Электроды для сварки меди: Медные электроды для сварки меди и ее сплавов: марки, особенности, характеристики

alexxlab | 26.01.1970 | 0 | Разное

Содержание

Медные электроды для сварки меди и ее сплавов: марки, особенности, характеристики

Какие марки электродов применяются для сварки меди

Для сварки, наплавки меди и цветных металлов, сварки медных труб и проч. применяются специальные медные электроды для сварки. К данному типу относятся электроды

  • Комсомолец-100,
  • ОЗБ-2М,
  • ОЗБ-3,
  • АНЦ/ОЗМ-2,
  • АНЦ/ОЗМ-3,
  • ESAB ОК 94.25,
  • ESAB OK 94.35,
  • ESAB OK 94.55,
  • ESAB OK NiCu-7 (OK 92.86),
  • ESAB OK Ni-1 (OK 92.05),
  • ZELLER 390.

Работать ими нужно начинать, зная некоторые их особенности и характеристики.

Комсомолец-100 предназначен для наплавки, сварки меди марки М1-М3. Работа должна производится на постоянном токе (о сварочных токах здесь), в нижнем или наклонном положениях. Выпускаются электроды Комсомолец-100 толщиной 3-5 миллиметров. Рекомендуемая сила тока для диаметра 3 мм 90-180 ампер, 4 мм 120-140, 5 мм 150-190. Эти показатели зависят от положения шва. Перед началом работы рекомендуется нагреть свариваемое изделие до 300-700 градусов, в зависимости от его толщины.

ОЗБ-2М предназначен и для работы с бронзой, используемой в художественном литье. Ими можно наплавлять ее на сталь, исправлять дефекты чугуна. При этом необходимо включать ток обратной полярности, производить работу в вертикальном или горизонтальном положении. ОЗБ-2М состоят из меди, железа, фосфора, марганца, никеля и олова. Их длина 350 мм. Для успешной работы необходимо устанавливать сварочный ток следующих значений: для диаметра 3 мм/ 90 – 120 ампер, 4 мм/120 – 160.

ОЗБ-3 используются в работе с цветными металлами, медью и бронзой. Они делаются со специальным покрытием (узнайте тут больше о покрытиях электродов). Сварку нужно производить только в нижнем положении. Используется постоянный ток. Коэффициент и производительность наплавки ОЗБ-3 12,5 г/А.ч – 3,5 кг.ч при диаметре изделия 4 мм.

АНЦ/ОЗМ-2 применяется для работы с чистой медью, при этом ее нет необходимости нагревать, если она не очень толстая. Сварка должна производиться в наклонном или нижнем положениях. Используется постоянный ток обратной полярности. Расходуется АНЦ/ОЗМ-2 1,6 кг на то, чтобы наплавить килограмм металла.

АНЦ/ОЗМ-3 нужны для работы с изделиями из меди технических марок по ГОСТ 859-78. Они выпускаются толщиной 4-6 мм. Чтобы успешно выполнить сварку нужно настроить ток на 220-300 ампер для диаметра 4 мм, 350-400 для 5 мм, 420-600 для 6 мм. Положение шва должно быть нижнее. Работать нужно короткой дугой, с медью толщиной до 10 мм, без подогрева, без разделки кромок одно или двусторонним швом с небольшими поперечными колебаниями электрода.

ESAB ОК 94.25 хорошо подходит для работы с многими цветными металлами, сплавами. Особенно с медью, оловянной бронзой, пережженным чугуном, латунью. Они могут использоваться для наплавки на сталь, для ее защиты от коррозийного воздействия. Толстые медные изделия рекомендуется нагреть до 300 градусов. Лучше всего работать маркой ESAB ОК 94.25 в пространственных положениях 1-4.

ESAB OK 94.35 имеет толстое рутиловое покрытие. Используется при работе с изделиями из меди и никеля, при содержании последнего до 30%. Электродом ESAB OK 94.35 наплавляют кромки. Работать ими можно в 1-5 положениях. Наплавленный с их помощью металл наделен отличной коррозионной стойкостью, он не боится длительного воздействия морской соленой воды, наделен хорошими прочностными характеристиками.

ESAB OK 94.55 имеют основной тип покрытия. Электрод хорош в работе с бронзой, красной латунью, медью. Сварка обычно выполняется короткой дугой. Расположение электрода должно быть перпендикулярно кромкам. Необходимо чтобы сварные валики находили один на другой.

Важно! Поверхность каждого прохода нужно не забывать зачищать от шлака.

Подходящие положения для работы 1-4 и 6. Предел прочности 400 МПа, твердость 120 НВ. Выпускается марка ESAB OK 94.55 диаметром 2-4 мм.

ESAB OK NiCu-7, или OK 92.86, используют для сварки меди и никеля. Наплавленный с их помощью металл характеризуется как устойчивый к образованию трещин, ковкий, стойкий к воздействию морской воды, кислоты и щелочи. Варят этим электродом в 1-4, 6 положениях. Выпускается данная марка толщиной 2-4 мм. В работе используется постоянный ток обратной полярности.

ESAB OK Ni-1, ранее назывался OK 92.05, имеет основной тип покрытия. Чтобы исключить образование трещин и пор рекомендуется работать только на допустимых для того или иного диаметра электрода токах. Подходит для 1-4, 6 положений. Прокаливают электрод два часа при температуре +250 градусов. Для работы нужен постоянный ток.

ZELLER 390 имеет основное покрытие. Предел прочности 200 МПа, текучести 185, твердость 40 НВ. ZELLER 390 выпускается разной длины, от 300 до 450 мм, диаметром 2,5-5 мм. Силу тока нужно установить для электрода толщиной 2,5 мм/80-110 ампер, 3 мм/100-130, 4 мм/130,170 мм, 5 мм/170-200. Используют его при работе с изделиями, которые должны отвечать высоким показателям стойкости к коррозийному влиянию, теплопроводности, электропроводности.

[ads-pc-2]
[ads-mob-2]

Популярные производители электродов для работы с медью и другими металлами

Хорошо зарекомендовали электроды компании Esab. Ее марки ESAB ОК 94.25, OK 94.35, OK 94.55, OK NiCu-7 (OK 92.86), OK Ni-1 (OK 92.05) используются во всем мире. Эта шведская компания была основана в 1904 году. Корпорация занимается производством сварочных аппаратов разного назначения, модификаций, флюсов. В ESAB разработали многие современные методы сварки, отвечающие требованиям прогресса.

ООО НПО Спецэлектрод занимается изготовлением марок электродов, используемых для всех целей. Для работы с цветными металлами хорошо себя зарекомендовали такие марки: АНЦ-3, АНЦ/ОЗМ-2, АНЦ/ОЗМ-3, АНЦ/ОЗМ-4, ОЗА 1 и 2 и многие другие. Это российское предприятие, его продукция недорогая и надежная.

Электроды Zeller производятся немецкой компанией начиная с 1963 года. В каталоге более 500 наименования продукции. Ее электроды отвечают самым высоким требованиям, наделены отличной коррозионной стойкостью, образуют прочный надежный шов.

Часто сварщики и поставщики материалов для них рекомендуют следующих производителей:

Материал стержней

Стержни электродов для сварки меди и ее сплавов производят из проволоки и прутков, состав которых соответствует требованиям, изложенным в ГОСТ 16130—90. В основном это медь или бронза. Часто используются в производстве сплавы металлов.

  • Медные стержни делаются диаметром 2-6 мм, они могут быть обернуты жестью 0,3-,05 мм толщиной. На них наносится разного рода покрытие, например, основное или рутиловое. Для электрода Комсомолец-100 стержень делается из меди М1.
  • Бронзовые стержни делаются в основном из металла марки БрКМц-3-1. Покрывают их смесью разных веществ. Они могут производиться и из оловянно-фосфористой бронзы Бр.ФО 4-03.
  • Бронзовые стержни обеспечивают создание шва отличного качества. Они хуже раскисляют металл, чем сделанные из меди. Стержни из бронзы могут снизить механическую прочность соединения при определенных условиях.

Общие принципы сварки электродами меди и ее сплавов

Проводя работы по сварке меди и ее сплавов, сварщик сталкивается с некоторыми трудностями. На шве может образоваться трещина. При работе легкоплавкие эвтектики скапливаются на границах кристаллов. Часто образовываются поры. Все это важно учесть и предотвратить. Медь толщиной до 4 мм сваривают без разделки кромок, до 10 мм толщины с односторонней разделкой. При этом угол скоса кромок должен быть 70 градусов, притупление 1,5—3 мм.

Текучесть меди усложняет работу в вертикальном, горизонтальном и потолочном положениях. Дуговая сварка должна осуществляться при повышенном сварочном токе из-за высокой теплопроводности металла. Кромки деталей соединяются с минимальным зазором из-за высокой текучести меди.

Часто рекомендуется использовать стальную подкладку.

Изделие толщиной более 6 мм лучше предварительно нагреть до 250 градусов. При этом нужно учитывать характеристику плавления меди, сплавов из нее. Тонкий металл не нагревают. Сварку лучше всего производить дугой 10—15 мм. Таким образом будет намного удобнее манипулировать электродом. Медь сваривается при постоянном токе обратной полярности. Это важно учесть. Дуговую сварку латуни, бронзы, М1-М3 необходимо выполнять мощной дугой, увеличенной силой тока и при повышенном напряжении. Работа делается очень быстро, на большой скорости.

По возможности сварку рекомендуется производить в нижнем положении или при угле наклона 20 градусов максимум по отношению к вертикали. Дуга направляется непосредственно на сварочную ванну. Рекомендуется применить специальные подкладки, сделанные из асбеста, флюса, графита, меди, стали. Важно учесть все основные особенности и характеристики металла.

Справка. Плавление меди происходит при +1080 градусов, она имеет удельный вес 8,9 г/см3, ее прочность 20 кг/мм2, относительное удлинение 50%.

Если изделие толстое, то нужно производить работу постепенно, наплавляя слоя один за другим. Сварка в таком случае выполняется обратноступенчатым швом, длина каждого участка должна быть 20-30 см. Его делят на две части, 75% и 25%. Сначала сваривают длинный участок по направлению к меньшему. Таким образом снижается риск возникновения трещин.

Работа выполняется в нижнем положении, иногда требуется править шов кувалдой или молотком из-за его вспенивания. В процессе сварки тонкой меди нужно уменьшить ток, чтобы из-за разогрева детали не возникли прожоги. Перед началом работ рекомендуется прокаливать электроды при определенной, рекомендуемой производителем температуре.

Более подробно про сварку меди узнайте здесь.
[ads-pc-3]
[ads-mob-3]

Какой выбрать диаметр

Выбирая наиболее подходящий диаметр электрода, прежде всего нужно учитывать толщину свариваемой меди, изделия, сплава. Важно учесть это и некоторые другие советы. При работе с тонким цветным металлом большой толщины электрод, а также в случае сварки на повышенных токах, создаст проблемы, появятся поры в шве.

Специалисты советуют выбирать такой диаметр: при толщине меди и ее сплавов

  • 2 мм – электрод толщиной 2-3 мм,
  • 3/3-4 мм,
  • 4/4-5 мм,
  • 5/5-6 мм,
  • 6/ 5-7 мм,
  • 7-8/6-7 мм,
  • 9-10/6-8 мм.

Существуют электроды для сваривания и наплавки с предварительным подогревом до 300-700 градусов по Цельсию, с малым подогревом до 150-350 градусов по Цельсию и без подогрева.

Кратко о сварке меди

Применяется несколько разновидностей сварочного процесса меди:

  • ручная сварка металлическими электродами;
  • ручная сварка угольными электродами;
  • аргонно-дуговая сварка.

Некоторые особенности сварочного процесса электродами по меди

  • Сваривание цветных металлов существенно может отличаться от сваривания стали, что обуславливается резким различием физико-химических свойств. К главным факторам, которые определяют свариваемость цветных металлов, относятся температура плавления и кипения, а также теплопроводность и сродство к содержащимся в воздухе газам (азоту, кислороду, парам воды).
  • Медь обладает повышенной жидко текучестью в расплавленной форме, высокой электропроводностью и теплопроводностью. Для нее характерна также активность при взаимодействии с некоторыми газами и, особенно с водородом и кислородом, что при сварке может явиться причиной образования в металле шва микротрещин и пор. Для предотвращения образования таких дефектов в свариваемых соединениях необходимо применение только хорошо раскисленной меди.
  • Сварка по меди должна выполняться тщательно прокаленными электродами, свариваемые детали должны быть хорошо подготовлены в местах наложения швов – зачищены до металлического блеска и удалены оксиды, загрязнения, жиры и пр.

Видео

Посмотрите небольшой ролик, где производится сваривание меди со сталью с помощью марки Zeller 390:

Где купить

Выбирайте производителей и продавцов сварочных электродов, перейдя по ссылке ниже на страницу нашего каталога фирм.

Выбрать компанию

Электроды для сварки меди

Существует несколько разновидностей сварки меди – это ручная сварка угольными электродами, ручная сварка металлическими электродами и аргонно-дуговая сварка. При сварке такого металла как медь используются угольные или графитовые электроды, при постоянном токе. Во время сварки длина дуги должна достигать 35—40мм. Материалом для присадки должны служить прутки из меди прямоугольной и круглой формы, марки М1 и М2, и медные прутки с фосфоновой присадкой, которые будут служить раскислителем. При сварке меди нужно учитывать то, что нужно избегать перегрева и окисления, для того чтобы это избежать, нужно учитывать то, что сечение прутка должно быть 20-25 мм2.

Перед сваркой, для нанесения флюса, пруток и кромка металла, который будет свариваться, зачищают металлической щёткой. А затем его смазываю каустической содой. Раствор соды должен быть 10%. Так же существует ещё один электрод для сварки меди. Это такой электрод, который называется металлическим. Этим электродом сваривают медь толщиной не более чем 2мм.

Сварка меди должна осуществляться постоянным током с обратной полярностью. При подогреве изделий, температура должна соблюдаться 300-400 градусов. Во время сварки стыковых соединений, толщина металла должна соответствовать нормам до 4 мм. А когда сварка металла производится размером до 5мм, то при этом меняют v- образную разделку кромок.

Существуют такие электроды как, «Комсомолец-100», они применятся так же для сварки меди, в которой содержится 0,01% кислорода. Медь сваривается при постоянном токе обратной полярности. Существуют электроды такой марки как, МН-5, МНЖ5-1,Бр. АМй9-2. МН-5 применятся для сварки трубопровода из медно-никелевого сплава, МНЖ5-1 применяются, как для сплава между собой, так и бронзой.

Ну и наконец, существует ещё одна сварка меди – это ручная аргонно-дуговая сварка. При этой сварке применяются такие газы как, аргон и гелий. Эта сварка производится с помощью вольфрамового электрода при постоянном токе и прямой полярности, при температуре 350-400 градусов.

Сварка осуществляется двумя способами. Первый – левый, второй – правый. Перед тем как начать работу, дугу, с помощью которой идёт сварка, нагревают на угольной или графитовой пластине. Если дугу начать зажигать на изделии, то это приведёт к загрязнению электрода. Сварку необходимо выполнять в таких положениях как, потолочном, вертикальном и нижнем положениях.

В той среде, когда медь находится в аргоне, её можно сварить и переменным током, но в этом случае сварка замедляется, то есть замедляется скорость сварки. В том случае, когда сварка производится переменным током проволокой Бр. КМц-1, бура для раскисления не требуется.


Для чего нужны медные электроды?

Медь – это металл, который очень важен практически для любого строительства. Часто для того чтобы сделать хорошее отопление или же какие-нибудь другие удобства в доме Вам нужно использовать медь.

Температура плавления меди составляет 1080 – 1083 градуса по Цельсию. Если медь разогреть до температуры 300 – 500 градусов, то Вы увидите, что при такой температуре медь обладает горячеломкостью. Если же медь находится в жидком состоянии, то она способна растворять газы.

Как видите, медь имеет много прекрасных свойств, которые как раз на руку многим людям. Например, ее способность плавиться при невысокой температуре позволяет Вам производить сваривание с меньшими усилиями и подогревом дуги.

Также для сваривания есть огромное количество электродов, которые позволяют производить сваривание медных конструкций с наименьшими усилиями, поэтому многие сварщики используют именно специальные электроды для сваривания меди.

Также для того чтобы производить сваривание меди Вам нужно использовать дуговую сварку с использованием повышенной величины сварочного тока. Еще при сваривании меди Вам нужно учитывать, что ее жидкотекучесть намного больше, чем у стали, поэтому для сваривания медных конструкций Вам нужно соединять части свариваемой детали очень плотно. Угол кромок для сваривания должен составлять 90 градусов.

Зачастую для того чтобы производить сваривание медных конструкций многие сварщики используют угольные электроды. Однако при использовании угольных электродов для сваривания Вам нужно помнить, что сваривание нужно производить без перерыва, чтобы сварочный шов был более прочным. Также у сваривания угольными электродами есть свои особенности, поэтому большинство сварщиков используют обычные медные электроды для сваривания медных конструкций.

Также если Вы делаете проводку, то можете воспользоваться возможностью производить сваривание медными электродами. Чаще всего проводку делают из меди, поэтому со свариванием проводов у Вас не должно возникнуть проблем. Сделав скрутку, Вы сможете ее хорошенько проварить, поэтому использование медных электродов – это ключ к высокому качеству проводки. Если же Вы сделаете проводку высокого качества, то Вам не нужно будет беспокоиться о качестве скруток, а также о возможности замыкания.

Да, действительно, использование медных электродов для сварки позволяет Вам производить сваривание практически любых деталей, которые сделаны из меди. Примечательно, то Вы можете производить сваривание медных проводов в электрической проводке, что позволяет Вам значительно сократить время строительства или ремонта. Также теперь Вам больше не нужно использовать паяльник, канифоль и олово для пайки электрической проводки, что значительно сократит Вам как расходы, так и время выполнения работы. Поэтому будьте уверены в том, что медные электроды широко используются при сваривании медных конструкций и несут большую пользу при работе с медью.


Электроды для сварки меди и ее сплавов

При сварке меди основная проблема – образование пор в металле шва из-за высокой ее активности при взаимодействии с газами, особенно с кислородом и водородом. Чтобы этого избежать, применяют только хорошо раскисленную медь и тщательно прокаленные электроды. Сварку выполняют по зачищенным до металлического блеска кромкам.

Сварка латуней сложна из-за интенсивною выгорания цинка.

Сварка бронз доставляет трудности ввиду высокой хрупкости и недостаточной прочности в нагретом состоянии.

Марка электрода
Область применения Технологические особенности

Покрытие

Род, полярность тока

Коэффициент наплавки, г/А?ч

Положение в пространстве

“Комсомолец-100”

П
(специальн.)

= ( + )

14,0

Для сварки и наплавки изделий из технически чистой меди М1, М2, М3. Возможна сварка меди со сталью. Сварка с предварительным местным подогревом до 300-700°С

АНЦ/ОЗМ-2

П
(специальн.)

= ( + )

17,5

Для сварки и наплавки изделий из технически чистой меди с содержанием кислорода не более 0,01%. Сварка при толщине более 10 мм с предварительным подогревом до 150-350°С

АНЦ/ОЗМ-3

П
(специальн.)

= ( + )

16,5

Для сварки и наплавки технически чистой меди (кислорода не более 0,01%). Возможна сварка со сталью. Сварка при толщине до 10 мм короткой дугой без подогрева и без разделки кромок одно или двусторонним швом с небольшими колебаниями электрода

ОЗБ-2М

Б

= ( + )

14,0

Для сварки и наплавки бронз, заварки дефектов бронзового и чугунного литья. Возможна сварка и наплавка латуней

ОЗБ-3

П
(специальн.)

= ( + )

12,5

Для наплавки при изготовлении и восстановлении электродов машин контактной точечной сварки, в том числе для сварки стержневой арматуры

алюминия, меди, никеля, их сплавов

Темы: Электроды сварочные, Сварка алюминия, Ручная дуговая сварка, Сварка меди.

К этой группе относятся электроды, предназначенные для сварки алюминия, меди, никеля и их сплавов. Электроды для сварки цветных металлов не стандартизованы и их производят по отдельным техническим условиям. Исключение – высоконикелевые электроды, которые применяются для сварки сплавов на железоникелевой и никелевой основах и высоколегированных сталей, вследствие чего они входят в ГОСТ 10052-75.

Сварка цветных металлов может существенно отличаться от сварки стали, из-за резкого различия их физико-химических свойств. Главными факторами, определяющими свариваемость цветных металлов, являются температуры плавления и кипения, теплопроводность, сродство к содержащимся в воздухе газам (кислороду, азоту, парам воды).

Электроды для сварки алюминия и его сплавов

Алюминий и алюминиевые сплавы обладают малой плотностью, высокой тепло- и электропроводностью, повышенной коррозионной стойкостью.

Особенностью алюминия и его сплавов является легкая окисляемость. Это приводит к тому, что на их поверхности практически всегда присутствует плотная тугоплавкая пленка оксида алюминия. Эта пленка может образовываться и на поверхности сварочной ванны, что нарушает стабильность процесса сварки, препятствует формированию шва, приводит к появлению непроваров и неметаллических включений. Для получения качественных сварных соединений необходимо принимать специальные меры, направленные на удаление оксидной пленки. При ручной дуговой сварке это достигается путем введения в состав электродного покрытия хлористых и фтористых солей щелочных и щелочно-земельных металлов. В расплавленном состоянии эти материалы создают необходимые условия для удаления пленки и устойчивого горения дуги.

Марка электродов Диаметр, мм Положение сварки Основное назначение
ОЗА-1 4,0; 5,0 Нижнее, ограниченно вертикальное Сварка и наплавка технически чистого алюминия
ОЗА-2 4,0; 5,0 Нижнее, ограниченно вертикальное Заварка дефектов литья и наплавка изделий из алюминиево-кремнистых сплавов
ОЗАНА-1 3,0; 4,0; 5,0 Нижнее, вертикальное Сварка и наплавка изделий из технически чистого алюминия
ОЗАНА-2 3,0; 4,0; 5,0 Нижнее, вертикальное Заварка дефектов литья и наплавка изделий из алюминиево-кремнистых сплавов

Электроды для сварки меди и ее сплавов

Медь обладает высокой тепло- и электропроводностью, повышенной жидкотекучестью расплавленного металла. Для нее характерна активность при взаимодействии с газами, особенно с кислородом и водородом, что может явиться причиной образования пор в металле шва и микротрещин. Для предотвращения появления таких дефектов в сварных соединениях надлежит применять только хорошо раскисленную медь. Сварку следует выполнять тщательно прокаленными электродами, свариваемые элементы в местах наложения швов должны быть хорошо зачищены до металлического блеска с удалением оксидов, загрязнений, жиров и пр.

При сварке латуней и бронз возникают дополнительные затруднения. Сварка латуни усложняется интенсивным испарением цинка, сварка бронз – высокой хрупкостью и малой прочностью в нагретом состоянии.

Марка электродов Диаметр, мм Положение сварки Основное назначение
Комсомолец-100 3,0; 4,0; 5,0 Нижнее, наклонное Сварка и наплавка изделий из технически чистой меди
АНЦ/ОЗМ-2 4,0; 5,0 Нижнее, наклонное Сварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода
АНЦ/ОЗМ-3 4,0; 5,0 Нижнее, наклонное Сварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода
АНЦ/ОЗМ-4 4,0; 5,0 Нижнее, наклонное Сварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода
ОЗБ-2М 3,0; 4,0 Нижнее, горизонтальное, вертикальное Сварка и наплавка бронз, заварка дефектов бронзового и чугунного литья
ОЗБ-3 4,0; 5,0 Нижнее Изготовление и восстановление электродов машин контактной сварки методом ручной дуговой наплавки

Электроды для сварки никеля и монель металла


Никель и особенно его сплавы являются прочными и вязкими материалами. Они, в зависимости от состава, обладают высокой коррозионной стойкостью, жаростойкостью и жаропрочностью.

Сварка никеля и его сплавов затруднена вследствие большой чувствительности к примесям и, в первую очередь, к растворенным газам (кислороду, водороду и особенно азоту) и высокой склонности к образованию горячих трещин. Для предупреждения возможного образования пор и трещин необходимо применять основной металл и сварочные электроды высокой чистоты, осуществлять их качественную подготовку к сварке.

В целом по технологии и технике ручной дуговой сварки никель и его сплавы близки к высоколегированным коррозионно-стойким сталям.

Марка электрода Диаметр, мм Положение сварки Основное назначение
ОЗЛ-32 3,0; 4,0 Нижнее, вертикальное Сварка технически чистого никеля, наплавка коррозионно-стойких слоев на углеродистые и высоколегированные коррозионно-стойкие стали. Сварка никеля с углеродистыми и высоколегированными коррозионно-стойкими сталями
В-56У 3,0; 4,0 Нижнее, полувертикальное Сварка монель-металла, наплавка коррозионно-стойкого слоя на углеродистую сталь. Сварка двухслойных сталей (Ст 3сп + монель) со стороны коррозионно-стойкого слоя. Сварка монель-металла с углеродистой сталью
  • < Электроды для сварки и наплавки чугуна: список марок
  • Электроды для резки металлов: список марок >

Электроды для сварки меди

Для обработки медных изделий подходит несколько вариантов электродов. При работе с электросваркой обязательно помните, что медь в несколько раз теплопроводнее, чем железо. Как говорилось в прошлой статье, при нагревании медного элемента выше 500 градусов Цельсия оно приобретает хрупкость, а на 700-800 градусах дополнительно понижается прочностные характеристики. Даже небольшой удар приводит к трещинкам.



Состав защитных покрытий электродов


Покрытые электроды часто требуются для электросварки. В табличке указаны основные марки и варианты их покрытий:

Компоненты покрытия

№ состава и марка электродов

1

2

3

4

5

6

7

8

9

К-100

ЗТ

Комсо- молец

ММ3-2

ОЗЧ-1

ОЗМ-1

ММ3-1

1-ый слой

2-ой слой

Плавиковый шпат

10

32

10

30

82

12,5

7,5

12,5

30

32

Полевой шпат

12

12

14

15

20

Железный порошок

50

Гранит

15

Кремнистая медь

20

25

Ферротитан

6

Диоксид титана

8

Ферромарганец

38

50

47,5

2,5

47,5

Марганцевая руда

17,5

5

17,5

Серебристый графит

16

8

16

Ферросилиций (Si=45%)

32

8

25

2,4

32

Алюминий (порошок)

2,5

2,5

Кварц

4,5

Мрамор

10

27

Поташ

5

Симанал*

43

20

Криолит

Сумма, %

80

100

80

100

100

100

100

100

75

100

Жидкое стекло, %

20

замес

20

замес

замес

замес

замес

замес

25

замес

Примечания. Состав покрытия №3 является модификацией основного покрытия №1 для электрода К-100, применяемый в случаях, когда отсутствует кремнистая бронза.
*Симанал является раскислителем, он содержит 27-30%Al, 31-35%Si, до 0,2%C, до 0,5%Р


Особенности использования различных марок электродов


Варианты с медным стержнем (номера 1-4, 6) понижают проводимость тепловой энергии и электричества в сварном шве примерно в 3-4 раза. Если для формирования шва наоборот необходимы большие показатели проводимости, то подобные варианты вам не подходят.

Номер 5 сначала был разработан для обработки стальных изделий. Но потом выяснилось, что они подходят и для меди. Довольно хорошего качества можно добиться с помощью медных стержней марок М1, М2 или М3.

Для обработки медных элементов с большой толщиной кромок применяется номер 6. Допустима работа с металлом от 20 мм в толщину.

Номер 7 подходит для сварки чугунных деталей. Также он может применяться и при работе с медью средней толщины. Соединение получается довольно прочным и плотным. Не подходят в случаях, если медному изделию нужны высокие показатели электро- и теплопроводности.

Номера 1 и 8 идентичны по химсоставу, разница лишь в количественном вхождении добавок.

Номер 9 имеет защиту в два слоя. Однако на практике выяснилось, что каких-либо преимуществ такое покрытие не прибавляет. Гораздо выгоднее взять электрод 4. Он может работать с переменными токами и обеспечивает более качественный шов.

Электроды из угля (графита) нужны при сварке деталей, которым требуется хорошо проводить тепло и электричество.


Материал электродной проволоки


Медь

При сварке медных деталей электродами из меди, латуни или бронзы требуется выполнить обязательную обработку кромок, аналогичную угольной сварке. Сварной шов обрабатывается аналогично.

Медные электроды выполнены из марок М1-М3. Иногда их дополнительно легируют фосфором. Оптимальное покрытие для этого вида электродов имеет в своем составе:

  • ферросплав марганца и железа – 50%,
  • ферросплав железа и кремния (75-ти %) – 8%,
  • шпат полевой – 12%,
  • флюорит – 10%,
  • расплавленное стекло – (20%).

Именно на последнем элементе замешаны все остальные. Толщина такого покрытия составляет 0,4 мм. Это не единственный вариант покрытия, другие можете посмотреть в табличке сверху.

Бронза

Для сварки медных деталей допустимо использование бронзовых стержней марки БрКМц-3-1. Их покрытие имеет состав:

  • руда марганца – 17.5%,
  • ферросплав железа и кремния (75-ти %) – 32%,
  • флюорит – 32%,
  • кристаллический литейный графит – 16%,
  • алюминий – 2.5%.

Эти компоненты также замешиваются в стекле в жидком состоянии. Марка БР.ФО 4-03 тоже довольно популярна. Бронзовые стержни помогают сформировать хороший шов. Однако они хуже раскисляют медь, чем все остальные варианты. Также снижается прочность шва при использовании прута Бр.КМц 3-1.


Технологические особенности ручной сварки электродами


При толщине листа не более 4 миллиметров можно проводить работы с отбортовкой без материалов для присадки. Если медь толще 4 миллиметров, то следует сваривать её под углом 35-45 градусов со скосом с двух сторон.

Кромки следует положить с небольшим зазором, но не более полмиллиметра. Это исключит протечки расплавленной меди. Рекомендовано использование асбестовых, графитовых или керамических прокладок. На концах сварного шва нужно сделать формовку.

Вид тока для этого вида сварки – постоянный, прямой полярности. Средние показатели длины дуги – 10-13 миллиметров, а напряжения – 46-60 Вольт. Оптимальная скорость сварочных работ – 20-30 сантиметров в минуту. Если есть возможность, то вся сварка выполняется за один прогон.

При работе бронзовыми электродами длина дуги берется самая короткая из возможных. Ток также должен быть обратной полярности и постоянный. Силу же определяют из расчета 50-60 Ампер на 1 миллиметр диаметра электрода.


Выбор диаметра электрода


Это значение зависит от толщины свариваемой меди, материала самого стержня, вида кромок и т.д. Прутки из бронзы БФ.Оф 4-0.3 или меди выбираются сечением, равным толщине свариваемого металла, но не превышающим 6 миллиметров. При стержнях прочих марок сечение берется на 1 мм больше, чем стенки медных элементов.

Для сварки в несколько слоев или при наличии среднего или толстого медного изделия диаметр сечения вычисляется по формуле:

d= от (s/2 – 2) до s/2, где s – толщина для сварки, а d – диаметр самого электрода.

При этом медные листы не сваривают электродами с диаметров свыше 8 миллиметров. В основном сейчас используют средние величины в 5-6 миллиметров. При диаметре менее 3 миллиметров стержень становится довольно хрупким. Проволоке от 2 миллиметров и ниже требуется нагартовка.


Графитовые электроды


При их использовании присадочным материалом являются прутки из бронзы Бр.ОФ6.5-0.15 или из меди М и МСР1. Последние содержат до 1% серебра. Также можно использовать и латунные прутья.

Режим сварки и диаметр электрода также выбирается исходя из толщины свариваемого изделия. Для 4 миллиметров подойдет электрод диаметром 4-6 миллиметров. При этом сила тока должна быть в диапазоне от 14 до 320 Ампер. Диаметр в 8-10 миллиметров нужен для обработки стенок меди толщиной более 4 миллиметров. Силу тока при этом нужно увеличить до 350-550 Ампер.

Готовый шов обязательно требуется проковать. Толстые листы следует предварительно нагреть до 20-350 градусов. Тонким нагревание не требуется.

Чтобы улучшить качество шва и избавиться от образования оксидной пленки применяются защитные флюсы. С электродами из графита используется два варианта флюсов по своему составу:

  • Прокаленная бура (68%), кислота кремниевая (15%), натрий фосфорнокислый (15%), уголь древесный (2%).
  • Прокаленная бура (50%), кислота кремниевая (15%), натрий фосфорнокислый (15%), уголь древесный (20%).

Подходит и чистая бура, то предпочтительнее в нее добавить 4-6% магния в виде металла.

чугуна, алюминия, меди, для контактной

Сварочные электроды – основной из расходных материалов при большинстве видов сварки, но самым основным методом, с которым проводятся сварочные работы электродами, является метод электрической дуговой сварки.

В настоящее время существует довольно-таки много сварочных электродов различной маркировки.


 

Типы электродов для сварки

Электроды изготавливаются из металлического проводника, покрытого слоем обсыпки из металлических оксидов, керамики или стекла.

Электроды необходимы для подвода электрической дуги к месту сварки и оплавления с целью создания сварочной ванны.

Сварочные аппараты любого вида, инверторные или полуавтоматы – качественное оборудование, но рано или поздно наступает момент для его ремонта и удаления возникших неисправностей. Читайте о ремонте сварочных аппаратов.

Сварочные трансформаторы незаменимы для ручной дуговой и некоторых видов промышленной сварки. О сварочных трансформаторах читайте здесь.

Электроды делятся на:

  • металлические – из стали, медных сплавов, чугуна или даже лития;
  • плавящиеся электроды, которые могут представлять собой стержни, биметаллические пластины или ленты, которые при оплавлении составляют сварочную ванну и шов;
  • электроды из тугоплавкого металла – вольфрама, предназначены для использования присадочных прутков из более мягких металлов;
  • неметаллические (неплавящиеся) – электроды из стержней графита или угля – электроды для подводной сварки;

Покрытые электроды для ручной дуговой сварки
Электроды покрытые слоем обсыпки представляют из себе металлические стержни, которые покрываются слоем обсыпки.

Обсыпка при сгорании укладывается на шов слоем шлака или флюса – это защищает сварочный шов от попадания воздуха.

Электродные стержни выпускаются разными диаметра от 2 мм. до 6,5 мм.

Длина электрода зависит от химического состава обсыпки и диаметра, как правило, короткими изготавливаются электроды из легированных сталей, которые предназначаются для точечного прожига толстого листового металла.

Как выбрать электроды для сварки

Прежде всего электроды должны обеспечивать следующие требования:

    • электрическая дуга на электроде должна быть стабильной и достаточной мощности, для того, чтобы металл оплавлялся равномерно и без прожига, переносился в сварочную ванну;
    • электрод при сгорании должен обеспечивать хорошую защиту сварочной ванны и шва слоем шлака, в ряде случаев, слоем флюса;

  • шов должен содержать в себе металл близкий по свойствам металлу оплавляемых кромок для однородности неразъемного сварочного соединения;
  • электрод в процессе оплавления не должен искрить и течь, образуя ровное шовное соединение;
    высокая рабочая производительность;
  • после сгорания электрода и образования шлака на поверхности шва шлак должен легко отделяться с помощью молотка или зубила;
  • шов должен обладать достаточной прочностью, не осыпаться и не откалываться из-за механических воздействий;
  • при сварке должно выделяться минимальное количество дыма и продуктов горения, которые вредны для сварщика;
  • малые затраты электродов, такие, чтобы расчет расхода электродов при сварке был рамках рентабельности, которая определяется процессом.

 

Ручной дуговой сваркой принято считать сварку электрической дугой замкнутом контуре при использовании различных сварочных электродов в зависимости от условий труда и требований, которые предъявляются к изделию. Читайте публикацию о ручной дуговой сварке на нашем сайте.

Холодная сварка – это способ соединения металлических деталей без применения температурного воздействия. Подробнее здесь.

 

Электроды для сварки алюминия

.

Для того, чтобы варить алюминий существуют специальные алюминиевые присадочные электроды.

Из-за того, что скорость плавления электрода намного больше обычного из стали, то скорость сварки должна быть оперативной.

Сварка должна выполняться в пределах одного электрода, а сами электроды перед их использованием необходимо просушить в течение двух часов.

Полярность электрода при этом должна быть отрицательной, а к алюминиевой плите подведен “плюсовой” шнур, это поспособствует тому, что наплавка из алюминия не будет отторгнута (почему прилипает электрод при сварке?)

Сварка алюминия свыше 2 мм. Осуществляется алюминиевым электродом на прямую, а не присадкой.

Аппараты контактной сварки применяются в тех случаях, когда сваривание металлических запчастей происходит при их нагревание посредством электрического тока дуги.

Контактная сварка – это метод часто используемый в промышленности для соединения однотипных деталей. Подробнее о методе здесь.

 

Электроды для сварки чугуна

Самыми распространенные марки электродов для сварки, которые использует современная индустрия для сварки чугуна являются ОЗЧ-2 с цилиндрическим стержнем из меди и электроды МНЧ-2 с цилиндрическим стержнем, который состоит из сплава никеля, меди, железа и марганца (монельметалла).

Металл, который образуется в ходе наплавки прекрасно поддается шлифовке и резанию, что очень важно для чугунных деталей и запчастей. Но электроды данных марок дорогостоящие и дефицитные ест их более дешевые аналоги:

электроды с покрытием из состава, который содержит железный порошок — 50%, мрамор — 27%, плавиковый шпат — 7%, кварц — 4,5%, ферромарганец — 2,5%, ферротитан — 6%, ферросилиций — 2,5%, соду — 0,5% (по массе).

Для облегчения сварочного процесса и повышения эффективности его результата, при сварке тугоплавких металлов используются различные присадки, в том числе и сварочная проволока.

Сварочные трансформаторы незаменимы для ручной дуговой и некоторых видов промышленной сварки. Подробнее здесь.

 

Электроды для контактной сварки

Особенностью электродов для контактной сварки является использование электродов из тугоплавких сплавов и вольфрама.

Прекрасно зарекомендовали себя вольфрамовые электроды в оболочки из присадочной проволоки, которая при оплавлении позволяет выполнять контактны точечные наплавки.

Такие электроды в свою очередь обеспечивают полную защиту сварочного процесса.

Электроды для сварки меди

Медь, как правило, варится тремя разновидностями электродов – присадочные из мягкого металла, графитовые электроды высокой мощности электрической дуги и электроды в аргоновой защите графитовые электроды всегда используются при постоянном токе высокой мощности.

Длина дуги электрода не должна превышать 35-40 мм.

В качестве присадочных электродов используются тонкие прутки меди.

Читайте также:

  • Выбор сварочного стола Сварочный стол представляет собой верстак, предназначенный для помещения сварочных деталей, их фиксации и различных […]
  • 5 видов сварочных горелок и их назначение Сварочная горелка – это основная часть сварочного оборудования. Она отвечает за обеспечение подвода электрического тока при электросварке к […]

Медь, латунь и бронза | Электроды и сплавы

Электрод из чистой меди

Код продукта 1281 – настоящий электрод для дуговой сварки из чистой меди. Поскольку очень немногие производители электродов имеют технологии для разработки и производства этого электрода из чистой меди, версия Selectrode является выбором для большинства мировых приложений и хорошо протестирована во всех областях применения по всему миру. Этот электрод, работающий только на постоянном токе, осаждается с относительно плавным переносом дуги.Получаемый сварной шов является плотным и обладает всеми тепловыми и электрическими характеристиками чистой меди. Высокая чистота химического состава металла шва облегчает соединение и ремонт всех марок свариваемой меди.

Электрод из оловянной бронзы переменного / постоянного тока

Selectrode Industries код 1282 – чрезвычайно универсальный электрод для сварки оловянной бронзы переменного и постоянного тока. Можно использовать особую технику для использования этого электрода в качестве прутка для электрической пайки. Функция производительности переменного тока открывает возможность ремонта бронзы для многих мастерских, которые в настоящее время не имеют сварочных аппаратов постоянного тока.Многофазная базовая структура из меди позволяет этому электроду соединять многие сплавы на основе меди не только сами с собой, но и со сплавами на основе железа, такими как нержавеющая сталь, сталь и чугун.

Электрод из оловянной бронзы только для постоянного тока

Код 1283 – это электрод Selectrode Industries из оловянной бронзы с мощным дуговым приводом, разработанный специально для высокопрочных сварных швов с глубоким проникновением на широкий спектр марок основного металла. Содержимое олова особенно подходит для ремонта компонентов, которые подвергаются воздействию морской воды, а также некоторых химикатов, широко используемых в морских применениях.Мощный дуговый привод позволяет легко переносить металл шва с отличным удалением шлака и внешним видом сварного шва. Плотность сварочного металла также исключительна.

Никель-марганцево-алюминиевый бронзовый электрод

Код 1284 – очень высоколегированный электрод для сварки алюминиевой бронзы, работающий только на постоянном токе. 1284 – это первая рекомендация по соединению и наплавке деталей, которые могут эксплуатироваться в морской среде и в морской воде. Высокое содержание сплава способствует ремонту самых разнообразных неблагородных металлов, относящихся к химическому составу «алюминиевая бронза».Высокое содержание сплава также обеспечивает твердость, идеально подходящую для применения в условиях трения и износа металл по металлу. Таким образом, этот металл сварного шва может противостоять коррозии, кавитации, эрозии и износу металла по металлу.

Электрод из алюминиевой бронзы

Selectrode Industries специально разработала код 1285 в качестве универсального электрода из алюминиевой бронзы с низким содержанием сплава, подходящего для повседневного ремонта деталей из алюминиевой бронзы. Он отличается очень высокой прочностью и отличной износостойкостью.Совместимость с широким спектром основных металлов из алюминиевой бронзы, а также возможность наплавки на чугуны, стали и сплавы на основе меди являются сильной стороной этого электрода.

Сплавы на основе меди Mig и Tig

Каждая из этих 5 марок сплавов на основе меди также производится как в версиях MIG с намоткой, так и в версиях TIG без покрытия.


Выберите номер продукта из списка ниже, чтобы просмотреть спецификации или паспорт безопасности для этого продукта.

Медные сплавы класса RWMA и медно-алюминиевые сплавы

Медные сплавы RWMA

Материал CDA # RWMA Класс Состав Плотность гр / куб.см Плотность фунт / дюйм3 Твердость по Роквеллу Теплопроводность Электропроводность Предел прочности на разрыв 0,2% Предел текучести
Примечание: указаны «типичные» значения – не спецификации материалов www.сопротивлениеweldsupplies.com
C11000 Чистая медь 8,94 0,323 34 F 229 БТЕ / час фут F 100% МАКО 40000 фунтов на кв. Дюйм
C15000 1 Cu / Zr 8,89 0,321 70 B 212 БТЕ / час.футов F 90% МАКО 66,000 фунтов на кв. Дюйм 56000 фунтов на кв. Дюйм
C16200 1 Cu / Cd 8,89 0,321 70 B 198 БТЕ / час фут F 90% МАКО 65000 фунтов на кв. Дюйм 54000 фунтов на кв. Дюйм
C18200 2 Cu / Cr 8.89 0,321 83 B 187 БТЕ / час фут F 85% МАКО 75000 фунтов на кв. Дюйм 70000 фунтов на кв. Дюйм
C18150 2 Cu / Cr / Zr 8,89 0,321 82 B 187 БТЕ / час фут F 74% МАКО 81000 фунтов на кв. Дюйм 72000 фунтов на кв. Дюйм
C18000 3 Cu / Ni / Si / Cr 8.71 0,315 94 B 125 БТЕ / час фут F 48% МАКО 100000 фунтов на кв. Дюйм 75000 фунтов на кв. Дюйм
C17510 3 Cu / Ni / Be 8,75 0,316 100 B 113 БТЕ / час фут F 48% МАКО 110 000 фунтов на кв. Дюйм 95000 фунтов на кв. Дюйм
C17200 4 Cu / Be 8.25 0,298 38 С 75 БТЕ / час фут F 22% МАКО 170 000 фунтов на кв. Дюйм 150 000 фунтов на кв. Дюйм
C15725 20 Cu / AL₂O₃ 8,86 0,32 73 B199 британских тепловых единиц / час фут F 87% МАКО 75000 фунтов на кв. Дюйм 69000 фунтов на кв. Дюйм
C15760 20 Cu / AL₂O₃ 8.81 0,318 82 B 186 БТЕ / час фут F 78% МАКО 83000 фунтов на кв. Дюйм 79000 фунтов на кв. Дюйм

Запросить загружаемый PDF-файл

RWMA, класс 1

ЦИРКОНИЙ-МЕДЬ , подходит для сварки алюминиевых и магниевых сплавов, материалов с покрытием, латуни и бронзы.

Класс 1: сплав превосходит чистую медь в качестве электродного материала и рекомендуется в качестве материала общего назначения для контактной сварки.Его можно использовать для точечной сварки электродов, колес для шовной сварки и компонентов сварочной арматуры. Не подлежит термической обработке.

Также известен как Tuffaloy 88, CMW 28, CuZr и CuCd.

RWMA, класс 2

ХРОМ-МЕДЬ , подходит для сварки холоднокатаных и горячекатаных сталей, нержавеющей стали, латуни и бронзы с низкой проводимостью.

Класс 2: сплав – это превосходный материал электродов для контактной сварки, рекомендуемый для высокопроизводительных операций.Он используется для сварки электродов, штампов для выпуклой сварки, валов и подшипников для шовной сварки, штампов для сварки оплавлением и стыковой сварки, а также токоведущих элементов конструкции. Доступны в формах для использования в качестве рычагов сварочных пистолетов, сварочных плит и структурных элементов вторичного контура. Поддается термической обработке.

ЦИРКОНИЙ-ХРОМ-МЕДЬ подходит для сварки оцинкованной стали и других сталей с металлическим покрытием. Это специально термообработанный сплав, который соответствует минимальным требованиям к электропроводности и твердости сплава класса 2.

Также известен как CMW 3, CMW 328, Mallory 3, Tuffaloy 77 и Tuffaloy Z, CuCr и CuCrZr.

RWMA, класс 3

БЕРИЛЛИЙ-НИКЕЛЬ-МЕДЬ и НИКЕЛЬ-МЕДЬ подходят для сварки сталей с высоким электрическим сопротивлением, таких как нержавеющая сталь.

Класс 3: сплав рекомендуется для штампов для выступающей сварки, а также для штампов для оплавления и стыковой сварки. Обладая более высокой прочностью, он также используется на сильно токонесущих деталях, таких как стержни электродов и сверхмощные держатели электродов.Поддается термической обработке.

Также известен как CMW 100, CMW 353, Mallory 100, Tuffaloy 55, Tuffaloy 55A, CuNiSiCr и CuNiBe.

RWMA, класс 4

БЕРИЛЛИЙ-МЕДЬ имеет чрезвычайно высокую твердость и рекомендуется для штампов для торцовой, оплавленной и стыковой сварки. Он имеет более низкую проводимость, чем сплав класса 3, но он более твердый и более износостойкий. Это следует учитывать там, где есть опасения, связанные с плотностью при высоком давлении и сильным износом, но где нагрев из-за его низкой проводимости не является чрезмерным.

Он часто используется в виде вставок, облицовок штампов и втулок для сварочных швов. Он доступен в отожженном состоянии, которое легче подвергается механической обработке и последующей термообработке.

Также известен как Tuffaloy 44, CMW 73 и CuBe.

RWMA, класс 20

ОКСИД АЛЮМИНИЯ МЕДИ обладает исключительной стойкостью к деформации при сварке и настоятельно рекомендуется для приваривания заглушек при сварке сталей с покрытием и оцинкованных сталей. Это обеспечивает стабильный запуск и, как правило, дольше, чем другие материалы крышки, если параметры сварки не контролируются тщательно.

Также известен как: Elkaloy 20 и CuAL₂O₃

Прямоугольный стержень – классы 1, 2 и 3

РАЗМЕР ВЕС
1/4 “x 1/2” 0,48 фунта / фут
1/4 “x 3/4” 0,73 фунта / фут
1/4 “x 1” 0,96 фунта / фут
1/4 “x 1 1/4” 1,20 фунта / фут
1/4 “x 1 1/2” 1.44 фунта / фут
1/4 “x 2” 1,92 фунта / фут
3/8 дюйма x 5/8 дюйма 0,90 фунтов / фут
3/8 дюйма x 3/4 дюйма 1,08 фунта / фут
3/8 дюйма x 1 дюйм 1,44 фунта / фут
3/8 дюйма x 1 1/2 дюйма 2,16 фунтов / фут
3/8 дюйма x 2 дюйма 2,88 фунтов / фут
1/2 “x 3/4” 1.44 фунта / фут
1/2 “x 1” 1,92 фунта / фут
1/2 “x 1 1/4” 2,40 фунтов / фут
1/2 “x 1 1/2” 2,88 фунтов / фут
1/2 “x 2” 3,84 фунта / фут
1/2 “x 2 1/2” 4,83 фунта / фут
1/2 “x 3” 5,81 фунтов / фут
5/8 “x 3/4” 1.80 фунтов / фут
5/8 “x 1” 2,40 фунтов / фут
5/8 “x 1 1/2” 3,60 фунта / фут
5/8 “x 2” 4,85 фунта / фут
5/8 “x 3” 7,27 фунтов / фут
5/8 “x 4” 9,60 фунтов / фут
3/4 дюйма x 1 дюйм 2,88 фунтов / фут
3/4 дюйма x 1 1/4 дюйма 3.64 фунта / фут
3/4 “x 1 1/2” 4,32 фунта / фут
3/4 дюйма x 2 дюйма 5,72 фунтов / фут
3/4 дюйма x 2 1/4 дюйма 6,48 фунтов / фут
3/4 дюйма x 2 1/2 дюйма 7,20 фунтов / фут
3/4 дюйма x 3 дюйма 8,64 фунта / фут
1 дюйм x 1 1/4 дюйма 4,85 фунта / фут
1 дюйм x 1 1/2 дюйма 5.76 фунтов / фут
1 дюйм x 2 дюйма 7,68 фунтов / фут
1 дюйм x 2 1/2 дюйма 9,70 фунтов / фут
1 дюйм x 2 3/4 дюйма 10,56 фунтов / фут
1 дюйм x 3 дюйма 11,55 фунтов / фут
1 1/4 “x 1 1/2” 7,25 фунтов / фут
1 1/4 “x 1 3/4” 8,40 фунтов / фут
1 1/4 “x 2” 9.60 фунтов / фут
1 1/4 “x 2 1/2” 12,06 фунтов / фут
1 1/2 “x 1 3/4” 10,09 фунтов / фут
1 1/2 “x 2” 11,60 фунтов / фут
1 1/2 “x 3” 17,28 фунтов / фут
2 “x 3 1/4” 25,15 фунтов / фут
2 “x 3 3/4” 29,05 фунтов / фут

Круглый пруток – классы 1, 2 и 3

РАЗМЕР ВЕС
1/8 “ 0.05 фунтов / фут
3/16 “ 0,11 фунтов / фут
1/4 “ 0,19 фунта / фут
5/16 “ 0,30 фунта / фут
3/8 “ 0,43 фунта / фут
1/2 “ 0,76 фунта / фут
9/16 “ 0,96 фунта / фут
5/8 “ 1,18 фунта / фут
3/4 “ 1.70 фунтов / фут
7/8 “ 2,32 фунта / фут
1 “ 3,03 фунта / фут
1 1/8 “ 3,84 фунта / фут
1 1/4 “ 4,74 фунта / фут
1 3/8 “ 5,74 фунтов / фут
1 1/2 “ 6,82 фунтов / фут
1 5/8 “ 7,97 фунтов / фут
1 3/4 “ 9.28 фунтов / фут
2 “ 12,12 фунтов / фут
2 1/8 “ 13,62 фунтов / фут
2 1/4 “ 15,4 фунта / фут
2 1/2 “ 18,97 фунтов / фут
2 3/4 “ 23,00 фунта / фут
3 “ 27,15 фунтов / фут
3 1/4 “ 32,05 фунта / фут
3 1/2 “ 37.18 фунтов / фут

Шестигранный стержень – классы 1, 2 и 3

РАЗМЕР ВЕС
3/8 “ 0,47 фунта / фут
1/2 “ 0,85 фунта / фут
5/8 “ 1,31 фунта / фут
3/4 “ 2,18 фунтов / фут
7/8 “ 2,56 фунта / фут
1 “ 3.35 фунтов / фут
1 1/8 “ 4,24 фунта / фут
1 1/4 “ 5,25 фунтов / фут
1 1/2 “ 7,55 фунтов / фут

Квадратный стержень – классы 1, 2 и 3

РАЗМЕР ВЕС
1/4 “x 1/4” 0,24 фунта / фут
3/8 дюйма x 3/8 дюйма 0.54 фунта / фут
1/2 “x 1/2” 0,96 фунта / фут
5/8 “x 5/8” 1,56 фунта / фут
3/4 дюйма x 3/4 дюйма 2,16 фунтов / фут
1 дюйм x 1 дюйм 3,84 фунта / фут
1 1/4 “x 1 1/4” 6,00 фунтов / фут
1 1/2 “x 1 1/2” 8,64 фунта / фут
1 3/4 дюйма x 1 3/4 дюйма 11.83 фунта / фут
2 “x 2” 15.46 фунтов / фут

Aufhauser – Техническое руководство – Процедуры сварки меди

Введение

Медь и медные сплавы являются важными инженерными материалами из-за их хорошей электрической и теплопроводности, коррозионной стойкости, износостойкости металла по металлу и отличительного эстетического внешнего вида.

Медь и большинство медных сплавов можно соединять сваркой, пайкой и пайкой. В этом разделе мы поговорим о различных медных сплавах и дадим некоторые рекомендации о том, как соединить эти металлы без ухудшения их коррозионных или механических свойств и без появления дефектов сварных швов.

Основные группы медных сплавов

Чистая медь: 99.Минимальное содержание меди 3%.
Медь обычно поставляется в одной из трех форм:

  1. Бескислородная медь
  2. Кислородсодержащая медь (твердый пек и марки огнеупорного рафинирования) – примеси и остаточное содержание кислорода в кислородсодержащей меди могут вызвать пористость и другие нарушения сплошности при сварке или пайке меди
  3. Медь раскисленная фосфором

Сплавы с высоким содержанием меди: (a) Медь, свободная для механической обработки – для улучшения обработки могут применяться низколегированные добавки серы или теллура.Эти сорта считаются несвариваемыми из-за очень высокой склонности к растрескиванию. Сварочные котлы соединяются пайкой и пайкой.
(b) Осаждение – отверждаемые медные сплавы – небольшие добавки бериллия, хрома или циркония могут быть добавлены к меди, а затем подвергнуты термообработке с дисперсионным упрочнением для улучшения механических свойств. Сварка или пайка этих сплавов приведет к износу незащищенной поверхности, что приведет к ухудшению механических свойств.

Медно-цинковые сплавы (латунь): Медные сплавы, в которых цинк является основным легирующим элементом, обычно называют латунными. Латунь бывает кованой и литой, при этом литые изделия обычно не такие однородные, как кованые. Добавление цинка к меди снижает температуру плавления, плотность, электрическую и теплопроводность, а также модуль упругости. Добавки цинка увеличивают прочность, твердость, пластичность и коэффициент теплового расширения.Латунь можно разделить на две свариваемые группы: с низким содержанием цинка (до 20% цинка) и с высоким содержанием цинка (30-40% цинка). Основные проблемы, с которыми сталкиваются латунь, связаны с улетучиванием цинка, которое приводит к образованию белых паров оксида цинка и пористости металла шва. Сплавы с низким содержанием цинка используются для изготовления ювелирных изделий и монет, а также в качестве основы для золотых пластин и эмали. Сплавы с более высоким содержанием цинка используются там, где важна более высокая прочность. Применения включают сердечники и баки автомобильных радиаторов, светильники, замки, сантехническую арматуру и цилиндры насосов.

Медно-оловянные сплавы (фосфорная бронза): Медные сплавы, содержащие от 1% до 10% олова. Эти сплавы доступны в деформируемой и литой формах. Эти сплавы подвержены горячему растрескиванию в напряженном состоянии. Следует избегать использования высоких температур предварительного нагрева, большого количества подводимого тепла и медленных скоростей охлаждения. Примеры конкретных применений включают в себя опоры мостов и расширительные пластины и фитинги, крепежные детали, химическое оборудование и компоненты текстильного оборудования.

Медно-алюминиевые сплавы (алюминиевая бронза): Содержат от 3% до 15% алюминия со значительными добавками железа, никеля и марганца. Обычные области применения сплавов из алюминиевой бронзы включают насосы, клапаны, другую водную арматуру и подшипники для использования в морской и других агрессивных средах.

Медно-кремниевые сплавы (кремниевая бронза): Доступны как кованые, так и литые. Кремниевая бронза имеет важное промышленное значение из-за ее высокой прочности, отличной коррозионной стойкости и хорошей свариваемости.Добавление кремния к меди увеличивает прочность на разрыв, твердость и скорость наклепа. Бронза с низким содержанием кремния (1,5% Si) используется в линиях гидравлического давления, трубах теплообменников, морском и промышленном оборудовании и крепежных изделиях. Бронза с высоким содержанием кремния (3% Si) используется для аналогичных применений, а также для химического технологического оборудования и судовых гребных валов.

Медно-никелевые сплавы: Медно-никелевые сплавы, содержащие 10-30% Ni, имеют умеренную прочность, обеспечиваемую никелем, который также улучшает стойкость меди к окислению и коррозии.Эти сплавы обладают хорошей формуемостью в горячем и холодном состоянии и производятся в виде плоского проката, труб, прутков, труб и поковок. Общие применения включают пластины и трубки для испарителей, конденсаторов и теплообменников.

Медно-никель-цинковые сплавы (никель-серебро): Содержат цинк в диапазоне 17% -27% вместе с 8% -18% никеля. Добавление никеля делает эти сплавы серебристыми по внешнему виду, а также увеличивает их прочность и коррозионную стойкость, хотя некоторые из них подвержены децинкованию и могут быть подвержены коррозионному растрескиванию под напряжением.Конкретные области применения включают оборудование, крепеж, детали оптики и камеры, травильный инвентарь и пустотелые изделия.


Свариваемость меди и медных сплавов

Сварочные процессы, такие как газовая дуговая сварка металла (GMAW) и газовая дуговая сварка вольфрамовым электродом (GTAW), обычно используются для сварки меди и ее сплавов, поскольку при сварке материалов с высокой теплопроводностью важен высокий локальный подвод тепла.Может использоваться ручная дуговая сварка металла (MMAW) меди и медных сплавов, хотя качество не такое хорошее, как при сварке в среде защитного газа. Свариваемость меди варьируется в зависимости от марки чистой меди (а), (б) и (в). Высокое содержание кислорода в меди с твердым пеком может привести к ожогу в зоне термического влияния и пористости металла сварного шва. Медь, раскисленная фосфором, более поддается сварке, и ее пористость можно избежать за счет использования присадочной проволоки, содержащей раскислители (Al, Mn, Si, P и Ti).Тонкие секции можно сваривать без предварительного нагрева, хотя более толстые секции требуют предварительного нагрева до 60 ° C. Медные сплавы, в отличие от меди, редко требуют предварительного нагрева перед сваркой. Свариваемость значительно различается для разных медных сплавов, и необходимо соблюдать осторожность, чтобы обеспечить выполнение правильных процедур сварки для каждого конкретного сплава, чтобы снизить риски сварочных дефектов.

2.1 Конструкции сварных соединений для соединения меди и медных сплавов:
Рекомендуемые конструкции соединений для сварки меди и медных сплавов показаны на рисунках ниже.Из-за высокой теплопроводности меди конструкции швов шире, чем у стали, что обеспечивает адекватное сплавление и проплавление.

Рисунок 1: Конструкции соединений для GTAW и дуговой сварки экранированного металла меди

ПРИМЕЧАНИЕ A = 1,6 мм, B = 2,4 мм, C = 3,2 мм, D = 4,0 мм, R = 3,2 мм, T = толщина

Рисунок 2: Конструкции шарниров для GMAW меди

ПРИМЕЧАНИЕ A = 1.6 мм, B = 2,4 мм, C = 3,2 мм, R = 6,4 мм, T = толщина

2.2 Подготовка поверхности:
Перед сваркой зона сварки должна быть чистой и свободной от масла, жира, грязи, краски и окислов. Обработка проволочной щеткой бронзовой проволочной щеткой с последующим обезжириванием подходящим чистящим средством. Оксидную пленку, образовавшуюся во время сварки, также следует удалять проволочной щеткой после каждой наплавки.

2.3 Предварительный нагрев:
Сварка толстых медных секций требует сильного предварительного нагрева из-за быстрой передачи тепла от сварного шва в окружающий основной металл. Большинство медных сплавов, даже в толстых сечениях, не требуют предварительного нагрева, поскольку коэффициент температуропроводности намного ниже, чем у меди. Чтобы выбрать правильный предварительный нагрев для конкретного применения, необходимо учитывать процесс сварки, свариваемый сплав, толщину основного металла и, в некоторой степени, общую массу сварного изделия.Алюминиевая бронза и медно-никелевые сплавы не следует предварительно нагревать. Желательно ограничить нагрев как можно более локализованной областью, чтобы избежать попадания слишком большого количества материала в температурный диапазон, который приведет к потере пластичности. Также важно обеспечить поддержание температуры предварительного нагрева до завершения сварки стыка.


Газовая дуговая сварка (GMAW) меди и медных сплавов

3.1 GMAW меди:
Электроды из меди ERCu рекомендуются для GMAW меди. Aufhauser Deoxidized Copper – это универсальный сплав меди с чистотой 98% для GMAW меди. Требуемая газовая смесь будет в значительной степени определяться толщиной свариваемого медного участка. Аргон обычно используется для диаметров 6 мм и ниже. Смеси гелия с аргоном используются для сварки более толстых участков. Наплавочный металл следует наносить с помощью бусинок стрингера или валиков узкого переплетения с использованием распылительного переноса.В таблице 1 ниже приведены общие рекомендации по процедурам GMAW меди.

Таблица 1: Типичные условия для ручного GMAW
Толщина металла (мм) Совместная конструкция * Диаметр электрода (мм) Температура предварительного нагрева Сварочный ток (А) Напряжение Расход газа (л / мин) Скорость перемещения (мм / мин)
1.6 A 0,9 75 ° С 150-200 21–26 10-15 500
3,0 A 1.2 75 ° С 150-220 22–28 10-15 450
6,0 B 1,2 75 ° С 180-250 22–28 10-15 400
6.0 B 1,6 100 ° С 160–280 28-30 10-15 350
10 B 1.6 250 ° С 250-320 28-30 15-20 300
12 С 1,6 250 ° С 290-350 29-32 15-20 300
16 + C, D 1.6 250 ° С 320-380 29-32 15-25 250

* см. Рисунок 2


Рекомендуемые защитные газы для GMAW меди и медных сплавов:
  • Марка аргона
  • Ar +> 0-3% O 2 или эквивалентные защитные газы
  • Ar + 25% He или эквивалентный защитный газ
  • He + 25% Ar или эквивалентный защитный газ

Дополнительные сведения см. В руководстве по защитному газу .


3.2 GMAW медно-кремниевых сплавов:

Сварочные материалы типа ERCuSi-A, а также защита аргоном и относительно высокие скорости перемещения используются в этом процессе. Aufhauser Silicon Bronze – провод на основе меди, рекомендованный для GMAW медно-кремниевых сплавов. Важно убедиться, что оксидный слой удаляется проволочной щеткой между проходами. В предварительном нагреве нет необходимости, а температура между проходами не должна превышать 100 ° C.

3.3 GMAW медно-оловянных сплавов (фосфорная бронза):

Эти сплавы имеют широкий диапазон затвердевания, что дает крупнозернистую дендритную зернистую структуру. Поэтому во время сварки необходимо соблюдать осторожность, чтобы предотвратить растрескивание металла шва. Горячая закалка металла шва снизит напряжения, возникающие при сварке, и вероятность растрескивания. Сварочную ванну следует сохранять небольшого размера, используя бусинки стрингера на высокой скорости движения.


Газовая вольфрамовая дуговая сварка (GTAW) меди и медных сплавов

4.1 GTAW меди:

Медные профили толщиной до 16,0 мм можно успешно сваривать с использованием процесса GTAW. Типовые конструкции шарниров показаны на рис. , рис. 1 . Рекомендуемая присадочная проволока – это присадочный металл, состав которого аналогичен составу основного металла. Для секций толщиной до 1,6 мм предпочтительным является защитный газ аргон, а для сварки секций толщиной более 1,6 мм предпочтительны смеси гелия.

По сравнению с аргоном смеси аргона и гелия обеспечивают более глубокое проплавление и более высокую скорость перемещения при том же сварочном токе.Смесь 75% He / 25% Ar обычно используется для обеспечения хороших характеристик проплавления гелия в сочетании с легким зажиганием дуги и улучшенными характеристиками стабильности дуги аргона. Для GTAW меди с бортами стрингера или бортами с узким переплетением предпочтительна прямая сварка. Типичные условия для ручной GTAW меди показаны в таблице 2 ниже.

Таблица 2: Типичные условия для ручной GTAW
Толщина металла (мм) Совместная конструкция * Защитный газ Тип вольфрама и сварочный ток
Диаметр сварочного стержня (мм) Температура предварительного нагрева Сварочный ток (А)
0.3-0,8 A Аргон Ториед / DC- 15-60
1,0–2,0 B Аргон Ториед / DC- 1.6 40–170
2,0-5,0 С Аргон Ториед / DC- 2,4 – 3,2 50 ° С 100-300
6.0 С Аргон Ториед / DC- 3,2 100 ° С 250-375
10,0 E Аргон Ториед / DC- 3.2 250 ° С 300-375
12,0 D Аргон Ториед / DC- 3,2 250 ° С 350-420
16.0 F Аргон Ториед / DC- 3,2 250 ° С 400-475

* см. Рисунок 1


4.2 Газовая вольфрамовая дуговая сварка медно-алюминиевых сплавов:

Присадочный стержень ERCuAl-A2 может использоваться для GTAW сплавов алюминия и бронзы.Переменный ток (AC) с защитой аргоном может использоваться для обеспечения действия по очистке дуги, чтобы помочь в удалении оксидного слоя во время сварки. Отрицательный электрод постоянного тока (DC-) со сварочными смесями аргона или аргона с гелием может использоваться в приложениях, требующих более глубокого проплавления и более высокой скорости перемещения. Предварительный нагрев требуется только для толстых секций.

4.3 Газовая вольфрамовая дуговая сварка кремний-бронзы:

Пруток из кремниевой бронзы Aufhauser (ERCuSi-A) можно использовать для сварки кремниевой бронзы во всех положениях.Также можно использовать сварочный пруток из алюминиевой бронзы ERCuAl-A2. Сварка может выполняться на постоянном токе с использованием аргона или аргон / гелий, либо на переменном токе с использованием защитного газа аргона.


Ручная металлическая дуговая сварка (MMAW) меди и медных сплавов

5.1 MMAW меди:

MMAW обычно используется для технического обслуживания и ремонтной сварки меди, медных сплавов и бронз. Электрод Aufhauser PhosBronze AC-DC (ECuSn-C) может использоваться для следующих целей:

  • Мелкий ремонт относительно тонких сечений
  • Соединения угловые с ограниченным доступом
  • Сварка меди с другими металлами

Конструкции шарниров должны быть аналогичны показанным на Рис. 1 .Положительный электрод постоянного тока (DC +) следует использовать с методом стрингера. Сечения более 3,0 мм требуют предварительного нагрева до 250 ° C или выше.

5.2 Ручная дуговая сварка медных сплавов металлом:

Aufhauser PhosBronze AC-DC (ECuSn-C) может использоваться для сварки медно-оловянных и медно-цинковых сплавов. Требуются большие стыковые углы, и наплавка металла шва должна производиться методом стрингера.

Таблица 3: Рекомендации по MMAW латуни и фосфорной бронзы
Медный сплав Рекомендуемый код электродов AWS Сварочный электрод Aufhauser Полярность электрода Совместное проектирование
Латунь ECuSn-A или ECuSn-C Aufhauser PhosBronze AC-DC DC + C дюйм Рисунок 1
Фосфорная бронза ECuSn-A или ECuSn-C Aufhauser PhosBronze AC-DC DC + C дюйм Рисунок 1


Пайка меди и медных сплавов

Принцип пайки заключается в соединении двух металлов сплавлением с присадочным металлом.Наплавочный металл должен иметь более низкую температуру плавления, чем основные металлы, но выше 450 ° C (при пайке используется присадочный металл с температурой плавления менее 450 ° C). Обычно требуется, чтобы присадочный металл попадал в узкий зазор между деталями за счет капиллярного действия.

Пайка широко используется для соединения меди и медных сплавов, за исключением алюминиевых бронз, содержащих более 10% алюминия, и сплавов, содержащих более 3% свинца. Пайка меди широко используется в электротехнической промышленности, а также в строительстве и в области отопления, вентиляции и кондиционирования воздуха.

Для достижения надлежащего сцепления во время пайки необходимо учитывать следующие моменты:

  • Поверхности швов чистые, без оксидов и т.п.
  • Обеспечение правильного зазора шва для конкретного припоя
  • Создание правильного режима нагрева, при котором присадочный металл течет вверх по температурному градиенту в стык
6.1 Подготовка поверхности:

Для очистки неблагородных металлов меди подходят стандартные процедуры обезжиривания с использованием растворителя или щелочи. Необходимо соблюдать осторожность, если для удаления поверхностных оксидов используются механические методы. Для химического удаления поверхностных оксидов следует использовать соответствующий травильный раствор.

6.2 Соображения по конструкции соединения:
  • Расстояние между соединяемыми соединениями должно контролироваться в пределах определенных допусков, которые зависят от используемого припоя и основного металла.Оптимальный зазор между стыками обычно составляет от 0,04 до 0,20 мм.
  • Обычно достаточно перекрытия стыка, в три или четыре раза превышающего толщину самого тонкого соединяемого элемента. Цель состоит в том, чтобы использовать как можно меньше материала для достижения желаемой прочности.

Рисунок 3: Общая конструкция соединения для серебряной пайки

6.3 Регулировка пламени

Используйте нейтральное пламя. Нейтральное пламя – это когда равные количества кислорода и ацетилена смешиваются с одинаковой скоростью. Белый внутренний конус четко очерчен и не имеет дымки.

6.4 Удаление флюса:

Если использовался флюс, остатки должны быть удалены одним из следующих методов:

  • A Разбавление в горячей каустической соде
  • Очистка проволочной щеткой и ополаскивание горячей водой
  • Проволочная щетка и пар
Неполное удаление флюса может вызвать слабость и повреждение сустава.


Сварка меди припоем

Сварка пайкой – это технология, аналогичная сварке плавлением, за исключением того, что присадочный металл имеет более низкую температуру плавления, чем основной металл. Процесс пайки твердым припоем зависит от прочности на разрыв наплавленного присадочного металла, а также от фактической прочности связи, развиваемой между присадочным металлом и основным металлом.Кислородно-ацетилен обычно предпочтителен из-за его более легкого схватывания пламени и быстрого тепловложения.

7.1 Выбор сплава:

Сплав, наиболее подходящий для работы, зависит от прочности соединения, устойчивости к коррозии, рабочей температуры и экономических характеристик. Обычно используются следующие сплавы: Aufhauser Low Fuming Bronze или Aufhauser Low Fuming Bronze (с флюсовым покрытием).

7.2 Подготовка шва:

Типичные конструкции швов показаны на Рис. 4 ниже.

Рисунок 4: Типовые конструкции соединений для сварки пайкой меди

7.3 Регулировка пламени

Используйте слегка окисляющее пламя.

7.4 Флюс:

Используйте медь и латунь Aufhauser Flux , смешайте с водой до состояния пасты и нанесите на обе стороны стыка. Стержень можно покрыть пастой или нагреть и окунуть в сухой флюс.

7.5 Предварительный нагрев:

Предварительный нагрев рекомендуется только для тяжелых секций.

7.6 Углы выдувной трубы и стержня:

Наконечник горелки на металлическую поверхность от 40 ° до 50 °. Расстояние внутреннего конуса от металлической поверхности 3,25 мм до 5.00мм. Присадочный стержень к металлической поверхности от 40 ° до 50 °.

Таблица 5: Данные для пайки меди
Толщина листа (мм) Присадочный стержень (мм) Расход ацетилена на выдувной трубе
(куб. Л / мин)
Размер наконечника
0.8 1,6 2,0 ​​ 12
1,6 1,6 3,75 15
2,4 1,6 4.25 15
3,2 2,4 7,0 20
4,0 2,4 8,5 20
5.0 3,2 10,0 26
6,0 5,0 13,5 26

7.7 Техника сварки:

После предварительного нагрева или повышения температуры соединения до температуры, достаточной для сплавления присадочного стержня и меди, расплавьте шарик металла с конца стержня и нанесите его на стык, смачивание или лужение. поверхность.Когда произойдет лужение, начинайте сварку форхендом. Не роняйте присадочный металл на неокрашенные поверхности. См. Рисунок 5 .

Рис. 5. Техника прямой сварки припоем

7.8 Удаление флюса:

Для удаления остатков флюса можно использовать любой из следующих методов:

  • Шлифовальный круг или проволочная щетка и вода
  • Пескоструйная очистка
  • Раствор каустической соды

Металлы наполнителя Aufhauser

Aufhauser производит полную линейку сплавов для пайки и сварки меди.Мы поможем вам выбрать подходящий медный сварочный сплав из нашей Таблицы выбора .

Электроды для контактной точечной сварки: описание переменных

Принято считать, что материалы электродов с высокой проводимостью (классы 1 и 2 по системе ISO 5182) идеально подходят для сварки деталей с низкой проводимостью.И наоборот, для металлов с высокой проводимостью требуются электроды с более низкой проводимостью, такие как электроды из тугоплавкого металла, называемые электродами класса 3 в соответствии с ISO 5182.

Например, широко доступные электроды из меди / хрома и меди / хрома / циркония отлично работают с низкоуглеродистыми сталями и высокопрочными сталями. Для точечной сварки этого семейства черных металлов используются различные стратегии упрочнения меди для достижения необходимой твердости материала. (Примечательно, что для высокоуглеродистых нержавеющих сталей по-прежнему рекомендуются сплавы меди; однако процесс контактной сварки регулируется для обеспечения более высокого усилия и меньшего тока, которые требуются.) В качестве альтернативы при сварке меди лучше всего подходят металлы с низкой проводимостью, такие как семейство тугоплавких металлических электродов, включая электроды из чистого вольфрама, молибдена и вольфрама / меди, а также некоторые другие варианты.

При контактной точечной сварке металлов с низкой проводимостью материал заготовки (а не сварочный электрод) нагревается. Медь идеальна тем, что пропускает ток и тепло к заготовке. С другой стороны, когда вы свариваете металл с высокой проводимостью, заготовка позволяет теплу рассеиваться, действуя подобно радиатору.В этом случае вам понадобится электрод, который может удерживать тепло, особенно в наконечнике, и быть достаточно жестким при высоких температурах, чтобы сохранять положение, обеспечивающее максимальный контакт между электродом и заготовкой.

Несмотря на эти принципы, ни один материал электрода не может быть лучшим во всех сферах применения. Например, электроды из тугоплавкого металла часто ошибочно, но с некоторыми достоинствами воспринимаются как трескающиеся или расслаивающиеся на наконечнике из-за термоциклирования. Хотя это верно, если выбрана точечная сварка действительно неподходящих металлов с высоким удельным сопротивлением, существуют стратегии, позволяющие исключить расслоение наконечника.В тех случаях, когда он успешен, преимущество огнеупора в том, что он выдерживает большой ток и большое количество циклов повторения, делает их незаменимыми.

Проблемы с электродами с высокой проводимостью могут быть обнаружены в сплавах с дисперсионным упрочнением, таких как хром-медь (CrCu). Было обнаружено, что во время использования повторяющиеся циклы нагрева вызывают дальнейшую диффузию выделений в медную матрицу, что приводит к увеличению твердости электрода и, в конечном итоге, к снижению электропроводности.Однако этим металлургическим преобразованием во время использования можно управлять, и преимущества классов 1 и 2 остаются убедительными для сварки правильных металлов заготовок.

Чтобы узнать больше о переменных, влияющих на выбор правильных электродов для контактной точечной сварки, загрузите нашу бесплатную техническую документацию по материалам электродов для контактной сварки: выбор подходящего для вашего приложения.

Бериллиево-медные сварочные электроды / колеса / детали, Сварочные детали из бериллиевой бронзы, Медно-бериллиевые сварочные детали

Бериллиевые медные сварочные электроды / колеса / части

Бериллиево-медные сварочные электроды / колеса / детали Описание:
ALB-Alloy может производить медно-бериллиевые сварочные электроды, сварочные наконечники, сварочные диски, контактные наконечники, валы, колеса для шовной бериллиево-медной сварки, наконечники для точечной сварки, точечную сварку электрод, электродные колпачки, переходники, держатели и др. по чертежу Заказчика и имеющимся образцам.

При дуговой сварке электрод используется для пропускания тока через заготовку для сплавления двух частей вместе. В зависимости от процесса электрод является либо расходным, в случае дуговой сварки металлическим газом или дуговой сваркой в ​​среде защитного металла, либо неплавящимся, например, при дуговой сварке газом вольфрамовым электродом. Для системы постоянного тока сварочный пруток или стержень может быть катодом для сварного шва наполняющего типа или анодом для других сварочных процессов. Для аппарата для дуговой сварки на переменном токе сварочный электрод не считается анодом или катодом.

Бериллиево-медные сварочные электроды / колеса / детали
Доступные продукты:
В основном доступным бериллиево-медным сварочным электродом является бериллиево-медный сварочный электрод C17200, бериллиево-медный сварочный электрод C17500, бериллиево-медный сварочный электрод C17510, бериллиево-медный сварочный электрод CuCo1Ni1Be и бериллиево-медный электрод другие сварочные компоненты.

Бериллиево-медные сварочные электроды / колеса / детали
Типичное применение:
Электроды для медицинских целей, такие как ЭЭГ, ЭКГ, ЭСТ, дефибриллятор
Электроды для электрофизиологических методов в биомедицинских исследованиях
Электроды для выполнения на электрическом стуле
Электроды для гальваники
Электроды для дуговой сварки
Плоские сварочные штампы, электроды для выступающей сварки, электрические компоненты
Роботизированные сварочные аппараты
Автоматическая промышленность
Производство контактной сварки
Производство проекционной сварки
Производство дуговой сварки
Производство сварки MIG и MAG
Сопла для плазменной и лазерной резки
Электроды для катодной защиты
Электроды для заземления
Электроды для химического анализа электрохимическими методами
Инертные электроды для электролиза (платиновые)
Узел мембранных электродов

Сварочный электрод: таблица и выбор

Электрод – это металлическая проволока с покрытием.

Изготовлен из материалов, аналогичных по составу свариваемому металлу.

Существует множество факторов, влияющих на выбор правильного электрода для каждого проекта. Итого:

  • SMAW или стержневые электроды являются расходуемыми, то есть они становятся частью сварного шва и также называются присадочным электродом или сварочным стержнем.
  • Вольфрамовые электроды
  • для сварки TIG не являются расходуемыми, поскольку они не плавятся и не становятся частью сварного шва, что требует использования сварочного стержня.
  • Присадочные стержни
  • TIG – это дополнительный присадочный материал, используемый для сплавления двух частей заготовки вместе в виде композита.
  • Сварочный электрод MIG – это проволока с непрерывной подачей, называемая проволокой MIG.

Выбор электрода имеет решающее значение для простоты очистки, прочности сварного шва, качества валика и сведения к минимуму разбрызгивания.

Электроды необходимо хранить в защищенной от влаги среде и осторожно извлекать из любой упаковки (во избежание повреждений следуйте инструкциям).

Покрытые сварочные электроды

Когда расплавленный металл подвергается воздействию воздуха, он поглощает кислород и азот и становится хрупким или подвергается иным неблагоприятным воздействиям.

Покрытие из шлака необходимо для защиты расплавленного металла шва или его затвердевания от атмосферы. Это покрытие может быть получено из электродного покрытия.

Состав покрытия сварочного электрода определяет его применимость, состав наплавленного металла шва и характеристики электрода.

Состав покрытий сварочных электродов основан на общепринятых принципах металлургии, химии и физики.

Покрытие защищает металл от повреждений, стабилизирует дугу и улучшает сварной шов другими способами, в том числе:

  1. Металлическая гладкая поверхность шва с ровными краями
  2. Минимальное разбрызгивание рядом со сварным швом
  3. Стабильная сварочная дуга
  4. Контроль проникновения
  5. Прочное, прочное покрытие
  6. Более легкое удаление шлака
  7. Повышенная скорость наплавки

Электроды для металлической дуги могут быть сгруппированы и классифицированы как электроды без покрытия или с тонким покрытием, а также электроды с экранированной дугой или электроды с толстым покрытием.

Покрытый электрод – самый популярный тип присадочного металла, применяемый при дуговой сварке.

Состав покрытия электрода определяет пригодность электрода, состав наплавленного металла шва и характеристики электрода.

Тип используемого электрода зависит от конкретных свойств, требуемых для наплавленного сварного шва.

К ним относятся коррозионная стойкость, пластичность, высокая прочность на растяжение, тип свариваемого основного металла, положение сварного шва (плоское, горизонтальное, вертикальное или потолочное), а также требуемый тип тока и полярность.

Популярный сварочный стержень (E6010), используемый для производства общего назначения, строительства, сварки труб и судостроения

Классификация

Сварочная промышленность приняла серию классификационных номеров Американского общества сварщиков для сварочных стержневых электродов.

Система идентификации электродов для стальной дуговой сварки настроена следующим образом:

  1. E – обозначает электрод для дуговой сварки.
  2. Первые две (или три) цифры – указывают предел прочности (сопротивление материала силам, пытающимся его разорвать) в тысячах фунтов на квадратный дюйм наплавленного металла.
  3. Третья (или четвертая) цифра – указывает положение сварного шва. 0 означает, что классификация не используется; 1 – для всех позиций; 2 – только для плоского и горизонтального положения; 3 предназначен только для плоского положения.
  4. Четвертая (или пятая) цифра – указывает тип покрытия электрода и тип используемого источника питания; переменного или постоянного тока, прямой или обратной полярности.
  5. Типы покрытия, сварочный ток и положение полярности, обозначенные четвертой (или пятой) идентификационной цифрой классификации электродов, перечислены в таблицах 5-4 ниже.

Число E6010 – обозначает электрод для дуговой сварки с минимальным пределом прочности на разрыв 60 000 фунтов на квадратный дюйм; используется во всех положениях, требуется постоянный ток обратной полярности.

Типы покрытия, тока и полярности, обозначенные четвертой цифрой в классификационном номере электрода
Цифра Покрытие Сварочный ток
0 * *
1 Целлюлоза Калий переменного тока, постоянного тока, постоянного тока
2 Титан натрия переменного тока, постоянного тока
3 Титания калий переменного тока, постоянного тока, постоянного тока
4 Железный порошок титана переменного тока, постоянного тока, постоянного тока
5 Натрий с низким содержанием водорода DCRP
6 Калий с низким содержанием водорода переменного тока, постоянного тока
7 Железный порошок оксид железа переменного тока, постоянного тока
8 Железный порошок с низким содержанием водорода переменного тока, постоянного тока, постоянного тока

Когда четвертая (или последняя) цифра равна 0, тип покрытия и ток, которые будут использоваться, определяются третьей цифрой.
Таблица 5-4

Система идентификации электродов сварочного прутка для дуговой сварки нержавеющей стали настроена следующим образом:

  1. E обозначает электрод для дуговой сварки.
  2. Первые три цифры обозначают нержавеющую сталь американского типа Iron and Steel.
  3. Последние две цифры указывают на текущую позицию и используемую позицию.
  4. Число E-308-16 в этой системе обозначает тип 308 Института нержавеющей стали; используется во всех позициях; с постоянным током переменной или обратной полярности.

Система классификации электродов для дуговой сварки под флюсом

Система идентификации твердой углеродистой стали без покрытия для дуговой сварки под флюсом выглядит следующим образом:

  1. Буква префикса E используется для обозначения электрода. За ним следует буква, обозначающая уровень марганца, т. Е. L для низкого уровня, M для среднего и H для высокого уровня марганца. Далее следует число среднего количества углерода в точках или сотых долях процента. Состав некоторых из этих проволок почти идентичен составу некоторых из проволок, указанных в спецификации для дуговой сварки в газовой среде.
  2. Электродные проволоки, используемые для дуговой сварки под флюсом, указаны в спецификации Американского сварочного общества «Электроды и флюсы для низкоуглеродистой стали без покрытия для дуговой сварки под флюсом». В этой спецификации указан как состав проволоки, так и химический состав наплавленного металла в зависимости от используемого флюса. В спецификации действительно указан состав электродных проводов. Эта информация представлена ​​в таблице 8-1. Когда эти электроды используются с определенными флюсами под флюсом и свариваются с соблюдением надлежащих процедур, наплавленный металл шва будет соответствовать механическим свойствам, требуемым спецификацией.
  3. В красных присадках, используемых для газовой сварки, используется префикс R, за которым следует буква G, указывающая на то, что стержень используется специально для газовой сварки. За этими буквами следуют две цифры: 45, 60 или 65. Они обозначают приблизительную прочность на разрыв в 1000 фунтов на квадратный дюйм (6895 кПа).
  4. В цветных присадочных металлах используется префикс E, R или RB, за которым следует химический символ основных металлов в проволоке. Инициалы для одного или двух элементов будут следовать. Если имеется более одного сплава, содержащего одни и те же элементы, можно добавить букву или цифру суффикса.
  5. Спецификации Американского общества сварки наиболее широко используются для определения неизолированных сварочных стержней и электродной проволоки. Существуют также военные спецификации, такие как типы MIL-E или -R и федеральные спецификации, обычно тип QQ-R и спецификации AMS. Для определения присадочных металлов следует использовать конкретную спецификацию.

Самым важным аспектом проволоки и прутка сплошных сварочных электродов является их состав, указанный в спецификации. В спецификациях указаны пределы состава для различных проводов и требования к механическим свойствам.

Иногда на сплошных медных проводах медь может отслаиваться в механизме подающего ролика и создавать проблемы. Он может забивать вкладыши или контактные наконечники. Желательно легкое медное покрытие. Поверхность электродной проволоки должна быть в достаточной степени очищена от грязи и тянущих веществ. Это можно проверить, используя белую чистящую ткань и протянув через нее кусок проволоки. Слишком большое количество грязи забивает гильзы, снижает ток в наконечнике и может привести к сбоям в сварочных операциях.

Температуру или прочность проволоки можно проверить на испытательной машине.Проволока более высокой прочности будет лучше проходить через пистолеты и кабели. Минимальная прочность на разрыв, рекомендованная спецификацией, составляет 140000 фунтов на квадратный дюйм (965 300 кПа).

Сплошная электродная проволока доступна во многих различных упаковках. Они варьируются от крошечных катушек, используемых в горелках для катушек, до катушек среднего размера для дуговой сварки тонкой проволокой в ​​газовой среде. Доступны мотки электродной проволоки, которые можно размещать на барабанах, входящих в состав сварочного оборудования. Также есть огромные катушки весом в несколько сотен фунтов.Электродная проволока также доступна в барабанах или упаковках, где проволока укладывается в круглый контейнер и вытягивается из контейнера с помощью автоматического механизма подачи проволоки.

Вот таблица с описанием шести стандартных электродов, используемых для сварки низкоуглеродистой стали:

Покрытия

Покрытия сварочных электродов для сварки мягких и низколегированных сталей могут иметь от 6 до 12 ингредиентов, в том числе:

  • Целлюлоза – для обеспечения газовой защиты с восстановителем, в котором распад целлюлозы создает газовую защиту, окружающую дугу
  • Карбонаты металлов – для регулирования основности шлака и обеспечения восстановительной атмосферы
  • Диоксид титана – для образования очень жидкого, но быстро замерзающего шлака и для ионизации дуги
  • Ферромарганец и ферросилиций – для раскисления расплавленного металла сварного шва и увеличения содержания марганца и кремния в наплавленном металле сварного шва.
  • Глины и камеди – для обеспечения эластичности при экструзии пластикового покрытия и для придания прочности покрытию
  • Фторид кальция – для обеспечения защитного газа для защиты дуги, регулирования основности шлака и обеспечения текучести и растворимости оксидов металлов
  • Минеральные силикаты – для образования шлака и придания прочности электродному покрытию
  • Легирование металлов, включая никель, молибден и хром – для обеспечения содержания сплава в наплавленном металле сварного шва
  • Оксид железа или марганца – для регулирования текучести и свойств шлака, а также для стабилизации дуги.
  • Железный порошок – для повышения производительности за счет наплавки дополнительного металла в сварном шве.

Основные типы покрытий сварочных электродов для низкоуглеродистой стали описаны ниже.

  1. Натрийцеллюлоза (EXX10) : Электроды из целлюлозного материала этого типа в виде древесной муки или переработанные низколегированные электроды содержат до 30 процентов бумаги. Газовая защита содержит углекислый газ и водород, которые являются восстановителями.Эти газы имеют тенденцию вызывать дугу копания, обеспечивающую глубокое проникновение. Наплавленный металл несколько шероховат, а разбрызгивание больше, чем на других электродах. Он действительно обеспечивает отличные механические свойства, особенно после старения. Это один из первых типов электродов, который широко используется для прокладки трубопроводов по пересеченной местности с использованием техники сварки под уклон. Обычно он используется с постоянным током с положительным электродом (обратная полярность).
  2. Целлюлозно-калиевый (EXX11) : Этот электрод очень похож на электрод целлюлозно-натриевый, за исключением того, что используется больше калия, чем натрия.Это обеспечивает ионизацию дуги и делает электрод пригодным для сварки на переменном токе. Действие дуги, проплавление и результаты сварки очень похожи. В электроды E6010 и E6011 можно добавлять небольшое количество порошка железа. Это способствует стабилизации дуги и немного увеличивает скорость наплавки.
  3. Рутил-натрий (EXX12) : Когда содержание рутила или диоксида титана относительно высокое по сравнению с другими компонентами, электрод будет особенно привлекательным для сварщика.Электроды с этим покрытием имеют тихую дугу, легко контролируемый шлак и низкий уровень разбрызгивания. Наплавленный слой будет иметь гладкую поверхность, а проплавление будет меньше, чем у целлюлозного электрода. Свойства металла сварного шва будут несколько ниже, чем у целлюлозных типов. Этот тип электрода обеспечивает довольно высокую скорость осаждения. Он имеет относительно низкое напряжение дуги и может использоваться с переменным или постоянным током с отрицательным электродом (прямая полярность).
  4. Рутил-калий (EXX13) : Это покрытие электрода очень похоже на покрытие рутил-натриевого типа, за исключением того, что калий используется для ионизации дуги.Это делает его более подходящим для сварки на переменном токе. Его также можно использовать с постоянным током любой полярности. Он производит очень тихую плавную дугу.
  5. Порошок рутилового железа (EXXX4) : Это покрытие очень похоже на упомянутые выше рутиловые покрытия, за исключением того, что добавлен порошок железа. Если содержание железа составляет от 25 до 40 процентов, электрод EXX14. Если содержание железа составляет 50 процентов или более, электрод EXX24. При более низком процентном содержании порошка железа электрод можно использовать во всех положениях.Более высокий процент бледного железа можно использовать только в плоском положении или для выполнения горизонтальных угловых швов. В обоих случаях скорость осаждения увеличивается в зависимости от количества порошка железа в покрытии.
  6. Низкое содержание водорода и натрия (EXXX5) : Покрытия, содержащие высокую долю карбоната кальция или фторида кальция, называются электродами с низким содержанием водорода, ферритной извести или электродами основного типа. В этом классе покрытий не используются целлюлоза, глины, асбест и другие минералы, содержащие комбинированную воду.Это необходимо для обеспечения минимально возможного содержания водорода в атмосфере дуги. Эти электродные покрытия спекаются при более высокой температуре. Электроды с низким содержанием водорода обладают превосходными свойствами металла сварного шва. Они обеспечивают самую высокую пластичность среди всех отложений. Эти электроды имеют среднюю дугу со средним или умеренным проваром. У них средняя скорость наплавки, но для достижения наилучших результатов требуются специальные методы сварки. Электроды с низким содержанием водорода должны храниться в контролируемых условиях.Этот тип обычно используется с постоянным током с положительным электродом (обратная полярность).
  7. Низкое содержание водорода и калия (EXXX6) : Этот тип покрытия аналогичен покрытию с низким содержанием водорода и натрия, за исключением замены натрия на калий для обеспечения ионизации дуги. Этот электрод используется с переменным током и может использоваться с постоянным током, с положительным электродом (обратная полярность). Действие дуги более плавное, но проплавление двух электродов одинаково.
  8. Низкий водород-калий (EXXX6) : Покрытия в этом классе электродов аналогичны покрытиям с низким содержанием водорода, упомянутым выше.Однако к электроду добавляется железный порошок, и если его содержание превышает 35-40 процентов, электрод классифицируется как EXX18.
  9. Железный порошок с низким содержанием водорода (EXX28) : Этот электрод аналогичен EXX18, но содержит 50 или более процентов железного порошка в покрытии. Его можно использовать только при сварке в горизонтальном положении или для выполнения горизонтальных угловых швов. Скорость наплавки выше, чем у EXX18. Покрытия с низким содержанием водорода используются для всех электродов из более высоких сплавов.За счет добавления определенных металлов в покрытия эти электроды становятся типами сплавов, в которых буквы суффикса используются для обозначения состава металла сварного шва. Электроды для сварки нержавеющей стали также относятся к низководородному типу.
  10. Оксид железа-натрий (EXX20) : Покрытия с высоким содержанием оксида железа образуют наплавленный слой с большим количеством шлака. Это может быть сложно контролировать. Этот тип покрытия обеспечивает высокоскоростное напыление и среднее проникновение с низким уровнем разбрызгивания.Полученный сварной шов имеет очень гладкую поверхность. Электрод можно использовать только при сварке в плоском положении и для выполнения горизонтальных угловых швов. Электрод можно использовать с переменным или постоянным током любой полярности.
  11. Электрод железо-оксид-железо (EXX27) : Этот тип электрода очень похож на электрод типа оксид-железо-натрий, за исключением того, что он содержит 50 процентов или более железа. Увеличенная мощность железа значительно увеличивает скорость наплавки. Его можно использовать с переменным постоянным током любой полярности.

Существует множество типов покрытий, помимо упомянутых здесь, большинство из которых обычно представляют собой комбинации этих типов, но для специальных применений, таких как наплавка твердым сплавом, сварка чугуна и цветных металлов.

Хранилище

Рисунок 5-32: Печь для сушки электродов

Электроды должны быть сухими. Влага разрушает желаемые характеристики покрытия и может вызвать чрезмерное разбрызгивание и привести к пористости и трещинам в формировании зоны сварки.Электроды, находящиеся во влажном воздухе более двух или трех часов, следует высушить путем нагревания в подходящей печи (рис. 5-32) в течение двух часов при 500 ° F (260 ° C).

После высыхания их следует хранить во влагонепроницаемой таре. Изгиб электрода может привести к отрыву покрытия от сердечника проволоки. Электроды нельзя использовать, если сердцевина провода оголена.

Электроды с суффиксом «R» в классификации AWS имеют более высокую влагостойкость.

Типы электродов

Электроды без покрытия

Сварочные электроды без покрытия изготавливаются из проволоки, необходимой для конкретных применений.

Эти электроды не имеют других покрытий, кроме тех, которые требуются при волочении проволоки. Эти покрытия для волочения проволоки имеют некоторый небольшой стабилизирующий эффект на дугу, но в остальном не имеют никакого значения. Электроды без покрытия используются для сварки марганцевой стали и других целей, где электрод с покрытием не требуется или нежелателен. Схема переноса металла по дуге неизолированного электрода показана на рисунке 5-29.

Перенос расплавленного металла с помощью неизолированного электрода

Электроды с легким покрытием

Сварочные электроды с легким покрытием имеют определенный состав.

На поверхность нанесено легкое покрытие путем мытья, погружения, чистки, распыления, перемешивания или протирания. Покрытия улучшают характеристики дугового потока. Они перечислены под серией E45 в системе идентификации электродов.

Покрытие обычно выполняет следующие функции:

  1. Растворяет или восстанавливает примеси, такие как оксиды, сера и фосфор.
  2. Он изменяет поверхностное натяжение расплавленного металла, так что шарики металла, покидающие конец электрода, становятся меньше и чаще.Это помогает сделать поток расплавленного металла более равномерным.
  3. Повышает стабильность дуги за счет введения в поток дуги материалов, которые легко ионизируются (т. Е. Превращаются в мелкие частицы с электрическим зарядом).
  4. Некоторые легкие покрытия могут образовывать шлак. Шлак довольно тонкий и действует не так, как шлак экранированного электрода.
Рисунок 5-30: Действие дуги, достигаемое с помощью электрода с легким покрытием

Экранированная дуга или электродов с толстым покрытием

Экранированная дуга или сварочные электроды с толстым покрытием имеют определенный состав, на который нанесено покрытие путем погружения или экструзии.

Электроды выпускаются трех основных типов:

  • с целлюлозным покрытием
  • с минеральными покрытиями
  • те, покрытия которых представляют собой комбинации минерала и целлюлозы

Целлюлозные покрытия состоят из растворимого хлопка или других форм целлюлозы с небольшими количествами калия, натрия или титана и, в некоторых случаях, с добавлением минералов.

Минеральные покрытия состоят из силиката натрия, оксидов металлов, глины и других неорганических веществ или их комбинаций.

Электроды с целлюлозным покрытием защищают расплавленный металл за счет газовой зоны вокруг дуги и зоны сварки.

Электрод с минеральным покрытием образует шлак.

Экранированная дуга или электроды с толстым покрытием используются для сварки сталей, чугуна и твердой наплавки. См. Рисунок 5-31 ниже.

Рисунок 5-31: Действие дуги, достигаемое с помощью экранированного дугового электрода

Функции экранированной дуги или электродов с толстым покрытием

Эти сварочные электроды создают защитный газовый экран вокруг дуги.

Это предотвращает загрязнение металла шва кислородом или азотом воздуха.

Кислород легко соединяется с расплавленным металлом, удаляя легирующие элементы и вызывая пористость.

Азот вызывает хрупкость, низкую пластичность, а в некоторых случаях – низкую прочность и плохую коррозионную стойкость.

Они уменьшают содержание примесей, таких как оксиды, сера и фосфор, так что эти примеси не повреждают наплавленный металл.

Они снабжают дугу веществами, повышающими ее стабильность.Это устраняет значительные колебания напряжения, так что дуга может поддерживаться без чрезмерного разбрызгивания.

За счет уменьшения силы притяжения между расплавленным металлом и концом электродов или за счет уменьшения поверхностного натяжения расплавленного металла испаренное и расплавленное покрытие заставляет расплавленный металл на конце электрода распадаться на мелкие, мелкие частицы. .

Покрытия содержат силикаты, которые образуют шлак над расплавленным сварным швом и основным металлом.Поскольку шлак затвердевает относительно медленно, он удерживает тепло и позволяет лежащему под ним металлу медленно остывать и затвердевать. Это медленное затвердевание металла исключает улавливание газов внутри сварного шва и позволяет твердым примесям всплывать на поверхность. Медленное охлаждение также оказывает отжигающий эффект на наплавленный металл.

Физические характеристики наплавленного металла изменяются за счет включения легирующих материалов в покрытие электрода. Флюсование шлака также приведет к получению металла шва более высокого качества и позволит выполнять сварку на более высоких скоростях.

Вольфрамовые электроды

Неплавящиеся сварочные электроды для газовой вольфрамо-дуговой сварки (TIG) бывают трех типов: чистый вольфрам, вольфрам, содержащий 1 или 2 процента тория, и вольфрам, содержащий от 0,3 до 0,5 процента циркония.

Вольфрамовые электроды можно идентифицировать по типу окрашенных концевых меток, как показано ниже.

  1. Зеленый – чистый вольфрам.
  2. Желтый – торий 1%.
  3. Красный – торий 2%.
  4. Коричневый – цирконий от 0,3 до 0,5%.

Электроды из чистого вольфрама (99,5% вольфрама) обычно используются для менее ответственных сварочных операций, чем вольфрам, который является легированным. Этот тип электрода имеет относительно низкую токовую нагрузку и низкую устойчивость к загрязнениям.

Торированные вольфрамовые электроды (1 или 2 процента тория) превосходят электроды из чистого вольфрама из-за их более высокого выхода электронов, лучшего зажигания дуги и стабильности дуги, высокой допустимой нагрузки по току, более длительного срока службы и большей устойчивости к загрязнениям.

Сварочные электроды из вольфрама, содержащие от 0,3 до 0,5 процента циркония, по своим характеристикам обычно находятся между электродами из чистого вольфрама и электродами из торированного вольфрама. Однако есть некоторые признаки улучшения характеристик при сварке некоторых типов с использованием переменного тока.

Более точное управление дугой можно получить, если электрод из легированного вольфрамом заземлить до определенной точки (см. Рисунок 5-33). Когда электроды не заземлены, они должны работать при максимальной плотности тока, чтобы получить приемлемую стабильность дуги.Острия вольфрамовых электродов трудно обслуживать, если в качестве источника питания используется стандартное оборудование постоянного тока, а зажигание дуги касанием является стандартной практикой. Поддержание формы электрода и уменьшение включений вольфрама в сварном шве лучше всего достигается путем наложения высокочастотного тока на обычный сварочный ток. Вольфрамовые электроды, легированные торием и цирконием, дольше сохраняют форму при пуске от касания.

Рисунок 5-33: Правильный конус электрода в вольфрамовом электроде

Вылет сварочного электрода за пределы газового стакана определяется типом свариваемого соединения.Например, удлинение за пределы газового стакана на 3,2 мм (1/8 дюйма) может использоваться для стыковых соединений из легкого материала, в то время как удлинение составляет приблизительно от 1/4 до 1/2 дюйма (от 6,4 до 12,7 мм). может потребоваться на некоторых угловых швах. Вольфрамовый электрод горелки следует слегка наклонить, а присадочный металл следует добавлять осторожно, чтобы избежать контакта с вольфрамом. Это предотвратит загрязнение электрода. В случае загрязнения электрод необходимо снять, переточить и заменить в резаке.

Электроды для дуговой сварки постоянным током

При использовании сварочного электрода определенного типа следует соблюдать рекомендации производителя. Как правило, экранированные дуговые электроды постоянного тока предназначены либо для обратной полярности (электрод положительный), либо для прямой полярности (электрод отрицательный), либо для того и другого. Многие, но не все электроды постоянного тока могут использоваться с переменным током. Постоянный ток является предпочтительным для многих типов покрытых, цветных, неизолированных электродов и электродов из легированной стали.Рекомендации производителя также включают тип основного металла, для которого подходят данные электроды, поправки на плохую подгонку и другие особые условия.

В большинстве случаев электроды с прямой полярностью обеспечивают меньшее проплавление, чем электроды с обратной полярностью, и по этой причине обеспечивают большую скорость сварки. Хорошее проплавление можно получить от любого типа при правильных условиях сварки и манипулировании дугой.

Электроды для дуговой сварки переменным током

Доступны электроды с покрытием, которые можно использовать как с постоянным, так и с переменным током.Переменный ток более желателен при сварке на ограниченных участках или при использовании больших токов, необходимых для толстых секций, поскольку он снижает возникновение дуги. Дуговая дуга вызывает образование пузырей, шлаковых включений и отсутствие плавления в сварном шве.

Переменный ток используется при сварке атомарным водородом и в тех процессах, которые требуют использования двух угольных электродов. Это обеспечивает равномерную скорость сварки и расход электродов. В процессах с угольной дугой, где используется один угольный электрод, рекомендуется использовать постоянный ток прямой полярности, потому что электрод будет потребляться с меньшей скоростью.

Дефекты электродов и их последствия

Если в покрытиях электродов присутствуют определенные элементы или оксиды, это повлияет на стабильность дуги. В неизолированных электродах состав и однородность проволоки являются важным фактором для контроля стабильности дуги. Тонкие или толстые покрытия на электродах не могут полностью устранить последствия дефектной проволоки.

Алюминий или оксид алюминия (даже если он присутствует в 0,01 процента), кремний, диоксид кремния и сульфат железа нестабильны.Оксид железа, оксид марганца, оксид кальция и стабилизируют дугу.

Когда содержание фосфора или серы в электроде превышает 0,04 процента, они ухудшают качество металла сварного шва, поскольку переносятся с электрода на расплавленный металл с очень небольшими потерями. Фосфор вызывает рост зерен, хрупкость и «хладноломкость» (то есть хрупкость при температуре ниже красного каления) в сварном шве. Эти дефекты возрастают по мере увеличения содержания углерода в стали. Сера действует как шлак, нарушает прочность металла сварного шва и вызывает «жаростойкость» (т.е.е., хрупкие при нагревании выше красного). Сера особенно опасна для неизолированных электродов из низкоуглеродистой стали с низким содержанием марганца. Марганец способствует образованию прочных сварных швов.

Если термообработка проволочного сердечника электрода неоднородна, электрод будет производить сварные швы хуже, чем сварные швы, полученные с помощью электрода того же состава, прошедшего надлежащую термообработку.

Скорость осаждения

Различные типы электродов имеют разную скорость осаждения из-за состава покрытия.Электроды, содержащие железный порошок в покрытии, имеют самые высокие скорости осаждения. В Соединенных Штатах процент содержания железа в покрытии составляет от 10 до 50 процентов. Это основано на соотношении количества порошка железа в покрытии к весу покрытия. Это отображается в формуле:

Эти проценты соответствуют требованиям спецификаций Американского общества сварки (AWS). Европейский метод определения мощности железа основан на весе наплавленного металла шва по сравнению с весом израсходованной проволоки с неизолированным сердечником.Это отображается следующим образом:

Таким образом, если бы вес осаждения был вдвое больше веса сердечника проволоки, это указывало бы на 200-процентную эффективность осаждения, даже несмотря на то, что количество железного порошка в покрытии составляло только половину всего осаждения. Формула 30-процентной мощности железа, используемая в Соединенных Штатах, дает эффективность осаждения от 100 до 110 процентов с использованием европейской формулы. Электрод с 50-процентной мощностью железа, рассчитанный по стандартам Соединенных Штатов, обеспечил бы КПД примерно 150 процентов, используя европейскую формулу.

Неплавящиеся электроды

Типы

Есть два типа неплавких сварочных электродов.

  1. Угольный электрод – это не присадочный металлический электрод, используемый при дуговой сварке или резке, состоящий из стержня из угольного графита, который может быть покрыт или не покрыт медью или другими покрытиями.
  2. Вольфрамовый электрод – это не присадочный металлический электрод, используемый при дуговой сварке или резке и изготовленный в основном из вольфрама.

Угольные электроды

Американское сварочное общество не предоставляет спецификаций для углеродных сварочных электродов, но есть военная спецификация, нет.MIL-E-17777C, озаглавленный «Электроды для резки и сварки углеродно-графитового без покрытия и с медным покрытием».

В данной спецификации представлена ​​система классификации, основанная на трех классах: без покрытия, без покрытия и с медным покрытием. Он предоставляет информацию о диаметре, длине и требованиях к допускам по размеру, обеспечению качества, отбору образцов и различным испытаниям. Применения включают сварку угольной дугой, сварку двойной угольной дугой, резку углем, резку и строжку воздушной угольной дугой.

Электроды стержневые

Электроды для ручной сварки различаются по:

  • Размер : стандартные размеры: 1⁄16, 5⁄64, 3⁄32 (наиболее распространенные), 1⁄8, 3⁄16, 7⁄32, 1⁄4 и 5⁄16 дюйма.Проволока с сердечником, используемая с электродами, должна быть уже, чем свариваемые материалы.
  • Материал : электроды для стержневой сварки изготавливаются из чугуна, высокоуглеродистой стали, мягкой стали, не содержащих железа (цветных металлов) и специальных сплавов.)
  • Прочность : называется пределом прочности при растяжении. Каждый сварной шов должен быть прочнее свариваемого металла. Это означает, что материалы электрода также должны быть более прочными.
  • Положение при сварке (горизонтальное, плоское и т. Д.): для каждого положения сварки используются разные электроды.
  • Смесь порошка железа (до 60% флюса): порошок железа во флюсе увеличивает количество расплавленного металла, доступного для сварки (тепло превращает порошок в сталь).
  • Обозначение мягкой дуги : для более тонких металлов или металлов, которые не имеют идеального прилегания или зазора.
  • Схема сварочного электрода
SMAW

Как описано выше, существует много видов электродов. Вот самые популярные электроды для сварки штангой (SMAW):

  • E6013 и E6012 : для тонких металлов и соединений, которые трудно стыковать.
  • E6011 : Подходит для работы на масляных, ржавых или грязных поверхностях. Универсальность в том, что он работает с полярностью постоянного или переменного тока. Создает немного шлака, еще один большой плюс. Обратите внимание, что этот электрод нельзя помещать в электродную печь.
  • E6010 : Аналогичен E6011, но работает только с постоянным током (DC). Обратите внимание, что этот электрод нельзя помещать в электродную печь.
  • E76018 и E7016 : изготовлены с добавлением железного порошка во флюсе.Он создает прочные сварные швы, но имеет лужу, которая может создать некоторые проблемы с контролем для новичков.

Материалы RWMA – описания и общее применение

Электроды
Класс RWMA Общее название Обозначение материала a Описание Общее приложение b Наличие
Группа A – Сплавы на основе меди
1 Цирконий Медь C15000 Цирконий-медный сплав со специальной термообработкой. для сварки алюминиевых сплавов, латуни и бронзы, материалов с покрытием и магниевых сплавов. Может использоваться как для точечной, так и для шовной сварки. Поковки, стержни и стержни
2 Хром-цирконий Медь C18150 Специально подвергнутый термообработке хромо-циркомевый медный сплав, отвечающий минимальным требованиям по электротехнике и твердости для материалов класса 2. Следует использовать в полностью термообработанном состоянии. Эти материалы прочнее, чем материалы класса 1, имеют немного более низкую электрическую проводимость. Применяются для точечной и шовной сварки холоднокатаной и горячекатаной стали, нержавеющей стали, латуни и бронзы с низкой проводимостью. Они также используются в качестве штампов для оплавления и электродов для сварки оцинкованной стали и других материалов с покрытием. Отливки, поковки, пруток, пруток и лист
Хром Медь C18200 Сплав хрома и меди с высокой проводимостью.Его оптимальные свойства достигаются за счет сочетания термической обработки и холодной обработки. Следует использовать в полностью термообработанном состоянии. Литье, ковка, пруток, пруток, пластина и труба
3 Кобальт-берилий Медь C17500 Термообрабатываемые медные сплавы с сочетанием высокой прочности на разрыв и хороших электрических и термических свойств. Их следует использовать в полностью термообработанном состоянии. Высокая твердость делает их идеальными электродами для точечной и шовной сварки материалов с высоким сопротивлением, таких как нержавеющая сталь, нихром, инконель и монель. В качестве отливки они используются для оплавления, стыковой и выступающей сварки электродов и приспособлений. Они также используются в качестве компонентов сварочных горелок, подшипников для сварки швов и других токоведущих конструктивных элементов. Отливки, поковки, стержни, стержни, пластины и трубы
Никель-бериллиевая медь C17510
Никель-кобальт-берилий медь C17540
Никель-кремний-хромовая медь C18000
4 Бериллиевая медь C17200 Термообрабатываемый медный сплав, имеющий необычное сочетание очень высокой твердости, высокой прочности и более низкой электропроводности, чем у материалов класса 3.Следует использовать в полностью термообработанном состоянии. Материал электродов для сварки оплавлением, встык и выступающей сварки при очень высоких давлениях и значительном износе, но при незначительном нагреве. Их часто используют в виде вставок и облицовок. Их также можно использовать для втулок для шовной сварки. Прочность, механический износ и проводимость – их сильные стороны. Отливки, поковки, стержни и стержни, пластины, трубы
Группа B – тугоплавкие металлы
10 Медно-вольфрамовый НЕТ c A Порошковый металлургический композит из 45% меди и 55% тугоплавкого металла вольфрама.Не настоящий сплав. Вольфрам обеспечивает структурную прочность и термостойкость, а медь является проводником электричества и тепла. Эта комбинация позволяет получать плотные твердые металлы с превосходной износостойкостью и прочностью при повышенных температурах. Кроме того, они обладают хорошей теплопроводностью и электропроводностью. Электроды для оплавления и стыковой сварки, где необходима хорошая электрическая и теплопроводность и где желательна пластичность. Стержень, стержень и вставки
11 Медно-вольфрамовый ASTM B702 C1D Порошковый металлический композит, состоящий из 25% меди и 75% тугоплавкого металла вольфрама.Не настоящий сплав. Вольфрам обеспечивает структурную прочность и термостойкость, а медь является проводником электричества и тепла. Эта комбинация позволяет получать плотные твердые металлы с превосходной износостойкостью и прочностью при повышенных температурах. Кроме того, они обладают хорошей теплопроводностью и электропроводностью. Электроды для проекционной сварки, электроды для оплавления и стыковой сварки, втулки для легкой осадки и сварки швов. Твердее, чем класс 10, и используется там, где требуется умеренное давление.Этот материал также может использоваться для точечной сварки сталей с низкой проводимостью, таких как нержавеющая сталь. Стержень, стержень и вставки
12 Медно-вольфрамовый ASTM B702 C1E Порошковый металлический композит, состоящий из 20% меди и 80% тугоплавкого металла вольфрама. Не настоящий сплав. Вольфрам обеспечивает структурную прочность и термостойкость, а медь является проводником электричества и тепла. Эта комбинация позволяет получать плотные твердые металлы с превосходной износостойкостью и прочностью при повышенных температурах.Кроме того, они обладают хорошей теплопроводностью и электропроводностью. Сверхмощные электроды для выступающей сварки, облицовка электродами для электроформования и гальваники для высадки шпилек и заклепок, сварка поперечной проволокой проволоки и прутка большого диаметра. Стержень, стержень и вставки
13 Вольфрам НЕТ Вольфрам чрезвычайно твердый и имеет низкую пластичность. Кроме того, вольфрам очень термостойкий и сохраняет свою прочность при очень высоких температурах.Его нельзя обрабатывать режущими инструментами, но можно отшлифовать до нужных контуров. Не сплавляется с цветными металлами. Сварка меди и латуни поперечной проволокой, пайка сопротивлением и некоторая осадка. Сварка медной плетеной проволоки с другими материалами. Стержень, стержень и вставки
14 Молибден ASTMB387 Тип 360 Не такой твердый, как класс 13, его можно сверлить и обрабатывать по специальным контурам.Обладает аналогичной термостойкостью, приближающейся к классу 13, и очень хорошей прочностью при повышенных температурах. Сварка меди и латуни поперечной проволокой, пайка сопротивлением и некоторая осадка. Сварка медной плетеной проволоки с другими материалами. Стержень, стержень и вставки
Группа C – специальные материалы
20 Медь усиленная диспергированием C15760 Материал для порошковой металлургии, состоящий из меди и оксида алюминия с высокотемпературной твердостью и физическими свойствами, отличными от медных сплавов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *