Для чего нужны клапана: Зачем нужны клапаны? — Рамблер/авто

alexxlab | 27.05.1974 | 0 | Разное

Содержание

Зачем нужны клапаны? — Рамблер/авто

Какой самый популярный вид транспорта в мире? Машина? Велосипед? Реактивный самолет? Если бы мне пришлось рисковать предположением, я бы не выбрал ни одну из этих вещей. Вместо этого я бы выбрал скромный трубопровод, для которого потребуется качественная запорная арматура — santexk.com.ua/g37462416-zapornaya-armatura.

Вы можете не заметить трубы, но они тихо и эффективно транспортируют огромное количество жидкости (воды и газа) по всему миру изо дня в день. Для эффективной работы трубам необходим способ регулирования количества жидкости, которое может пройти через них; им также нужен способ полного отключения потока. Это работа, которую выполняют клапаны: они похожи на механические переключатели, которые могут «включать» и «выключать» трубы или увеличивать или уменьшать количество жидкости, протекающей через них. Давайте внимательнее посмотрим, как они работают!

Клапаны обычно изготавливаются из металла или пластика и имеют несколько разных частей. Наружная часть называется седлом и часто имеет цельнометаллический внешний корпус и мягкое внутреннее резиновое или пластиковое уплотнение, поэтому клапан делает затвор абсолютно герметичным. Внутренняя часть клапана, которая открывается и закрывается, называется корпусом и устанавливается в седло, когда клапан закрыт. Там также есть некоторая форма механизма открытия и закрытия клапана-либо ручного рычага или колеса (как в кране) или автоматизированного механизма (как в двигателе автомобиля или парового двигателя).

Это часто критически важно для клапанов, которые отключены, чтобы не допустить утечки жидкости или газа через трубу. За счет этого можно избежать несчастных случаев, взрывов, загрязнения или потери ценных химикатов (даже капающий кран может быть «дорогим», если допускать утечку воды) , Вот почему уплотнение на клапане должно быть совершенно надежным, а клапан, который отключен, должен быть плотно закрыт. «Отключить» поток жидкости или газа под высоким давлением, закрыв его клапаном, — физически тяжелая работа: иными словами, для этого нужно приложить много усилий. Вот почему некоторые клапаны управляются длинными рычагами или большими колесами. Если для действительно больших клапанов требуется слишком большое усилие для человека, они приводятся в действие гидравлическими поршнями.

Как работают клапаны двигателя

Клапан, который пропускает в цилиндр смесь воздуха и топлива, называется впускным. Клапан, через который отработанные газы покидают двигатель, называется выпускным. Для эффективной работы двигателя при любой скорости эти клапаны должны открываться в определенные моменты.

За этот процесс отвечают грушевидные детали (кулачки), которые крепятся к распределительному валу, вращающемуся под действием цепи, ремня или набора шестерен.

Распределительный вал может находиться в верхней части блока. В этом случае над каждым кулачком вала располагаются небольшие металлические цилиндры (толкатели). Когда конец толкателя упирается в коромысло, кулачок воздействует на ножку клапана, который удерживается в поднятом (закрытом) состоянии с помощью сильной пружины.

Двигатель с верхним расположением распределительного вала

В подобной конструкции вал, расположенный в верхней части двигателя, работает под управлением ремня с внутренними зубьями, и контуры кулачков напрямую взаимодействует с толкателями, расположенными над клапанами.

Когда толкатель давит на кулачок, он задействует коромысло, которое ослабляет пружину и открывает клапан. При дальнейшем вращении контура пружина возвращается в первоначальное положение, и клапан закрывается. Такая конструкция характерна для двигателя с верхним расположением клапанов в головке цилиндра.

В некоторых двигателях отсутствуют толкатели, и клапаны открываются и закрываются с помощью двойных или одинарных распределительных валов.

Такая конструкция носит название двигателя с одним распределительным валом и клапанами в головке. В ней меньше подвижных частей, поэтому она является более мощной и может работать на высоких скоростях. В любом случае, между деталями присутствует зазор, чтобы клапан мог свободно закрываться и открываться, когда те расширяются при нагревании.

Зазоры между ножкой клапана и коромыслом или кулачком необходимы для нормальной работы системы, а их отсутствие может вызвать серьезные повреждения составных частей.

При слишком большом зазоре клапаны будут открываться слишком рано, а закрываться слишком поздно, что снизит мощность двигателя и увеличит уровень производимого им шума.

При малом зазоре клапаны не будут нормально закрываться, что приведет к ослаблению компрессии.

В некоторых двигателях зазоры регулируются автоматически под давлением смазочной жидкости.

Распределительный вал с толкателями

При конструкции, согласно которой распределительный вал находится в блоке цилиндров, длинные штанги толкателей воздействуют на коромысла, открывающие клапаны. Двигатели с верхним расположением клапанов в головке цилиндра считаются менее эффективными, чем двигатели с одним распределительным валом и клапанами в головке, т.к. большое количество подвижных частей ограничивает скорость, при которой двигатель может безопасно работать.

В двигателе с верхним расположением распределительного вала и штангами коленчатый вал находится в головке цилиндров.

При вращении вала каждый клапан открывается с помощью толкателя, штанги и коромысла. Клапан удерживается в закрытом состоянии пружиной.

Количество зубьев на звездочке ведущей цепи в два раза превышает количество зубьев на шестерне распределительного вала, поэтому вал вращается в два раза медленнее, чем двигатель.

Двигатель с одним распределительным валом и клапанами в головке

В некоторых моделях кулачки напрямую воздействуют на короткие рычаги, именуемые пальцами.

Двигатель с одним распределительным валом и клапанами в головке содержит меньше деталей для управления клапанами. Кулачки напрямую взаимодействуют с толкателями или короткими рычагами (пальцами), которые, в свою очередь, открывают и закрывают клапаны.

Такая система обладает меньшим весом и технической сложностью, т.к. в ней отсутствуют штанги толкателей и коромысла.

Для управления распределительным валом с помощью звездочки на коленчатом вале часто используется длинная цепь, которая иногда провисает. Эта проблема решается добавлением промежуточных звездочек и нескольких коротких цепей с большим натяжением.

Кроме того, могут быть использованы нерастягиваемые резиновые маслоупорные ремни с зубьями, которые цепляются к звездочкам на распределительном и коленчатом валах.

Регулировка клапанов: что это, зачем нужно, и что будет, если ее не делать

Если вы становились свидетелем сцены, когда опытный автомобилист деловито открывал капот машины (вашей или своей), некоторое время вслушивался в звук работающего мотора, а потом многозначительно произносил фразу «клапаны надо отрегулировать», но при этом для вас его слова были не понятнее звука двигателя, который он слушал, то сегодня мы попробуем этот пробел восполнить. Что такое регулировка клапанов, зачем она нужна, когда ее нужно делать, и что будет, если ее не делать совсем? И почему на многих машинах регулировка клапанов вообще не нужна? Давайте разберемся.

Что такое регулировка клапанов?

Работа обычного поршневого двигателя предполагает подачу в цилиндры топливовоздушной смеси и отвод из них отработавших газов. Обе функции выполняют клапаны – соответственно, впускные и выпускные, попеременно открываясь в нужное время для наполнения и опорожнения цилиндра. Управляет их работой распределительный вал, имеющий специальные кулачки, которые воздействуют на верхнюю часть клапана, открывая его в цилиндр. Конструкций приводного механизма существует несколько – распредвал может воздействовать на клапаны почти непосредственно, надавливая кулачком на толкатели, или, к примеру, через специальные коромысла, толкая один их конец, в то время как другой давит на клапан. Но в любом из случаев в конструкции есть интересующая нас особенность: тепловой зазор между кулачком распредвала и деталью клапанного механизма, которая открывает клапан. Ведь рабочая температура деталей двигателя, особенно клапанного механизма и собственно клапанов, очень высока, а при нагревании металл имеет свойство расширяться, что приводит, в частности, к удлинению клапана. Именно для компенсации этого расширения нужен тепловой зазор, а регулировка этого зазора и называется «регулировкой клапанов»

Да, с логической точки зрения формулировка «регулировка клапанов» не совсем верна. Клапан при нормальных условиях, когда на него не давит кулачок распредвала, закрыт: тарелка клапана плотно прижата пружиной к седлу в головке блока цилиндров, а должная герметичность обеспечивается фасками на обоих элементах. Соответственно, никакая регулировка клапану здесь не требуется – а вот тепловой зазор должен быть правильным. То есть, более корректно говорить не «регулировка клапанов», а «регулировка теплового зазора привода клапанов».

Зачем нужна регулировка клапанов?

Если представить себе комбинацию «клапан – толкатель – распредвал» без теплового зазора – то есть, плотно прилегающими друг к другу при неработающем двигателе, то несложно понять, что при выходе на рабочую температуру на удлинившийся клапан, «вытягиваемый пружиной из цилиндра» в сторону распредвала, из-за температурного расширения начнет постоянно давить этот самый распредвал, приводя к небольшому сжатию пружины и неплотному закрытию клапана. То есть, при достижении рабочей температуры клапан фактически перестанет полноценно выполнять одну из своих функций: плотно закрываться для герметизации камеры сгорания и ее изоляции от впускного или выпускного тракта.

Подобное может произойти, к примеру, из-за износа седел и тарелок клапанов. Соответственно, в этом случае регулировка клапанов нужна, чтобы обеспечить нужный тепловой зазор для обеспечения полного закрытия клапанов.

— Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Второй вариант – увеличение теплового зазора: например, из-за износа поверхностей кулачков распредвала и элементов привода клапанов. В этом случае даже после достижения двигателем рабочей температуры между распредвалом и клапанным механизмом будет оставаться зазор, а касаться они будут ударно и только в момент воздействия кулачка. Это уже пагубно влияет на ресурс клапанного механизма, но есть и другие последствия: клапан будет открываться чуть позже и не полностью – а значит, ухудшится наполняемость цилиндра топливовоздушной смесью.

Что будет, если не регулировать клапаны?

Если не регулировать клапаны своевременно, это приведет к изменению теплового зазора. При этом и увеличение, и уменьшение теплового зазора, как мы уже поняли, негативно влияет на ресурс и работу двигателя. Уменьшение зазора означает неполное закрытие клапанов, которое приводит к ряду последствий. Негерметичность камеры сгорания из-за приоткрытого клапана приводит к падению компрессии и прорыву раскаленных газов во впускной или выпускной тракт (в зависимости от того, впускной или выпускной клапан приоткрыт).

Кроме того, стоит отметить значительно увеличивающуюся тепловую нагрузку на клапаны. Ведь плотный контакт закрытого клапана с седлом – это одно из важных условий его охлаждения, а если клапан неплотно прилегает к седлу, охлаждение ощутимо ухудшается. Особенно это касается выпускных клапанов: впускные дополнительно охлаждаются поступающей в цилиндры топливовоздушной смесью, а вот выпускные обеспечивают выход отработавших газов крайне высокой температуры, и для них охлаждение в зоне контакта с седлом имеет критическую важность. В крайнем случае плохое охлаждение клапана из-за малого теплового зазора может привести к его перегреву и разрушению – так называемому прогару. Кроме того, прорыв горящей топливовоздушной смеси в выпускной тракт повышает нагрузку на катализатор (а при его разрушении абразивная пыль может повредить и цилиндры).

Последствия увеличения теплового зазора несколько иные. Как было сказано выше, оно приводит к ударному воздействию распредвала на клапанный механизм, что негативно сказывается на его ресурсе, а также к несвоевременному и неполному открытию клапана. Ухудшение наполнения цилиндра топливовоздушной смесью при этом означает нарушение фаз газораспределения и снижение отдачи мотора: то есть, он будет хуже тянуть.

Как узнать, каким должен быть тепловой зазор?

Величина теплового зазора определяется производителем для конкретного двигателя: если конструкция мотора предусматривает регулировку клапанов, показатели обычно указываются в руководстве по эксплуатации. — Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

В целом величина теплового зазора, разумеется, очень невелика, это десятые доли миллиметра – примерно 0,1-0,4 мм. При этом ее обычно определяют с помощью набора щупов с шагом в 0,05 мм и менее – то есть, соблюдается точность до сотых. Стоит отметить, что тепловой зазор для впускных и выпускных клапанов различается: как мы уже знаем, выпускные клапаны нагреваются сильнее – а следовательно, сильнее увеличиваются в размерах и требуют большего теплового зазора.

На практике знать конкретные значения теплового зазора нужно только для регулировки – то есть, если вы не занимаетесь ей самостоятельно, эти цифры вам не слишком пригодятся.

Как узнать, когда регулировать клапаны

Периодичность регулировки клапанов, если она предусмотрена конструкцией мотора, указывается в руководстве по эксплуатации автомобиля. В целом эта процедура выполняется не так часто – обычно это каждые 50-80 тысяч километров. Однако и более частая проверка не повредит – особенно если машина оснащена газобаллонным оборудованием, так как газовое топливо повышает тепловую нагрузку на мотор.

Второй способ узнать о необходимости регулировки клапанов – это характерный звук: стук или цоканье при работе мотора, не проходящее по мере его прогрева.

— Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Ну а если автомобиль приобретен не новым, и его пробег уже немаленький, то регулировка теплового зазора точно не будет лишней – нужно лишь выяснить, предусмотрена ли она конструкцией.

Как регулировать клапаны?

Существует несколько конструктивных вариантов регулировки теплового зазора. К примеру, один из вариантов – это подбор шайб нужной толщины, которые вставляются между толкателем клапана и кулачком распредвала. Для регулировки зазора он сначала замеряется с имеющейся шайбой, а потом шайба при необходимости заменяется на другую, большей или меньшей толщины. Альтернативный вариант при схожей конструкции – подборка не регулировочных шайб нужной толщины, а самих толкателей с необходимыми параметрами.

Еще одна вариация — это регулировка теплового зазора с помощью винтового механизма. В этом случае ничего подбирать не нужно: зазор измеряется щупом и затем при необходимости настраивается вкручиванием или выкручиванием регулировочного болта, который затем фиксируется контргайками — Kolesa.Ru (@Kolesa_Ru) 3 июня 2019 г.

Такой метод регулировки мы наглядно показывали в отдельном материале на примере Renault Logan.

Почему на некоторых моторах клапаны регулировать не нужно?

Неоднократное уточнение о том, что регулировка клапанов должна быть предусмотрена конструкцией мотора, весьма важно: ведь многие двигатели этой процедуры не требуют. Зависит это от того, оснащен ли мотор гидрокомпенсаторами: это устройства, предназначенные для автоматической регулировки теплового зазора. Они работают за счет масла, поступающего в них из двигателя (поэтому, собственно, и называются «гидрокомпенсаторами») и полностью исключают необходимость периодической ручной регулировки клапанов. Сами они, конечно же, тоже не вечны – о необходимости их проверки и замены говорит все тот же цокающий стук, не исчезающий вскоре после запуска, а порой даже после прогрева двигателя. Однако главное, что нужно знать в контексте этого материала – это то, что моторам, оснащенным гидрокомпенсаторами, регулировка клапанов не нужна.

Зачем менять фазы газораспределения — ДРАЙВ

Качество работы двигателя — его КПД, мощность, крутящий момент и экономичность зависят от многих факторов, в том числе и от фаз газораспределения, то есть от своевременности открытия и закрытия впускных и выпускных клапанов.

В обычном четырёхтактном двигателе внутреннего сгорания клапаны приводятся в действие кулачками распределительного вала. Профиль этих кулачков определяет момент и продолжительность открытия (то есть ширину фаз), а также величину хода клапанов.

В большинстве современных двигателей фазы меняться не могут. И работа таких двигателей не отличается высокой эффективностью. Дело в том, что характер поведения газов (горючей смеси и выхлопа) в цилиндре, а также во впускном и выпускном трактах меняется в зависимости от режимов работы двигателя. Постоянно изменяется скорость течения, возникают различного рода колебания упругой газовой среды, которые приводят к полезным резонансным или, наоборот, паразитным застойным явлениям. Из-за этого скорость и эффективность наполнения цилиндров при различных режимах работы двигателя неодинаковы.

Фазы газораспределения в поршневых двигателях внутреннего сгорания — это моменты открытия и закрытия впускных и выпускных клапанов (окон). Фазы газораспределения обычно выражаются в градусах поворота коленчатого вала и отмечаются по отношению к начальным или конечным моментам соответствующих тактов.

Так, например, для работы на холостом ходу уместны узкие фазы газораспределения с поздним открытием и ранним закрытием клапанов без перекрытия фаз (время, когда впускной и выпускной клапаны открыты одновременно). Почему? Потому что так удаётся исключить заброс выхлопных газов во впускной коллектор и выброс части горючей смеси в выхлопную трубу.

Тюнеры часто мудрят со сдвигом фаз при помощи таких сборных звёздочек. Заменив штатный распредвал на «спортивный» с другими фазами, можно добиться существенной прибавки мощности.

При работе на максимальной мощности ситуация сильно меняется. С повышением оборотов время открытия клапанов закономерно сокращается, но для обеспечения высоких крутящего момента и мощности через цилиндры необходимо прогнать куда больший объём газов, нежели на холостом ходу. Как решить столь непростую задачу? Открывать клапаны чуть раньше и увеличивать продолжительность их открытия, иными словами, сделать фазы максимально широкими. При этом для лучшей продувки цилиндров фазу перекрытия обычно делают тем шире, чем выше обороты.

Хондовская VTEC (Variable Valve Timing and Electronic Control) так же, как и тойотовская VVT-I (Variable Valve Timing with intelligence), позволяет плавно изменять фазы газораспределения фазовращателем с гидравлическим управлением. Это достигается путём поворота распределительного вала впускных клапанов относительно вала выпускных клапанов в диапазоне 40—60° (по углу поворота коленчатого вала).

Так что при разработке и доводке двигателей конструкторам приходится увязывать ряд взаимоисключающих требований и идти на сложные компромиссы. Посудите сами. С одними и теми же фиксированными фазами двигатель должен обладать неплохой тягой на низких и средних оборотах, приемлемой мощностью — на высоких. И плюс ко всему устойчиво работать на холостом ходу, быть максимально экономичным и экологичным. Вот так задачка!

Но конструкторы такие задачи уже давно щёлкают как семечки и способны при помощи сдвига и изменения ширины фаз газораспределения менять характеристики двигателя до неузнаваемости. Поднять момент? Пожалуйста. Повысить мощность? Не вопрос. Снизить расход? Не проблема. Правда, подчас получается так, что при улучшении одних показателей приходится жертвовать другими.

Doppel-VANOS (Doppel Variable Nockenwellen Steuerung) от BMW умеет двигать фазы плавно от начального до конечного значения. При помощи гидравлики система заведует как процессами впуска, так и выпуска.

А что если научить газораспределительный механизм подстраиваться под различные режимы работы двигателя? Запросто. Благо способов для этого придумана масса. Один из них — применение фазовращателя — специальной муфты, которая способна под действием управляющей электроники и гидравлики поворачивать распределительный вал на определённый угол относительно его первоначального положения. Наиболее часто такая система устанавливается на впуске. С повышением оборотов муфта проворачивает вал по ходу вращения, что ведёт за собой более раннее открытие впускных клапанов и как следствие — лучшее наполнение цилиндров на высоких оборотах.

Механизм газораспределения 3,2-литровой «шестёрки» FSI от Audi приводится цепями со стороны маховика. У каждого распределительного вала свой фазовращатель.

Но неуёмные инженеры не остановились на этом и разработали ряд систем, способных не только двигать фазы, но и расширять или сужать их. В зависимости от конструкции это может достигаться несколькими способами. Например, в тойотовской системе VVTL-i после достижении определённых оборотов (6000 об/мин) вместо обычного кулачка в работу начинает вступать дополнительный — с изменённым профилем. Профиль этого кулачка задаёт иной закон движения клапана, более широкие фазы и, кстати, обеспечивает больший ход. При раскрутке коленчатого вала до максимальных оборотов (около 8500 об/мин) на частоте вращения в 6000—6500 об/мин у двигателя словно открывается второе дыхание, которое способно придать автомобилю резкий и мощный подхват при ускорении.

Система Valvetronic позволила отказаться от дроссельной заслонки, система меняет и степень открытия клапанов и фазы. Применяется она на моторах BMW с 2001 года. Ход клапана меняется при помощи электродвигателя и сложной кинематической схемы и пределах 0,2–12 мм.

Изменять момент и продолжительность открытия — это замечательно. А что если попробовать изменять высоту подъёма? Ведь такой подход позволяет избавиться от дроссельной заслонки и переложить процесс управления режимами работы двигателем на газораспределительный механизм (ГРМ).

Аналогичная система от немецкой компании Mahle.

Чем вредна заслонка? Она ухудшает наполнение цилиндров на низких и средних оборотах. Ведь во впускном тракте под прикрытым дросселем при работе двигателя создаётся сильное разрежение. К чему оно приводит? К большой инертности разреженной газовой среды (топливовоздушной смеси), ухудшению качества наполнения цилиндра свежим зарядом, снижению отдачи и уменьшению скорости отклика на нажатие педали газа.

Система Variable Valve Event and Lift System (VEL), разработанная Ниссаном, напоминает баварский Valvetronic. Специальный эксцентрик, который приводится от электродвигателя, смещает точку опоры коромысла, и за счёт этого изменяет ход клапана. Высота подъёма варьируется в пределах 0,5–2 мм.

Поэтому идеальным вариантом было бы открывать впускной клапан только на время, необходимое для достижения нужного наполнения цилиндра горючей смесью. Ответ инженеров — механическая система управления подъёмом впускных клапанов. В таких системах высота подъёма и, соответственно, продолжительность фазы впуска изменяются в зависимости от нажатия на педаль газа. По разным данным, экономия от применения системы бездроссельного управления может составлять от 8% до 15%, прирост мощности и момента в пределах 5—15 %. Но и это не последний рубеж.

Так работает «трёхступенчатый» i-VTEC (Intelligent Variable Valve Timing and Lift Electronic Control). На низкой частоте вращения топливо экономится благодаря тому, что половина впускных клапанов практически дезактивирована. При переходе на средние обороты ранее «дремавшие» клапаны включаются в работу, но их амплитуда не максимальна. На мощностных режимах впускные клапаны начинают работать от единственного центрального кулачка. Он обеспечивает максимальный подъём клапанов, кроме того, его профиль специально заточен под мощностные режимы. Управление режимами осуществляется гидравликой и электроникой.

Несмотря на то что количество и размеры клапанов приблизились к максимально возможным, эффективность наполнения и очищения цилиндров можно сделать ещё выше. За счёт чего? За счёт скорости открытия клапанов. Правда, механический привод здесь сдаёт позиции электромагнитному.

Осенью 2007 года Toyota запустит в производство моторы с газораспределительным механизмом Valvematic, который будет изменять не только фазы газораспределения, но и высоту подъёма впускных клапанов. Не секрет, что многие производители достаточно давно применяют подобные системы. Но Toyota в серию такую систему запускает впервые. Мощность двухлитрового атмосферника 1AZ-FE, благодаря новому газораспределительному механизму, удалось поднять со 152 до 158 сил, а момент — с 194 до 196 Нм.

В чём ещё плюс электромагнитного привода? В том, что закон (ускорение в каждый момент времени) подъёма клапана можно довести до идеала, а продолжительность открытия клапанов позволяется менять в очень широких пределах. Электроника согласно прописанной программе время от времени ненужные клапаны может не открывать, а цилиндры отключать вовсе. Зачем? В целях экономии, например, на холостом ходу, при движении в установившемся режиме или при торможении двигателем. Да что режимы — прямо во время работы электромагнитный ГРМ способен превратить обычный четырёхтактный мотор в шеститактный. Интересно, скоро ли появятся такие системы на конвейере?

А это схема работы механизма VVTL-i, предложенная компанией Toyota. Здесь высота подъёма и продолжительность открытия обоих впускных клапанов изменяются скачкообразно. При работе двигателя на частотах вращения коленчатого вала до 6000 об/мин высота подъёма и продолжительность открытия обоих клапанов задаются кулачком (1), который через рокер (5) воздействует на оба клапана. На оборотах выше 6000 закон движения клапанов задаётся более высоким кулачком (2). Чтобы ввести его в строй, нужно переместить сухарь (3) вправо (сухарь перемещается под давлением масла, которое в нужный момент повышается в управляющей магистрали). После того как сухарь переместился вправо, кулачок (2) через шток (4), который до этого времени свободно качался, начинает воздействовать на клапаны через рокер.

Опытный образец четырёхцилиндрового мотора с электромагнитным приводом клапанов и непосредственным впрыском был создан компанией BMW. Здесь количество воздуха, поступающего в цилиндр, регулируется продолжительностью открытия клапана, ход при этом не регулируется. Якорь подпружиненного клапана помещён между двумя мощными электромагнитами, которые призваны удерживать его только в крайних положениях. Чтобы предотвратить ударные нагрузки, каждый раз при приближении к крайнему положению клапан тормозится. Положение и скорость перемещения клапана фиксируются специальным датчиком.

Пожалуй, дальнейшее увеличение эффективности работы мотора за счёт ГРМ уже невозможно. Выжать ещё больше мощности и момента с того же объёма при меньшем расходе можно будет только с применением иных средств. Например, комбинированного наддува или конструкций, изменяющих степень сжатия, других видов топлива. Но это — уже совсем другой разговор.

ЗАЧЕМ НУЖНЫ ГИДРОКОМПЕНСАТОРЫ | Наука и жизнь

Работа гидрокомпенсатора теплового зазора клапанов газораспределительного механизма

В результате износа деталей автомобильного двигателя зазоры на клапанах газораспределительного механизма неизбежно увеличиваются, поэтому время от времени приходится их регулировать. Занятие это не слишком сложное, но трудоемкое, требующее определенной квалификации и внимательности. Избежать частой регулировки клапанного механизма и сделать его работу более мягкой помогают гидрокомпенсаторы. Статья рассказывает о том, как они устроены и каких сюрпризов ждать, если вы воспользуетесь нашим советом и установите гидрокомпенсаторы на свой автомобиль. Одна из основных систем двигателя внутреннего сгорания – газораспределительный механизм (ГРМ). Он отвечает за распределение по цилиндрам бензино-воздушной смеси в бензиновых двигателях (или воздуха – в дизельных) и за выпуск выхлопных газов. В состав ГРМ входят распределительный вал с кулачками (один или несколько), клапаны и многочисленные детали, закрывающие клапаны и передающие на них усилия от кулачков распределительного вала: пружины, толкатели, штанги, рычаги коромысел и сами коромысла. Порядок расположения и форма кулачков на распределительном валу задают последовательность и продолжительность открытия и закрытия клапанов.

Распределительный вал может находиться в блоке цилиндров (такое расположение называют нижним) или в головке блока цилиндров (верхнее расположение). Если вал “нижний”, то усилие с кулачков на клапаны передают специальные толкатели, штанги и коромысла, если же вал “верхний”, то удается обойтись без штанг. В этом случае усилие могут передавать рычаги или толкатели (или и те и другие вместе), находящиеся в непосредственном контакте с распределительным валом.

Клапанный механизм действует в чрезвычайно жестких условиях. Его детали испытывают высокие ударные и инерционные нагрузки, а также термические напряжения (клапаны работают при очень высокой температуре, причем нагрев их весьма неравномерен). Кромки тарелок клапанов и седла подвергаются эрозии, а распределительные валы, толкатели и направляющие втулки – действию трения. При этом все детали механизма должны действовать четко и слаженно, ведь от правильности их работы зависят все характеристики двигателя, начиная с мощности и кончая составом выхлопных газов.

Во время прогрева двигателя детали газораспределительного механизма нагреваются и их размеры увеличиваются. Чтобы при высокой температуре клапаны плотно закрывались, между элементами ГРМ необходимо оставлять небольшие тепловые (термические) зазоры. Заметим, что впускные и выпускные клапаны нагреваются до разной температуры (выпускные существенно горячее впускных), поэтому и зазоры на них могут быть разными. В двигателях большинства легковых автомобилей величина зазора на впускных клапанах составляет 0,15-0,25 мм, а на выпускных – 0,2-0,35 мм и даже больше.

Если тепловой зазор отрегулирован неправильно, в зависимости от того, “в какую сторону” сделана ошибка, могут возникнуть разные технические неисправности.

Когда зазор отсутствует или, как говорят, клапаны перетянуты, они полностью не закрываются. Если в бензиновом моторе не закрываются впускные клапаны, то смесь может вспыхивать во впускном коллекторе – вследствие этого двигатель не развивает полную мощность и плохо запускается. Неплотность выпускных клапанов приводит к прогару их тарелок и седел. Неплотность клапанов дизеля делает его и вовсе неработоспособным.

Если же зазоры в клапанном механизме велики, то возникают значительные ударные нагрузки на детали и в двигателе появляется резкий частый стук. Распределительный вал да и все остальные детали механизма быстро изнашиваются. От этого клапаны открываются не полностью, а значит, уменьшается их проходное сечение. Наполняемость и вентиляция цилиндров ухудшаются, вследствие чего падает мощность двигателя и повышается содержание токсичных примесей в выхлопных газах.

Величина зазоров на клапанах ГРМ должна устанавливаться в зависимости от температуры деталей двигателя. Между тем большинство регулировщиков клапанов пользуются одним и тем же обычным плоским щупом, независимо от того, контролируют ли они зазоры при температуре воздуха ниже нуля или при +30оС. А разница есть: например, для двигателя “ВАЗ-2106” она составляет почти 0,05 мм.

Чтобы смягчить работу клапанов и избежать частой регулировки клапанного механизма, конструкторы автомобилей предлагали разные устройства. Однако на двигателях внутренне го сгорания прижились только так называемые гидрокомпенсаторы теплового зазора клапанов. Суть их работы заключается в автоматическом изменении длины компенсатора на величину, равную тепловому зазору. Детали компенсатора перемещаются одна относительно другой, во-первых, под действием встроенной в него пружины и, во-вторых, за счет подачи масла под давлением из системы смазки двигателя.

Обычный гидрокомпенсатор представляет собой корпус, внутри которого установлена подвижная плунжерная пара, состоящая в свою очередь из втулки и подпружиненного плунжера с шариковым клапаном (см. рисунок). Корпусом может служить цилиндрический толкатель (такая конструкция применяется в гидрокомпенсаторах для двигателей “ВАЗ-2108”), часть головки блока цилиндров (“ВАЗ-2101”-“ВАЗ-2106”). На двигатели УМЗ 331.10 (“Москвич-2141” и “Иж-2126 Ода”) иногда ставят гидрокомпенсаторы, корпусом которых служат элементы рычагов привода клапанов.

Плунжерная пара – самая ответственная часть гидрокомпенсатора. Зазор между втулкой и плунжером составляет всего 5-8 микрон. Благодаря этому, с одной стороны, детали более или менее свободно перемещаются относительно друг друга, с другой – сохраняется герметичность соединения. В нижней части плунжера есть отверстие, которое закрывается обратным шариковым клапаном. Между втулкой и плунжером установлена достаточно жесткая пружина.

Когда кулачок распределительного вала располагается тыльной стороной к толкателю, между корпусом и распределительным валом остается тепловой зазор. Масло поступает в плунжер через масляный канал из системы смазки (а). Одновременно с этим плунжер под действием пружины поднимается и компенсирует зазор, а в полость под плунжером через шариковый клапан из системы смазки двигателя также попадает масло. По мере того как вал поворачивается, кулачок начинает давить на толкатель и перемещает его вниз (б). Обратный шариковый клапан в этот момент закрывается, и плунжерная пара начинает работать как жесткий элемент (масло можно считать несжимаемой жидкостью), передавая усилие на клапан (в). Небольшая часть масла все же выдавливается из-под плунжера через зазор между ним и втулкой. Утечка компенсируется поступлением масла из системы смазки. Из-за нагревания деталей во время работы двигателя происходит некоторое изменение длины гидрокомпенсатора, но система сама автоматически компенсирует зазор, изменяя объем дополнительной порции масла.

Гидрокомпенсаторы существенно упрощают обслуживание двигателя, но с ними надо более внимательно подходить к выбору масла и масляного фильтра. Дело в том, что больше всего гидрокомпенсаторы “боятся” увеличения зазоров в плунжерной паре. Когда зазор увеличивается, происходит утечка масла из-под плунжера, пара становится “не жесткой” и компенсатор просто не успевает срабатывать. Эта неисправность выдает себя резким стуком во время работы двигателя. Примерно то же самое происходит и при неисправности клапана, только масло вытекает не через зазор между плунжером и втулкой, а через клапан.

Иногда плунжерную пару заклинивает. В зависимости от того, в каком положении заклинило детали, либо в клапанном механизме образуется слишком большой зазор (возникают ударные нагрузки, сопровождающиеся резким стуком и повышенным износом деталей), либо клапаны оказываются “зажатыми” (возрастает нагрузка на распределительный вал, повышается износ деталей, резко падает мощность, появляются хлопки в системе впуска и “стрельба” в выхлопном тракте).

Вопреки распространенному мнению, что даже самое простое дополнительное устройство неизбежно снижает надежность любого прибора, гидрокомпенсаторы гарантируют более стабильную работу газораспределительного механизма. Так что владельцам “Жигулей”, “Москвичей” и других отечественных автомобилей стоит подумать об их приобретении. Гидрокомпенсаторы есть в каждом автомагазине, а с их установкой справятся на любой станции техобслуживания. По силам эта работа и тем, кто берется сам ремонтировать свою машину.


Двигатели, в которых могут загнуться клапана: Зачем они нужны

Интерференционные двигатели: Почему клапана могут загнуться?

 

Вы знаете, что такое «интерференционный двигатель»? Нет? Но тогда вы наверняка слышали, что существуют двигатели, в которых клапана могут встретиться с поршнями, в результате чего силовой агрегат серьезно выйдет из строя. Такие моторы и называют интерференционными. На самом деле многие читатели представляют, что это за двигатели. Особенно те, кому приходится часто менять ремень ГРМ, чтобы предотвратить его обрыв, который в интерференционных двигателях приводит к встрече клапанов с поршнями. Но почему при обрыве ремня или цепи ГРМ во многих автомобилях происходит подобное? И зачем нужны двигатели с большим риском повреждения в случае несвоевременного технического обслуживания? Давайте разбираться. 

 

Вы наверняка знаете, что в двигателях внутреннего сгорания главную работу превращения кинетической энергии в механическую выполняют поршни блока цилиндров, которые под воздействием энергии, получаемой при сгорании топлива, начинают двигаться внутри блока силового агрегата, передавая энергию на коленвал. Но помимо поршней не менее важную работу выполняют клапана, которые движутся в головке блока двигателя вверх и вниз, открывая и закрывая впускные и выпускные порты блока цилиндров. Основная работа клапанов заключается в подаче топлива и кислорода в цилиндры двигателя, где топливо и воздух сжимаются поршнями, прежде чем топливная смесь воспламеняется, приводя в движение внутренние компоненты двигателя, благодаря чему ваша машина двигается. 

 

Вот очень красивая и странно успокаивающая анимация поршней и клапанов двигателя в действии. С помощью этого ролика вы поймете, как работает двигатель внутреннего сгорания:

 

 

Как вы видели, движение клапанов осуществляется с помощью распределительного вала – распредвала (или валов/распредвалов). Распредвал приводится в движение за счет ремня или цепи (или нескольких ремней или цепей). Ремень или цепь соединяется с коленчатым валом (коленвалом) двигателя. Эти ремни или цепи называются ремни/цепи газораспределительного механизма (ГРМ) двигателя, поскольку именно они приводят в движение распредвал. На распредвале есть кулачки, которые, двигаясь, контролируют время открытия и закрытия клапанов двигателя. Это объяснение простыми словами. Конечно, на самом деле все немного сложнее.

 

Смотрите также: Как работает система газораспределения и почему так важно следить за ремнем ГРМ?

 

Таким образом, клапана одновременно двигаются с поршнями двигателя вверх и вниз. Но именно из-за этого принципа работы клапанов и поршней во многих двигателях может случиться драма – клапана могут встретиться с поршнями.

Обычно, когда все работает хорошо, открытие и закрытие клапанов синхронизировано так, что при открытии клапана и поршни никогда не занимают одинаковое пространство в блоке цилиндров.

 

Когда поршень находится в самом вверху блока цилиндра двигателя и не может больше двигаться вверх, то в этом положении клапана закрыты, так как в этот момент происходит сжатие (это положение называют верхняя мертвая точка). 

 

Верхняя мертвая точка — положение поршня в цилиндре, соответствующее максимальному расстоянию между любой точкой поршня и осью вращения коленчатого вала

 

Когда положение поршня находится в верхней мертвой точке, клапан (клапана) при правильной работе двигателя не должен находиться на пути поршня.

 

Смотрите также: По каким принципам работает двигатель Инфинити с изменяемой степенью сжатия, подробная информация

 

А теперь мы поговорим непосредственно об интервенционных движках, где может произойти ужасное: клапана могут встретиться во время работы двигателя с поршнями. Это может случиться при обрыве ремня или цепи ГРМ. Естественно, если подобное произойдет во время работы мотора, то двигатель выйдет из строя. Ведь при повреждении цепи/ремня ГРМ клапана перестают перемещаться, что означает, что некоторые из них застрянут в открытом положении и обязательно встретятся с поршнями. 

 

Если поршень имеет достаточно большой ход в цилиндре, что позволяет ему фактически встретиться с открытым клапаном, то такие двигатели в науке называют интерференционными. Если же поршни не могут добраться до клапанов, то это обычные свободно работающие моторы.

 

 

Итак, если этот поршень попал в клапана, это очень и очень плохие новости для автовладельца. Клапана могут изгибаться, загибаться или ломаться. Также в результате подобного краха поршень может получить некоторый ущерб, в результате чего поршень внутри цилиндра двигателя будет сильно поврежден. Как правило, в этом случае владельца автомобиля ждет адский счет за восстановительный ремонт мотора. 

 

Вот какой звук может появиться, если произойдет худшее:

 

 

В свободно работающих двигателях при обрыве ремня или цепи ГРМ подобного разрушения клапанов и поршней не происходит, поскольку в этом случае мотор просто останавливает свою работу, а клапана и поршни не могут встретиться. В этом случае вам нужно просто заменить ремень или цепь ГРМ на новые. 

 

Читая это, кто-то, наверное, подумал: черт возьми, зачем кому-то нужно было создавать такие двигатели, где клапана могут встретиться с поршнями? Ведь при создании подобных моторов было ясно, что обрыв ремня или цепи ГРМ – вполне распространенное явление в мире. Кто создал такой двигатель и зачем?

 

Например, почти каждый современный двигатель Nissan является двигателем интерференции

 

Ответ: таких инженеров и конструкторов немало. Сегодня многие автомобильные компании выпускают двигатели, где при обрыве ремня ГРМ или цепи ГРМ клапана встречаются с поршнями. И скорее всего, у большинства наших читателей в автомобиле установлен такой мотор. Но главный вопрос: почему сегодня многие автопроизводители создают такие двигатели?

 

Основная причина в том, что все автокомпании хотят выпускать хорошие двигатели. В современном мире понятие «хороший двигатель» включает: мощность, крутящий момент, экономичность, эффективность и т. п. Но для обеспечения таких характеристик моторам необходима высокая степень сжатия.

 

От сжатия зависит, насколько топливо и воздушная смесь будут сжаты в цилиндрах двигателя. Чем больше сжать топливную смесь, тем больше энергии вы получите от 1 литра топлива. Как видите, чем больше степень сжатия, тем больше мощности получается при сгорании топлива, что, в свою очередь, снижает его расход в определенный момент времени. 

 

Большое сжатие также означает, что толкание поршней в цилиндре будет происходить дальше и дальше вверх. Сами понимаете, что это также означает, что верхняя часть поршня в двигателе с большой степенью сжатия достигнет места, где могут появиться открытые клапана. В итоге теоретически при рассинхронизации газораспределительного механизма клапана и поршни могут встретиться в одном месте и повредить друг друга. 

 

Кстати, это также объясняет, почему почти все дизельные двигатели являются интерференционными: по своей природе дизели – очень мощные компрессионные моторы (двигатели с большой степенью сжатия).

 

Преимущества высокой компрессии настолько хороши, что многие разработчики двигателей решают, что лучше производить силовые агрегаты, в которых есть риск встретиться клапанам с поршнями. Но если вы будете строго следовать рекомендациям производителя и своевременно менять цепь или ремень ГРМ (как правило, примерно каждые 100 000 км или около того, как видите, не так часто, как, например, моторное масло с фильтрами), то тогда вам действительно не нужно беспокоиться о возможном выходе двигателя из строя из-за обрыва. Правда, если вы будете приобретать оригинальные ремни и цепи ГРМ.

Но, к сожалению, все равно у многих автолюбителей есть беспокойство по поводу обрыва цепи или ремня ГРМ. Даже если своевременно менять их. Да, тогда в 99,9% случаев вряд ли двигатель выйдет из строя из-за встречи клапанов с поршнями. Но тем не менее вероятность подобного события никто не отменял. А когда у нас есть беспокойство, то нет нужного удовлетворения от владения автомобилем, в отличие от спокойствия автовладельцев, чьи автомобили оснащены обычными двигателями, в которых клапана с поршнями не могут встретиться при обрыве цепи/ремня ГРМ.

 

Хотя в целом это довольно разумный компромисс. Но, как видите, для того чтобы двигатель в 99,9% случаев не вышел из строя, нужно периодически прилагать определенные усилия и нести траты. Но тем не менее на данный момент подобные интерференционные двигатели, наверное, – лучшее решение в автопромышленности, которое помогло разработчикам улучшить экономичность и мощность современных автомобилей, а также снизить уровень выбросов вредных веществ в атмосферу. 

 

Так что если ваша машина оснащена двигателем, в котором при обрыве ремня/цепи ГРМ гнет клапана, то просто своевременно меняйте ремень и цепь. Когда менять, вы можете узнать из руководства к автомашине или в техническом центре. Также советуем для замены ремня/цепи ГРМ обращаться в проверенные автомастерские или в дилерские технические центры. Помните, что лучше переплатить, чем потом получить поврежденные клапана и поршни в двигателе. 

 

В том числе на опасность загиба клапанов о поршни стоит обратить внимание всем покупателям подержанных машин. Дело в том, что предыдущий владелец мог и не менять ремень/цепь вовремя. Поэтому если вы приобрели подержанный автомобиль, то советуем поменять ремень или цепь на новые как можно скорее. Если, конечно, ваша машина оснащена мотором, в котором есть риск повреждения клапанов о поршни.

Для чего нужен клапан минимального давления?

Клапан минимального давления (КМД) можно найти на винтовых компрессорах. Этот клапан расположен на верхней части сепаратора (маленький резервуар сжатого воздуха внутри вашего компрессора).

Этот клапан минимального давления имеет две функции. На самом деле, это два клапана в одном:

  • Это клапан минимального давления — он открывается при определенном минимальном давлении
  • Это обратный клапан — воздух может проходить только одним способом (вне компрессора).

Зачем нам минимальное давление?

Нам нужно минимальное давление для циркуляции масла. Циркуляция масла имеет решающее значение для охлаждения вращающихся винтов и для смазки подшипников.

Винтовой компрессор не имеет масляного насоса. Масло прокачивается через систему из-за разности давлений внутри компрессора.

Когда компрессор только что запустился, нам нужно как можно скорее создать давление по вышеуказанным причинам.

Если компрессор соединен с пустым воздухоприемником или системой трубопроводов, создание давления займет очень много времени. Поэтому клапан минимального давления остается закрытым до тех пор, пока в воздушном компрессоре не будет достигнуто минимальное давление. Это минимальное давление обычно составляет примерно 4 бара.

Функции обратного клапана

Как было обозначено ранее, клапан минимального давления также действует как обратный клапан. Это делается для того, чтобы воздух не попадал обратно в воздушный компрессор.

Это может произойти, например, когда компрессор остановлен или работает без нагрузки.

Некоторые считают, что необходимо устанавливать обратный клапан после винтового компрессора. Это не тот случай. Обратный клапан уже существует, это и есть клапан минимального давления.

Унос масла

Если в Вашем компрессоре наблюдается слишком большой унос масла (масло в сжатом воздухе), это может быть из-за износа клапана минимального давления.

Если Вам кажется, что было проверено все: маслоотделитель, уровень масла, линия сброса давления, температура, но все еще наблюдается унос масла, проверьте клапан минимального давления.

Если клапан минимального давления неисправен, при запуске будет продуваться сжатый воздух. Элемент сепаратора не будет функционировать должным образом при этих высоких расходах и низком давлении.

В результате каждый раз, когда компрессор запускается, масло вдувается в систему сжатого воздуха.

Обслуживание

Минимальный клапан давления не требует никакого технического обслуживания. Рекомендуется менять уплотнения каждые несколько тысяч часов работы.

Если клапан работает не так, как надо, замена уплотнений обычно решает проблему.

Наша компания предлагает приобрести качественные и надежные клапаны минимального давления для Вашего компрессорного оборудования!

клапанов сердца, анатомия и функции | ColumbiaDoctors

Что такое сердечные клапаны?

Сердце состоит из четырех камер, двух предсердий (верхних камер) и двух желудочков (нижних камер). Есть клапан, через который кровь проходит перед тем, как покинуть каждую камеру сердца. Клапаны предотвращают обратный ток крови. Эти клапаны представляют собой настоящие створки, которые расположены на каждом конце двух желудочков (нижних камер сердца). Они действуют как односторонние входы крови с одной стороны желудочка и односторонние выходы крови с другой стороны желудочка.Нормальные клапаны имеют три створки, кроме митрального клапана, который имеет два створки. Четыре сердечных клапана включают следующее:

  • трехстворчатый клапан: расположен между правым предсердием и правым желудочком
  • клапан легочной артерии: расположен между правым желудочком и легочной артерией
  • митральный клапан: расположен между левым предсердием и левым желудочком
  • аортальный клапан: , расположенный между левым желудочком и аортой

Как работают сердечные клапаны?

Когда сердечная мышца сокращается и расслабляется, клапаны открываются и закрываются, позволяя крови течь в желудочки и предсердия попеременно.Ниже приводится пошаговая иллюстрация того, как клапаны обычно функционируют в левом желудочке:

После сокращения левого желудочка аортальный клапан закрывается и открывается митральный клапан, позволяя крови течь из левого предсердия в левый желудочек.

По мере сокращения левого предсердия в левый желудочек поступает больше крови.

Когда левый желудочек сокращается, митральный клапан закрывается, а аортальный клапан открывается, поэтому кровь течет в аорту.

Что такое порок сердечного клапана?

Сердечные клапаны могут иметь одну из двух неисправностей:

  1. регургитация (или утечка клапана): Клапан (ы) не закрывается полностью, в результате чего кровь течет обратно через клапан.Это приводит к утечке крови обратно в предсердия из желудочков (в случае митрального и трикуспидального клапанов) или утечке крови обратно в желудочки (в случае клапанов аорты и легких).
  2. стеноз (или сужение клапана): Открытие клапана (ов) сужается, или клапаны становятся поврежденными или рубцеватыми (жесткими), что препятствует оттоку крови из желудочков или предсердий. Сердце вынуждено перекачивать кровь с повышенной силой, чтобы перемещать кровь через суженный или жесткий (стенозирующий) клапан (ы).

Сердечные клапаны могут иметь обе неисправности одновременно (регургитация и стеноз). Кроме того, одновременно могут быть затронуты несколько сердечных клапанов. Когда сердечные клапаны не открываются и не закрываются должным образом, последствия для сердца могут быть серьезными, что может препятствовать способности сердца адекватно перекачивать кровь по телу. Проблемы с сердечным клапаном – одна из причин сердечной недостаточности.


Что это такое и как работает

Сердце имеет четыре клапана – по одному на каждую камеру сердца.Клапаны удерживают кровь в правильном направлении через сердце.

Митральный клапан и трехстворчатый клапан расположены между предсердиями (верхними камерами сердца) и желудочками (нижними камерами сердца).

Аортальный клапан и легочный клапан расположены между желудочками и главными кровеносными сосудами, выходящими из сердца.

Митральный клапан

Клапаны сделаны из прочных тонких лоскутов ткани, называемых створок или створок .

Листочки открываются, позволяя крови продвигаться вперед через сердце в течение половины сердечного сокращения. Они закрываются, чтобы кровь не текла назад во время второй половины сердечного сокращения.

Митральный клапан имеет только две створки; аортальный, легочный и трикуспидальный клапаны – по три. Листочки прикреплены к кольцу из жесткой волокнистой ткани, называемой кольцом, и поддерживаются ею. Кольцо помогает поддерживать правильную форму клапана.

Створки митрального и трехстворчатого клапанов также поддерживаются:

  • Сухожильные хорды: жестких волокнистых нитей.Они похожи на струны, поддерживающие парашют.
  • Папиллярные мышцы: часть внутренних стенок желудочков.

Сухожильные хорды и сосочковые мышцы обеспечивают устойчивость створок, предотвращая обратный ток крови.

Митральный клапан

Аортальный клапан

Как работают клапаны

Четыре клапана открываются и закрываются, чтобы кровь текла через сердце.Приведенные ниже шаги показывают, как кровь течет через сердце, и описывают, как работает каждый клапан, поддерживая движение крови.

1. Открытый трехстворчатый и митральный клапаны
Кровь течет из правого предсердия в правый желудочек через открытый трехстворчатый клапан и из левого предсердия в левый желудочек через открытый митральный клапан .

2. Закрытые трикуспидальный и митральный клапаны
Когда правый желудочек заполнен, трикуспидальный клапан закрывается и не дает крови течь назад в правое предсердие, когда желудочек сокращается (сжимается).
Когда левый желудочек заполнен, митральный клапан закрывается и предотвращает обратный ток крови в левое предсердие при сокращении желудочка.

3. Открыть легочный и аортальный клапаны
Когда правый желудочек начинает сокращаться, легочный клапан открывается с силой. Кровь перекачивается из правого желудочка через легочный клапан в легочную артерию в легкие.
Когда левый желудочек начинает сокращаться, аортальный клапан принудительно открывается.Кровь перекачивается из левого желудочка через аортальный клапан в аорту. Аорта разветвляется на множество артерий и снабжает организм кровью.

4. Закрытые клапаны легочной артерии и аорты
Когда правый желудочек прекращает сокращаться и начинает расслабляться, легочный клапан закрывается. Это предотвращает отток крови обратно в правый желудочек.
Когда левый желудочек прекращает сокращаться и начинает расслабляться, аортальный клапан закрывается.Это предотвращает отток крови обратно в левый желудочек.

Этот образец повторяется, заставляя кровь непрерывно течь к сердцу, легким и телу. Четыре нормально работающих сердечных клапана гарантируют, что кровь всегда течет свободно в одном направлении и что нет обратной утечки.

ролей ваших четырех сердечных клапанов

Чтобы лучше понять состояние вашего клапана и то, что будет обсуждать ваш лечащий врач, полезно узнать, какую роль каждый сердечный клапан играет в здоровом кровообращении.Каждая часть кровеносной системы должна работать вместе, чтобы доставлять кровь, кислород и питательные вещества ко всем тканям.

Какую роль каждый играет в здоровом кровообращении?

Четыре клапана в порядке циркуляции:

  1. Трехстворчатый клапан
    • Имеет три створки или бугорки.
    • Отделяет верхнюю правую камеру (правое предсердие) от нижней правой камеры (правый желудочек).
    • Открывается, позволяя крови течь из правого предсердия в правый желудочек.
    • Предотвращает обратный ток крови из правого желудочка в правое предсердие.

    Связанные проблемы клапана включают: атрезию трехстворчатого клапана, регургитацию трехстворчатого клапана, стеноз трехстворчатого клапана

  2. Легочный клапан (или легочный клапан)

    (ссылка откроется в новом окне)

    Посмотрите анимацию анатомии сердечного клапана.

    • Имеет три листовки.
    • отделяет правый желудочек от легочной артерии.
    • Открывается для перекачки крови из правого желудочка в легкие (через легочную артерию), где она будет получать кислород.
    • Предотвращает обратный ток крови из легочной артерии в правый желудочек.

    Связанные проблемы клапана включают: стеноз клапана легочной артерии, регургитацию клапана легочной артерии

  3. Митральный клапан
    • Имеет две брошюры.
    • Отделяет верхнюю левую камеру (левое предсердие) от нижней левой камеры (левый желудочек).
    • Открывается, позволяя крови течь из левого предсердия в левый желудочек.
    • Предотвращает обратный ток крови из левого желудочка в левое предсердие.

    Связанные проблемы клапана включают: пролапс митрального клапана, регургитацию митрального клапана, стеноз митрального клапана

  4. Аортальный клапан
    • Имеет три створки, если он не является аномальным от рождения, например, двустворчатый аортальный клапан.
    • Отделяет левый желудочек от аорты.
    • Открывается, позволяя крови покидать сердце из левого желудочка через аорту и тело.
    • Предотвращает обратный ток крови из аорты в левый желудочек.

    Связанные проблемы клапана включают: аортальную регургитацию (также называемую аортальной недостаточностью), стеноз аорты

Основы правильной работы клапанов

  • Клапан имеет правильную форму и гибкий.
  • Клапан должен открываться полностью, чтобы кровь могла пройти.
  • Клапан должен плотно закрываться, чтобы кровь не просачивалась обратно в камеру.

сердечных клапанов и как они работают | Аортальный, митральный, легочный и трехстворчатый клапаны

Сердечные клапаны играют жизненно важную роль в работе сердца

Сердце имеет четыре сердечных клапана – аортальный, митральный, легочный и трикуспидальный клапаны. Все четыре клапана открываются и закрываются, помогая перемещать кровь из одной области в другую. Два клапана, митральный и трехстворчатый, перемещают кровь из верхних камер сердца (предсердия) в нижние камеры сердца (желудочки).Два других клапана, аортальный и легочный, перемещают кровь в легкие и остальную часть тела через желудочки. Когда сердечные клапаны открываются и закрываются, они издают звуки, которые мы называем биением сердца.

Вот обзор кровообращения в сердце: Во-первых, кровь возвращается из тела в правое предсердие. Эта кровь была истощена кислородом, когда кислород был доставлен в ткани тела, поэтому ей требуется больше кислорода, чтобы поддерживать процесс. Правое предсердие, теперь заполненное обедненной кислородом кровью, перекачивает кровь через трикуспидальный клапан в правый желудочек.Затем правый желудочек сокращается, перекачивая кровь через легочный клапан в легочную артерию. Легочная артерия переносит кровь от сердца к легким, где кровь получает кислород, которым мы дышим, становясь богатой кислородом кровью.

В то же время, когда происходит вышеуказанный процесс, богатая кислородом кровь возвращается из легких через левое предсердие. Затем левое предсердие перемещает кровь через митральный клапан в левый желудочек. Когда левый желудочек сокращается, он перемещает кровь через аортальный клапан в аорту.Затем аорта снабжает кровью остальную часть тела.

Клапаны перемещают кровь через сердце. Когда две предсердные камеры сокращаются, трикуспидальный и митральный клапаны открываются, что позволяет крови перемещаться к желудочкам. Когда две камеры желудочка сокращаются, они заставляют трикуспидальный и митральный клапаны закрыться, а легочные и аортальные клапаны открываются. Предполагается, что кровь, которая должна покидать желудочки и перемещаться к телу, не должна течь в неправильном направлении с помощью частей аортального и легочного клапанов, называемых створками.Бугорки помогают клапанам создавать плотное прилегание, что помогает крови течь в правильном направлении.

Большинство заболеваний сердечных клапанов возникает в клапанах с левой стороны сердца – аортальном клапане и митральном клапане. Однако любой клапан сердца может быть поражен клапанной болезнью.

Клапанные нарушения классифицируются по клапану и типу дисфункции.

Стеноз – Когда клапанные отверстия узкие или неправильно сформированы при рождении, кровоток может быть заблокирован.Это приводит к тому, что створки клапана становятся жесткими, утолщаются или сливаются. В этом случае сердце должно работать сильнее, чтобы помочь пройти через стенозирующие клапаны. Стеноз может быть у всех клапанов.

Регургитация – Когда клапаны не закрываются полностью, кровь может течь назад. Это называется срыгиванием.

Пролапс – Когда створки сердечного клапана не закрываются должным образом

  • Пролапс митрального клапана
  • Пролапс легочного клапана

Регургитация сердечного клапана и стеноз могут возникать одновременно.Когда приток крови к сердцу и от него (и внутри) нарушен, сердце может стать слабым и не сможет эффективно перекачивать кровь. Заболевание сердечного клапана – одна из основных причин сердечной недостаточности. Это также может привести к опасным и даже смертельным аритмиям.

Обзор четырех сердечных клапанов

В здоровом человеческом сердце четыре сердечных клапана. Клапаны помогают поддерживать нормальный кровоток через сердце, обеспечивая эффективное и плавное движение крови в правильном направлении.Помимо клапанов, есть четыре камеры сердца – верхние камеры называются левым и правым предсердиями, нижние камеры – левым и правым желудочком.

SDI Productions / Getty Images

Здоровый сердечный клапан остановит кровоток из камеры сердца до тех пор, пока сердце не перекачивает кровь к следующему месту назначения. Клапаны открываются и закрываются с точной синхронизацией, позволяя сердцу эффективно перекачивать кровь.

Клапаны могут заболеть, что приведет либо к утечке крови назад (известное как недостаточность или регургитация), либо к сужению (стенозу), что препятствует адекватному прямому току крови.Любое из этих состояний может серьезно повредить сердце, и для решения этих проблем может потребоваться операция.

Трехстворчатый клапан сердца

Трикуспидальный клапан – это первый клапан, через который кровь проходит в сердце. Это один из двух атриовентрикулярных клапанов, то есть он расположен между предсердием и желудочком, в данном случае с правой стороны сердца. Он состоит из трех створок или створок, которые работают вместе, чтобы остановить и запустить кровоток.

Листочки прикреплены к крошечным мышцам, называемым сосочковыми мышцами, которые усиливают движение листочков. Трехстворчатый клапан открывается при сокращении предсердия, позволяя крови течь в желудочек.

Трикуспидальный клапан, как и митральный клапан, является одним из распространенных участков пролапса клапана и регургитации, состояний, при которых может потребоваться медицинское вмешательство.

Клапан легочного сердца

Легочный клапан – это второй клапан сердца.Как и аортальный клапан, его также называют полулунным клапаном из-за своей формы. Он находится между правым желудочком и легочной артерией, по которой кровь поступает в легкие. Когда правый желудочек сокращается, открывается легочный клапан, позволяя крови течь в легкие.

Митральный клапан сердца

Митральный клапан – это третий клапан сердца. Как и трикуспидальный клапан, это атриовентрикулярный клапан, то есть он находится между левым предсердием и левым желудочком.Кислородная кровь проходит через митральный клапан при сокращении предсердия, позволяя крови течь из верхней камеры в нижний желудочек.

Митральный клапан состоит из двух створок или створок, которые препятствуют слишком быстрому попаданию крови в желудочек. Когда предсердие сокращается, открывается митральный клапан, позволяя крови перемещаться в желудочек.

Митральный клапан, как и трикуспидальный клапан, является частым местом выпадения клапана и регургитации, состояний, которые могут потребовать медицинского вмешательства.

Сердечный клапан аорты

Аортальный клапан – это четвертый и последний клапан сердца, расположенный между левым желудочком и аортой. Клапан состоит из трех створок, работающих вместе, чтобы предотвратить преждевременное попадание крови в аорту. Аортальный клапан открывается, когда желудочек сокращается, позволяя крови двигаться от сердца и начать свой путь к остальному телу.

Проблемы с сердечным клапаном

Хотя у некоторых клапанов более высокая вероятность развития определенных клапанных заболеваний, чем у других, проблемы могут возникать у всех клапанов.В некоторых случаях проблема с клапаном протекает бессимптомно и может быть обнаружена только из-за шума в сердце. В других случаях пациенты могут испытывать боль в груди, одышку, задержку жидкости и обмороки.

Если проблема потенциально серьезна, может быть рекомендовано тестирование, чтобы определить, следует ли рассматривать операцию по восстановлению клапана или операцию по замене клапана.

Анатомия и функции сердечных клапанов

Что такое сердечные клапаны?

Сердце состоит из четырех камер, двух предсердий (верхних камер) и двух желудочков (нижних камер).Есть клапан, через который кровь проходит перед тем, как покинуть каждую камеру сердца. Клапаны предотвращают обратный ток крови. Эти клапаны представляют собой настоящие створки, которые расположены на каждом конце двух желудочков (нижних камер сердца). Они действуют как односторонние входы крови с одной стороны желудочка и односторонние выходы крови с другой стороны желудочка. Фактически у каждого клапана есть три створки, кроме митрального клапана, у которого есть два створки. Четыре сердечных клапана включают следующее:

  • трехстворчатый клапан: расположен между правым предсердием и правым желудочком
  • Легочный клапан: расположен между правым желудочком и легочной артерией
  • митральный клапан: расположен между левым предсердием и левым желудочком
  • аортальный клапан: расположен между левым желудочком и аортой

Как работают сердечные клапаны?

Когда сердечная мышца сокращается и расслабляется, клапаны открываются и закрываются, позволяя крови течь в желудочки и предсердия попеременно.Ниже приводится пошаговая иллюстрация того, как клапаны обычно функционируют в левом желудочке:

  • После сокращения левого желудочка аортальный клапан закрывается и открывается митральный клапан, позволяя крови течь из левого предсердия в левый желудочек.
  • По мере сокращения левого предсердия в левый желудочек поступает больше крови.
  • Когда левый желудочек снова сокращается, митральный клапан закрывается, а аортальный клапан открывается, поэтому кровь течет в аорту.

Что такое порок сердечного клапана?

Сердечные клапаны могут иметь одну из двух неисправностей:

  • Регургитация – клапан (ы) не закрывается полностью, в результате кровь течет назад, а не вперед через клапан.
  • Стеноз – отверстие клапана (ов) сужается или не формируется должным образом, что препятствует оттоку крови из желудочка или предсердий. Сердце вынуждено перекачивать кровь с повышенной силой, чтобы перемещать кровь через жесткий (стенозирующий) клапан (ы).

Сердечные клапаны могут иметь обе неисправности одновременно (регургитация и стеноз). Когда сердечные клапаны не открываются и не закрываются должным образом, последствия для сердца могут быть серьезными, что может препятствовать способности сердца адекватно перекачивать кровь по телу. Проблемы с сердечным клапаном – одна из причин сердечной недостаточности.

Насколько важны сердечные клапаны?

Сердце важно, потому что оно перекачивает кровь по вашему телу, доставляя кислород и питательные вещества к вашим клеткам и удаляя продукты жизнедеятельности.Сердце имеет четыре камеры: две верхние камеры, называемые правым и левым предсердиями (единственное число: предсердие), и две нижние камеры, называемые правым и левым желудочками. Между предсердиями и желудочками расположены клапаны, благодаря которым кровь течет через сердце в одном направлении.

Клапаны

также расположены на «выходах» или «дверных проемах» сердца по той же причине – чтобы кровь текла в одном направлении. Клапаны, расположенные в этих точках, называются легочными и аортальными клапанами. Это односторонние клапаны, которые не позволяют крови течь через сердце в обратном направлении, когда сердце находится в состоянии покоя.

Клапаны сердца открываются и закрываются пассивно, а не за счет сокращения мышц. Они открываются, когда на них оказывается давление вперед, и закрываются, когда на них оказывает давление обратное давление. Клапаны прикреплены к мышцам, называемым сосочковыми мышцами, которые прикреплены к стенке желудочка и сокращаются при сокращении сердечной мышцы. Хотя сосочковые мышцы сокращаются, они не открывают и не закрывают клапаны. Вместо этого сокращение сосочковой мышцы тянет створки клапана во время сокращения желудочка, ограничивая движение клапана, предотвращая его выпуклость в предсердия и потенциальную утечку.Закрытие клапанов в вашем сердце издает классический звук «lub» (закрытие AV-клапана) «dub» (закрытие аортального / легочного клапана), который вы слышите, когда используете стетоскоп для прослушивания своего сердцебиения.

Когда ваши клапаны не работают должным образом, достаточное количество крови не может циркулировать по вашему телу, и вы можете чувствовать себя очень уставшим. Наиболее распространенные проблемы с сердечными клапанами – это либо сужение клапана, либо обратная утечка. Когда клапаны становятся жесткими или суженными, что называется стенозом, кровь не может свободно проходить через клапан.Обратная утечка приводит к тому, что кровь течет через сердце в противоположном направлении, что называется срыгиванием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *