Длина анкеровки – , , 63.13330.2012

alexxlab | 27.06.2020 | 0 | Разное

Содержание

Анкеровка арматуры в бетоне: таблица, расчет, длина

Анкеровка арматуры в бетоне (таблица, основные стандарты и нормативы будут указаны ниже) представляет собой запуск металлических стержней за сечение на длину отрезка передачи усилий с прутков на железобетон. То есть, это закрепление концов армировочных прутьев в толще бетона.

Анкеровка является очень важным процессом, от правильности которого зависят качество, прочность, способность выдерживать различные нагрузки железобетонного монолита. Арматура призвана усиливать бетонную конструкцию, воспринимать и брать на себя нагрузки, делать монолит долговечным, надежным и цельным. Элементы арматуры бывают жесткими и гибкими, обычно выполняются из стали или композитных материалов.

Размер и тип крепления во многом определяется характеристиками и условиями эксплуатации определенных участков, где нагрузка передается с металлических прутьев на материал. Способов выполнения анкеровки существует несколько, предварительно важно правильно провести расчеты, определив такие ключевые параметры, как метод закрепления, длина анкеровки арматуры и т.д.

Разновидности анкеруемой арматуры

Классификация арматуры довольно обширна, металлические стержни выбирают по нескольким параметрам, расчет учитывает максимум нюансов. По условиям работы арматура бывает напрягаемой и ненапрягаемой. По расположению в ЖБ конструкции может быть поперечной и продольной.

Поперечная арматура не позволяет появляться наклонным трещинам, препятствует скалывающим напряжениям, которые появляются возле бетонных опор. Продольная арматура не дает распространяться вертикальным трещинам в определенных продольных зонах, где сосредоточены в бетоне растягивающие напряжения.

Классификация арматуры по назначению:
  • Распределительная – закрепляет каркас методом сварки в положении, указанном в проекте
  • Рабочая – воспринимает усилия, появляющиеся под воздействием тяжести конструкции, внешних нагрузок и т.д.
  • Монтажная – повышает жесткость арматурного каркаса при сборке и транспортировке на объект
  • Анкерная – предназначена для крепления к конструкции разного типа закладных деталей

В зависимости от диаметра стержня и назначения металлических деталей арматура может быть канатной, стержневой, проволочной (сечением до 10 миллиметров) и т.д.

Для создания качественного арматурного каркаса используются только специальные профильные прутки. Чем более прочным будет бетон и подходящей по условиям эксплуатации арматура, тем надежнее и прочнее получится железобетонная конструкция.

Базовая длина анкеровки

Прямая анкеровка и с лапками применяется лишь с арматурой периодического профиля. Гладкие растянутые прутья крепят петлями, крюками, приваренными поперечными элементами, анкерными устройствами. Крюки, петли и лапки мастера не советуют использовать для сжатой арматуры (кроме гладкой, которая иногда подвергается растяжению).

Рассчитывая длину анкеровки арматуры, учитывают класс стали, профиль, сечение, прочность бетона, напряженное состояние монолита в зоне анкеровки, способ анкеровки и конструктивные особенности.

Формула для расчета базовой (оптимальной) длины анкеровки, призванной передавать усилия в стали с полным расчетным показателем сопротивления Rs на бетон:

Тут:
  • Asи us – площадь поперечного диаметра стержня и периметр сечения, которые высчитывают по номинальному диаметру
  • Rbond – сопротивление по расчетам сцепления арматурных прутьев с бетоном, которое принимается равномерно по всей длине анкеровки и высчитывается по формуле Rbondη1η2Rbt

η1 – коэффициент, который зависит от вида поверхности арматуры:
  • Гладкая (класс А240) – 1.5
  • Периодический профиль, холоднодеформируемая арматура (класс А500) – 2.0
  • Периодический профиль, термомеханически упрочненная и горячекатаная (классы А300-500) – 2.5
η2 – коэффициент, который зависит от диаметра арматуры:
  • Диаметр меньше или равно 32 миллиметрам – 1.0
  • Сечение 36 и 40 миллиметров – 0.9
Расчетная длина анкеровки стержней высчитывается по формуле:

Тут:
  • lo,anбазовая длина анкеровки
  • As,cal, As,efплощади поперечного диаметра арматуры
  • а – коэффициент влияния на показатель напряженного состояния бетона, прутьев, конструктивных особенностей изделия в зоне анкеровки

Определение коэффициента а:
  • Прутья периодического профиля, прямые концы, а также гладкая арматура с петлями/крюками (без устройств для растянутых прутьев) – 1.0
  • Сжатые стержни – 0.75

Длина анкеровки может быть уменьшена в соответствии с диаметром и числом поперечной арматуры, а также величиной поперечного обжатия бетона там, где осуществляется анкеровка.

Способы анкеровки

Методов выполнения анкеровки существует несколько. Могут использоваться клеевое и сварочное соединение, прямая анкеровка и с отгибом, разные лапки, крюки, петли и т.д. Длина анкеровки рассчитывается на этапе проектирования и соблюдается точно. Арматура должна быть со всех сторон защищена достаточным слоем бетонного монолита.

Несколько нюансов при выполнении анкеровки:
  • Если сечение прутьев больше 16 миллиметров, к стандартному добавляют поперечное армирование.
  • Когда используется гнутая арматура, особое внимание уделяют величине загиба прутьев, чтобы бетон в месте загиба не раскалывался.
  • Анкеровка загибом с лапками и прямой метод актуальны лишь для периодического профиля.
  • Гладкие прутья анкеруют специальными приспособлениями, приваренными поперечными прутьями, крюками/петлями.
  • Сжатая арматура – запрещено анкеровать загибом (за исключением применения гладких прутьев).

Прямая

Данный тип анкеровки используется при условии позволения геометрии конструкции и в защитном слое бетона. Подходит исключительно для периодического профиля. Несущая способность бетона может быть увеличена благодаря наличию дополнительного обжатия камня от внешних силовых факторов там, где выполнена анкеровка. Таким образом эффективность сцепления повышается.

При использовании прямой анкеровки продольное усилие старается надколоть монолит в защитном слое бетона из-за работы касательных напряжений. Длина анкеровки зависит от множества факторов, но в защитном слое сцепление не стоит делать без поперечной арматуры или дополнительных мероприятий, которые исключат скалывание слоя защиты бетонной конструкции и воспримут касательные напряжения.

Зона скола слоя защиты может быть увеличена путем установки по верху продольной перпендикулярной арматуры. Диаметр/шаг хомутов в месте прямой анкеровки в слое защиты определяются в соответствии с типом диаметра и хомута арматуры продольной.

Если речь идет об элементах из мелкозернистого бетона А, расчетную длину анкеровки увеличивают на: 5 ds  для сжатого бетона и 10 ds для растянутого. Длина прямой анкеровки иногда может быть уменьшена в соответствии с параметрами поперечной арматуры и величиной поперечного обжатия бетона, но максимум на 30%. Фактическая длина анкеровки берется минимум 15 ds и 200 миллиметров.

Отгибом

Гибка арматурных прутьев осуществляется в условиях завода либо на объекте (вручную, гибочным роликом сменного типа или гибочным станком). Гнут без нагрева. Анкеровку растянутых прутьев выполняют крюком (отгиб на 45-135 градусов) либо петлей (отгиб на 180 градусов). Крюки можно размещать вертикально или горизонтально.

При применении данного метода анкеровки растягивающее продольное усилие старается разогнуть загнутые концы стержней и смять слой бетона по радиусу отгиба. Там, где может случиться разгиб, устанавливают дополнительные поперечные пруты.

Выполняя анкеровку с отгибом на угол 90 градусов, нужно сделать так, чтобы длина прямого участка кончика была минимум 12 ds, при 180 градусов – минимум 70 миллиметров и 4ds. Прямые участки захода прутка от грани начала перехода усилия с металла на бетон до места начала отгиба равны минимум 3 ds. Если же прямой участок равен менее 10 ds, анкеровка в расчете сечения оправки не учитывается.

Длину расчетную при отгибе определяют стандартным методом, используя значение базовой длины анкеровки. Можно уменьшать значение, но максимум на 30%. При этом, общая длина анкеровки ни в каких расчетах не может быть меньше расчетной.

Отгибая конец поперечной арматуры под углом 135 градусов, оставляют прямой участок минимум 75 миллиметров и 6 dsw, для отгиба на 90 градусов – минимум 8 dsw. Поперечная арматура требует надежного отгиба крюка на 135 миллиметров. Диаметр отгиба зависит от минимального диаметра оправки и продольного прутка. Отгиб хомута размещают в сжатой зоне бетонной конструкции (сечения элемента).

Минимальный диаметр оправки для отгиба (крюка) прутка поперечного для периодического профиля составляет минимум 3 ds, для арматуры гладкой – минимум 2.5 ds.

Минимальный диаметр оправки зависит от диаметра стержня:
  • Для периодического профиля – 5 dsпри ds менее 20 миллиметров и 8 ds при d
    s
     более 20 миллиметров.
  • Гладкая арматура – 2.5 dsпри ds меньше 20 миллиметров и 4 ds при ds больше 20 миллиметров.

Минимальный диаметр загиба крюков и петлей в свету: 6 ds при ds меньше 16 миллиметров и 8 ds при ds больше 16 миллиметров.

Минимальный диаметр оправки (когда армируется продольная рабочая арматура) для прутков периодического профиля (при отсутствии прямого участка анкеровки) назначается от 6-7 ds при ds меньше 20 миллиметров и 9 ds при ds больше 20 миллиметров.

Метод анкеровки определяется проектировщиком. В ситуациях, когда расчетный диаметр отгиба (в работе с продольной арматурой) невозможно геометрически расположить в сечении конструкции, диаметр или число арматуры увеличивают. Либо меняют метод анкеровки.

Клеевой

Данный метод предполагает некоторые особенности, которые нужно изучить до начала работ.

Как выполнять клеевую анкеровку:
  • До нанесения клея сталь выправляется на специальном станке, чистится от ржавчины и грязи, обезжиривается.
  • Компоненты для приготовления клеевого состава взвешивают, отмеряют и измельчают в вибромельнице при температуре максимум 80 градусов. Клей хранится не больше 3 лет в проветриваемом сухом помещении.
  • Состав на прутки наносится в специальной установке. Клей образует пленку толщиной до 2 миллиметров над поверхностью арматуры. Далее на слой роликами наносятся волнообразные рифления с шагом 6-8 миллиметров и высотой волн 2 миллиметра. Этот этап предполагает нагрев прутков до 100 градусов и выполнение прямо перед закладкой в опалубочную конструкцию.
  • После установки в опалубку стержней нужно сделать так, чтобы они не соприкасались с другими элементами.

Следует помнить, что стержни с нанесенным на них клеем нужно защитить от солнца и влаги, транспортировать в защитной упаковке. Если пленка клея повреждается, ее восстанавливают нанесением еще одного слоя мягкого клея (при температуре около 100 градусов или после взаимодействия с ацетоном).

Сварные соединения

Контактной (стыковой или точечной) сваркой соединяются арматура периодического профиля или гладкая горячекатаного типа, закладные детали, арматурная проволока. Иногда используют ручную или дуговую сварку, но только в работе с арматурой класса А500.

Способы и типы сварки прутьев и деталей выбирают, исходя из особенностей эксплуатации конструкции, технологических возможностей, параметров свариваемости стали. Если выполняются крестообразные соединения с применением контактно-точечной сварки, следят за должным обеспечением восприятия сетками напряжения (не должно быть меньше расчетного сопротивления). Обычно такие соединения используют с целью обеспечения нужного расположения прутков друг к другу при транспортировке и укладке в бетонную конструкцию.

В условиях завода создают арматурные каркасы, сетки стыковой или контактно-точечной сваркой. Когда делают закладные детали, используют сварку под флюсом, применяемую для тавровых соединений. А вот нахлесточные можно делать контактно-рельефной сваркой.

При выполнении монтажа готовых элементов используют полуавтоматическую сварку, которая позволяет обеспечить нужный уровень качества и жесткости соединений.

Соединение внахлест

Стыки ненапрягаемой арматуры можно стыковать внахлест при вязке/стыковке сеток и каркасов, но диаметр не должен быть больше 36 миллиметров. Стыки делают в растянутых зонах элементов изгиба, в местах полного использования стали.

Важно, чтобы стыки элементов растянутой/сжатой арматуры, сеток имели в рабочем направлении перехлест минимум параметр Lan. Стыки вязаных и сварных конструкций располагаются вразбежку. Без разбежки можно стыковать при выполнении конструктивного армирования и там, где арматура используется максимум на 50%.

Из гладкой стали А1 стыки внахлест арматуры в бетоне делают так, чтобы в месте стыкуемых сеток по всей длине нахлеста находилось минимум 2 поперечных прутка. Так можно стыковать внахлест каркасы, где арматура находится в одностороннем порядке.

Места стыков сеток в нерабочем расположении делают внахлест между рабочими крайними прутками. В процессе вязки перехлест изделий должен находиться в местах минимальных крутящих/изгибающих моментов. Если так сделать не получается, значение нахлеста устанавливают равным минимум 90 диаметрам арматуры. Часто крестообразный перехлест усиливают специальными хомутами, вязальной проволокой.

Длина перехлеста зависит от сечения прутков. Обычно в работе используют рифленые стержни А3, поэтому длину нахлеста арматуры в бетоне можно рассчитать.

Такие значения указаны в СНиП:
  • Арматура 10 – 300 миллиметров
  • Арматура 12 – 380 миллиметров
  • Арматура 16 – 480 миллиметров
  • Арматура 18 – 580 миллиметров
  • Арматура 22 – 680 миллиметров
  • Арматура 25 – 760 миллиметров

Ниже указаны показатели для анкеровки разной арматуры:

Изучив все правила и нормативы, сделать анкеровку арматуры в бетоне можно самостоятельно. Главное – соблюдать технологию и верно выполнить предварительные расчеты.

1beton.info

Анкеровка арматуры в бетоне таблица

Анкеровка арматуры считается одной из важнейших строительных операций, которая подразумевает крепление армирующих изделий за определенное сечение. Стоит отметить, что размер закрепления во многом обусловлен характеристикой участка передачи нагрузки с металлических стержней на основной материал. В этой статье мы рассмотрим все существующие способы проведения анкеровки, дадим советы относительно того, как должен проводиться расчет на этапе проектирования, а также раскроем некоторые секреты, которые значительно упростят строительные работы.

Анкеровка арматуры: возможные варианты

На сегодняшний день известно несколько вариантов проведения данной операции. Именно поэтому анкеровка бывает следующих видов:

  • Для прямых изделий создаются выступы профиля на необходимой длине стержня;
  • С использованием специальных крепежей, петель, а также лапок.
  • С применением различных поперечных изделий из металла;
  • Используя широкопрофильные приспособления, которые монтируются по краям арматуры.
Нахлест арматуры при вязке

Чтобы провести качественное крепление прямых элементов в бетоне, используется только специализированная профильная арматура. Необходимо учитывать тот факт, что качественные характеристики процесса сцепления основного материала и анкеровки повышаются при увеличении прочностных параметров бетонного раствора. Кроме того, надежность крепления определяется наличием поперечного сжатия. Согласно нормативно-технической документации, данную операцию можно приводить только для прямых арматурных изделий. Если вы решите отдать предпочтение монтажу лапок, то их установку важно проводить на покрытие профильных стержней.Анкеровка путем отгиба

При использовании петель важно учитывать фактор соблюдения одинакового расстояния между каждым крепежом. Если пренебречь этим правилом, то в большинстве случаев степень сцепления на порядок снизится.

Если случается так, что анкеровка с помощью петель, крюков, а также способов непосредственного сцепления напрямую не дает ожидаемой прочности конструкции, необходимо задействовать дополнительные приспособления, которые монтируются на отдельные армирующие элементы посредством приварки.

Определяем длину арматурных элементов правильно

Чтобы расчет анкеровки был произведен правильно, важно учитывать целый ряд характеристик и показателей. Пожалуй, самым важным параметром является стержневая длина арматуры, которая будет непосредственно в железобетоне. Ее необходимо рассчитывать с особой внимательностью, и без познаний в строительной отрасли вряд ли удастся это сделать. Длина заделки определяется еще на этапе проектировки, учитывая специальные графики. Эти схемы представляют собой данные о классе арматуры, а также параметры нагрузок на армирующие прутки. Таким же способом применяются и 2 другие чертежа. Человеку, который далек от области проектировки конструкций из железобетона, описанная выше технология может быть слишком сложной и замысловатой. А вот профессиональным строителям удастся правильно провести расчет длины арматурных составляющих за несколько минут.Заглубление стержня в бетон

Внимание! Если случилось так, что рекомендованную длину стержней на конкретном объекте использовать не удается, необходимо позаботиться о монтировке стержней на торцы посредством привлечения дополнительного инструментария и оборудования. Они своего рода будут играть роль анкера, внешне больше напоминая крепежи, пластины, уголки.

Радиус загиба стержней

Комплексные расчеты: все, что нужно знать

Для того, чтобы расчет был качественным и без каких-либо недочетов, важно учесть следующие параметры:

  • прочностные показатели железобетонной конструкции;
  • способ осуществления анкеровки;
  • уровень нагрузки на основание;
  • уровень заглубления элементов;
  • профиль арматурных элементов;
  • сечение применяемых перегородок.
Непосредственное выполнение анкеровки арматуры по бетону


Если вы хотите упростить процесс расчетов некоторых характеристик, обратитесь к таблице параметров. Кроме того, сегодня существует различное программное обеспечение, помогающее сделать это действительно быстро. Но, увы, такие утилиты не найти в свободном доступе, потому что разработчики подают свой продукт исключительно на дисках. Без навыков и познаний, разобраться в интерфейсе не получится, поэтому, все-таки, доверьте это дело специалистам.Проверка данных расчета длины

Помните, что даже опытные проектировщики пользуются данным методом только на предварительном этапе . Окончательные показатели рассчитываются только после комплексного анализа глубины закладки всех элементов, а также других характеристик, необходимых для проведения данной операции.

Таблица расчета несущей способности

Опыт практического применения полного комплекса вышеуказанных рекомендаций показывает, что данные расчеты являются стопроцентной гарантией получение максимально точных и эффективных результатов строительных мероприятий. Также важен и формульный расчет на этапе проектировании капитальных строений и конструкций, которые создаются с использованием железобетонных элементов. Конечно же, в этой статье мы не стали сильно загружать вас точными формулами, символикой и непонятными чертежами, потому что неопытному человеку они, в силу весьма понятных причин, будут тяжелы для восприятия. Как итог, можно отметить только то, что исключительно инженерные познания и ориентация в специфике проведения строительных работ, даст вам уверенность в том, что анкеровка арматуры в бетоне будет выполнена как следует.Завершающий этап работ по анкеровке арматуры

И напоследок стоит отметить одну немаловажную рекомендацию. Известно, что длина анкеровки арматуры является важнейшим критерием, поэтому, если у вас возникают сомнения в правильности ее расчетов, то обратитесь за консультацией не просто к проектировщику, а в соответствующую строительную компанию, ведь ее специалисты выдают не просто расчетные бумаги, но и гарантийную документацию.

jsnip.ru

Анкеровка арматуры в бетоне


Анкеровка арматуры (базовая, прямая и с отгибом).

          Базовая длина анкеровки арматуры в бетоне определяется по СП 52-101-2003 п. 8.3.21 или СП 63.13330.2012 п. 10.3.24 и СП 52-102-2004 п. 5.3.2.

            Анкеровка прямого арматурного стержня в бетоне происходит за счет сцепления профиля. Базовую длину анкеровки, необходимую для передачи усилия в арматуре с полным расчетным значением сопротивления Rs на бетон, определяют по формуле:

                        ,

где       As и us - соответственно площадь поперечного сечения анкеруемого стержня арматуры и периметр его сечения, определяемые по номинальному диаметру стержня;

Rbond - расчетное сопротивление сцепления арматуры с бетоном, принимаемое равномерно распределенным по длине анкеровки и определяемое по формуле

,

здесь   Rbt - расчетное сопротивление бетона осевому растяжению;

h3 - коэффициент, учитывающий влияние вида поверхности арматуры.

h4 - коэффициент, учитывающий влияние размера диаметра арматуры, принимаемый равным:

            - для ненапрягаемой арматуры:

h4 =1,0 - при диаметре арматуры ds £32 мм;

h4 =0,9 - при диаметре арматуры 36 и 40 мм;

            - для напрягаемой арматуры:

h4 =1,0.

Откуда можно вывести:  , где ds – диаметр арматуры.

h3 – для ненапрягаемой арматуры

Для гладкой арматуры (АI, А240)

1,5

Для холоднодеформируемой арматуры периодического профиля (В500С, А500Схд)

2,0

Для горячекатаной и термомеханически упрочненной арматуры периодического  профиля (А400С, А500С, А600С)

2,5

Термомеханически упрочненная А500СП (СТО 36554501-005-2006) с эффективным профилем (серповидный четырехсторонний)

2,8

h3 – для напрягаемой арматуры

Для холоднодеформированной арматуры периодического профиля класса Вр1500 диаметром 3 мм и арматурных канатов класса К1500 диаметром 6 мм;

1,7

Для холоднодеформированной арматуры класса Вр диаметром 4 мм и более

1,8

Для арматурных канатов класса Кдиаметром 9 мм и более

2,2

Для горячекатаной и термомеханически упрочненной арматуры периодического  профиля (А400С, А500С, А600С)

2,5

 Прямая анкеровка.

Прямая анкеровка арматуры устраивается в местах, где геометрия конструкции позволяет это сделать, и иногда может располагаться в защитном слое бетона. Прямая анкеровка допускается только для арматуры периодического профиля.

Наличие дополнительного обжатия бетона от внешних силовых факторов в зоне анкеровки увеличивает несущую способность самого бетона, тем самым увеличивается эффективность анкеровки (сцепления).

При прямой анкеровке в защитном слое бетона продольное усилие пытается сколоть защитный слой касательными напряжениями.

Рис. 1. Возможность скалывания защитного слоя бетона при анкеровке.

Наши нормы не оговаривают длину анкеровки в зависимости от расположения стержня в конструкции, поэтому анкеровку в защитном слое бетона не рекомендуется выполнять без наличия поперечной арматуры или каких-то других дополнительных мероприятий (увеличенная длина анкеровки, установка верхней перпендикулярной продольной или поперечной арматуры, увеличение защитного слоя, устройство отгиба  и т.д.), с помощью которых будут восприниматься касательные напряжения и исключено скалывание защитного слоя бетона.

Установка по верху перпендикулярной продольной арматуры в зоне анкеровки увеличивает зону скола защитного слоя бетона, но при этом ее применение по сравнению с установкой поперечной арматуры менее эффективно.

Шаг и диаметр хомутов в зоне прямой анкеровки в защитном слое бетона определяется в зависимости от типа хомута и диаметра продольной арматуры.

Расчетная длина прямой анкеровки арматуры в бетоне определяется

 (СП 52-101-2003 п. 8.3.22 или СП 63.13330.2012 п. 10.3.25):

Для элементов из мелкозернистого бетона группы А требуемая расчетная величина длины анкеровки должна быть увеличена на 10ds для растянутого бетона и на 5ds – для сжатого.

Допускается уменьшать длину прямой анкеровки стержней ненапрягаемой арматуры в зависимости от количества и диаметра поперечной арматуры в зоне анкеровки, вида дополнительных анкерующих устройств (приварка поперечной арматуры) и величины поперечного обжатия бетона в зоне анкеровки (например, от опорной реакции), но не более чем на 30%.

В любом случае фактическую длину анкеровки принимают не менее 15ds и 200 мм, а также не менее 0,3×lo,аn. 

Расчетная длина прямой анкеровки растянутой (не напрягаемой) арматуры при k=1 класса А400:

Класс бетона на сжатие

Lан/ds

Длина анкеровки (мм) в зависимости от диаметра арматуры

6

8

10

12

14

16

18

20

22

25

28

32

В15

47,32

284

379

473

568

663

757

852

947

1041

1183

1325

1515

В20

39,41

237

315

394

473

552

631

710

788

867

985

1104

1262

В25

33,77

203

270

338

405

473

540

608

676

743

844

946

1081

В30

30,84

200

247

309

370

432

494

555

617

679

771

864

987

В35

27,28

200

218

273

328

382

437

491

546

600

682

764

873

Расчетная длина прямой анкеровки растянутой (не напрягаемой) арматуры при k=1 класса А500:

Класс бетона на сжатие

Lан/ds

vest-beton.ru

3.8 Определение длины анкеровки и нахлеста обрываемых стержней

Сечения, в которых обрываемые стержни не требуются по расчету, проще всего определить графически. Для этого необходимо на объемлющую эпюру моментов наложить эпюру арматуры. Точки, в которых ординаты эпюр будут общими (точки пересечения), определят места теоретического обрыва стержней в пролете. Для обеспечения прочности наклонных сечений второстепенной балки по изгибающим моментам обрываемые в пролете стержни продольной арматуры необходимо завести за точку теоретического обрыва на расстояние не менее:

(3.21)

где – коэффициенты, характеризующие условия анкеровки, определяются по таблице 11.6[1];

–базовая длина анкеровки, определяется с помощью таблицы 14;

–площадь продольной арматуры, требуемая по расчету;

–принятая площадь продольной арматуры;

–минимальная длина анкеровки, принимается равной наибольшему значению из величин: для растянутых стержней идля сжатых стержней.

В связи с тем, что произведение изменяется в пределах 0,7-1,0 (см. п. 11.2.32[2]), а величинав условиях обрыва арматуры второстепенной балки принимается равной 0,7, то в курсовом проекте с целью уменьшения расчетной части разрешается принимать

Кроме того, общая длина запуска стержня за точку теоретического обрыва должна быть не менее и, где– высота второстепенной балки.

Анкеровка стержней продольной арматуры на свободной опоре осуществляется путем заведения за внутреннюю грань опоры на длину не менее:

в элементах, где арматура ставится на восприятие поперечной силы конструктивно;

–в элементах, где поперечная арматура ставится по расчету, а до опоры доводится не менее ⅔ сечения арматуры, определенной по наибольшему моменту в пролете;

–то же, если до опоры доводится не менее ⅓ сечения арматуры.

Для обеспечения анкеровки обрываемой арматуры в сжатой зоне (нижняя арматура сжатой зоны на промежуточных опорах второстепенной балки) длина заводимых стержней за грань опоры определяется по формуле (3.21), принимая при этом

Стыкуемые в пролетах стержни (стержни верхней продольной арматуры второстепенной балки) необходимо завести друг за друга на величину нахлеста равную длине анкеровки большего диаметра стыкуемых стержней. Длина анкеровки определяется по выражению (3.21).

Анкеровка растянутой арматуры:

Опора В справа и слева

В сечении обрываются стержни классаS500. Требуемая площадь сечения арматуры , принятая площадь сечения арматурытаблице 14[2]Длина анкеровки обрываемых стержней в соответствии с формулой 3.21:

Величины остальных параметров составляют:

Оканчательно принимаем

Опора С

В сечении обрываются стержни классаS500. Требуемая площадь сечения арматуры , принятая площадь сечения арматурытаблице 14[2]Длина анкеровки обрываемых стержней в соответствии с формулой 3.21:

Величины остальных параметров составляют:

Оканчательно принимаем

4 Расчет и конструирование колонны

4.1 Нагрузки, действующие на колонну

Колонна воспринимает продольную силу от постоянных и временных длительных нагрузок и продольную силу от кратковременных нагрузок. К постоянным относят вес конструкции перекрытия, перекрытия вышележащих этажей, покрытие и собственный вес колонны.

Вычисляем продольную силу от постоянных нагрузок (от собственного веса конструкции перекрытий и покрытий):

(4.1)

где - расчетная постоянная нагрузка, действующая наплиты;

(4.2)

;

м – пролет второстепенных балок;

м – пролет главных балок;

м – ширина главной балки;

м – высота главной балки;

м – принятая толщина плиты перекрытия;

–средняя плотность бетона;

–коэффициент надежности по нагрузке;

м – ширина второстепенной балки;

м –высота второстепенной балки;

–количество второстепенных балок, расположенных в грузовой площади ;

м – высота этажа;

- количество этажей.

Все данные подставляем в формулу (4.1) и находим значение :

Продольная сила от длительной нагрузки на перекрытие:

(4.3)

где - нормативная временная нагрузка на перекрытие;

- коэффициент по надежности для временной нагрузки.

Подставляем данные в формулу (4.3) и находим значение :

.

Продольная сила от кратковременной нагрузки на перекрытие:

(4.4)

Подставляя необходимые данные в формулу (4.4), находим значение :

.

Продольная сила от снеговой нагрузки:

(4.5)

где - нормативное значение снеговой нагрузки, принимается в зависимости от района строительства.

Подставляя необходимые данные в формулу (4.5), находим значение :

.

Полная продольная сила:

(4.6)

.

Высота колонны составит:

lcolэ=3400мм.

Расчетная длина колонны равна:

(4.7)

м.

Расчетная схема колонны представляет собой балку, защемленную по обоим концам и нагруженную силой , приложенной по оси колонны (рисунок 4.1).

Рисунок 4.1 – Расчетная схема колонны.

Условную расчетную длину leff определяют с целью учета влияния гибкости по формуле (4.8):

(4.8)

(4.9)

где - l0— расчетная длина колонны;

(,t)—предельное значение коэффициента ползучести для бетона, допускается принимать (,t) = 2,0;

NEd,lt - продольная сила, вызванная действием постоянной расчетной нагрузки.

NEd,lt=NEd1·γG; (4.10)

NEd,lt=500 ·1,35=635 кН

Гибкость квадратной колонны определяется по формуле (4.11):

= l0 /h ≤ 7, (4.11)

=3400/400=8,5 > 7.

В случае, когда l0 /h 7, при определении е0 следует учитывать величину случайного эксцентриситета еа. А также в расчете следует учесть гибкость колонны.

studfiles.net

Анкеровка арматуры в бетоне – рассчет в программе и по таблице + Видео

Анкеровка арматуры в бетоне представляет собой операцию запуска армирующих изделий за определенное сечение. Длина такого закрепления определяется параметрами области передачи усилий с металлических стержней на железобетон.

1 Варианты анкеровки – обзор всех способов

Интересующая нас операция закрепления концов армирующих стержней в бетоне выполняется разными способами. Анкеровку принято подразделять на такие типы:

  1. В виде выступов арматурного профиля (прямые изделия).
  2. С применением лапок и крюков, а также петель.
  3. С использованием дополнительных металлических изделий, которые имеют поперечное направление.
  4. При помощи специальных приспособлений, монтируемых на концах арматуры.

Анкеровка арматуры

Рекомендуем ознакомиться

Закрепление в бетоне прямых элементов выполняется исключительно для строительной арматуры с периодическим профилем. Здесь важно принимать во внимание, что качественные характеристики сцепления железобетона и анкеровки увеличиваются при повышении прочностных показателей бетонной смеси. Также надежность закрепления зависит от того, есть или нет в системе поперечное сжатие. Анкеровочные крюки разрешается применять только для гладких арматурных изделий. А вот лапки устанавливаются исключительно на периодические по профилю стержни.

Если используются петли, необходимо следить за тем, чтобы ее оба конца были растянуты на идентичную величину. В противном случае качество сцепления существенно уменьшается. В ситуациях, когда анкеровка петлями и крюками, а также методом прямого сцепления не обеспечивает достаточной прочности системы бетон-стержень, требуется применять специальные приспособления для отдельных армирующих элементов и практиковать приварку добавочных изделий (поперечных). В последнем случае рекомендуется использовать от 2 до 4 шестимиллиметровых по сечению прутков.

2 Длина заделки арматурных элементов – важнейшая характеристика

Расчет анкеровки производится по целому ряду показателей. Об этом мы поговорим подробнее далее. Самой же важной характеристикой процесса является длина стержневой арматуры, закладываемой в железобетон. Она определяется с особой тщательностью. Длина заделки устанавливается проектировщиками по специальным графикам. В них учитывается класс арматуры и значение напряжения в армирующем прутке.

Проверка высоты установки арматуры

На графике а представлена длина анкеровки для изделий (растянутых) с периодическим профилем, на б – для сжатых либо растянутых, на в – для гладких прутков.

Работать с приведенными графиками сравнительно несложно. Например, длина анкеровки профильного растянутого изделия определяется следующим образом. На оси абсцисс нужно найти показатель растяжения арматуры (допустим, для бетона М300). Провести от него прямую (наклонную) до интересующей нас марки бетонной смеси. На месте пересечения проведенного отрезка с перпендикуляром к оси абсцисс отметить Rа и провести от этой точки параллельную линию. Она должна пересечь ось ординат. Найденная точка – это и есть рекомендованная длина стержня.

Аналогичным образом используются и два других графика. Человеку, далекому от проектирования железобетонных конструкций, описанная методика может показаться чересчур мудреной. Но специалистами строительной сферы длина арматуры при помощи графиков определяется буквально за пару секунд. Важный момент. В случаях, когда рекомендованную длину анкеровки обеспечить на конкретном объекте не представляется возможным, следует монтировать на торцы стержней особые приспособления. Они, по сути, представляют собой анкера, изготовленные в специальной форме – в виде пластин, крючков, уголков, гаек.

3 Расчет анкеровки – комплексный подход к проектированию

Профессиональный расчет операции заделки арматурных стержней основывается на учете таких показателей:

  • прочность железобетона;
  • вариант анкеровки;
  • значение напряжения на участке сцепления;
  • длина и глубина закладки элементов;
  • профиль арматуры;
  • сечение используемых стержней.

Бетон после анкеровки арматурой

Упрощенный расчет некоторых показателей (глубина, длина) позволяет провести специальная таблица. Она может включать в себя разные показатели. Как правило, интересующая нас таблица является частью компьютерных программ, которые дают возможность выполнять комплексный расчет анкеровки. Найти их несложно на специализированных интернет-сайтах. Продается такое программное обеспечение и на дисках. На любительском уровне глубина и длина анкеровки вполне может быть определена описанным выше способом (программы со встроенными в них таблицами).

Профессиональные проектировщики также используют такую методику. Но исключительно для предварительных расчетов. А вот окончательно глубина закладки арматурных элементов и другие показатели операции устанавливаются ими по формулам.

Такой расчет гарантирует получение стопроцентно правильных результатов. Формульный расчет важен при проектировании ответственных сооружений и железобетонных конструкций. В рамках этой статьи мы не будем загружать вас сложными и зачастую непонятными символами. Скажем лишь, что расчет по формулам требует серьезных инженерных знаний специфики строительных работ. Бытовой пользователь таковыми не обладает. Поэтому у него есть всего два варианта:

  • заказать профессиональный расчет в профильных бюро;
  • найти рекомендованные (другими словами – приближенные) значения анкеровки в спецпрограммах и табличках.

Последний совет. Так как анкеровка арматуры считается одним из главных элементов выполнения строительных работ, от которого зависит их качество, желательно заказывать ее расчет в специализированных компаниях. В данном случае лучше заплатить за действительно нужную услугу.

tutmet.ru

3.7. Определение длины анкеровки обрываемых стержней

Сечения, в которых обрываемые стержни не требуются по расчету, можно определить, накладывая огибающую эпюру моментов на эпюру материалов. Точки пересечения обеих эпюр определяют места теоретического обрыва стержней в пролете (рис. 3.12).

Рис. 3.12. Фрагмент эпюры материалов (выделено из рис. 3.13)

В соответствии с требованиями СНБ 5.03.01-02 (п. 11.2.37) обрываемые в пролете стержни следует заводить за точку теоретического обрыва на расстояние не менее

,

где h – высота второстепенной балки;

 – диаметр обрываемого стержня;

lb – базовая длина анкеровки

;

fyd – расчетное сопротивление арматуры;

;

η1 = 0,7 – коэффициент, учитывающий влияние сцепления и положения стержней при бетонировании;

η2 = 1,0 – при ≤ 32 мм;

η3 = 2,5 – для стержней кольцевого периодического профиля;

– расчетное сопротивление бетона растяжению.

Для обеспечения анкеровки стержней продольной арматуры, заводимых за внутреннюю грань свободной опоры (кирпичной стены), длина заводимых стержней должна быть не менее:

– 15 – для элементов, где поперечная арматура устанавливается по расчету, а на опору заводится не менее площади сечения арматуры, определенной по наибольшему изгибающему моменту в пролете (п. 11.2.38 [1]).

Пример 3.4. По результатам расчета балки (пример 3.2) подобрать сечение арматуры (количество и диаметр стержней) и построить эпюру материалов.

Подбирать диаметр и количество стержней рекомендуется одновременно в двух (крайнем и первом среднем) пролетах, имея в виду, что один или два стержня из каждого пролета будут отогнуты и переведены в верхнюю зону для восприятия опорных (отрицательных) моментов.

В каждом пролете подбирается три или четыре стержня таким образом, чтобы два стержня бóльшего диаметра заводились на опоры, а остальные – были отогнуты. Общая площадь сечения всех стержней должна быть близкой к требуемой по расчету.

По данным примера 3.2 для армирования первого пролета балки необходимо сечение арматуры, равное 876 мм2. Это сечение можно получить приняв 220+212, что обеспечивает As =628+226=854 мм2 или 218+216 с площадью As =509+402=917 мм2. Во втором пролете по расчету требуется арматура с As = 550 мм2, что достигается постановкой 216+212 с площадью A= 402 + 226 = 628 мм2 или 414 с площадью As=616 мм2 или 316 с площадью As=603 мм2.

В верхней зоне балки устанавливаются монтажные стержни 212, которые проходят через опоры и стыкуются внахлест в середине второго пролета.

На первой промежуточной опоре (опоре “B”) для восприятия отрицательного опорного момента требуется As=859 мм2, которую обеспечивают два монтажных стержня (212) с As = 226 мм2, два отгибаемых стержня первого пролета (216) с площадью As = 402 мм2 и два стержня 12 с площадью As=226 мм2, отгибаемых из второго пролета.

Таким образом, в первом пролете устанавливается 218 класса S400 и 216 класса S400 с общей площадью As=917 мм2, во втором пролете – 216 класса S400 и 212 класса S400 с общей площадью As=628 мм2. В курсовом проекте допускается принимать в пролете балки армирование из стержней с разницей диаметров 2 мм. Аналогично подбирается количество и диаметр стержней в третьем и других средних пролетах и на опорах (табл. 3.3).

Построение эпюры материалов начинается с вычисления ординат эпюры и выполняется согласно структуре 6 (рис. 3.11).

В первом пролете вычисляется величина MRd,18 – момента, который может воспринять сечение балки, армированное 218 класса S400, и откладывается в виде горизонтальной линии на эпюре моментов. Затем вычисляется MRd,18+16 – момент, воспринимаемый балкой, армированной 218+216 класса S400, и также откладывается на огибающей эпюре моментов.

Вычисляется MRd,12 – отрицательный изгибающий момент, воспринимаемый балкой, армированной двумя монтажными стержнями 212 класса S400, установленными в верхней зоне. Величина MRd,12 изображается прямой, проведенной выше «нулевой» линии. Точка ее пересечения с наклонной линией эпюры моментов крайнего пролета является точкой теоретического обрыва двух стержней 12, отогнутых во втором пролете и заведенных в крайний пролет. Во втором пролете точка пересечения прямой MRd,16 с наклонной линией эпюры моментов второго пролета является точкой теоретического обрыва двух стержней 16, отогнутых в крайнем пролете и заведенных во второй пролет.

Для первого пролета вычисляется ордината эпюры MRd для 412, для второго пролета – MRd для 212+216 и на эпюре над первой промежуточной опорой проводятся две прямые. На расстоянии, большем, чем от грани опоры (главной балки), начинаются отгибы стержней 216 для крайнего пролета и 212 – для второго пролета. Аналогично строится эпюра материалов и для других пролетов (рис. 3.13).

Фактические точки обрыва отогнутых стержней вычисляются согласно п. 3.7.

Рис. 3.13. Эпюра материалов второстепенной балки

studfiles.net

3.7. Определение длины анкеровки обрываемых стержней

Для обеспечения анкеровки стержней продольной арматуры, заводимых за внутреннюю грань свободной опоры (кирпичной стены), длина заводимых стержней должна быть не менее 15 – для элементов, где поперечная арматура устанавливается по расчету, а на опору заводится не менее 1/3 площади сечения арматуры, определенной по наибольшему изгибающему моменту в пролете

(п. 11.2.38 [1]).

Пример 3.4. По результатам расчета балки (пример 3.2) подобрать сечение арматуры (количество и диаметр стержней) и построить эпюру материалов.

Подбирать диаметр и количество стержней рекомендуется одновременно в двух (крайнем и первом среднем) пролетах, имея в виду, что один или два стержня из каждого пролета будут отогнуты и переведены в верхнюю зону для восприятия опорных (отрицательных) моментов.

Вкаждом пролете подбирается три или четыре стержня таким образом, чтобы два стержня бóльшего диаметра заводились на опоры, а остальные – были отогнуты. Общая площадь сечения всех стержней должна быть близкой к требуемой по расчету.

По данным примера 3.2 для армирования первого пролета балки необходимо сечение арматуры, равное 876 мм2. Это сечение можно получить приняв

2 20+2 12, что обеспечивает As = 628 + 226 = 854 мм2 или 2 18+2 16 с площа-

дью As = 509 + 402 = 917 мм2. Во втором пролете по расчету требуется арматура с площадью As = 550 мм2, что достигается постановкой 2 16+2 12 с площадью сечения As = 402 + 226 = 628 мм2 или 4 14 с площадью As = 616 мм2 или 3 16 с площадью As = 603 мм2.

Вверхней зоне балки устанавливаются монтажные стержни 2 12, которые проходят через опоры и стыкуются внахлест в середине второго пролета.

На первой промежуточной опоре (опоре “B”) для восприятия отрицатель-

ного опорного момента требуется площадь сечения арматуры As = 859 мм2, которую обеспечивают два монтажных стержня (2 12) с As = 226 мм2, два отгибаемых стержня первого пролета (2 16) с площадью As = 402 мм2 и два стержня12 с площадью As = 226 мм2, отгибаемых из второго пролета.

Таким образом, в первом пролете устанавливается 2 18 класса S400 и 2 16 класса S400 с общей площадью As = 917 мм2, во втором пролете – 2 16 класса S400 и 2 12 класса S400 с общей площадью As = 628 мм2. В курсовом

studfiles.net

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *