполняется контроль расхода и учета электроэнергии;

  • однолинейные, полнолинейные.

Полнолинейные схемы разработаны для применения в трехфазных цепях, они отображают подсоединенные по всем фазам устройства.

Однолинейные схемы показывают только приборы на средней фазе;

  • принципиальные и монтажные.

Принципиальная общая электрическая схема подразумевает указание только ключевых элементов, на ней не указываются второстепенные детали. Благодаря этому схемы просты и понятны.

На монтажных схемах нанесено более детальное изображение, поскольку именно такие схемы используются для фактического монтажа всех элементов электросети.

Развернутые схемы с указанием второстепенных цепей помогают выделить вспомогательные электрические цепи, участки с отдельной защитой.

Обозначения в схемах

Электрические схемы состоят из элементов и комплектующих, обеспечивающих протекание электрического тока. Все элементы разделяются на несколько категорий:

  • устройства, генерирующие электроэнергию — источники питания;
  • преобразователи электротока в иные виды энергии – выступают потребителями;
  • детали, ответственные за передачу электроэнергии от источника к приборам. Также в данную категорию включены трансформаторы и стабилизаторы, обеспечивающие стабильность напряжения в сети.

Для каждого элемента предусмотрено конкретное графическое обозначение на схеме. Помимо ключевых обозначений, на схемах указываются линии передачи электроэнергии. Участки электроцепи, по которым идет одинаковый ток, называются ветвями, а в местах их соединения на схеме ставятся точки для обозначения соединительных узлов.

Контур электроцепи предполагает замкнутый путь движения электротока по нескольким ветвям. Наиболее простая схема состоит из одного контура, а для более сложных приборов предусмотрены схемы с несколькими контурами.

На электрической схеме каждому элементу и соединению соответствует значок или обозначение. Для отображения выводов изоляции применяются однолинейные и многолинейные схемы, число линий в которых определяется числом выводов. Иногда для удобства чтения и понимания схем применяются смешанные рисунки, к примеру, изоляция статора описана развернуто, а изоляция ротора – в общем виде.

Обозначения трансформаторов в электрических схемах рисуются в общем или развернутом виде, однолинейным и многолинейным методами. Непосредственно от детализации изображения зависит метод отображения на схеме приборов, их выводов, соединений и узлов. Так, в трансформаторах тока первичная обмотка отражается толстой линией с точками. Вторичная обмотка может отображаться окружностью при стандартной схеме или двумя полуокружностями в случае развернутой схемы.

Прочие элементы отображаются на схемах следующими обозначениями:

  • контакты разделяются на замыкающие, размыкающие и переключатели, которые обозначаются разными знаками. При необходимости контакты могут быть указаны в зеркальном отражении. Основание подвижной части указывается как незаштрихованная точка;
  • выключатели – их основанию соответствует точка, а для автоматических выключателей прорисовывается категория расцепителя. Выключатель для открытой установки, как правило, имеет отдельное обозначение;
  • предохранители, резисторы постоянного сопротивления и конденсаторы. Предохранительные элементы изображаются в виде прямоугольника с отводами, постоянные резисторы могут быть обозначены с отводами или без. Подвижный контакт рисуется стрелкой. Электролитические конденсаторы обозначаются в зависимости от полярности;
  • полупроводники. Простые диоды с р-п-переходом показываются в виде треугольника и перекрестной линией электроцепи. Треугольник обозначает анод, а линия – катод;
  • лампу накаливания и другие осветительные элементы обычно обозначают

Понимание данных значков и обозначений делает чтение электрических схем простым. Поэтому прежде чем приступать к электромонтажу или разборке бытовых приборов, рекомендуем ознакомиться с основными условными обозначениями.

Как правильно читать электрические схемы

Принципиальная схема электроцепи отображает все детали и звенья, между которыми протекает ток через проводники. Такие схемы являются базой для разработки электрических приборов, поэтому чтение и понимание электрических схем является обязательным для любого электрика.

Грамотное понимание схем для начинающих дает возможность понять принципы их составления и правильного соединения всех элементов в электрической цепи для достижения ожидаемого результата. Чтобы правильно читать даже сложные схемы, необходимо изучить основные и второстепенные изображения, условные знаки элементов. Условные знаки обозначают общую конфигурацию, специфику и назначение детали, что позволяет составить полноценную картину прибора при чтении схемы.

Начинать ознакомление со схемами можно с небольших приборов, таких как конденсаторы, динамики, резисторы. Более сложны для понимания схемы полупроводниковых электронных деталей в виде транзисторов, симисторов, микросхем. Так в биполярных транзисторах предусмотрены как минимум три вывода (базовый, коллектор и эмиттер), что требует большего количества условных обозначений. Благодаря большому количеству разных знаков и рисунков можно выявить индивидуальные характеристики элемента и его специфику. В обозначениях зашифрована информация, позволяющая выяснить структуру элементов и их особые характеристики.

Часто условные обозначения имеют вспомогательные уточнения – возле значков имеются латинские буквенные обозначения для детализации. С их значениями также рекомендуется ознакомиться перед началом работы со схемами. Также возле букв часто имеются цифры, отображающие нумерацию или технические параметры элементов.

Итак, чтобы научиться читать и понимать электрические схемы, нужно ознакомиться с условными обозначениями (рисунками, буквенными и цифровыми символами). Это позволит получать информацию из схемы касательно структуры, конструкции и назначения каждого элемента. То есть для понимания схем нужно изучить основы радиотехники и электроники.

Как научится читать электронные схемы

Рубрика: Статьи обо всем Опубликовано 28.01.2020   ·   Комментарии: 0   ·  
На чтение: 10 мин   ·  
Просмотры:

Принципиальные схемы — это основа радиолюбительства и электроники. Схемы помогают собирать устройства и разбираться в работе радиодеталей. Без них была бы полная неразбериха, если бы детали рисовали на схемах так, как они выглядят на самом деле.

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.

А вот так они выглядят, если между ними есть соединение. Черная точка — это узел в схеме. Узел — это соединение нескольких проводников или деталей вместе. Они электрически друг с другом связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?

Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

Заземление

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2.

Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора.

Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике.

Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот.

Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

  • Например, в США обозначение резисторов отличается от СНГ и Европы.
  • Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок.

В таблице представлены УГО отечественных радиодеталей. Это далеко не все детали. И зубрить их особого смысла нет. Такие таблицы пригодятся в виде справочника.

Можно опознать что за деталь представлена на схеме во время ее изучения или сборки устройства.

Какими буквами обозначаются радиодетали на схемах

Буквенное обозначение на схемеРадиодеталь
RРезисторы (переменный, подстроечный и постоянный)
VDДиоды (стабилитрон, мост, варикап и т.д.)
CКонденсаторы (неполярный, электролитический, переменный и т.д.)
LКатушки и дроссели
SAПереключатели
FUПредохранители
FVРазрядники
XРазъемы
KРеле
VSТиристоры (тетродные, динисторы, фототиристоры и т.п.)
VTТранзисторы (биполярные, полевые)
HLСветодиоды
UОптопары

Читаем электрические схемы с транзистором

В прошлой статье мы рассматривали схему без биполярного транзистора. Для того, чтобы понять, как работает транзистор, мы с вами соберем простой регулятор мощности свечения лампочки накаливания с помощью двух резисторов и транзистора.

Управление мощностью с помощью транзистора

Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:

На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора, а следовательно,  мощность свечения самой лампы.

Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.

Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания.

А как вы помните, если резисторы либо  различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока. Правило делителя напряжения.

То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы Iб . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания.  В ней будет протекать ток коллектора Iк.

Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток Iб , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора Iк , который  также течет и через лампочку накаливания.

Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток.

А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора.

Это и есть принцип работы биполярного транзистора.

Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома: I=U/R. Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки 😉

И еще один небольшой нюанс.

Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит.

Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли P-N переход базы-эмиттера.

Поэтому, чтобы такого не было, мы должны  подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.

Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники –  мы должны подобрать такой резистор, который бы вогнал  транзистор в границу насыщения, но не более того.

Такой резистор я подбирал с помощью магазина сопротивления. Его также можно подобрать с помощью переменного резистора. Резистор в базе часто называют токоограничительным.

Регулятор свечения лампочки на транзисторе


  • Ну а теперь дело за практикой. Собираем схему в реале:
  • Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:
  • Кручу еще чуток и лампочка светит в пол накала:
  • Выкручиваю переменный резистор до упора и лампочка тухнет:

Вместо лампочки можно взять любую другую нагрузку, например, вентилятор от компьютера. В этом случае, меняя значение переменного резистора, я могу управлять частотой вращения вентилятора, тем самым убавляя или прибавляя силу потока воздуха.

  1. Здесь вентилятор не крутится, так как я на переменном резисторе выставил большое сопротивление:
  2. Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:
  3. Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком ;-). Стало холодно – убавил обороты, стало слишком жарко – прибавил 😉

Прошаренные чайники-электронщики могут сказать: “А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?

Да, можно.

Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная.

В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток.

Вспоминаем формулу выделяемой мощности на нагрузке: P=I2R. Переменный резистор сгорит (проверено не раз на собственном опыте).

В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а  то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.

Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.

Резюме

Главное предназначение транзистора – управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.

Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.

Резистор в базе служит для ограничения протекающего  тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.

При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим – это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.

Как читать электрические схемы. Виды электрических схем

Здравствуйте, уважаемые читатели сайта sesaga.ru. Любое радиотехническое или электротехническое устройство состоит из определенного количества различных электро- и радиоэлементов (радиодеталей). Возьмем, к примеру, самый обычный утюг: в нем есть регулятор температуры, лампочка, нагревательный элемент, предохранитель, провода и штепсельная вилка.

Утюг представляет собой электротехническое устройство, собранное из специального набора радиоэлементов, обладающих определенными электрическими свойствами, где работа утюга основана на взаимодействии этих элементов между собой.

Для осуществления взаимодействия радиоэлементы (радиодетали) соединяются друг с другом электрически, а в некоторых случаях их размещают на небольшом расстоянии друг от друга и взаимодействие происходит путем образованной между ними индуктивной или емкостной связи.

Самый простой способ разобраться в устройстве утюга — это сделать его точную фотографию или рисунок. А чтобы представление было исчерпывающим можно сделать несколько фотографий внешнего вида крупным планом с разных ракурсов, и несколько фотографий внутреннего устройства.




Однако, как Вы заметили, этот способ представления об устройстве утюга нам вообще ничего не дает, так как на фотографиях видна только общая картинка о деталях утюга. А из каких радиоэлементов он состоит, какое их назначение, что они представляют, какую функцию в работе утюга выполняют и как связаны между собой электрически нам не понятно.

Вот поэтому, чтобы иметь представление, из каких радиоэлементов состоят подобные электрические устройства, разработали условные графические обозначения радиодеталей. А чтобы понимать, из каких деталей составлено устройство, как эти детали взаимодействуют друг с другом и какие при этом протекают процессы, были разработаны специальные электрические схемы.

Электрическая схема представляет собой чертеж, содержащий в виде условных изображений или обозначений составные части (радиоэлементы) электрического устройства и соединения (связи) между ними. То есть электрическая схема показывает, как осуществляется соединение радиоэлементов между собой.

Радиоэлементами электрических устройств могут являться резисторы, лампы, конденсаторы, микросхемы, транзисторы, диоды, выключатели, кнопки, пускатели и т.д., а соединения и связи между ними могут быть выполнены монтажным проводом, кабелем, разъемным соединением, дорожками печатных плат и т.д.

Читать электросхему будет просто

Когда Вам предстоит заглянуть внутрь Вашего ‘заболевшего’ автомобиля, не включающегося телевизора, плеера или найти место возможной неисправности домашней электропроводки, Ваши мысли направляют Ваши действия на поиск схемы, изображающей принцип работы или действия устройства или агрегата.

Хорошо, когда есть принципиальная электрическая схема и хоть малейший опыт в её чтении. А как быть тому, кто не имеет даже представления об этом? Приходиться ломать голову над решением проблемы или обращаться к знатокам и к специалистам.

Электричество на схеме

Наука говорит, что электрический ток — это упорядоченное движение электрических зарядов. Электрический заряд одного электрона ничтожно мал, но если бо́льшее количество электронов заставить двигаться внутри тела в одну сторону, получится то, что мы называем электрическим током.

Что бы доставить заряд энергии в определённую точку, применяются проводники — такие материалы, которые способны передать электричество к потребляющему объекту без потерь и внутренних помех.

Пешеход пользуется дорогой, для перемещения по воде пользуются лодкой, птица летает по воздуху, вода в кран подаётся по трубам, а наши электроприборы получают электричество по электрическим проводникам. Эти примеры показывают, что для перемещения определённого элемента существует и определённый путь.

В сборках электроустройств используются металлические проводники: монтажные шины, провода, проводники на печатном монтаже сборных конструкций. Между проводниками находятся соединения.

Это  сварные(сюда входит спаивание или сварка проводников) и контактные,  которые могут коммутироваться  механизмом, смыкающим или размыкающим между собой проводники, электронным коммутатором или быть связанными между собой болтовым соединением.

Совокупность всех элементов устройства с соединяющими их проводниками можно изобразить графически в виде условных значков, символов, обозначений и линий.

Графические электрические схемы делятся на принципиальные, структурные и функциональные.

Структурная электросхема — отображает основные функциональные части изделия (группы, элементы и устройства). Рядом на карте схемы в таблице указываются расшифровки состава электросхемы  с указанием их обозначений. Могут размещаться диаграммы, формы величины импульсов, формулы математической зависимости.

Соединения указываются стрелками, указывающие направление  действующих величин тока или обработки сигнала. Элементы схемы обозначаются кубиками или цифрами.

Функциональная электросхема — отображает только функциональные части изделия и электрической связи между ними или самого изделия в целом. Элементы обозначаются условными обозначениями либо прямоугольниками, обозначенными внутри своей позицией в группе, узле или изделия.

Принципиальная электрическая схема — отображает полностью все электрические соединения блоков, модулей, дополнительных устройств и принцип их взаимодействия в общей схеме главного, основного устройства (телевизор, автомобиль, квартира, станки, компьютер) или механизма. Такая схема является основной и главной для изделия.

И совсем не факт, что здесь выложена точная формулировка видов электросхем, главное, получить начальный опыт в чтении электросхем.

Что бы иметь возможность читать все типы, нам необходимо ознакомиться с обозначениями, используемые в схемах.

Учимся читать электросхемы

Любая причина неработающего электроустройства — это лишний контакт или его отсутствие.

Проводники в электросхемах имеют вид линии, соединяющей определённый элемент. Соединение элементов  между собой проводниками называется электрической цепью или участком цепи, входящим в единую общую схему. В замкнутой электрической цепи всегда течёт электрический ток. В разомкнутой — электрический ток не течёт, то есть устройство не работает.

Изображение проводников на принципиальных  схемах всегда одинаково. Разница может быть в обозначении цепей, участвующих в обработке сигнала, размещением указателей на них или цветовой маркировкой. Отличие лишь составляет линейная схема, на которой одной линией может указываться целая группы проводников, задействованных в одной функции и изображается жирной  или цветной линией.

  • Когда схема в себе содержит большое количество элементов, проводники не изображаются полностью, а отрезками и разрывами, с указанием места подключения или соединения, имеющими  символьные обозначения точки подключаемого участка, модуля , блока или элемента.
  • Соединения проводников в принципиальных электрических схемах изображаются точкой или разомкнутой(сомкнутой) линией на коммутирующем устройстве.
  • Обозначения на электрической схеме будут для Вас легкочитаемы, когда встречаемые знаки и символы в ней будут представлять Вам всю функциональность электрического прибора, аппарата или узла.

Ваша оценка!

[Всего: 1 В среднем: 5]

Как научиться читать электрические схемы?

Электрическая схема представляет собой детальный рисунок с указанием всех электронных компонентов и комплектующих, которые взаимосвязаны между собой проводниками.

Знание принципа функционирования электрических цепей является залогом грамотно собранного электроприбора. То есть сборщик должен знать, как обозначаются на схеме электронные элементы, какие значки, буквенные или цифровые символы им соответствуют.

В материале разберемся в  ключевых обозначениях и основах, как научиться читать электрические принципиальные схемы.

Любая электрическая схема включается ряд деталей, состоящих из более мелких элементов. Приведем в качестве примера электрический утюг, который содержит внутри нагревательный элемент, датчик температуры, лампочки, предохранители, а также имеет провод с вилкой.

В прочих бытовых приборах предусмотрена усовершенствованная конфигурация с автоматическими выключателями, электромоторами, трансформаторами, а между ними имеются соединители для полноценного взаимодействия компонентов прибора и выполнения предназначения каждого из них.

Поэтому часто возникает проблема, как научиться расшифровывать электрические схемы, в которых содержатся графические обозначения. Принципы чтения схем важны для тех, кто занимается электромонтажом, ремонтом бытовой техники, подключением электрических устройств. Знание принципов чтения электросхем необходимо, чтобы понимать взаимодействие элементов и функционирования приборов.

Виды электрических схем

Все электрические схемы представлены в виде изображения или чертежа, где наряду с оборудованием указаны звенья электроцепи. Схемы отличаются по назначению, на основании чего разработана классификация разных  электрических схем:

  • первичные и вторичные цепи.

Первичные цепи создаются для подачи основного электрического напряжения от источника тока к потребителям. Они генерируют, трансформируют и распределяют при передаче электроэнергию. Такие цепи предполагают наличие основной схемы и цепей для различных нужд.

Во вторичных цепях напряжение не выше 1 кВт, они используются для обеспечения задач автоматики, управления и защиты. Благодаря вторичным цепям выполняется контроль расхода и учета электроэнергии;

  • однолинейные, полнолинейные.

Полнолинейные схемы разработаны для применения в трехфазных цепях, они отображают подсоединенные по всем фазам устройства.

Однолинейные схемы показывают только приборы на средней фазе;

  • принципиальные и монтажные.

Принципиальная общая электрическая схема подразумевает указание только ключевых элементов, на ней не указываются второстепенные детали. Благодаря этому схемы просты и понятны.

На монтажных схемах нанесено более детальное изображение, поскольку именно такие схемы используются для фактического монтажа всех элементов электросети.

Развернутые схемы с указанием второстепенных цепей помогают выделить вспомогательные электрические цепи, участки с отдельной защитой.

Обозначения в схемах

Электрические схемы состоят из элементов и комплектующих, обеспечивающих протекание электрического тока. Все элементы разделяются на несколько категорий:

  • устройства, генерирующие электроэнергию — источники питания;
  • преобразователи электротока в иные виды энергии – выступают потребителями;
  • детали, ответственные за передачу электроэнергии от источника к приборам. Также в данную категорию включены трансформаторы и стабилизаторы, обеспечивающие стабильность напряжения в сети.

Для каждого элемента предусмотрено конкретное графическое обозначение на схеме. Помимо ключевых обозначений, на схемах указываются линии передачи электроэнергии. Участки электроцепи, по которым идет одинаковый ток, называются ветвями, а в местах их соединения на схеме ставятся точки для обозначения соединительных узлов.

Контур электроцепи предполагает замкнутый путь движения электротока по нескольким ветвям. Наиболее простая схема состоит из одного контура, а для более сложных приборов предусмотрены схемы с несколькими контурами.

На электрической схеме каждому элементу и соединению соответствует значок или обозначение. Для отображения выводов изоляции применяются однолинейные и многолинейные схемы, число линий в которых определяется числом выводов. Иногда для удобства чтения и понимания схем применяются смешанные рисунки, к примеру, изоляция статора описана развернуто, а изоляция ротора – в общем виде.

Обозначения трансформаторов в электрических схемах рисуются в общем или развернутом виде, однолинейным и многолинейным методами.

Непосредственно от детализации изображения зависит метод отображения на схеме приборов, их выводов, соединений и узлов. Так, в трансформаторах тока первичная обмотка отражается толстой линией с точками.

Вторичная обмотка может отображаться окружностью при стандартной схеме или двумя полуокружностями в случае развернутой схемы.

Прочие элементы отображаются на схемах следующими обозначениями:

  • контакты разделяются на замыкающие, размыкающие и переключатели, которые обозначаются разными знаками. При необходимости контакты могут быть указаны в зеркальном отражении. Основание подвижной части указывается как незаштрихованная точка;
  • выключатели – их основанию соответствует точка, а для автоматических выключателей прорисовывается категория расцепителя. Выключатель для открытой установки, как правило, имеет отдельное обозначение;
  • предохранители, резисторы постоянного сопротивления и конденсаторы. Предохранительные элементы изображаются в виде прямоугольника с отводами, постоянные резисторы могут быть обозначены с отводами или без. Подвижный контакт рисуется стрелкой. Электролитические конденсаторы обозначаются в зависимости от полярности;
  • полупроводники. Простые диоды с р-п-переходом показываются в виде треугольника и перекрестной линией электроцепи. Треугольник обозначает анод, а линия – катод;
  • лампу накаливания и другие осветительные элементы обычно обозначают

Понимание данных значков и обозначений делает чтение электрических схем простым. Поэтому прежде чем приступать к электромонтажу или разборке бытовых приборов, рекомендуем ознакомиться с основными условными обозначениями.

Как правильно читать электрические схемы

Принципиальная схема электроцепи отображает все детали и звенья, между которыми протекает ток через проводники. Такие схемы являются базой для разработки электрических приборов, поэтому чтение и понимание электрических схем является обязательным для любого электрика.

Грамотное понимание схем для начинающих дает возможность понять принципы их составления и правильного соединения всех элементов в электрической цепи для достижения ожидаемого результата.

Чтобы правильно читать даже сложные схемы, необходимо изучить основные и второстепенные изображения, условные знаки элементов.

Условные знаки обозначают общую конфигурацию, специфику и назначение детали, что позволяет составить полноценную картину прибора при чтении схемы.

Начинать ознакомление со схемами можно с небольших приборов, таких как конденсаторы, динамики, резисторы. Более сложны для понимания схемы полупроводниковых электронных деталей в виде транзисторов, симисторов, микросхем.

Так в биполярных транзисторах предусмотрены как минимум три вывода (базовый, коллектор и эмиттер), что требует большего количества условных обозначений. Благодаря большому количеству разных знаков и рисунков можно выявить индивидуальные характеристики элемента и его специфику.

В обозначениях зашифрована информация, позволяющая выяснить структуру элементов и их особые характеристики.

  Какие виды классов энергопотребления существуют

Часто условные обозначения имеют вспомогательные уточнения – возле значков имеются латинские буквенные обозначения для детализации. С их значениями также рекомендуется ознакомиться перед началом работы со схемами. Также возле букв часто имеются цифры, отображающие нумерацию или технические параметры элементов.

Итак, чтобы научиться читать и понимать электрические схемы, нужно ознакомиться с условными обозначениями (рисунками, буквенными и цифровыми символами). Это позволит получать информацию из схемы касательно структуры, конструкции и назначения каждого элемента. То есть для понимания схем нужно изучить основы радиотехники и электроники.

Обзор 20 лучших программ для черчения электрических схем

Времена применения кульманов давно миновали, их заменили графические редакторы, это специальные программы для черчения электрических схем. Среди них есть как платные приложения, так и бесплатные (виды лицензий мы рассмотрим ниже). Уверены, что созданный нами краткий обзор поможет из разнообразия программных продуктов выбрать ПО, наиболее оптимальное для поставленной задачи. Начнем с бесплатных версий.

Бесплатные

Прежде, чем перейти к описанию программ кратко расскажем о бесплатных лицензиях, наиболее распространены из них следующие:

  • Freeware – приложение не ограничено по функциональности и может использоваться в личных целях без коммерческой составляющей.
  • Open Source – продукт с «открытым кодом», в который допускается вносить изменения подстраивая ПО под собственные задачи. Возможны ограничения на коммерческое использование и платное распространение внесенных модификаций.
  • GNU GPL – лицензия практически не накладывающая на пользователя никаких ограничений.
  • Public domain – практически идентична с предыдущим вариантом, на данный тип лицензии закон защиты авторских прав не распространяется.
  • Ad-supported – приложение полностью функционально, содержит в себе рекламу других продуктов разработчика или других компаний.
  • Donationware – продукт распространяется бесплатно, но разработчик предлагает внести пожертвования на добровольной основе для дальнейшего развития проекта.

Получив представление о бесплатных лицензиях можно переходить к ПО, распространяемому на таких условиях.

Microsoft Visio

Это простой в управлении, но в то же время весьма удобный редактор векторной графики, обладающий богатым функциональным набором. Несмотря на то, что основная социализация программы визуализация информации с приложений MS Office, ее вполне можно использовать для просмотра и распечатки радиосхем.

Интерфейс Microsoft Visio практически такой же, как в MS Office

MS выпускает три платных версии, отличающихся функциональным набором и бесплатную (Viewer), которая интегрируется в браузер IE и позволяет с его помощью осуществлять просмотр файлов, созданных в редакторе. К сожалению, для редакции и создания новых схем потребуется приобрести полнофункциональный продукт. Заметим, что даже в платных версиях среди базовых шаблонов нет набора для полноценного создания радиосхем, но его несложно найти и установить.

Недостатки бесплатной версии:

  • Недоступны функции редактирования и создания схем, что существенно снижает интерес к этому продукту.
  • Программа работает только с браузером IE, что также создает массу неудобств.

Официальная страница: https://products.office.com/ru-ru/visio

Компас-Электрик

Данная ПО является приложением к САПР российского разработчика «АСКОН». Для ее работы требуется установка среды КОМПАС-3D. Поскольку это отечественный продукт, в нем полностью реализована поддержка принятых России ГОСТов, и, соответственно, нет проблем с локализацией.

Компас-Электрик – полностью российская разработка

Приложение предназначено для проектирования любых видов электрооборудования и создания к ним комплектов конструкторской документации.

Это платное ПО, но разработчик дает 60 дней на ознакомление с системой, в течение этого времени ограничения по функциональности отсутствуют. На официальном сайте и в сети можно найти множество видео материалов, позволяющих детально ознакомиться с программным продуктом.

В отзывах многие пользователи отмечают, что в системе имеется масса недоработок, которые разработчик не спешит устранять.

Официальный сайт: https://kompas.ru/kompas-3d/application/instrumentation/electric/

Eagle

Данное ПО представляет собой комплексную среду, в которой можно создать как принципиальную схему, так и макет печатной платы к ней. То есть, расположить на плате все необходимые элементы и выполнить трассировку. При этом, она может быть выполнена как в автоматическом, так и ручном режиме или путем комбинации этих двух способов.

Cadsoft Eagle – хороший пример комплексного решения

В базовом наборе элементов отсутствуют модели отечественных радиокомпонентов, но их шаблоны могут быть скачены в сети. Язык приложения – Английский, но локализаторы, позволяющие установить русский язык.

Приложение является платным, но возможность его бесплатного использования со следующими функциональными ограничениями:

  • Размер монтажной платы не может превышать размера 10,0х8,0 см.
  • При разводке можно манипулировать только двумя слоями.
  • В редакторе допускается работа только с одним листом.

Сайт программы: https://www.autodesk.com/products/eagle/free-download

Dip Trace

Это не отдельное приложение, а целый программный комплекс, включающий в себя:

  • Многофункциональный редактор для разработки принципиальных схем.
  • Приложение для создания монтажных плат.
  • 3D модуль, позволяющий проектировать корпуса для созданных в системе приборов.
  • Программу для создания и редактирования компонентов.
DipTrace – система сквозного проектирования

В бесплатной версии программного комплекса, для некоммерческого использования, предусмотрены небольшие ограничения:

  • Монтажная плата не более 4-х слоев.
  • Не более одной тысячи выводов с компонентов.

В программе не предусмотрена русская локализация, но ее, а также описание всех функций программного продукта можно найти в сети. С базой компонентов также нет проблем, в изначально их около 100 тыс. На тематических форумах можно найти созданные пользователями базы компонентов, в том числе и под российские ГОСТы.

Страница программы: https://diptrace.com/rus/

1-2-3 схема

Это полностью бесплатное приложение, позволяющее укомплектовать электрощиты Хагер (Hager) одноименным оборудованием.

ПО «1-2-3 схема» разработка компании Hager для комплектации своих электрощитов

Функциональные возможности программы:

  • Выбор корпуса для электрощита, отвечающего нормам по степени защиты. Выборка производится из модельного ряда Hager.
  • Комплектация защитным и коммутационным модульным оборудованием того же производителя. Заметим, что в элементной базе присутствуют только сертифицированные в России модели.
  • Формирование конструкторской документации (однолинейной схемы, спецификации, отвечающей нормам ЕСКД, отрисовка внешнего вида).
  • Создание маркеров для коммутирующих устройств электрощита.

Программа полностью локализована под русский язык, единственный ее недостаток, что в элементной базе присутствует только электрооборудование компании-разработчика.

Autocad Electrical

Приложение на базе известной САПР Autocad, созданное для проектирования электросхем и создания для них технической документации в соответствии с нормами ЕСКД.

В Autocad Electrical богатый выбор электрических компонентов

Изначально база данных включает в себя свыше двух тысяч компонентов, при этом, их условно графические обозначения отвечают действующим российским и европейским стандартам.

Данное приложение платное, но имеется возможность в течение 30-ти дней ознакомиться с полным функционалом базовой рабочей версии.

https://www.autodesk.ru/products/autocad-electrical/overview

Эльф

Данное ПО позиционируется в качестве автоматизированного рабочего места (АРМ) для проектировщиков-электриков. Приложение позволяет быстро и корректно разработать, практически, любой чертеж для электротехнических проектов с привязкой к плану помещений.

Функционал приложения включает в себя:

  • Расстановку УГО при проектировании электросетей, проложенных открыто, в трубах или специальных конструкциях.
  • Автоматический (с плана) или руной расчет силовой схемы.
  • Составление спецификации в соответствии с действующими нормами.
  • Возможность расширения базы элементов (УГО).
Пример схемы, созданной в редакторе Эльф

В бесплатной демонстрационной версии отсутствует возможность создания и редактирование проектов, их можно только просмотреть или распечатать.

Kicad

Это полностью бесплатный программный комплекс с открытым кодом (Open Source). Данное ПО позиционируется в качестве системы сквозного проектирования. То есть, можно разработать принципиальную схему, по ней создать монтажную плату и подготовить документацию, необходимую для производства.

KiCad одна из немногих бесплатных систем сквозного проектирования

Характерные особенности системы:

  • Для разводки платы допускается применение внешних трассировщиков.
  • В программу встроен калькулятор печатной платы, размещение на ней элементов можно выполнить автоматически или вручную.
  • По завершению трассировки система генерирует несколько технологических файлов (например, для фотоплоттера, сверлильного станка и т.д.). При желании можно добавить логотип компании на печатную плату.
  • Система может создать послойную распечатку в нескольких популярных форматах, а также сгенерировать список используемых в разработке компонентов для формирования заказа.
  • Имеется возможность экспорт чертежей и других документов в форматы pdf и dxf.

Заметим, что многие пользователи отмечают непродуманность интерфейса системы, а также тот факт, что для освоения ПО требуется хорошо изучить документацию к программе.

Страничка программы: http://kicad-pcb.org/

TinyCAD

Еще одно бесплатное приложение с открытым кодом, позволяющее создавать чертежи принципиальных схем и имеющее функции простого редактора векторной графики. В базовом наборе содержится сорок различных библиотек компонентов.

TinyCAD – простой редактор для принципиальных схем

В программе не предусмотрена трассировка печатных плат, но имеется возможность экспортировать список соединений в стороннее приложение. Экспорт производится с поддержкой распространенных расширений.

Приложение поддерживает только английский язык, но благодаря интуитивному меню проблем с освоением не возникнет.

https://sourceforge.net/projects/tinycad/files/

Fritzing

Бесплатная среда разработки проектов на базе Arduino. Имеется возможность создания печатных плат (разводку необходимо делать вручную, поскольку функция автотрассировки откровенно слабая).

Приложение Fritzing позволит быстро спроектировать любое устройство на базе Arduino

Следует заметить, что приложение «заточено» для быстрого создания набросков, позволяющих объяснить принцип работы проектируемого прибора. Для серьезной работы у приложения слишком мала база элементов и сильно упрощенное составление схемы.

http://fritzing.org/home/

123D Circuits

Это веб-приложение для разработки Arduino-проектов, с возможностью программирования устройства, симуляции и анализа его работы. В типовом наборе элементов присутствуют только основные радио-компоненты и модули Arduino. При необходимости пользователь может создать новые компоненты и добавить их в базу. Примечательно, что разработанную печатную плату можно заказать, непосредственно, в онлайн-сервисе.

Виртуальная среда разработки 123D Circuits

В бесплатной версии сервиса нельзя создавать свои проекты, но можно просматривать чужие разработки, находящиеся в открытом доступе. Для полноценного доступа ко всем возможностям необходимо оформить подписку ($12 или $24 в месяц).

Заметим, что из-за бедного функционала виртуальная среда разработки вызывает интерес только у начинающих. Многие из тех, кто пользовался сервисом, обратили внимание на тот факт, что результаты симуляции расходятся с реальными показателями.

https://circuits.io/

XCircuit

Бесплатное мультиплатформенное приложение (лицензия GNU GPL) для быстрого создания принципиальных схем. Функциональный набор минимальный.

XCircuit – простой редактор с минимумом функций

Язык приложения – английский, программа не воспринимает русские символы. Также следует обратить внимание на нетипичное меню, к которому необходимо привыкнуть. Помимо этого контекстные подсказки выводятся на панель состояния. В базовый набор элементов входят УГО только основных радиодеталей (пользователь может создать свои элементы и добавить их).

http://opencircuitdesign.com/xcircuit/

CADSTAR Express

Это демонстрационная версия одноименной САПР. Функциональные ограничения коснулись лишь числа элементов, используемых в схеме разработки (до 50 шт) и количеств контактов (не более 300), что вполне достаточно для небольших радиолюбительских проектов.

Фрагмент рабочего окна приложения GADSTAR Express

Программа состоит из центрального модуля, в которых входит несколько приложений позволяющих разработать схему, создать для нее плату и подготовить пакет технической документации.

В базовый набор входит более 20 тыс. компонентов, дополнительно можно загрузить с сайта разработчика дополнительные библиотеки.

Существенным недостатком системы является отсутствие поддержки русского языка, соответственно, все техническая документация также представлена в сети на английском.

https://www.zuken.com/en/products/pcb-design/cadstar/resources

QElectroTech

Простое удобное и бесплатное (FreeWare) приложения для разработки электрических и электронных схем-чертежей. Программа является обычным редактором, никаких специальных функций в ней не реализовано.

QElectroTech – программа для составления, просмотра и печати электросхем

Язык приложения – английский, но для него имеется русская локализация.

https://qelectrotech.org/download.html

Платные приложения

В отличие от ПО, распространяемого по бесплатным лицензиям, коммерческие программы, как правило, обладают значительно большим функционалом, и поддерживаются разработчиками. В качестве примера мы приведем несколько таких приложений.

sPlan

Простая программа-редактор для черчения электросхем. Приложение комплектуется несколькими библиотеками компонентов, которые пользователь может расширять по мере необходимости. Допускается одновременная работа с несколькими проектами, путем их открытия в отдельных вкладках.

sPlan – удобный графический редактор для электрических схем

Чертежи, сделанные программой, хранятся в виде файлов векторной графики собственного формата с расширением «spl». Допускается конвертация в типовые растровые форматы изображения. Имеется возможность печати больших схем на обычном принтере А4-го формата.

Официально приложение не выпускается в русской локализации, но существуют программы, позволяющие русифицировать меню и контекстные подсказки.

Помимо платной версии предусмотрены две бесплатных реализации Demo и Viewer. В первой нет возможности сохранить и распечатать нарисованную схему. Во второй предусмотрена только функция просмотра и печати файлов формата «spl».

Eplan Electric

Многомодульная масштабируемая САПР для разработки электротехнических проектов различной сложности и автоматизации процесса подготовки конструкторской документации. Данный программный комплекс сейчас позиционируется в качестве корпоративного решения, поэтому для рядовых пользователей он будет не интересен, особенно если принять в учет стоимость ПО.

Фрагмент рабочего окна САПР Eplan Electriс Р8

https://www.eplan-russia.ru/ru/reshenija/ehlektrotekhnicheskoe-proektirovanie/eplan-electric-p8/

Target 3001

Мощный САПР комплекс, позволяющий разрабатывать электросхемы, трассировать печатные платы, моделировать работу электронных устройств. Онлайн библиотека компонентов насчитывает более 36 тыс. различных элементов. Данная CAD широко применяется в Европе для трассировки печатных плат.

САПР Target 3001

По умолчанию устанавливается английский язык, имеется возможность установить меню на  немецком или французском, официально русской локализации нет. Соответственно, вся документация представлена только на английском, французском или немецком языке.

Стоимость самой простой базовой версии около 70 евро. За эти деньги будет доступна трассировка двух слоев на 400 выводов. Стоимость нелимитированной версии в районе 3,6 тыс. евро.

https://ibfriedrich.com/en/index.html

Micro-Cap

Приложение для моделирования цифровых, аналоговых и смешанных схем, а также анализа их работы. Пользователь может создать в редакторе электрическую цепь и задать параметры для анализа. После это по одному клику мышки система автоматически чего произведет необходимые расчеты и выдаст результаты для изучения.

Micro-Cap – одно из лучших приложений для моделирования электросети

Программа позволяет установить зависимость параметров (номиналов) элементов от температурного режима, освещенности, частотных характеристик и т.д. Если в схеме присутствуют анимированные элементы, например, светодиодные индикаторы, то их состояние будут корректно отображаться, в зависимости от поступающих сигналов. Имеется возможность при моделировании «подключать» к схеме виртуальные измерительные приборы, а также отслеживать состояние различных узлов устройства.

Стоимость полнофункциональной версии около $4,5 тыс. Официальной русской локализации приложения не существует.

http://www.spectrum-soft.com/index.shtm

TurboCAD

Данная САПР платформа включает в себя множество инструментов, для проектирования различных электрических устройств. Набор специальных функций позволяет решать инженерно-конструкторские задачи любого уровня сложности.

Платформа TurboCAD может использоваться для решения многих задач

Отличительные особенности – тонкая настройка интерфейса под пользователя. Множество справочной литературы, в том числе и на русском языке. Несмотря на отсутствие официальной поддержки русского языка, для платформы имеются русификаторы.

Для рядовых пользователей приобретение платной версии программы с целью разработки электросхем для любительских устройств, будет нерентабельно.

https://www.turbocad.com/

Designer Schematic

Приложение для создания электросхем с использованием радиоэлементов производства Digi-Key. Основная особенность данной системы заключается в том, что в редакторе для построения схем, может использовать механическое проектирование.

Интерфейс Designer Schematic не отличается сложностью

Базы данных компонентов можно в любой момент проверить на соответствие и при необходимости произвести обновление прямо с сайта производителя.

Система не имеет собственного трассировщика, но список соединений может быть загружен в стороннюю программу.

Имеется возможность импорта файлов из популярных САПР.

Ориентировочная стоимость приложения около $300.

https://www.digikey.com/schemeit/project/

Чтение схем и технических чертежей. Правила чтения электросхем и чертежей

Б. В. Гетлинг “Чтение схем и чертежей электроустановок” Высшая школа, 1980 год, 120 стр. (1,11 мб. djvu)

Научится читать схемы и чертежи электроустановок не так сложно, как это может показаться на первый взгляд. Для начала следует изучить теоретические основы электротехники (базовые понятия и основные электротехнические законы). Затем принцип работы и обозначения применяемые на схемах для электротехнических аппаратов и компонентов (пускатели, електродвигатели, контакторы, предохранители, трансформаторы и т.д). Рассмотреть структуры существующих типов схем (структурные, однолинейные, принципиальные, монтажные и т.д.). Узнать технологические особенности электрооборудования схемы которых предстоит изучать (схемы станков, тяговых и электросиловых устройств, котельных установок и т.д.). Изучить нормативную документацию в объеме необходимом для данной конкретной электроустановки. Эта небольшая по объему книга несмотря на то, что она издавалась в 1980 году содержит информацию необходимую для начального ознакомления с приемами чтения схем и чертежей электроустановок.

Мы используем общепринятые электрические символы для представления различных электрических компонентов и их взаимосвязи внутри схемы или системы. На этой диаграмме показаны наиболее часто используемые символы. Теперь, когда вы знакомы с электрическим символом, давайте посмотрим, как они используются при интерпретации однострочных диаграмм. Ниже приведена простая электрическая схема.

Промышленная однолинейная диаграмма



Вы можете сказать по символам, что эта однострочная диаграмма имеет три резистора и батарею. Электричество протекает с отрицательной стороны батареи через резисторы на положительную сторону батареи. Теперь давайте рассмотрим промышленную однострочную диаграмму. При интерпретации одной линейной диаграммы вы всегда должны начинать вверху, где находится самое высокое напряжение, и работать до самого низкого напряжения. Это помогает поддерживать прямолинейность напряжений и их путей.

Глава первая Общие сведении о чертежи к правилах их выполнения 6

Глава вторая. Электрические схемы 12
§ I. Назначение схем 12
§ 2. Условные обозначения, применяемые в схемах 13
§ 3. Содержание и назначение структурных схем 14
§ 4. Содержание и назначение функциональных схем 16
§ 5. Содержание и назначение принципиальных (полных) схем 16
§ 6. Принципиальные схемы энергетических устройств 18
§ 7. Принципиальные схемы электропривода 30
§ 8. Содержание и назначение схем соединений (монтажных) 44
§ 9. Методические указания по чтению схем вспомогательных цепей 48
§ 10. Содержание и назначение схем электрических цепей с элементами электроники 48
§ II. Методические указания по чтению схем цепей с элементами электроники 51

Чтобы объяснить это проще, мы разделили одну строку на три раздела.

Начиная сверху, вы заметите, что трансформатор подает питание всей системе. Трансформатор выполняет напряжение от 35 кВ до 15 кВ, что обозначено цифрами рядом с символом трансформатора. После того, как напряжение ушло в отставку, встречается выключатель выключения.

Вы узнаете символ выключателя выталкивателя? Вы можете предположить, что этот автоматический выключатель может обрабатывать 15 кВ, поскольку он подключен к стороне трансформатора на 15 кВ, и ничто иное не отображается на одной линейной диаграмме. После отключения выключателя от трансформатора он прикрепляется к более тяжелой горизонтальной линии.

Глава третья. Чертежи электроустановок и электросетей 53
§ 12. Общая характеристика чертежей электрических устройств 53
§ 13. Чертежи трансформаторных подстанций и распределительных устройств напряжением выше 1000 В 53
§ 14. Монтажные чертежи н чертежи крепления различной аппаратуры 65
§ 15. Чертежи распределительных устройств до 1000 В 69
§ 16. Чертежи опор электрических линий до 1000 В я выше 71
§ 17. Методические указания по чтению чертежей электроустановок 75
§ 18. Общая характеристика и условные обозначения чертежей электрических сетей 77
§ 19. Чертежи силовых электросетей 79
§ 20. Чертежи электроосветительных сетей 82
§ 21. Методические указания по чтению чертежей электрических сетей 85
Приложения 65

Эта горизонтальная линия представляет собой электрическую шину, которая является средством, используемым для получения электричества в других областях или схемах. Вы заметите, что к шине подключены еще два выносных выключателя и питаются другими цепями, которые находятся на уровне 15 кВ, поскольку в системе не было обнаружено изменения напряжения. Принудительный выключатель используется для выключения напряжения в этой области системы с 15 кВ до 5 кВ.


На стороне 5кВ этого трансформатора показан выключатель отключения. Разъединение используется для подключения или изоляции оборудования под ним от трансформатора. Оборудование ниже разъединения находится на уровне 5 кВ, поскольку ничто не указывает на противоположное.

Принципиальные электрические схемы

Принципиальные электрические схемы являются основанием для разработки других документов проекта: монтажных схем и таблиц щитов и пультов, схем соединения внешних проводок, схем подключения и др.

Принципиальная электрическая схема – первый рабочий документ, на основании которого:

1) выполняют чертежи для изготовления изделий (общие виды и монтажные схемы и таблицы щитов, пультов, стативов и т. п.) и соединений их с приборами, исполнительными механизмами и между собой;

Знаете ли вы, что оборудование, прикрепленное к нижней стороне разъединителя, является двумя пускателями среднего напряжения? В зависимости от конкретных требований к системе может быть подключено несколько стартеров. Теперь найдите второй автоматический выключатель. Этот автоматический выключатель подключен к предохранительному разъединителю и подключен к понижающему трансформатору. Обратите внимание, что все оборудование под трансформатором теперь считается низковольтным оборудованием, так как напряжение понижено до уровня 600 вольт или ниже.

2) проверяют правильность выполненных соединений;

3) задают уставки аппаратам защиты, средствам контроля и регулирования процесса;

4) настраивают путевые и конечные выключатели;

5) анализируют схему как в процессе проектирования, так и при наладке и эксплуатации при отклонении от заданного режима работы установки, преждевременном выходе из строя какого-либо элемента и т. п.

Последним элементом электрического оборудования в средней части диаграммы является другой автоматический выключатель. На этот раз, однако, автоматический выключатель представляет собой фиксированный низковольтный автоматический выключатель, как указано символом.

Переместившись в нижнюю область диаграммы с одной строкой, обратите внимание, что автоматический выключатель посередине подключен к шине в нижней части. В левом нижнем углу и подключен к шине другой стационарный автоматический выключатель. Посмотрите внимательно на следующую группировку символов.

Порядок чтения электрических схем и чертежей

Прежде всего, необходимо ознакомиться с наличными чертежами (или составить оглавление, если его нет) и систематизировать чертежи (если этого не сделано в проекте) по назначению.

Чертежи чередуют в таком порядке, чтобы чтение каждого последующего являлось естественным продолжением чтения предыдущего. Затем уясняют принятую систему обозначений и маркировки.

Также обратите внимание, что символ круга, который представляет аварийный генератор, прикреплен к переключателю автоматической передачи. Эта область однолинейной диаграммы говорит нам, что важно, чтобы оборудование, подключенное под автоматическим переключателем, продолжало работать, даже если питание от шины было потеряно. На одной диаграмме можно указать, что автоматический переключатель передачи подключит аварийный генератор к цепи, чтобы поддерживать работу оборудования, если питание от шины было потеряно.


Схема управления низковольтным двигателем подключается к автоматическому переключателю передачи через низковольтную шину. Убедитесь, что вы распознаете эти символы. Хотя мы не знаем точную функцию этой схемы, очевидно, что важно поддерживать работоспособность оборудования. В письменной спецификации обычно указываются детали приложения.

Если она не отражена па чертежах, то ее выясняют и записывают.

На выбранном чертеже читают все надписи, начиная со штампа, затем примечания, экспликации, пояснения, спецификации и т. д. При чтении экспликации обязательно находят на чертежах аппараты, в ней перечисленные. При чтении спецификации сопоставляют их с экспликациями.

С правой стороны третьего участка имеется еще один фиксированный автоматический выключатель, подключенный к шине. Он прикреплен к центру измерителя, как показано символом, образованным тремя кругами. Это указывает на то, что электрическая компания использует эти счетчики для отслеживания мощности, потребляемой оборудованием ниже центра измерителя.

Под центром измерителя находится то, что подает несколько меньших схем. Это может представлять собой центр нагрузки в здании, который подает питание на источники света, кондиционер, тепло и любое другое электрическое оборудование, подключенное к зданию.

Если на чертеже имеются ссылки на другие чертежи, то нужно найти эти чертежи и разобраться в содержании ссылок. Например, в одну схему входит контакт, принадлежащий аппарату, изображенному на другой схеме. Значит, нужно уяснить, что это за аппарат, для чего служит, в каких условиях работает и т. п.

При чтении чертежей, отражающих электропитание, электрическую защиту, управление, сигнализацию и т. п.:

Этот чрезмерно упрощенный анализ одной линейной диаграммы дает вам представление о том, как эта история рассказывает о электрических соединениях и оборудовании. Просто имейте в виду, что, хотя некоторые линейные диаграммы могут казаться подавляющими в силу их размера и широкого спектра представленного оборудования, все они могут быть проанализированы с использованием одного и того же поэтапного метода.

Лестничные диаграммы – это специализированные схемы, обычно используемые для документирования логических систем промышленного управления. Они называются «лестничными» диаграммами, потому что они напоминают лестницу с двумя вертикальными рельсами и множеством «ступеней», так как существуют управляющие схемы для представления. Если бы мы хотели нарисовать простую лестничную диаграмму, показывающую лампу, управляемую ручным переключателем, она будет выглядеть так.

1) определяют источники электропитания, род тока, величину напряжения и т. п. Если источников несколько или применено несколько напряжений, то уясняют, чем это вызвано,

2) расчленяют схему па простые цени и, рассматривая их сочетание, устанавливают условия действия. Рассматривать всегда начинают с того аппарата, который нас в данном случае интересует. Например, если не работает двигатель, то нужно найти па схеме его цепь и посмотреть, контакты каких аппаратов в нее входят. Затем находят цепи аппаратов, управляющих этими контактами, и т. д.,

Эти обозначения не имеют ничего общего с этим, просто для того, чтобы сбить с толку. Фактический трансформатор или генератор, подающий питание на эту цепь, для простоты опущен. На самом деле схема выглядит примерно так. До тех пор, пока контакты переключателя и катушки реле полностью оценены, действительно не имеет значения, какой уровень выбран для работы системы.

Обратите внимание на номер 1 на проводе между переключателем и лампой. В реальном мире этот провод будет помечен этим номером, используя термоусадочные или клейкие метки, где бы он ни был удобен для идентификации. Эти номера проводов упрощают сборку и обслуживание. Каждый из них имеет свой собственный уникальный номер провода для системы управления, в котором он используется. Номера проводов не меняются ни на каком узле или узле, даже если размер провода, цвет или длина меняются в точку соединения или из нее.

3) строят диаграммы взаимодействия, выясняя с их помощью: последовательность работы во времени, согласованность времени действия аппаратов в пределах данного устройства, согласованность времени действия совместно действующих устройств (например, автоматики, защиты, телемеханики, управляемых приводов и т. п.), последствия перерыва электропитания. Для этого поочередно, предполагая отключенными выключатели и автоматы электропитания (предохранители перегоревшие), оценивают возможные последствия, возможность выхода устройства в рабочее положение из любого состояния, в котором оно могло оказаться, например после ревизии,

Конечно, предпочтительнее поддерживать согласованные цвета проводов, но это не всегда практично. Важно то, что любая электрически непрерывная точка в цепи управления имеет один и тот же номер провода. Возьмите эту часть схемы, например, с помощью провода № 25 как единую, электрически непрерывную точечную резьбу для многих разных устройств. В лестничных диаграммах загрузочное устройство почти всегда нарисовано в правой части ступени. Хотя это не имеет значения электрически, когда катушка реле расположена внутри ступени, важно, какой конец заземления лестницы заземлен, для надежной работы.

4) оценивают последствия вероятных неисправностей: незамыкание контактов поочередно по одному, нарушения изоляции относительно земли поочередно для каждого участка,

5) нарушения изоляции между проводами воздушных линий, выходящих за пределы помещений и т. п.,

5) проверяют схему па отсутствие ложных цепей,

6) оценивают надежность электропитания и режим работы оборудования,

Возьмем, к примеру, эту схему. Здесь лампа расположена с правой стороны ступени, а также заземление для источника питания. Это не случайно или совпадение; скорее, это целенаправленный элемент хорошей проектной практики. Предположим, что провод № 1 случайно соприкасался с землей, изоляция этого провода была стерта, так что оголенный проводник контактировал с заземленным металлическим каналом. Теперь наша схема будет работать так.

С обеих сторон лампы, подключенной к земле, лампа будет «закорочена» и не может получить питание для включения. Если бы выключатель закрывался, было бы короткое замыкание, сразу же взорвав предохранитель. Однако подумайте, что произойдет с цепью с той же ошибкой, за исключением того, что мы заменим положение переключателя и предохранителя.

7) проверяют выполнение мер, обеспечивающих безопасность при условии организации работ, обусловленных действующими правилами

Как читать схему

Добавлено в избранное Любимый 102

Обзор

Схемы

– это наша карта для проектирования, создания и устранения неисправностей схем. Понимание того, как читать схемы и следовать им, – важный навык для любого инженера-электронщика.

Это руководство должно превратить вас в полностью грамотного читателя схем! Мы рассмотрим все основные символы схемы:

Затем мы поговорим о том, как эти символы связаны на схемах, чтобы создать модель цепи.Мы также рассмотрим несколько советов и рекомендаций, на которые следует обратить внимание.

Рекомендуемая литература

Понимание схем – это довольно базовый навык работы с электроникой, но есть несколько вещей, которые вы должны знать, прежде чем читать это руководство. Посмотрите эти уроки, если они звучат как пробелы в вашем растущем мозгу:

Условные обозначения (часть 1)

Готовы ли вы к шквалу компонентов схемы? Вот некоторые из стандартизованных основных схематических символов для различных компонентов.

Резисторы

Самый фундаментальный из схемных компонентов и символов! Резисторы на схеме обычно представлены несколькими зигзагообразными линиями, с двумя выводами , выходящими наружу. В схемах, использующих международные символы, вместо волнистых линий может использоваться безликий прямоугольник.

Потенциометры и переменные резисторы

Переменные резисторы и потенциометры дополняют обозначение стандартного резистора стрелкой. Переменный резистор остается устройством с двумя выводами, поэтому стрелка просто расположена по диагонали посередине.Потенциометр – это трехконтактное устройство, поэтому стрелка становится третьей клеммой (дворником).

Конденсаторы

Обычно используются два символа конденсатора. Один символ представляет поляризованный (обычно электролитический или танталовый) конденсатор, а другой – неполяризованные колпачки. В каждом случае есть две клеммы, перпендикулярно входящие в пластины.

Символ с одной изогнутой пластиной указывает на то, что конденсатор поляризован. Изогнутая пластина обычно представляет собой катод конденсатора, который должен иметь более низкое напряжение, чем положительный анодный вывод.Знак плюс также должен быть добавлен к положительному выводу символа поляризованного конденсатора.

Катушки индуктивности

Катушки индуктивности

обычно представлены серией изогнутых выступов или петлевых катушек. Международные символы могут просто обозначать катушку индуктивности как закрашенный прямоугольник.

Коммутаторы

Коммутаторы

существуют во многих различных формах. Самый простой переключатель, однополюсный / однопозиционный (SPST), представляет собой две клеммы с полусоединенной линией, представляющей исполнительный механизм (часть, которая соединяет клеммы вместе).

Переключатели с более чем одним ходом, такие как SPDT и SP3T ниже, добавляют больше посадочных мест для привода.

Многополюсные переключатели обычно имеют несколько одинаковых переключателей с пунктирной линией, пересекающей средний привод.

Источники энергии

Так же, как существует множество вариантов питания вашего проекта, существует множество символов схем источника питания, помогающих указать источник питания.

Источники постоянного или переменного напряжения

В большинстве случаев при работе с электроникой вы будете использовать источники постоянного напряжения.Мы можем использовать любой из этих двух символов, чтобы определить, подает ли источник постоянный ток (DC) или переменный ток (AC):

Батареи

Батарейки, будь то цилиндрические, щелочные батарейки типа AA или литий-полимерные аккумуляторные батареи, обычно выглядят как пара непропорциональных параллельных линий:

Чем больше пар линий, тем больше ячеек в батарее. Кроме того, более длинная линия обычно используется для обозначения положительной клеммы, а более короткая линия соединяется с отрицательной клеммой.

Узлы напряжения

Иногда – особенно на очень загруженных схемах – вы можете назначить специальные символы для узловых напряжений. Вы можете подключать устройства к этим символам с одним контактом , и они будут напрямую связаны с 5 В, 3,3 В, VCC или GND (землей). Узлы положительного напряжения обычно обозначаются стрелкой, направленной вверх, в то время как узлы заземления обычно включают от одной до трех плоских линий (или иногда стрелку или треугольник, направленную вниз).

Условные обозначения (часть 2)

Диоды

Базовые диоды обычно представляют собой треугольник, прижатый к линии.Диоды также поляризованы, поэтому для каждого из двух выводов требуются отличительные идентификаторы. Положительный анод – это вывод, входящий в плоский край треугольника. Отрицательный катод выходит за линию символа (воспринимайте его как знак -).

Существует множество различных типов диодов, каждый из которых имеет специальный рифф на стандартном символе диода. Светодиоды (LED) дополняют символ диода парой линий, направленных в сторону. Фотодиоды , которые генерируют энергию из света (в основном, крошечные солнечные элементы), переворачивают стрелки и направляют их в сторону диода.

Другие специальные типы диодов, такие как диоды Шоттки или стабилитроны, имеют свои собственные символы с небольшими вариациями на штриховой части символа.

Транзисторы

Транзисторы

, будь то биполярные транзисторы или полевые МОП-транзисторы, могут существовать в двух конфигурациях: положительно легированные или отрицательно легированные. Итак, для каждого из этих типов транзисторов есть как минимум два способа его нарисовать.

Биполярные переходные транзисторы (БЮТ)

БЮТ – трехполюсные устройства; у них есть коллектор (C), эмиттер (E) и база (B).Есть два типа BJT – NPN и PNP – и каждый имеет свой уникальный символ.

Контакты коллектора (C) и эмиттера (E) расположены на одной линии друг с другом, но на эмиттере всегда должна быть стрелка. Если стрелка указывает внутрь, это PNP, а если стрелка указывает наружу, это NPN. Мнемоника для запоминания: «NPN: n ot p ointing i n ».

Металлооксидные полевые транзисторы (МОП-транзисторы)

Как и BJT, полевые МОП-транзисторы имеют три терминала, но на этот раз они названы исток (S), сток (D) и затвор (G).И снова, есть две разные версии символа, в зависимости от того, какой у вас полевой МОП-транзистор с n-каналом или p-каналом. Для каждого типа полевого МОП-транзистора существует ряд часто используемых символов:

Стрелка в середине символа (называемая основной частью) определяет, является ли полевой МОП-транзистор n-канальным или p-канальным. Если стрелка указывает внутрь, это означает, что это n-канальный MOSFET, а если он указывает, это p-канал. Помните: «n is in» (своего рода противоположность мнемонике NPN).

Цифровые логические ворота

Наши стандартные логические функции – И, ИЛИ, НЕ и ИСКЛЮЧИТЕЛЬНОЕ ИЛИ – имеют уникальные условные обозначения:

Добавление пузыря к выходу отменяет функцию, создавая NAND, NOR и XNOR:

У них может быть более двух входов, но формы должны оставаться такими же (ну, может быть, немного больше), и все равно должен быть только один выход.

Интегральные схемы

Интегральные схемы

решают такие уникальные задачи, и их так много, что они действительно не получают уникального символа схемы. Обычно интегральная схема представляет собой прямоугольник с выступающими по бокам выводами. Каждый вывод должен быть помечен как номером, так и функцией.

Схематические символы для микроконтроллера ATmega328 (обычно присутствующего на Arduinos), микросхемы шифрования ATSHA204 и микроконтроллера ATtiny45. Как видите, эти компоненты сильно различаются по размеру и количеству выводов.

Поскольку микросхемы имеют такой общий символ схемы, имена, значения и метки становятся очень важными. Каждая микросхема должна иметь значение, точно идентифицирующее имя микросхемы.

Уникальные ИС: операционные усилители, регуляторы напряжения

Некоторые из наиболее распространенных интегральных схем получают уникальный символ схемы. Обычно вы увидите операционные усилители, расположенные, как показано ниже, с 5 выводами: неинвертирующий вход (+), инвертирующий вход (-), выход и два входа питания.

Часто в один корпус интегральной схемы встроено два операционных усилителя, для которых требуется только один вывод для питания и один для заземления, поэтому тот, что справа, имеет только три контакта.

Простые регуляторы напряжения обычно представляют собой трехконтактные компоненты с входными, выходными и заземляющими (или регулирующими) контактами. Обычно они имеют форму прямоугольника с выводами слева (вход), справа (выход) и внизу (заземление / регулировка).

Разное

Кристаллы и резонаторы

Кристаллы или резонаторы обычно являются важной частью схем микроконтроллера. Они помогают обеспечить тактовый сигнал. Кристаллические символы обычно имеют два вывода, в то время как резонаторы, которые добавляют два конденсатора к кристаллу, обычно имеют три вывода.

Заголовки и разъемы

Будь то обеспечение питания или отправка информации, разъемы необходимы для большинства цепей. Эти символы различаются в зависимости от того, как выглядит разъем, вот образец:

Двигатели, трансформаторы, динамики и реле

Мы объединим их вместе, так как они (в основном) все так или иначе используют катушки. Трансформаторы (не самые очевидные) обычно состоят из двух катушек, соединенных друг с другом, с парой линий, разделяющих их:

Реле обычно соединяют катушку с переключателем:

Динамики и зуммеры обычно имеют форму, аналогичную их реальным аналогам:

Двигатели

и обычно имеют обведенную буквой «М», иногда с немного большим количеством украшений вокруг клемм:

Предохранители и PTC

Предохранители и PTC – устройства, которые обычно используются для ограничения больших скачков тока – каждое имеет свой уникальный символ:

Символ PTC на самом деле является общим обозначением термистора , резистора, зависящего от температуры (обратите внимание на международный символ резистора там?).


Несомненно, многие символы схем не включены в этот список, но те, что указаны выше, должны дать вам 90% грамотности в чтении схем. В общем, символы должны иметь довольно много общего с реальными компонентами, которые они моделируют. Помимо символа, каждый компонент на схеме должен иметь уникальное имя и значение, которое в дальнейшем помогает его идентифицировать.

Обозначения и значения имен

Один из важнейших ключей к схемотехнической грамотности – это способность распознавать, какие компоненты какие.Компонентные символы рассказывают половину истории, но для завершения каждый символ должен сочетаться с именем и значением.

Имена и значения

Значения помогают точно определить, что такое компонент. Для схемных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, значение говорит нам, сколько у них Ом, фарад или генри. Для других компонентов, таких как интегральные схемы, значением может быть просто название микросхемы. Кристаллы могут указывать свою частоту колебаний как свою ценность.По сути, значение компонента схемы вызывает его наиболее важную характеристику .

Имена компонентов обычно представляют собой комбинацию одной или двух букв и числа. Буквенная часть имени определяет тип компонента – R для резисторов, C для конденсаторов, U для интегральных схем и т. Д. Каждое имя компонента на схеме должно быть уникальным; если в цепи несколько резисторов, например, они должны называться R 1 , R 2 , R 3 и т. д.Имена компонентов помогают нам ссылаться на определенные точки на схемах.

Префиксы имен довольно хорошо стандартизированы. Для некоторых компонентов, таких как резисторы, префикс – это просто первая буква компонента. Другие префиксы имен не столь буквальны; индукторы, например, L (потому что ток уже прошел I [но он начинается с C … электроника – глупое место]). Вот краткая таблица общих компонентов и их префиксов:

902 902 902 902 902 902 902 902
Имя Идентификатор Компонент
R Резисторы
C Конденсаторы
L Индукторы
Q Транзисторы
U Интегральные схемы
Y Кристаллы и генераторы

Хотя эти термины являются «стандартизированными» названиями для обозначений компонентов, они не всегда используются.Вы можете увидеть интегральные схемы с префиксом IC вместо U , например, или кристаллы с маркировкой XTAL вместо Y . Используйте свой здравый смысл при диагностике, какая часть есть какая. Символ обычно должен передавать достаточно информации.

Схема чтения

Понимание того, какие компоненты есть на схеме, – это более чем полдела на пути к ее пониманию. Теперь все, что осталось, – это определить, как все символы связаны друг с другом.

Сети, узлы и метки

Схематические цепи рассказывают, как компоненты соединяются вместе в цепи. Цепи представлены в виде линий между клеммами компонентов. Иногда (но не всегда) они имеют уникальный цвет, например, зеленые линии на этой схеме:

Соединения и узлы

Провода могут соединять две клеммы вместе, или их можно соединять десятки. Когда провод разделяется на два направления, образуется соединение . На схемах изображаем стыки с узлами , маленькими точками на пересечении проводов.

Узлы

дают нам возможность сказать, что «провода, пересекающие этот переход , соединены ». Отсутствие узла на стыке означает, что два отдельных провода просто проходят мимо, не образуя никакого соединения. (При разработке схем обычно рекомендуется по возможности избегать этих несвязанных перекрытий, но иногда это неизбежно).

Сетевые имена

Иногда, чтобы схема была более разборчивой, мы даем цепи имя и маркируем ее, а не прокладываем провод по всей схеме.Предполагается, что цепи с таким же именем подключены, даже если между ними нет видимого провода. Имена могут быть написаны прямо поверх сети, или они могут быть «тегами», свисающими с провода.

Подключается каждая цепь с таким же именем, как на этой схеме для коммутационной платы FT231X. Имена и метки помогают сохранить схемы от слишком хаотичного (представьте, если бы все эти цепи были действительно соединены проводами). Цепям

обычно дается имя, в котором конкретно указывается назначение сигналов на этом проводе.Например, цепи питания могут быть обозначены «VCC» или «5V», а цепи последовательной связи – «RX» или «TX».

Советы по чтению схем

Идентифицировать блоки

Действительно обширные схемы следует разбивать на функциональные блоки. Это может быть раздел для ввода мощности и регулирования напряжения, или раздел микроконтроллера, или раздел, посвященный разъемам. Попытайтесь распознать, какие секции какие, и проследить за цепочкой от входа к выходу. По-настоящему хорошие разработчики схем могут даже выложить схему в виде книги: входы слева, выходы – справа.

Если ящик схемы действительно хорош (например, инженер, который разработал эту схему для RedBoard), они могут разделить части схемы на логические помеченные блоки.
Распознать узлы напряжения

Узлы напряжения – это одноконтактные компоненты схемы, к которым мы можем подключать клеммы компонентов, чтобы назначить им определенный уровень напряжения. Это специальное приложение имен цепей, означающее, что все клеммы, подключенные к узлу напряжения с одинаковым именем, соединены вместе.

Узлы напряжения с одинаковыми названиями – например, GND, 5 В и 3,3 В – все подключены к своим аналогам, даже если между ними нет проводов.

Узел заземления особенно полезен, потому что очень многие компоненты нуждаются в заземлении.

Справочные листы данных компонентов

Если на схеме есть что-то, что не имеет смысла, попробуйте найти таблицу для наиболее важного компонента. Обычно компонент, выполняющий большую часть работы со схемой, – это интегральная схема, такая как микроконтроллер или датчик.Обычно это самый крупный компонент, часто расположенный в центре схемы.

Ресурсы и дальнейшее развитие

Вот и все, что нужно для чтения схем! Знание символов компонентов, отслеживание цепей и определение общих меток. Понимание того, как работает схема, открывает вам целый мир электроники! Ознакомьтесь с некоторыми из этих руководств, чтобы попрактиковаться в новых знаниях схемотехники:

  • Делители напряжения – это одна из самых основных принципиальных схем.Узнайте, как с помощью всего двух резисторов превратить большое напряжение в меньшее!
  • Как использовать макетную плату – Теперь, когда вы знаете, как читать схемы, почему бы не сделать ее! Макетные платы – отличный способ создавать временные функциональные прототипы схем.
  • Работа с проводом – Или пропустите макет и сразу начните с проводки. Умение разрезать, зачищать и подключать провода – важный навык электроники.
  • Последовательные и параллельные схемы
  • – Построение последовательных или параллельных цепей требует хорошего понимания схем.
  • Шитье проводящей нитью – Если вы не хотите работать с проволокой, как насчет создания цепи электронного текстиля с проводящей нитью? В этом прелесть схематических схем, одна и та же схематическая схема может быть построена множеством различных способов с использованием различных носителей.
Схема подключения

– все, что вам нужно знать о схеме подключения

Что такое электрическая схема?

Схема подключения – это простое визуальное представление физических соединений и физической компоновки электрической системы или цепи.Он показывает, как электрические провода соединяются между собой, а также может показать, где приспособления и компоненты могут быть подключены к системе.

Когда и как использовать электрическую схему

Используйте электрические схемы, чтобы помочь в создании или производстве схемы или электронного устройства. Также они пригодятся при ремонте.

Энтузиасты DIY используют электрические схемы, но они также распространены в домостроении и ремонте автомобилей.

Например, строитель дома захочет подтвердить физическое расположение электрических розеток и осветительных приборов с помощью схемы подключения, чтобы избежать дорогостоящих ошибок и нарушений строительных норм.

Как нарисовать принципиальную схему

SmartDraw поставляется с готовыми шаблонами электрических схем. Настраивайте сотни электрических символов и быстро вставляйте их в свою электрическую схему. Специальные ручки управления вокруг каждого символа позволяют при необходимости быстро изменять их размер или вращать.

Чтобы нарисовать провод, просто щелкните параметр Draw Lines в левой части области рисования. Если щелкнуть линию правой кнопкой мыши, можно изменить цвет или толщину линии, а также при необходимости добавить или удалить стрелки.Перетащите символ на линию, и он вставится и защелкнется на месте. После подключения он останется подключенным, даже если вы переместите провод.

Если вам нужны дополнительные символы, щелкните стрелку рядом с видимой библиотекой, чтобы открыть раскрывающееся меню, и выберите Еще . Вы сможете искать дополнительные символы и открывать любые соответствующие библиотеки.

Щелкните Set Line Hops в SmartPanel, чтобы показать или скрыть линейные переходы в точках пересечения. Вы также можете изменить размер и форму хмеля.Выберите Показать размеры , чтобы показать длину проводов или размер компонента.

Щелкните здесь, чтобы прочитать полное руководство SmartDraw о том, как рисовать принципиальные и другие электрические схемы.

Чем электрическая схема отличается от схемы?

Схема показывает план и функции электрической цепи, но не касается физического расположения проводов. На схемах подключения показано, как соединяются провода и где они должны располагаться в реальном устройстве, а также физические соединения между всеми компонентами.

Чем электрическая схема отличается от графической схемы?

В отличие от графической схемы, схема подключения использует абстрактные или упрощенные формы и линии для отображения компонентов. Графические схемы часто представляют собой фотографии с этикетками или подробные чертежи физических компонентов.

Стандартные символы электрических схем

Большинство символов, используемых на схеме соединений, выглядят как абстрактные версии реальных объектов, которые они представляют. Например, выключатель будет разрывом линии с линией под углом к ​​проводу, очень похоже на выключатель, который вы можете включать и выключать.Резистор будет представлен серией волнистых линий, символизирующих ограничение тока. Антенна – это прямая линия с тремя маленькими линиями, отходящими на ее конце, очень похожая на настоящую антенну.

  • Провод, токопроводящий
  • Предохранитель, отключается, когда ток превышает определенную величину
  • Конденсатор для хранения электрического заряда
  • Тумблер, останавливает ток при открытии
  • Кнопочный переключатель, на мгновение разрешает ток при нажатии кнопки, прерывает ток при отпускании
  • Аккумулятор, накапливающий электрический заряд и вырабатывающий постоянное напряжение
  • Резистор, ограничивает ток
  • Провод заземления, используемый для защиты
  • Автоматический выключатель, используемый для защиты цепи от перегрузки по току
  • Индуктор, катушка, создающая магнитное поле
  • Антенна, принимает и передает радиоволны
  • Устройство защиты от перенапряжения, используется для защиты цепи от скачков напряжения
  • Лампа, излучает свет при протекании тока через
  • Диод, позволяет току течь в одном направлении, указанном стрелкой или треугольником на проводе
  • Микрофон, преобразует звук в электрический сигнал
  • Электродвигатель
  • Трансформатор, изменяет напряжение переменного тока с высокого на низкое или наоборот
  • Наушники
  • Термостат
  • Электророзетка
  • Распределительная коробка

Примеры электрических схем

Лучший способ понять электрические схемы – это посмотреть на несколько примеров электрических схем.

Щелкните любую из этих схем подключения, включенных в SmartDraw, и отредактируйте их:

Просмотрите всю коллекцию примеров и шаблонов схем подключения SmartDraw

Как читать электрические схемы

Электрическая схема – это схема, которая показывает, как соединены все провода и компоненты в электронной схеме. Они похожи на карту для построения или устранения неисправностей схем и могут рассказать вам почти все, что вам нужно знать, чтобы понять, как работает схема.

Умение читать электрические схемы – действительно полезный навык. Чтобы начать развивать свои способности к чтению схем, важно запомнить наиболее распространенные схематические символы. Каждый физический компонент (например, резистор, конденсатор, транзистор) имеет уникальный схематический символ. Основная цель этого руководства – показать вам основные компоненты схемы, которые вы должны знать.

Недостаточно просто уметь распознавать компоненты в схеме. Вы также должны иметь возможность получить общее представление о том, как работает схема, просто взглянув на нее.После этой статьи я рекомендую прочитать «Как анализировать схемы», где мы обсуждаем более продвинутые методы анализа схем, такие как закон Кирхгофа по току и закон Кирхгофа по напряжению.

ИСТОЧНИКИ ПИТАНИЯ

Источники питания поставляют электрическую энергию в цепь в виде напряжения и тока. Каждая функциональная электронная схема должна иметь источник постоянного или переменного тока.

Источники питания постоянного тока

Источники питания постоянного тока (DC) вырабатывают электрический ток, который течет в постоянном направлении.Это схематический символ источника питания постоянного тока:

Источник питания переменного тока с

Источники питания переменного тока (AC) вырабатывают электрический ток в двух направлениях. Это схематический символ источника питания переменного тока:

Тесто ies

Батарея – это распространенный тип источника постоянного тока. Схематический символ батареи состоит из коротких и длинных параллельных линий. Более длинная линия представляет собой положительный полюс батареи, а более короткая линия представляет отрицательный полюс:

Земля

Земля – ​​это общий обратный путь цепи, по которому ток возвращается к своему источнику.Это часто называют отрицательной стороной схемы. Это схематический символ заземления:

Клеммы

Клеммы – это точки подключения к внешним цепям. Для внешних подключений клеммы обозначены пустыми кружками:

Концевые соединения отличаются от узлов или соединений, обозначенных сплошными кружками:

Переключатели

Переключатели замыкают или разрывают соединение в цепи.Они также позволяют вам изменить путь тока.

Переключатель SPST es

Переключатель SPST (однополюсный, однопозиционный) – это переключатель включения и выключения. Два схематических символа ниже показывают различные состояния переключателя SPST. Верхний символ указывает на то, что переключатель находится в выключенном положении, что блокирует прохождение тока. Нижний символ указывает на то, что переключатель включен, что позволяет току течь через переключатель.

Переключатель SPDT es Переключатели

SPDT (однополюсные, двухпозиционные) могут направлять путь тока к различным частям цепи.В зависимости от положения переключателя существует два пути прохождения тока в этом переключателе:

Переключатель мгновенного действия es

Переключатели мгновенного действия остаются разомкнутыми или замкнутыми только при нажатии. Кнопочные переключатели являются наиболее распространенным типом переключателей мгновенного действия. Эти переключатели либо нормально разомкнутые, либо нормально замкнутые. Верхний схематический символ ниже показывает нормально разомкнутый кнопочный переключатель в разомкнутом положении, а нижний символ показывает нормально замкнутый кнопочный переключатель в замкнутом положении:

Многоточечный коммутатор es

Многоточечные переключатели позволяют переключать путь входного тока на несколько различных выходных путей.

Переключатели

DPST (двухполюсные, однопозиционные) имеют 2 входа и 2 выхода. Эти переключатели позволяют управлять током на два выхода. Поскольку переключатели одноходовые, две выходные клеммы будут включаться и выключаться одновременно. На схематических изображениях ниже показаны разомкнутый переключатель DPST (слева) и замкнутый переключатель DPST (справа):

Переключатели

DPDT (двухполюсные, двухпозиционные) имеют две клеммы для входного тока и четыре клеммы для выходного тока. Эти переключатели позволяют переключать путь двух входных токов на четыре отдельных пути вывода.Вот схематический символ переключателя DPDT:

Резистор с

Резистор – один из самых основных пассивных компонентов схемы. Резисторы обладают электрическим сопротивлением, ограничивающим ток. Схематический символ резистора показан ниже. Символ слева – это соглашение, используемое в Соединенных Штатах, а символ справа – международный стандарт:

.

Переменный резистор с

Переменный резистор может увеличивать или уменьшать свое сопротивление в зависимости от внешнего входа.Аналоговые датчики, такие как фоторезисторы и термисторы, являются типами переменных резисторов, поскольку их сопротивление изменяется в зависимости от уровня освещенности или температуры. Схематическое обозначение переменного резистора аналогично фиксированному резистору, но диагональная стрелка помещена посередине:

Потенциометр с

Потенциометр – это трехконтактный переменный резистор, который используется для регулировки напряжения и тока в цепи. Два вывода резистора – это V + и земля.Стрелка представляет собой дворник потенциометра, где выходное напряжение берется из:

Фоторезистор с

Фоторезисторы, также известные как светозависимые резисторы (LDR), представляют собой светочувствительные переменные резисторы, которые изменяют сопротивление в зависимости от уровня освещенности. Это схематическое обозначение фоторезистора:

.

Конденсатор с

Конденсаторы – это пассивные электронные компоненты, накапливающие электрический заряд. Есть два распространенных типа конденсаторов – неполяризованные и поляризованные.

Неполяризованный конденсатор с

Неполяризованные конденсаторы не имеют полярности, поэтому не имеет значения, какая сторона подключена к плюсу, а какая к минусу. Эти конденсаторы обычно имеют меньшую емкость, чем поляризованные конденсаторы:

Поляризованный конденсатор с

Поляризованные конденсаторы имеют полярность, поэтому имеет значение, какая сторона подключена к плюсу, а какая – к земле. Поляризованные конденсаторы обычно имеют более высокие значения емкости по сравнению с неполяризованными конденсаторами.Вот схематический символ поляризованного конденсатора:

.

Катушки индуктивности

Катушки индуктивности – это пассивные компоненты, которые создают магнитное поле, когда через них протекает ток. Индукторы могут быть такими же простыми, как катушка с проволокой. Схематическое обозначение катушки индуктивности похоже на катушку:

.

Трансформаторы Трансформаторы

используются для повышения или понижения напряжения. Они состоят из двух катушек, намотанных вокруг железного сердечника, поэтому на схематическом изображении есть две катушки с прямыми линиями между ними.Линии представляют собой железный сердечник:

Реле

Реле – это переключатель с электрическим управлением. Реле в основном представляют собой электромагниты, подключенные к исполнительному механизму, который размыкает и замыкает переключатель при подаче тока на катушку:

Диоды

Диод – это поляризованное устройство, пропускающее ток только в одном направлении. Будучи поляризованным, он имеет положительный вывод (анод) и отрицательный вывод (катод). Плоский край треугольника – анод, линия – катод:

Транзисторы

Транзисторы используются либо для усиления напряжения, либо для переключения электрических токов.Наиболее распространенными транзисторами являются транзисторы с биполярным переходом (BJT). Есть два основных типа BJT-транзисторов – NPN и PNP. Транзисторы NPN включаются, когда ток течет через базу транзистора, а транзисторы PNP включаются, когда на базе транзистора нет тока. Верхний схематический символ показывает транзистор NPN, а нижний символ показывает транзистор PNP:

Интегральные схемы Интегральные схемы

– это схемы, содержащие от сотен до миллионов резисторов, конденсаторов и транзисторов в небольшом корпусе.Интегральные схемы выполняют множество функций. Существуют интегральные схемы для усилителей звука, таймеров, микропроцессоров и многого другого. Три наиболее часто используемых интегральных схемы – это таймер 555, аудиоусилитель LM386 и операционный усилитель LM358.

Таймер

555

Чаще всего таймер 555 используется для обеспечения синхронизированных электрических задержек. Однако его также можно использовать как осциллятор и как элемент триггера. На схеме ниже показано фактическое расположение контактов таймера 555 с внутренней принципиальной схемой IC:

.

Второе изображение является схематическим обозначением таймера 555, используемого в схемах:

Операционный усилитель с

Операционные усилители – это усилители напряжения со входами и обычно с одним выходом.Их также называют операционными усилителями. Условное обозначение операционного усилителя выглядит так:

Модель

LM386

Аудиоусилитель LM386 – это операционный усилитель, специально разработанный для маломощного усиления звука. Будучи маломощным, он идеально подходит для аудиоустройств с батарейным питанием, таких как гитары, радио и любые другие схемы, издающие звук. Вот схема контактов LM386:

И это символ, используемый на принципиальных схемах:

Модель

LM358

LM358 – это интегральная схема двойного операционного усилителя, работающая от общего источника питания.Обычно используется в качестве усилителя преобразователя, интегратора, дифференциатора или повторителя напряжения. Вот схема контактов LM358:

А вот символ, используемый на принципиальных схемах:

Схематические символы для операционных усилителей обычно не показывают контакты, которые не используются в цепи, как в случае с символом LM358 выше, где показаны только пять из восьми контактов.

Логические ворота

Логические вентили – это электронные схемы, обрабатывающие сигналы, представляющие истинные или ложные значения.Четыре стандартные логические функции – это И, ИЛИ, НЕ и ИСКЛЮЧАЮЩЕЕ ИЛИ. В дополнение к этим функциям есть также логические вентили NAND, NOR и XNOR.

И

Выход логического элемента И истинен, когда все его входы истинны. Вот схематический символ логического элемента И:

ИЛИ

Выход логического элемента ИЛИ является истинным, если хотя бы один из его входов истинен. Вот схематический символ ворот OR:

НЕ

Элемент НЕ выводит сигнал, противоположный входу, поэтому его также называют инвертором.Следовательно, выход истинен, когда вход ложен. Вот схематический символ ворот НЕ:

XOR

Элемент «исключающее ИЛИ» или исключающее ИЛИ имеет два входа. Выход логического элемента XOR может быть истинным только тогда, когда один вход является истинным, а другой – ложным. Вот схематический символ логического элемента XOR:

NAND

Логический элемент «НЕ-И» или «НЕ-И» может иметь два или более входа. Выход логического элемента И-НЕ истинен, если какой-либо из входов ложен.Вот схематический символ логического элемента И-НЕ:

НОР

Элемент «НЕ-ИЛИ» или «НЕ-ИЛИ» имеет два или более входов. Выход логического элемента ИЛИ-НЕ истинен, когда все его входы ложны. Вот схематический символ ворот ИЛИ:

XNOR

Элемент «исключающее ИЛИ-ИЛИ» или исключающее ИЛИ-ИЛИ имеет два входа. Выход логического элемента XNOR истинен только тогда, когда оба его входа истинны или когда оба его входа ложны. Вот схематический символ ворот XNOR:

Оптоэлектронные устройства

Оптоэлектронные устройства – это устройства, которые используют свет и электричество для различных целей.Оптоэлектронные устройства можно разделить на две категории – светочувствительные и светоизлучающие. Например, вот схематический символ светочувствительного устройства, называемого фотодиодом:

В отличие от этого, вот схематическое обозначение светоизлучающего устройства, называемого светоизлучающим диодом (LED):

Динамик с

Динамик преобразует электрическую энергию в звуковую. Его схематический символ выглядит как реальный динамик:

Микрофон с

Микрофоны – это преобразователи, преобразующие звуковые волны в электрический сигнал.Вот схематический символ микрофона:

.

Предохранитель с

Предохранители – это предохранительные устройства, обеспечивающие защиту от перегрузки по току в электрической цепи. Основным элементом предохранителя является провод узкого сечения, который плавится, когда через него протекает слишком большой ток. Вот схематический символ предохранителя:

Двигатель с

Двигатель преобразует электрическую энергию в кинетическую. Его схематический символ – круг с буквой «M», а положительные и отрицательные клеммы слева и справа:

Антенна с

Антенна – это устройство, которое принимает или передает радиосигналы.Вот схематический символ антенны:

Провода и соединения на схемах

Теперь, когда вы знакомы с общими символами, используемыми в схематических диаграммах, давайте посмотрим, как читать соединения и пересечения проводов. Провода представлены линиями, а соединения – точками.

На изображениях ниже показаны схематические обозначения проводов, когда они физически соединены в цепи. Точки над перекрестками называются узлами:

Отсутствие узла означает, что провода не соединены, а просто проходят друг мимо друга, вот так:

Есть еще один способ показать неподключенные провода на схеме с полукругом над точкой пересечения проводов, например:

Теперь, когда вы знакомы с основными условными обозначениями и соединениями проводов, вы готовы читать простую схему.Не забывайте о полярностях. Ниже представлена ​​простая схема, состоящая всего из трех элементов – батареи, светодиода и резистора:

Батарея 9 В питает цепь, а резистор ограничивает ток батареи, чтобы не перегорел светодиод. Помните, что положительная сторона диода – это плоский край треугольника, а отрицательная сторона – прямая линия.

Понимание того, как читать схемы, также поможет вам при желании изменить схему.Но это также важно для многих других целей, например, для поиска и устранения неисправностей в схемах и проектирования печатных плат. Надеюсь, вы нашли этот урок полезным! Не стесняйтесь оставлять комментарии ниже, если у вас есть какие-либо вопросы…


Как читать автомобильные электрические схемы (Краткая версия для начинающих) – Rustyautos.com

Автомобильные электрические схемы могут выглядеть устрашающе, но как только вы поймете несколько основ, вы увидите, что они на самом деле очень простые.

Схема подключения автомобиля – это карта.Чтобы прочитать его, определите рассматриваемую цепь и, начиная с источника питания, проследите за ней до земли. Используйте легенду, чтобы понять, что означает каждый символ в цепи.

Я работаю автомехаником более двадцати лет, мне всегда нравилась электрическая сторона ремонта автомобилей. Прочитав этот пост, вы поймете, как читать основную электрическую схему, которая, как вы знаете, является ключом к быстрому поиску электрических проблем.

Понимание базовой схемы

Здесь я объясню основной принцип, лежащий в основе схемы.Это легко, и если вы уже знакомы, можете пропустить его.

Цепь проводки называется так, потому что для протекания напряжения проводка должна проходить полный круг. Разрыв или ограничение в круге вызовет прерывистую или постоянную неисправность.

Путь заземления обратно к отрицательному полюсу аккумулятора, отмечен черным

Питание покидает положительную (красный знак плюс) сторону автомобильного аккумулятора через кабель питания и всегда активно ищет кратчайший путь возврата к отрицательному полюсу (знак минус на аккумуляторе). кожух) сторона автомобильного аккумулятора.

Обратный путь к отрицательной стороне батареи после нагрузки известен как путь заземления. Нагрузкой является то, что есть у потребителя, на диаграмме выше это свет.

Базовая электрическая схема

Очевидно, будут более сложные схемы, которые будут иметь реле и блоки управления, но помните, что все они работают в соответствии с одной и той же основной идеей.

Питание оставляет положительный полюс батареи и ищет кратчайший путь к заземленной стороне цепи.

Символ заземления обозначает соединение с шасси

Типичная базовая схема состоит из пяти важных частей:

  1. Источник питания (положительный от батареи)
  2. Предохранитель (защищает цепь от перегрузки)
  3. Переключатель (ручной или управляемый)
  4. Нагрузка ( Лампочка, двигатель и т. Д.)
  5. Земля (обратный путь к отрицательной стороне аккумулятора)

Что такое мощность?

Мощность – это напряжение батареи, и в любой цепи путь к нагрузке от плюса батареи может быть описан как сторона цепи питания.

Что такое земля?

Как вы знаете, напряжение любит проходить через любой металл, а не только через металл внутри проводов. Таким образом, заземление – это любая металлическая часть шасси или двигателя, подключенная к минусу аккумуляторной батареи.

Путь заземления выделен синим цветом

Путь возврата после нагрузки известен как сторона заземления цепи. И обычно не отображается на схеме как провод, идущий к отрицательной стороне батареи, вместо этого используется символ заземления.

Что такое реле?

Реле не сильно изменились с годами, они используются в старых и новых машинах, хорошая идея никогда не устареет.

Функция реле состоит в том, чтобы управлять цепью высокого тока, такой как стартер или фары, с помощью схемы переключателя низкого тока.

Повышенный ток через небольшой переключатель может привести к его перегоранию и выходу из строя, возможно, к возгоранию.

Реле часто встречаются в цепях, а также размещаются в блоках управления. Когда они являются неотъемлемой частью блока управления, схема часто ссылается на них, но это не будет исправным реле.

Традиционно клеммы реле пронумеровывались двузначными цифрами, но в последних версиях используются однозначные числа, я обозначил обе цифры на схеме ниже.

Как это работает?

Реле – это электромагнитный переключатель, имеющий две отдельные цепи: цепь управления и цепь нагрузки. Переключатель приводится в действие вручную, или блок управления передает питание через клемму 2/86, которая передается на землю через клемму 4/85.

Это приводит к тому, что катушка реле становится магнитной, что закрывает подвижный якорь внутри реле. Когда он закрыт (открыт на приведенной выше диаграмме), он позволяет энергии перемещаться от батареи к свету.(Через контакты 30 и 87)

Если вам нужна помощь в понимании DVOM, также известного как мультиметр, ознакомьтесь с инструкциями по использованию мультиметра Kindle по ссылке ниже на Amazon.

Amazon Как использовать мультиметр

Когда переключатель выключен (аккумулятор отключен), катушка больше не намагничивается, и подпружиненный подвижный якорь возвращается в открытое положение (положение по умолчанию).

Совет для профессионалов: при поиске неисправностей в схемах критически важным является качественный DVOM. Дешевые вольтметры подходят для определения мощности и заземления, но современные автомобили потребуют точных показаний сопротивления для правильной диагностики неисправной цепи или компонента.

Неправильные показания счетчика могут вызвать массу проблем. Если вы покупаете вольтметр, купите что-нибудь вроде Klein MM400, он идеально подходит для новичков или ветеранов и удобно продается и доставляется через Amazon.com.

Реле цепи стартера на рисунке выше работает аналогичным образом. При повороте переключателя зажигания в положение пуска напряжение проходит через контакт 86 и заземляется на 85. Это намагничивает катушку, которая, в свою очередь, заставляет якорь (контакты 30-87) замыкаться, замыкая цепь на стороне нагрузки, и двигатель запускается.

Что такое блок управления?

Вы здесь, чтобы научиться читать электрическую схему, и поэтому наверняка столкнетесь с модулями управления (компьютерами). Современные автомобили, как известно, укомплектованы модулями управления. Обычно они также известны как блоки управления, CU, контроллеры, модули, CM, электронный блок управления и компьютеры.

Различные блоки управления системой будут иметь разные названия, и у каждого производителя будет свое собственное сокращение, вот некоторые из наиболее распространенных названий PCM – модуль управления силовой передачей, также известный как ECU и блок управления трансмиссией, вместе взятый, ECU – Engine Control Unit, CEM – Центральный электронный модуль, EBCM – Электронный модуль управления тормозом, BCM – Модуль управления кузовным оборудованием и т. Д.

Я не буду здесь углубляться в сорняки, но было бы полезно получить краткое описание того, как работать с блоками управления.

Прекомпьютерные классические автомобили имеют простую электрическую схему – например, нажатие переключателя посылает мощность по проводу на двигатель стеклоподъемника, и окно перемещается.

Современные автомобили справляются с этим немного иначе – нажатие переключателя посылает сигнал по проводу на блок управления (компьютер), который, в свою очередь, передает питание на двигатель стеклоподъемника.

Блок управления или контроллер будет отправлять питание на двигатель стеклоподъемника только при соблюдении определенных предварительно запрограммированных условий.Могут возникнуть условия, при которых модуль управления не будет подавать питание на окно. Например, если он запрограммирован на экономию энергии при низком заряде батареи.

Конечно, окно может не двигаться по другим причинам, возможно, неисправен блок управления, неисправна проводка, неисправен двигатель и т.д. Что ж, блоки управления действительно обладают значительными преимуществами, некоторые из которых включают:

  • Меньше проводки
  • Автомобили более экономичны
  • Автомобили чище
  • Автомобили безопаснее
  • Допускается установка большего количества электронных модулей, таких как информационно-развлекательные системы и вспомогательные средства водителя
  • Можно прочитать коды неисправностей системы

Все блоки управления соединены друг с другом витой парой проводов, система связи известна как CAN (сеть контроллеров).

При чтении электрических схем технический специалист не видит внутренних схем блоков управления, и поэтому мы не заботимся об их работе.

Вместо этого мы используем подход Шерлока Холмса – проверьте всю проводку к блоку управления и от него, если все проверки завершились и неисправность сохраняется – единственный логический вывод – неисправный модуль.

Конечно, неправильно интерпретировать данные, особенно если тестер не понимает параметры контроллера.

Например, понимание того, что блок управления микроклиматом не включает кондиционер не из-за проблемы с системой кондиционирования, а из-за того, что контроллер ЭСУД обнаруживает, что система охлаждающей жидкости слишком горячая.

Если вы не поняли правильно, очень легко предположить, что это проблема там, где ее нет.

Вот почему я советую всем самодельным механикам приобрести электрическую схему и руководство по ремонту. Это окупится в несколько раз.

Понять легенду

Каждая диаграмма имеет легенду, это ключ к пониманию схемы подключения.Обычно он показывает набор символов и краткое описание.

Не важно знать эти символы в лицо, вы можете ссылаться на легенду, когда встретите различные символы вместе со схемами, которые вы читаете. В любом случае, вы обнаружите, что символы у разных производителей различаются.

Совет: Некоторые схемы легче понять, чем другие, но неправильная схема подключения может уловить даже профи. Чтобы избежать разочарования, убедитесь, что ваша электрическая схема соответствует вашему автомобилю.

Держите легенду под рукой, читая схему подключения. Не зная, что означает каждый из различных символов, вы быстро увязнете.

Информация в легенде может включать:

  • Цветовой код проводки
  • Значения символов
  • Коды модулей
  • Коды системных групп
  • Аббревиатуры компонентов
  • Любые специальные примечания

Легенды обычно хорошо продуманы, логичны , и за ним легко следить.

Чтение электрической схемы

Электросхемы традиционно печатались в виде книжек, диаграммы большие, как вы знаете, размещение их всех на одной странице сделало бы их нечитаемыми.

Решение – число в конце каждой цепи указывает страницу, на которой была продолжена остальная часть принципиальной схемы.

Это может быть немного обременительно, особенно при одновременном обращении к большому количеству различных цепей.

Другие решения включают в себя отображение схемы подключения только одной системы на странице, например, просто отображение схемы подключения фар.Это работает довольно хорошо и было перенесено в эпоху цифровых технологий.

Цифровые схемы подключения намного эффективнее и проще в использовании, поэтому, если возможно, всегда выбирайте цифровые схемы.

Теперь вы знаете, что такое легенда, и имеете краткое представление о том, что означают различные символы, пора прочитать электрическую схему.

Почти все современные диаграммы построены так, что мощность вверху страницы / экрана и земля внизу. Это естественный поток, и это лучший способ их прочитать.

Схема ниже представляет собой базовую схему автомобильного освещения, на первый взгляд она может показаться сложной, но, когда вы поймете схему, она станет ясной.

Помните, мощность (напряжение) батареи в верхней части страницы пытается достичь уровня земли в нижней части диаграммы.

Начиная с верхней части прилагаемой схемы, вы можете увидеть потоки мощности по двум направлениям: (1) вниз к реле света (слева) и (2) к центральному электронному модулю (CEM), который является блоком управления.

Схема нарисована с зажиганием в положении 0 – положение «ВЫКЛ.» .

Путь (1) – Реле света получает напряжение, но, поскольку якорь находится в открытом / закрытом положении, он останавливается в этой точке.

Путь (2) – Модуль управления получает напряжение, и этот путь заканчивается.

Изображение меняется, однако, когда ключ зажигания находится в положении два «Вкл.».

Модуль CEM обеспечивает заземление на X при включенном зажигании. Это, как вы знаете, намагничивает катушку реле и приводит к закрытию якоря.Закрытый якорь, в свою очередь, обеспечивает путь для подачи энергии к переключателю.

Выключатель теперь заправлен. Теперь нажатие на выключатель света позволяет напряжению проходить через катушку реле выключателя света и заземлять через интегрированный путь заземления CEM .

Реле освещения Катушка , как вы знаете, теперь намагничена, поэтому она закрывает якорь реле, обеспечивая поток энергии от пути 1 до земли в нижней части диаграммы, запитывая огни как он это делает.Цепь завершена.

Вот и все, вы прочитали схему, некоторые схемы будут более сложными, но чем больше вы тренируетесь, тем лучше у вас получится.

Вам также могут понравиться эти сообщения:

Чтобы увидеть все инструменты, которые я использую, посетите страницу Инструменты для автоматического ремонта электрооборудования. Чтобы получить мгновенный цифровой доступ к схемам электрических соединений и руководствам по ремонту автомобилей, перейдите по ссылке Emanuel ниже.

Магазин Руководств по эксплуатации автомобилей.

Связанные вопросы

В чем разница между диаграммой и схемой? Схема – это подробная карта системы, а схема – это более упрощенное представление.

Джон Каннингем

Джон Каннингем – автомобильный техник и писатель на Rustyautos.com. Я работаю механиком более двадцати лет и использую свои знания и опыт, чтобы писать статьи, которые помогают коллегам-механикам разбираться во всех аспектах владения классическими автомобилями, от шин до антенн на крыше и всего остального.

Последние сообщения

ссылка на Могу ли я водить машину без змеевика? – не делайте этого! ссылка на OBD не подключается к ECU – решено

OBD не подключается к ECU – решено

Компьютеры большую часть времени хороши, но когда они не работают, они боль в Джеки.Подключение диагностического прибора только для того, чтобы вас встретили без связи, – это разочаровывает !!! OBD …

Skill Builder: чтение схем

Принципиальные схемы, также известные как схемы, представляют собой линейные чертежи, которые показывают, как компоненты схемы соединяются вместе. Они служат картой или планом для сборки проектов электроники, и их легко читать – намного проще, чем понять, как на самом деле работают схемы, которые они описывают. Это важный момент: Вы можете читать и успешно строить принципиальную схему, не разбираясь в схеме. *

Схемы также доступны для бесчисленных легко собираемых электронных устройств. Ты слышал это? Это звук свободы.

Принципиальные схемы состоят из двух элементов: символов, которые представляют компоненты в цепи, и линий , которые представляют соединения между ними. Вот и все. Начнем с подключений, так как это проще.

Подключения

Принципиальные схемы

изображают идеальный мир, в котором провода и другие проводники не мешают друг другу и не имеют собственного сопротивления. Если линия проходит между компонентами, это означает, что они связаны, точка, и больше ничего вам не говорит. Соединение может быть проводом, медным проводом, штепсельной розеткой, металлическим шасси или чем-либо еще, через которое электричество будет проходить без особого сопротивления. Беспорядочные детали, такие как спецификации проводов или кабелей и их трассировка, если они важны для проекта, относятся к другому месту в его документации. Длина линии также не имеет ничего общего с фактическим расстоянием соединения в реальной жизни.Схемы нарисованы (в идеале) так, чтобы они были ясными и простыми, с компонентами и соединениями, расположенными на странице, чтобы свести к минимуму беспорядок, а не представлять, как они могут быть размещены на печатной плате.

Линии представляют соединения, но пересечение двух линий не обязательно означает 4-стороннее общее соединение. На схемах различаются несвязанные пути, которые оказываются нарисованными линиями, пересекающими друг друга, и соединения, в которых пересечение линий обозначает общее соединение. Наиболее распространенный способ сделать это различие – поставить точку на пересечениях линий, обозначающих соединения, что означает, что любые пересечения линий без точек не связаны. Другой метод состоит в том, чтобы предположить, что простые пересекающиеся линии действительно соединяются, но нарисуйте небольшие «скачки» в местах пересечения проводов, где нет соединения.

Как следствие, трехстороннее пересечение всегда означает трехстороннее соединение, даже без точки. Некоторые люди следуют правилу рисования точек с 3-сторонними соединениями, а другие не видят необходимости, потому что нет причин проводить соединение в никуда.
В дополнение к линиям, используемым для отображения соединений между компонентами, на схемах используются специальные символы для обозначения соединений с различными типами питания и заземления . Символ питания или заземления может появляться в нескольких местах на схеме, но он всегда означает соединение с одним и тем же местом или проводящим объектом. Силовые соединения также часто показаны без каких-либо символов, а только метка, указывающая тип напряжения, например V +, 5V, 5VDC, 12V, 120VAC, с положительным (+), подразумеваемым для беззнаковых напряжений постоянного тока.

Компоненты

Каждый компонент схемы представлен символом , который указывает общий тип компонента , и меткой , которая указывает (или напрямую перечисляет) его конкретные характеристики. В статье Википедии «Электронный символ» показаны некоторые из наиболее распространенных символов, а «Электрический что ?!» имеет более полную коллекцию с возможностью поиска.

На формальных схемах каждый компонент маркируется обозначением части , который представляет собой код, состоящий из одной или двух букв, идентифицирующих тип компонента (например,грамм. R для резистора, C для конденсатора), за которым следует уникальный номер для этого типа в цепи (например, резисторы R1, R2 и т. Д.). Список деталей, прилагаемый к схеме, связывает обозначение каждой детали с характеристиками компонентов (например, R1: 120k ™, 1/4 Вт).

(Схема из книги Чарльза Платта «Самый большой маленький чип», MAKE, том 10, стр. 65)

В менее формальных схемах люди обходятся без обозначений и списка деталей и просто маркируют символ детали на самом чертеже с любыми необходимыми характеристиками.

(Схема для «Замедленного триггера DSLR» Криса Томпсона, MAKE vol. 15, стр. 156)

Чтобы избежать использования специальных символов, в спецификациях резисторов часто прописывается заглавная Омега () для Ом (220 кОм означает 220 кОм), а в значениях конденсаторов используется «u» вместо строчной буквы Mu (µ) для обозначения микро (10 мкФ означает 10 МкФ / 10 мкФ).

(Если вы не знаете, что такое омы и микрофарады, не волнуйтесь & emdash; вы все равно можете построить рабочие цепи по схеме. Но тем временем это поможет изучить гидравлическую аналогию и помните, что электричество намного дороже. , намного быстрее, чем вода.)

Каждый символ компонента имеет некоторое количество точек соединения, к которым можно провести линии. Они соответствуют выводам (или другим клеммам) физического компонента. Для резисторов, керамических конденсаторов и некоторых других простых компонентов не имеет значения, каким образом подключаются провода. Но у большинства компонентов отведения имеют заданную ориентацию или выполняют разные функции.

Каждый компонент имеет техническое описание , опубликованное его производителем, в котором связывает физические клеммы компонента с их функциями, как обозначено точками подключения на схематическим символом .

Интегральные схемы (ИС), также известные как микросхемы, упаковывают электронные компоненты в небольшие однородные блоки с некоторым количеством соединительных клемм, идущих по бокам, либо металлическими ножками, либо (с некоторыми компонентами для поверхностного монтажа) металлическими контактами под ними. На схематических диаграммах микросхемы представлены в виде прямоугольников с выходящими линиями, обозначающими ножки микросхемы. На некоторых чертежах символ прямоугольника воспроизводит физическую компоновку упаковки, при этом ножки пронумерованы против часовой стрелки от контакта 1, слева от выемки наверху.Но чтобы уменьшить пересечение линий и общий коэффициент спагетти, некоторые схемы меняют местами ножки ИС и помещают их со всех сторон прямоугольника, помечая их номером контакта .

Микросхемы

физически представляют собой отдельные компоненты, но функционально некоторые микросхемы содержат несколько независимых компонентов, размещенных в одном корпусе. В таких случаях микросхема может быть изображена либо физически, либо функционально, с использованием отдельных символов для функциональных компонентов, которые содержит микросхема , помеченных таким образом, чтобы было ясно, что они находятся на одной микросхеме.Например, микросхему 4093, которая содержит четыре независимых логических логических элемента NAND, можно нарисовать и пометить следующим образом:

(Схема от Nandhopper 1-Bit Noise Synth на Instructables, Кайл Макдональд)

Обратите внимание, что на функциональном чертеже отсутствуют подключения питания и заземления к микросхеме. Если принципиальная схема представляет микросхему, использующую ее функциональные компоненты , необходимо, чтобы не забыл подключить ее питание и землю , даже если на схеме они не показаны.Здесь, опять же, таблица данных – ваш лучший друг, и в целом микросхемы требуют еще большего изучения таблиц данных, чем дискретные компоненты, чтобы убедиться, что все эти идентично выглядящие ноги подключены правильно.

Вот и все!

Схемы

– это просто карты, показывающие, как подключать дискретные компоненты. Самый простой способ превратить большинство схем в рабочую схему – использовать компоненты со стандартным расстоянием между выводами 0,1 дюйма и соединить их вместе на беспаечной макетной плате с помощью перемычек.Затем вы можете проверить соединения, а также отладить и изучить схему с помощью мультиметра, прежде чем рассматривать возможность пайки.

Рассматривая основные моменты:

Вы можете читать и успешно строить принципиальную схему, не разбираясь в схеме.

  • Принципиальные схемы состоят из двух элементов: символов, обозначающих компоненты, и линий, обозначающих соединения.
  • Если между компонентами проходит линия, это означает, что они связаны, точка, и больше ничего вам не говорит.
  • На схемах
  • проводится различие между несвязанными путями, которые оказываются нарисованными линиями, пересекающими друг друга, и соединениями, в которых пересечение линий обозначает общее соединение.
  • На схемах
  • используются специальные символы для обозначения различных типов питания и заземления.
  • Каждый компонент схемы представлен символом и меткой.
  • Каждый символ компонента имеет некоторое количество точек подключения. Они соответствуют выводам (или другим клеммам) физического компонента.
  • Таблица данных компонента связывает его физические терминалы с их функциями, как указано его символом.
  • На некоторых схемах ножки ИС меняются местами и помещаются со всех сторон прямоугольника, помечая их номерами контактов.
  • Микросхема может быть изображена как физически, так и функционально, с использованием отдельных символов для функциональных компонентов, которые содержит микросхема.
  • Если принципиальная схема представляет микросхему с ее функциональными компонентами, не забудьте подключить ее питание и заземление.

* Конечно, понимание схемы помогает, если вы хотите ее изменить или если в схеме есть ошибки, что не является необычным. Отредактированные источники, такие как MAKE, повышают ценность, создавая проекты перед их публикацией, обеспечивая правильность схем и другой документации.

Как читать схемы для начинающих

Создано: 17 июля 2017

В этой статье показано, как читать принципиальные схемы для начинающих в электронике. Научитесь читать электрические и электронные схемы или схемы.Чертеж электрической или электронной схемы известен как принципиальная схема, но также может называться схематической диаграммой или просто схемой.

Принципиальные схемы или принципиальные схемы состоят из символов, обозначающих физические компоненты, и линий, обозначающих провода или электрические проводники. Чтобы научиться читать принципиальную схему, необходимо узнать, как выглядит схематический символ компонента. Также необходимо понимать, как компоненты соединены между собой в цепи.

Как читать схемы для начинающих

Простая принципиальная схема для начинающих

Цепь аккумулятора и лампочки

Вероятно, самая простая схема, которую можно нарисовать, – это та, которую вы, возможно, видели в школьном уроке естествознания: батарея, подключенная к лампочке, как показано ниже.

Простая принципиальная схема для начинающих

Обозначения цепей и физические компоненты

Каждый электронный или электрический компонент представлен символом, как это видно на этой простой принципиальной схеме.Линии, используемые для соединения символов, представляют собой проводники или провода. Каждый символ представляет собой физический компонент, который может выглядеть следующим образом.

Схематические символы и физические компоненты батареи, лампочки и провода

Физическая схема

Физическая схема для приведенной выше принципиальной схемы может выглядеть примерно так, как на изображении ниже, хотя более практичная физическая схема будет иметь патрон лампочки и зажимы, которые подключаются к клеммам аккумулятора. Патрон лампочки будет иметь винтовые клеммы для подключения проводов и гнездо для ввинчивания лампочки.Зажимы аккумулятора позволят легко подключить провода между аккумулятором и патроном лампочки.

Физическая схема, построенная на основе схемы

Определение компонентов

Обычно фактический тип батареи и тип лампы указывается в списке компонентов, который прилагается к принципиальной схеме. Дополнительная информация о лампе и типе батареи также может быть включена в схему в виде текста. Например, батарея может быть указана как литиевая батарея 12,8 В 90 Ач или батарея 9 В PM9.Лампочка может быть указана как лампа накаливания 12 В 5 Вт или лампа накаливания 9 В 0,5 Вт.

Ссылки на компоненты

Компоненты в цепи всегда должны иметь ссылки, также называемые позиционными обозначениями, используемые для идентификации компонентов в цепи. Это позволяет легко ссылаться на компоненты в тексте или списке компонентов. Батарея может иметь обозначение “BAT”, а лампочка может иметь обозначение “L”.

Поскольку в цепи может быть более одной батареи или лампочки, позиционные обозначения обычно всегда заканчиваются цифрой, например.грамм. BAT1 и L1, как показано на схеме ниже. Тогда вторая лампочка в цепи будет иметь условное обозначение L2.

Условные обозначения на принципиальной схеме

Список компонентов теперь может ссылаться на эти компоненты с помощью позиционного обозначения.

Список компонентов

Схема соединений

Принципиальные схемы или принципиальные схемы показывают электрические соединения проводов или проводников с использованием узла, как показано на изображении ниже.Узел – это просто закрашенный круг или точка. Когда три или более линий касаются друг друга или пересекают друг друга, и узел помещается на пересечении, это представляет линии или провода, которые электрически соединяются в этой точке.

Схема соединений и пересечение проводов

Если провода или линии пересекаются друг с другом и нет узла, как показано в нижней части изображения выше, провода не соединены электрически. В этом случае провода пересекаются друг с другом без соединения, как два изолированных провода, помещенных один поверх другого.

Пример параллельной цепи

В схеме ниже две лампочки подключены параллельно к источнику питания от батареи. Видно, что верхние клеммы двух лампочек соединены вместе и с положительной клеммой аккумулятора. Мы знаем это, потому что три терминала или точки соединения имеют узел в месте пересечения.

Нижние выводы лампочек соединены друг с другом и с отрицательной клеммой аккумулятора, потому что второй узел показывает эти соединения.

Параллельная цепь

Пример цепи серии

В приведенной ниже последовательной схеме две лампочки соединены последовательно. В этой схеме нет необходимости в узлах, чтобы показать, как лампочки подключаются друг к другу и к батарее, потому что отдельные провода подключаются прямо друг к другу. Узлы размещаются только в том случае, если подключено три или более проводов.

Цепь серии

Некоторые правила принципиальных схем

Ниже приведены общие правила принципиальной схемы.

  • Провода или линии на принципиальных схемах обычно горизонтальные или вертикальные. В некоторых случаях может использоваться диагональная линия, расположенная под углом 45 градусов.
  • Обозначения компонентов на принципиальной схеме обычно располагаются горизонтально или вертикально. В очень редких случаях компонент может быть установлен под углом 45 градусов, но только по очень уважительной причине.
  • Принципиальные схемы
  • нарисованы максимально просто и аккуратно. Это означает, что физическая реализация схемы может отличаться от принципиальной, но электрически они идентичны.
  • Линии, соединяющие компоненты, в большинстве случаев можно рассматривать как изолированные провода, причем только концы проводов являются неизолированными проводниками для электрического соединения.
  • Когда линии пересекаются друг с другом на принципиальной схеме, их можно рассматривать как пересечение двух изолированных проводов, если нет узла, где провода пересекаются или пересекаются друг с другом.
  • Три линии, пересекающиеся в точке с узлом на пересечении, означают, что три провода электрически соединены.Это соединение можно представить себе как три изолированных провода, оголенных в точке пересечения и спаянных вместе.
  • Два провода, которые пересекаются друг с другом с узлом на пересечении точки пересечения, означают, что провода электрически соединены.

Книги, которые могут вас заинтересовать:

Электронные схемы и компоненты

Приступая к обучению чтению электронных схем, необходимо знать, как выглядят условные обозначения различных электронных компонентов.Курс электроники Start Electronics Now для начинающих состоит из серии учебных пособий для начинающих в области электроники. После курса объясняется, как читать основные электронные схемы при построении схем на электронной макетной плате. Курс включает в себя список основных электронных компонентов с их схематическими обозначениями, где новички могут узнать, как выглядят физические компоненты и их символы.

После введения, состоящего из четырех частей, первое руководство курса электроники показывает принципиальную схему простой цепи светодиода и резистора, а также способы ее сборки на макетной плате.

Основные компоненты для этого руководства включают светодиод, резистор и батарею, которые можно найти в справочнике компонентов для начинающих.

Лучший способ для начинающих продолжить обучение чтению принципиальных схем – это следовать курсу и строить схемы из каждого учебного пособия.

Понимание схем – Технические статьи

Если вы хотите лучше понять, как читать схемы, это полезное руководство даст вам фору.

Дизайн каждой новой электрической платы начинается с идеи. Затем эта идея определяется словами и диаграммами в спецификации. Любой может зайти так далеко, но следующий шаг требует фундаментального понимания принципиальных схем.

Схема

– это мост между концептуальным электрическим дизайном и физической реализацией печатной платы в сборе, или PCBA.

Монтажный лом

Схема

преследует две основные цели.Во-первых, они сообщают о замысле дизайна. Для специалиста в области электротехнического проектирования схемы должны четко передавать цель конструкции. И, во-вторых, они существуют, чтобы направлять и управлять разводкой печатной платы.

Чтобы хорошо начать разбираться в схемах, вы должны понимать некоторые основные вещи: символы компонентов, позиционные обозначения (REFDES), цепи и выходы.

Условные обозначения (REFDES)

Ссылочные обозначения – это уникальные идентификационные метки для каждого физического компонента, и они многое говорят о компонентах, к которым они относятся.

Правильное использование REFDES сообщает схемному считывателю тип компонента и количество символов на компонент. Хотя существуют стандартные символы, обозначающие различные типы электрических компонентов, которые мы обсудим далее, не все схемы соответствуют всем этим стандартам.

В случае, когда каждый пассивный компонент показан в виде общего блока с выводами, префиксы позиционного обозначения могут многое рассказать вам о типе компонента, который представляет собой символ. Условные обозначения также служат ссылкой на спецификацию материалов (BOM).В спецификации указан номер детали каждого компонента в вашей конструкции PCBA, и он указывает, в какие места должна быть установлена ​​эта деталь, с помощью REFDES.

Стандартный отраслевой формат для позиционных обозначений включает буквенный код, указывающий тип компонента, за которым следует уникальный номер.

BT = аккумулятор J = разъем R = резистор
C = конденсатор K = реле S или SW = переключатель
D = диод L = индуктор T = трансформатор
F = предохранитель P = разъем U = интегральная схема
H = Оборудование Q = Транзистор Y = Кристалл

Мы будем указывать REFDES для каждого компонента, как мы определяем их символы ниже.

Обозначения компонентов

Обозначения компонентов на схеме представляют физические компоненты, которые будут припаяны к печатной плате (PCB) в процессе сборки. Иногда они также могут представлять собой структуры печатной платы, такие как переходные отверстия или контрольные точки.

Обозначения компонентов часто представляют собой стандартную форму или рисунок, обозначающий тип электрических компонентов, хотя иногда они представляют собой не что иное, как прямоугольник со штырями. Резисторы, конденсаторы, катушки индуктивности, диоды и транзисторы имеют стандартные символы, которые мы кратко рассмотрим ниже.

Обозначения компонентов всегда имеют один или несколько контактов, к которым могут быть выполнены электрические соединения. Каждый вывод условного обозначения схемы имеет номер, соответствующий чертежу физического компонента. Один или несколько символов могут использоваться для обозначения одного электрического компонента. Компоненты с большим количеством контактов часто представлены несколькими схемными символами просто для удобства чтения схем.

В случае части, определяемой несколькими символами, каждый разделенный символ, который относится к одному и тому же физическому компоненту, имеет один и тот же позиционный обозначение.

Обычно используемые условные обозначения
Резистор

Резисторы – чрезвычайно распространенные электрические компоненты. В США они обычно отображаются в виде зигзагообразной линии, хотя в международном стандарте они отображаются как прямоугольник.

Американские (вверху) и международные (внизу) символы для резисторов

Резисторы

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «R».

Конденсатор
Конденсаторы

тоже очень распространены. Они показаны в виде двух линий, разделенных зазором, что свидетельствует об их фундаментальной конструкции из двух заряженных пластин, разделенных диэлектриком. Два символа первичного конденсатора неполяризованы и поляризованы.

Поляризованные конденсаторы обозначаются изогнутой линией (для обозначения отрицательной клеммы) и / или знаком плюс (для обозначения положительной клеммы).

Обозначения конденсаторов.Показаны неполяризованный конденсатор слева и три варианта поляризованного конденсатора.

Конденсаторы

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «C».

Индуктор

Катушки индуктивности, такие как резисторы и конденсаторы, являются основными пассивными компонентами, используемыми в электрических цепях. Индукторы показаны в виде серии кривых, представляющих их основную конструкцию. Индукторы проще всего сконструировать из обмотки проволоки вокруг некоторого материала сердечника.

Обозначение индуктора

Катушки индуктивности

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «L».

Диод

Диоды – это электрические компоненты, которые пропускают ток только в одном направлении. Существует множество типов диодов. Например, стабилитроны не пропускают обратный ток, пока обратное напряжение диода не достигнет определенного заданного уровня.

Обозначение диода

Светоизлучающий диод (LED) излучает свет, когда через него течет ток в прямом направлении. Диод Шоттки устроен так, что он работает так же, как простой диод, но переключается быстрее и имеет меньшее прямое падение напряжения.

Символ стабилитрона

Обозначение диода Шоттки

Диоды обозначены на схемах позиционным обозначением (REFDES), начинающимся с буквы «D» или «Z» (для стабилитронов).«LED» иногда используют для светодиодов.

Транзистор
Транзисторы

похожи на электрические переключатели, в которых напряжение смещения или ток в одной области включает ток, протекающий через основные клеммы.

Существует два основных типа транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).

Проще говоря, BJT – это устройства с управлением по току, в которых ток, протекающий через штырь базы или выходящий из нее, включает больший ток через штыри коллектора и эмиттера.

BJT символы

Также упрощенно, полевые транзисторы представляют собой устройства, управляемые напряжением, где напряжение на выводе затвора включает ток через выводы стока и истока. Для транзисторов используется множество чертежей, на которых указано различное количество деталей внутренних компонентов.

Символы полевого транзистора

Транзисторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «Q».«M» иногда используется для устройств MOSFET. «Т» иногда используется неправильно, и этого следует избегать.

Для получения более подробной информации о BJT, FET, IGBT и многом другом, ознакомьтесь с нашей статьей, посвященной схематическим обозначениям для транзисторов.

Переменные резисторы

Переменные резисторы, такие как потенциометры и реостаты, представляют собой резисторы, которые изменяют сопротивление в соответствии с настройками пользователя. Двухконтактные переменные резисторы показаны в виде резистора со стрелкой поперек него, а потенциометры (с тремя выводами) добавляют стрелку, указывающую сбоку от символа резистора.

Обозначение реостата

Символ потенциометра

Резисторы, зависящие от напряжения, или варисторы, похожи на переменный резистор, но с линией поперек него вместо стрелки.

Обозначение варистора

Специальные резисторы на схемах чаще всего обозначаются условным обозначением (REFDES), начинающимся с буквы «R», хотя иногда используются «VR» (для переменных резисторов или потенциометров) или «RV» (для варисторов).

Интегральная схема

Интегральные схемы – это целые электрические схемы, созданные из полупроводникового материала в одном корпусе. Интегральные схемы – это процессоры, память, операционные усилители и регуляторы напряжения, которые выглядят как квадраты или прямоугольники, установленные на печатной плате.

Интегральные схемы показаны в виде коробки или набора коробок с маркированными контактами для питания, входов и выходов.

Интегральные схемы обозначаются на схемах условным обозначением (REFDES), начинающимся с буквы «U», а иногда и с букв «IC».

Кристалл / осциллятор / резонатор

Все три из них обеспечивают стабильную выходную частоту при включении в цепь. Кристаллы, генераторы и резонаторы – это не одно и то же, они имеют разные характеристики и требуют разных схем поддержки, но их основные цели схожи.

Хрустальный символ

Кристаллы и генераторы обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «Y».Иногда используется «X»; это письмо также является универсальным для компонентов, не относящихся к другой категории.

Цифровые логические ворота

Существует много цифровых логических вентилей – больше, чем можно подробно описать в этом обзоре. Полное объяснение цифровой логики и множества различных типов логических вентилей см. На странице учебника AAC о цифровых сигналах и вентилях.

Логические вентили

продаются как интегральные схемы, поэтому на схемах они обозначены позиционным обозначением (REFDES), начинающимся с буквы «U» или иногда «IC», как и другие интегральные схемы.

Операционный усилитель

Операционные усилители и компараторы имеют множество полезных функций в схемах, и на схемах они показаны в виде боковых треугольников с входом (+) и (-), а иногда и с выводами питания и заземления.

Символ операционного усилителя

Схема операционного усилителя с двумя источниками питания (слева) и конфигурация с одним источником питания (справа) с указанием контактов питания и заземления

Операционные усилители и компараторы обозначены на схемах позиционными обозначениями (REFDES), начинающимися с буквы «U» или иногда «IC», как и другие интегральные схемы.Кроме того, операционные усилители иногда используют REFDES, начинающиеся с «OP».

Разъем / Заголовок

Разъемы и заголовки – это места, где другие цепи или кабели подключаются к цепи, описанной схемой. Существует большое разнообразие типов и ориентаций соединителей, и они также представлены на схемах с помощью большого количества символов.

Иногда схематические символы представляют собой простые прямоугольники, а иногда схематические символы представляют собой рисунки, которые выглядят как физические соединители, которые они представляют.

Символы разъемов

Разъемы и заголовки чаще всего обозначаются на схемах условным обозначением (REFDES), начинающимся с буквы «J» или буквы «P».

Переключатель
Переключатели

обычно обозначаются схематическим символом, который представляет тип переключателя и количество полюсов / ходов и штырей.

Символы переключения

Коммутаторы

обозначены на схемах условным обозначением (REFDES), начинающимся с букв «SW».

Аккумулятор

Батареи показаны схематическим обозначением, состоящим из длинной и короткой линий, которые вместе представляют один элемент батареи. На практике большинство схематических символов батареи изображаются как две ячейки, независимо от того, сколько ячеек фактически содержит батарея.

Символ батареи

Батареи обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «B».

Трансформатор

Трансформаторы обычно обозначаются схематическим обозначением, которое символически представляет принцип работы трансформатора. Это похоже на две параллельные катушки индуктивности, между которыми есть что-то среднее, обычно линия или две.

Трансформаторы

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «T».

Предохранитель / PTC

Предохранители или PTC ( p ositive t em temperature c oefficient device) – это устройства защиты цепей, которые «перегорают» (перегорают) или резко увеличивают сопротивление в случае протекания через них слишком большого тока.

Предохранители

обычно показаны на схемах с символом, который выглядит как боковая буква «S».

Обозначение предохранителя

Предохранители

обозначены на схемах условным обозначением (REFDES), начинающимся с буквы «F».

PTC обычно отображаются в виде прямоугольника с линией, проходящей через него по диагонали; тот же символ используется для термисторов PTC.

Символы PTC

PTC обозначены на схемах ссылочным обозначением (REFDES), начинающимся с буквы «R», «VR» или «PTC».

Некомпонентные символы

На схемах есть и другие символы, которые не представляют физические компоненты. Некоторые символы представляют собой физические структуры, которые должны быть встроены в саму печатную плату, например контрольные точки или монтажные отверстия.

Символы контрольных точек

Другие условные обозначения обозначают шины питания или заземления.

Обозначение заземления

Еще другие условные обозначения используются для соединения между разными страницами схемы, с метками, указывающими, частью какой электрической сети они являются.

Некомпонентные символы часто не имеют позиционных обозначений. Некоторые из них будут иметь условные обозначения (REFDES), начинающиеся с букв «TP» (контрольные точки), «MH» (монтажные отверстия) или «X» (общий универсальный код для типов, не указанных в иных случаях).

Для получения более подробной информации о некоторых символах, обсуждаемых в этой статье, ознакомьтесь с трактовкой Робертом Кеймом схематических символов для пассивных компонентов.

Сети

На языке схем и печатных плат цепи – это электрические соединения, проводимые печатной платой.Цепи выглядят как линии, соединяющие выводы символа компонента с другими выводами или цепями.

При рисовании схем рекомендуется маркировать важные цепи, чтобы их можно было четко идентифицировать при размещении на печатной плате. Если две цепи не нарисованы как соединенные, но имеют одинаковую метку, они будут рассматриваться как физически соединенные программным обеспечением захвата схемы, так что при экспорте проекта в инструмент компоновки печатной платы они будут одной и той же цепью.

Изображение схемы с двумя цепями, которые не нарисованы соединенными, но помечены одинаково, поэтому физически соединены, в данном случае “STEPM_R_EN”

Рекомендуется использовать специальные символы для отображения сетевых подключений к другим страницам или частям той же страницы, когда они не отображаются как подключенные.Это внутристраничные (внутри страницы) или межстраничные (между страницами) символы соединения.

Межстраничные соединители

Для удобства чтения хорошие схемы избегают перекрытия цепей везде, где это возможно, но это не всегда возможно. Когда две цепи соединяются, большинство инструментов для рисования схем добавляют точку или круг соединения. Отсутствие точки соединения означает, что две цепи не соединены, а просто проходят друг над другом. Более продвинутые инструменты схематического рисования показывают перемычку, чтобы было еще более ясно, что две цепи не связаны.

Связанные сети

Несоединенные сети (с проводным переходом)

Важные выходные данные: список цепей и спецификация

Список соединений

Самый важный вывод схемы – список соединений. Этот файл или набор файлов является основным входом для программного обеспечения компоновки печатной платы, и он используется разработчиками компоновки для управления размещением и разводкой всех схем на плате.

Форматы списка цепей

различаются, но обычно они определяют в довольно простой форме каждый компонент или символ в схеме и каждое соединение (сеть) между ними.Если вы назвали свои цепи в схеме, эти имена цепей появятся в списке соединений как точки соединения между частями. Если вы не назвали цепь, средство вывода списка цепей сгенерирует для нее имя.

Обычно список соединений будет содержать несколько таблиц: в одной перечислены части и их имена, в другой перечислены имена цепей и их соединения и т. Д. Списки соединений также могут использоваться для включения дополнительной информации, необходимой для моделирования цепей SPICE. См. Здесь несколько простых примеров вывода списка соединений.

Спецификация (Спецификация)

Другой важный вывод схемы – это спецификация или спецификация. Результатом спецификации является электронная таблица или база данных, которая сопоставляет все REFDES в схеме с физическим компонентом и номером детали.

Существует множество форматов вывода спецификации, в зависимости от сложности вашей схемы и базы данных деталей, а также от того, какой тип вывода вам нужен. В самом простом случае у вас может быть список условных обозначений, на каждом из которых указан номер детали производителя.

Снимок экрана с выходными данными OrCAD BOM

Более сложные спецификации будут включать внутренние номера деталей вашей компании, количество деталей, используемых в нескольких местах, несколько номеров деталей поставщиков, которые могут использоваться для данной детали, и т. Д. Спецификация содержит информацию, необходимую для создания схемы и ее фактического построения. в сборку.


Схемы – это гораздо больше, чем просто эти ключевые вещи.Целые отрасли и карьеры строятся вокруг схематического проектирования и сборки печатных плат. Но понимание этих пяти вещей поможет вам лучше понять самые важные основы построения схем.

Вы просматриваете схему и нуждаетесь в помощи по чему-то, не описанному в этой статье? Расскажите нам об этом в комментариях, и мы можем составить статью, чтобы помочь!

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *