Фазовый дальномер лазерный: Самодельный фазовый лазерный дальномер / Хабр

alexxlab | 28.01.1987 | 0 | Разное

Содержание

Самодельный фазовый лазерный дальномер / Хабр

В статье я расскажу о том, как я делал лазерный дальномер и о принципе его работы. Сразу отмечу, что конструкция представляет собой макет, и ее нельзя использовать для практического применения. Делалась она только для того, чтобы убедится в том, что фазовый дальномер реально собрать самому.


Теория

Часто приходится встречать мнение, что с помощью лазера расстояние измеряют только путем прямого измерения времени «полета» лазерного импульса от лазера до отражающего объекта и обратно. На самом деле, этот метод (его называют импульсным или времяпролетным, TOF) применяют в основном в тех случаях, когда расстояния до нужного объекта достаточно велики (>100м). Так как скорость света очень велика, то за один импульс лазера достаточно сложно с большой точностью измерить время пролета света, и следовательно, расстояние. Свет проходит 1 метр примерно за 3.3 нс, так что точность измерения времени должна быть наносекундная, хотя точность измерения расстояния при этом все равно будет составлять десятки сантиметров. Для измерения временных интервалов с такой точностью используют ПЛИС и специализированные микросхемы.


Однако существуют и другие лазерные методы изменения расстояния, одним из них является фазовый. В этом методе, в отличие от предыдущего, лазер работает постоянно, но его излучение амплитудно модулируется сигналом определенной частоты (обычно это частоты меньше 500МГц). Отмечу, что длина волны лазера при этом остается неизменной (она находится в пределах 500 — 1100 нм).
Отраженное от объекта излучение принимается фотоприемником, и его фаза сравнивается с фазой опорного сигнала — от лазера. Наличие задержки при распространении волны создает сдвиг фаз, который и измеряется дальномером.
Расстояние определяется по формуле:

Где с — скорость света, f — частота модуляции лазера, фи — фазовый сдвиг.
Эта формула справедлива только в том случае, если расстояние до объекта меньше половины длины волны модулирующего сигнала, которая равна с / 2f.

Если частота модуляции равна 10МГц, то измеряемое расстояние может доходить до 15 метров, и при изменении расстояния от 0 до 15 метров разность фаз будет меняться от 0 до 360 градусов. Изменение сдвига фаз на 1 градус в таком случае соответствует перемещению объекта примерно на 4 см.
При превышении этого расстояния возникает неоднозначность — невозможно определить, сколько периодов волны укладывается в измеряемом расстоянии. Для разрешения неоднозначности частоту модуляции лазера переключают, после чего решают получившуюся систему уравнений.
Самый простой случай — использование двух частот, на низкой приблизительно определяют расстояние до объекта (но максимальное расстояние все равно ограничено), на высокой определяют расстояние с нужной точностью — при одинаковой точности измерения фазового сдвига, при использовании высокой частоты точность измерения расстояния будет заметно выше.

Так как существуют относительно простые способы измерять фазовый сдвиг с высокой точностью, то точность измерения расстояния в таких дальномерах может доходить до 0.5 мм. Именно фазовый принцип используется в дальномерах, требующих большой точности измерения — геодезических дальномерах, лазерных рулетках, сканирующих дальномерах, устанавливаемых на роботах.

Однако у метода есть и недостатки — мощность излучения постоянно работающего лазера заметно меньше, чем у импульсного лазера, что не позволяет использовать фазовые дальномеры для измерения больших расстояний. Кроме того, измерение фазы с нужной точностью может занимать определенное время, что ограничивает быстродействие прибора.

Наиболее важный процесс в таком дальномере — это измерение разности фаз сигналов, которая и определяет точность измерения расстояния. Существуют различные способы измерения разности фаз, как аналоговые, так и цифровые. Аналоговые значительно проще, цифровые дают большую точность. При этом цифровыми методами измерить разность фаз высокочастотных сигналов сложнее — временная задержка между сигналами измеряется наносекундами (эта задержка возникает также, как и в импульсном дальномере).

Для того, чтобы упростить задачу, используют гетеродинное преобразование сигналов — сигналы от фотоприемника и лазера по отдельности смешивают с сигналом близкой частоты, который формируется дополнительным генератором — гетеродином. Частоты модулирующего сигнала и гетеродина различаются на килогерцы или единицы мегагерц. Из полученных сигналов при помощи ФНЧ выделяют сигналы разностной частоты.

Пример структурной схемы дальномера с гетеродином. М — генератор сигнала модуляции лазера, Г — гетеродин.

Разность фаз сигналов в таком преобразовании не изменяется. После этого разность фаз полученных низкочастотных сигналов измерить цифровыми методами значительно проще — можно легко оцифровать сигналы низкоскоростным АЦП, или измерить задержку между сигналами (при понижении частоты она заметно увеличивается) при помощи счетчика. Оба метода достаточно просто реализовать на микроконтроллере.

Есть и другой способ измерения разности фаз — цифровое синхронное детектирование. Если частота модулирующего сигнала не сильно велика (меньше 15 МГц), то такой сигнал можно оцифровать высокоскоростным АЦП, синхронизированным с сигналом модуляции лазера. Из теоремы Котельникова следует, что частота дискретизации при этом должна быть в два раза выше частоты модуляции лазера. Однако, так как оцифровывается узкополосный сигнал (кроме частоты модуляции, других сигналов на входе АЦП нет), то можно использовать метод субдискретизации, благодаря которому частоту дискретизации АЦП можно заметно снизить — до единиц мегагерц. Понятно, что аналоговая часть дальномера при этом упрощается.
Более подробно (с всеми нужными формулами) этот метод рассматривается здесь (на английском) и здесь (на русском).
В первой статье указывается, что если частота дискретизации сигнала (fsp) связана с частотой модуляции (fo) следующим соотношением:


где p — целое число, то процесс вычисления фазы значительно упрощается.
Достаточно взять N выборок сигнала X[i], после чего разность фаз можно вычислить по следующим формулам:

Отмечу, что оба вышеуказанных метода часто применяются вместе — низкочастотные сигналы подаются напрямую на АЦП, высокочастотные переносятся в область более низких частот за счет гетеродинного преобразования, и также подаются на АЦП.

Именно второй вариант фазометра, с использованием частоты модуляции 10МГц я и решил реализовать в своем макете дальномера.

Практика

Структурная схема моего дальномера:


Фактически, вся конструкция состоит из 3 частей — отладочной платы с микроконтроллером, усилителя сигнала лазера с самим лазером, и фотоприемника с усилителем и фильтром.
В вышеописанной теории предполагалось, что излучение лазера модулируется синусоидальным сигналом. Сформировать такой сигнал частотой 10Мгц с использованием контроллера непросто, поэтому в своей конструкции я подаю на лазер меандр частотой 10МГц. После усиления сигнала с фотоприемника от полученного сигнала отсекаются лишние гармоники полосовым LC-фильтром, настроенным на частоту 10МГц, в результате чего на выходе фильтра возникает сигнал, очень близкий к синусоидальному.

Схема аналоговой части (усилителя лазера и приемной части):

Схема была взята из проекта лазерной связи Ronja, описание на русском. В этом проекте как раз реализована передача данных со скоростью 10Mbit, что соответствует выбранной частоте модуляции.
Как видно из схемы — усилитель мощности для лазера простейший, собран на микросхеме 74HC04 (содержит 6 инверторов). Включение микросхемы не совсем корректное, но оно работает. Ток через лазер ограничивается резисторами (тоже не самое лучшее решение). Напряжение питания 5В для усилителя берется с отладочной платы.
Для того, чтобы сигнал с усилителя не наводился на остальную часть схемы, корпус усилителя сделан металлическим, все провода экранированы.

Сам лазер (красного цвета) взят из пишущего DVD-привода, его мощность можно установить достаточно высокой, и он гарантированно будет работать на частоте 10МГц.

Приемник состоит из фотодиода и усилителя, собранного на полевом транзисторе и микросхеме-высокоскоростном усилителе. Так как с увеличением расстояния освещенность фотодиода сильно падает, то усиление должно быть достаточно большим (в этой схеме оно примерно равно 4000). Кроме того, с ростом частоты заметно падает сигнал на выходе фотодиода (сказывается его емкость). Отмечу, что усилитель в данной конструкции — важнейшая и наиболее капризная часть. Как оказалось, его усиления явно не хватает. Изначально я предполагал, что коэффициент усиления можно будет менять (чтобы ослаблять сигнал при его слишком большой величине), используемая схема позволяет это делать, меняя напряжение на втором затворе транзистора. Однако оказалось, что при изменении усиления достаточно сильно изменяется вносимый усилителем сдвиг фаз, что ухудшает точность измерения расстояния, так что пришлось установить коэффициент усиления на максимум, подавая на затвор транзистора напряжение 3В с батарейки.

Приемнику для работы требуется напряжение 12В, так что для его питания приходится использовать отдельный блок питания.
Усилитель очень чувствителен к внешним наводкам, так что он тоже должен быть экранированным. Я взял готовый корпус от нерабочего оптического датчика, и разместил усилитель в нем (белая полоска — фольга для дополнительного экранирования фотодиода):

Отмечу, что наводка сигнала от лазера на приемник довольно сильно ухудшает точность измерения разности фаз, так что нужно контролировать, чтобы такая наводка отсутствовала.

LC-фильтр, используемый в дальномере — взят от приемника. Так как фильтр отсекает постоянную составляющую сигнала, а АЦП отрицательные сигналы не воспринимает, то ее приходится добавлять при помощи резисторного делителя R15, R16. Постоянное напряжение, подаваемое на делитель, берется c отладочной платы (VCC).

Отладочная плата — STM32F4-DISCOVERY. Ее выбрал потому, что для формирования двух достаточно различающихся частот нужен генератор достаточно высокой частоты (PLL STM32F4 может давать частоты больше 100МГц).
В формуле, связывающей частоту модуляции и дискретизации, коэффициент «p» я принял равным 6, так что при частоте модуляции 10МГц частота дискретизации должна быть 1.6МГц.

Для формирования частоты 10МГц используется таймер TIM2, работающий в режиме формирования ШИМ сигнала. При системной частоте 160МГц его период — 16 «тиков».
АЦП получает запросы на запуск от таймера TIM8. Для формирования частоты 1.6МГц его период — 100 «тиков». Все данные от АЦП при помощи DMA сохраняются в массив, размер которого должен быть равен двойке в N степени. Оба таймера, АЦП и DMA запускаются один раз при включении и больше уже не отключаются. Таким образом, так как таймеры тактируются от одного источника, а одному периоду измеряемого сигнала соответствуют четыре выборки данных, получается, что в массив всегда попадет целое число периодов сигнала.

Так как останавливать DMA не желательно (это упрощает управление захватом данных), при заполнении первой половины массива генерируется прерывание. Обнаружив, что половина массива заполнена, контроллер копирует ее содержимое в другой массив (в целях упрощения программы вторая половина основного массива при этом не используется). После этого полученные данные обрабатываются — вычисляется средняя амплитуда и фаза сигнала, проводится пересчет фазового сдвига в расстояние.
Полученные величины выводятся на ЖК индикатор от кассового аппарата, также подключенный к отладочной плате.

Дальномер должен знать где находится начало отсчета. Для его калибровки при включении на «нулевом» расстоянии от дальномера устанавливается объект, после чего на отладочной плате нужно нажать кнопку, при этом измеренное значение дальности записывается в память, после чего это значение будет вычитаться из измеренной дальномером дальности.

Как я уже отмечал выше, реализовать автоматическое управление усилением не удалось. При этом изменение амплитуды принятого сигнала приводит к изменению фазовых сдвигов в усилителе, и следовательно, к дополнительным ошибкам.
Поэтому мне пришлось регулировать освещенность фотодиода при помощи механической заслонки, поворачиваемой сервоприводом — при слишком большой освещенности заслонка перекрывает световой поток. ШИМ сигнал для управления приводом формируется таймером TIM3.

Про оптику. Без нее дальномер невозможен. Ее конструкция хорошо видна на фотографиях ниже. Лазер находится внутри пластиковой трубки, установленной вертикально. В нее вставлена небольшая втулка с зеркальной призмой. Втулку можно поворачивать, поднимать и опускать, перемещая таким образом луч лазера. Так как я догадывался, что усиления не хватит, то для приема сигнала использовал крупную линзу Френеля.
Так так лазер, линза и фотодиод установлены соосно, то на близких расстояниях лазер закрывает от фотодиода собственный луч. Для компенсации этого эффекта я установил вторую линзу (лупа с оправой), хотя полностью эффект не устраняется, поэтому максимальный сигнал наблюдается на расстоянии примерно 50-70 см от лазера.

А вот и фотографии получившейся конструкции:

На индикаторе первое число — амплитуда в единицах АЦП, второе число — расстояние в сантиметрах от края доски.

Видео работы дальномера:

Дальность работы у получившегося дальномера вышла достаточно небольшая: 1,5-2 м в зависимости от коэффициента отражения объекта.
Для того, чтобы увеличить дальность, можно использовать специальный отражатель, на который нужно будет направлять луч лазера.
Для экспериментов я сделал линзовый отражатель, состоящий из линзы, в фокусе которой расположена матовая бумага. Такая конструкция отражает свет в ту же точку, откуда он был выпущен, правда, диаметр луча при этом увеличивается.
Фотография отражателя:

Использование отражателя:

Как видно, расстояние до отражателя — 6.4 метра (в реальности было примерно 6.3). Сигнал при этом возрастает настолько, что его приходится ослаблять, направляя луч лазера на край отражателя.

Точность получившегося дальномера — 1-2 сантиметра, что соответствует точности измерения сдвига фаз — 0,2-0,5 градуса. При этом, для достижения такой точности, данные приходится слишком долго усреднять — на одно измерение уходит 0.5 сек. Возможно, это связано с использованием PLL для формирования сигналов — у него довольно большой джиттер. Хотя я считаю, что для самодельного макета, аналоговая часть которого сделана довольно коряво, в котором присутствуют достаточно длинные провода, даже такая точность — довольно неплохо.
Отмечу, что я не смог найти в Интернете ни одного существующего проекта фазового дальномера (хотя бы со схемой конструкции), что и послужило причиной написать эту статью.

Программа контроллера: ссылка

9.3.2. Фазовые дальномеры

Схема простейшего фазового дальномера, работающего в непрерывном режиме, приведена на рис.9.20.

На входы фазометра поступает опорный сигнал с выхода генератора 3

(9.1)

и сигнал огибающей с выхода фотоприёмника 6

, (9.2)

где D – измеряемое расстояние, – фазовый

Рис.9.20. 1 – лазер, 2 – модулятор, 3 – генератор синусоидальных колебаний, 4 – передающая оптическая система, 5 – приёмная оптическая система, 6 – фотоприёмник, 7 – усилитель, 8 – фазометр

сдвиг, вносимый измерительной установкой.

Для частот , которым соответствует длина волны модуляции, измеренное значениеза вычетомопределяет расстояниеD. Точность измерения фазы имеет порядок 0,5°, что приводит к большим ошибкам измерения расстояния.

Для повышения точности необходимо увеличивать частоту модуляции, что приводит к уменьшению длины волны модуляции и к необходимости выполнения условия

.

На интервале 2D может укладываться целое число волн модуляции N

, (9.3)

где δ – разность фаз, измеряемая фазометром.

Устранить неоднозначность в этом выражении можно использованием нескольких частот модуляции. Существует три способа:

–Используются две волны модуляции и.

Большая длина волны служит для грубого измерения дальности, меньшая – для точного.

–Выбираются близкие по величине волны модуляции, удовлетворяющие условию

(9.4)

Выберем итакие, что, гдеn – целое число. Тогда для измеряемого расстояния получим

. (9.5)

При использовании более двух частот модуляции для каждой последующей частоты n увеличивается в 10 раз, однако, наиболее короткую длину волны модулирующего напряжения нужно выбирать не менее 0,6 м.

– Третий метод основан на подсчёте числа нулевых значений фазового сдвига на выходе фазометра при изменении частоты модуляции в заданном интервале от f m1 до f m2. В этом случае имеет место соотношение

(9.6)

С точностью до целого числа длин волн

(9.7)

Для малых значений m = 1, 2, 3… находят и измеряют значения f m1 и f m2, при которых разность фаз равна нулю, дальность определяют по приведённой формуле.

При необходимости получения высокой точности должна учитываться также дробная (не равная 2π) часть разности фаз при фиксированных значениях и. Для этого используется фазовый дальномер с качающейся частотой модуляции, т.е. частотой модуляции автоматически изменяющейся в определённых пределах. В данном измерителе частота модуляции изменяется по линейному закону.

Моменты прохождения в процессе свиппирования через крайние значения частоты f m1 и f m2 задают, соответственно, начало и конец стробимпульса, разрешающего счёт нулевых значений сигнала с выхода фазового детектора 7 счётчиком 11.

В схеме использован гелий-неоновый лазер мощностью 50 мВт, средняя частота модуляции 60 МГц, диапазон качания частоты 10 МГц. Длительность строба – 25 мс.

Доплеровское смещение частоты, которое в фазовом измерителе является причиной ошибок при измерении дальности до движущейся цели, может быть исключено путём усреднения значений дальности, получаемых за интервалы времени увеличения частоты модуляции от f m1 до f m2 и уменьшения от f m2 до f m1.

Рис.9.21. 1 – лазер, 2 – модулятор, 3 – генератор качающейся частоты, 4 – передающая оптическая система (ПД ОС), 5 – приёмная оптическая система (ПМ ОС), 6 – фотоприёмник, 7 – фазовый детектор, 8,9 – кварцевые генераторы, 10 – генератор строба, 11 – счётчик.

низкие цены, большой ассортимент, отзывы

Импульсные лазерные дальномеры – удобство плюс практичность

Лазерные дальномеры по принципу действия делятся на фазовые и импульсные. И те и другие получили широкое распространение, но импульсные лазерные дальномеры в последнее время приобретают все большую популярность за счет своей функциональности и удобства. Широкий ассортимент таких дальномеров представлен в интернет-магазине «Техпорт». В нашем каталоге вы можете выбрать наиболее подходящую модель и купить ее, оформив заказ прямо на сайте.

Преимущества лазерного дальномера импульсного

Отличие дальномеров этого типа от фазовых кроется в способе измерений. Лазерный использует для этого подсчет количества времени, потраченного на то, чтобы лазерный луч достиг цели и вернулся назад. Учитывая скорость света, с которой луч преодолевает расстояние, импульсный дальномер вычсляет необходимую величину. Фазовый прибор работает по принципу, основанному на измерении сдвига между фазами отправленного и полученного сигнала лазера.

Руководствуясь отзывами потребителей, успевших попользоваться в Москве как первым, так и вторым видом дальномеров, можно выделить следующие преимущества импульсных приборов:

  • Улучшенные возможности по такому параметру, как дальность измеряемого расстояния.
  • Меньшая чувствительность к факторам, вызывающим прерывание сигнала.

Это означает, что импульсные дальномеры можно использовать для измерения достаточно больших расстояний (до 250 и более метров). К тому же проезжающий мимо транспорт и подобные помехи не прервут посылаемый прибором сигнал и не помешают работе.

Параметры и комплектация импульсных дальномеров

Как правило, цена приборов этого типа выше, чем у фазовых. Это объясняется многими причинами, главная из которых – богатый функционал. Нередко приборы оснащены дополнительными функциями: наличием визира (прицела), подсветкой дисплея, функциями сложения и вычитания, а также запоминания последних 10 –20 вычислений.

На нашем сайте можно приобрести импульсные лазерные дальномеры от таких производителей, как «Бош», «Лейка», «Гео-Феннел», «Деволт», «Гравизаппа» и другие.

Если вы хотите узнать больше о технических характеристиках какой-либо модели дальномера, обратитесь к нашим консультантам, они ответят на все ваши вопросы. Номера контактных телефонов указаны на сайте.

Лазерный дальномер – принцип работы и сравнение

Если хорошо изучить лазерный дальномер, принцип работы прибора, то будет проще сориентироваться среди представленных моделей подобных устройств. Измерение дальности с помощью импульсного способа предполагает использование формулы L = ct/2, где с является скоростью распространения, а Т – временем, затрачиваемым на прохождение импульса. Наибольшей точностью обладают приборы, которые позволяют получать короткие импульсы.

Измерить дальность можно:

  • Фазовым,
  • Импульсным,
  • Фазо-импульсным способом.

И наибольший интерес представляет именно импульсный метод, в процессе которого отправляется зондирующий импульс, достигающий поверхности, и в это время запускается счетчик, считающий время прохождения сигнала. После отражения импульс возвращается к лазерному дальномеру и происходит остановка счетчика, тем самым, фиксируется расстояние.

Модели

Перед принятием решения о покупке, нужно сделать лазерные дальномеры сравнение, взяв для анализа наиболее популярные модели. Среди приборов, специально созданных для определения расстояния, выделяются:

  • Лазерные бинокли Carl Zeiss,
  • Лазерные дальномеры Bushnell, Leica Rangemaster и Carl Zeiss,
  • Бинокли и дальномеры от компаний Nikon, Zenit и Sturman.

Предварительно нужно определиться с целями, для которых вы планируете использовать лазерный прибор, и тогда будет проще сделать правильную покупку. Лазерные рулетки активно используются вооруженными силами, в том числе среди основных пользователей:

  • Наземная военная техника,
  • Авиация,
  • Морской флот,
  • Артиллерия.

Также активными пользователями являются охотники, потому что подобные приборы позволяют быстро определять расстояние до мишени и увеличивать количество добытых трофеев. Но еще одним направлением, где применяются данные электронные устройства, является строительство, потому что специалисты получают возможность для определения габаритных размеров и уровней помещения и различных сооружений.

Применение

Когда человек знает лазерный дальномер принцип работы, он способен использовать его с максимальной эффективностью. И если он работает с таким прибором на строительном объекте, то он сможет:

  • Быстро вычислить площадь,
  • Осуществить передачу данных на компьютерную технику,
  • Замерить недоступные объекты.

Кроме того, данные устройства обладают надежной степенью защиты от пыли и механического воздействия. Лазерными рулетками пользуются даже в тех случаях, когда температура опускается на максимально низкий уровень.

Обычно дальномеры выполняются в прочном пластиковом корпусе, на котором имеются кнопки для управления и дисплей для наблюдения за получаемыми данными.

Если вы знаете дальномер лазерный, как работает, можете сразу включать прибор и направить луч на ближайший объект, чтобы быстро произвести измерение. Некоторые приборы подобного типа снабжаются дополнительно штативами и прочими приспособлениями.

Для того чтобы осуществлялось питание, пользуются аккумуляторными батарейками 1,5 В, тип АА. Для гарантированно длительного действия прибора, нужно иметь запасной комплект элементов питания.

Фазовые дальномеры

Чтобы работал фазовый дальномер, применяется синусоидальный принцип, когда происходит сравнение фаз отправленного и отраженного сигнала. Когда получается результат подобных измерений – это расстояние. Данные рулетки отличаются высоким уровнем точности, к тому же они относятся к дорогостоящим.

Есть разные режимы работы данных приборов:

  • Стандартные,
  • Сканирования,
  • Для неблагоприятных условий эксплуатации,
  • Зеркальные.

Выбор

Выбирая лазерный дальномер Лейка, нужно ориентироваться на его габариты и на технические возможности, чтобы он мог выполнять все поставленные задачи и точно определять дальность.

Нужно оценить максимальное расстояние, на которое способен действовать прибор, оно может достигать 1 километра. Также важным фактором является объем памяти, которым обладает лазерный дальномер Лейка, потому что при длительной работе и получении большого объема информации, недостаточная память способна снизить эффективность процесса.

Необходимо требовать сертификат качества при покупке лазерного дальномера и всегда рассчитывать на гарантию, предоставляемую продавцами электронных устройств. Профессиональные рулетки оснащаются дополнительными функциями и приспособлениями, позволяющими выполнять более сложные измерения.

Самодельный лидар: OpenTOFLidar

В этой статье я хочу рассказать про свой проект импульсного (TOF) Open Source лидара — о том как я его делал, и каких результатов удалось добиться.


Немного теории

Лазерные дальномеры по принципу работы можно разделить на три основные типа:


  1. Триангуляционные. Дальномеры этого типа определяют расстояние, используя законы геометрии. Дальномер измеряет угол между лучом лазера и отраженным лучом света, попавшим на фотоприемник, и из величины этого угла и расстояния между лазером и фотоприемником вычисляет текущее расстояние до объекта.
    У этих дальномеров есть преимущества:
    — Наиболее простые среди всех остальных дальномеров.
    — Могут измерять расстояния с высокой точностью на близких дистанциях.
    — Могут измерять расстояния с достаточно высокой скоростью — до 10 кГц.
    Но есть и недостатки:
    — Точность измерения расстояния значительно падает с ростом расстояния.
    — Лазер должен быть включен достаточно долго (фотоприемники имеют ограниченную чувствительность), поэтому его мощность нужно ограничивать для безопасности.
    — Чем меньше габариты дальномера, тем хуже точность измерения расстояния.

    Именно такие дальномеры используются в роботах-пылесосах, так же к ним относятся довольно популярные в любительской робототехнике дальномеры RPLIDAR. Стоят они обычно 100-400$.

    Про дальномеры такого типа я подробно писал в своих статьях: Самодельный сканирующий лазерный дальномер и Реверс-инжиниринг лазерного датчика расстояния

  2. Фазовые. В этих дальномерах свет лазера модулируется высокочастотным сигналом. Задержка во время распространения луча в его «полете» до объекта и обратно приводит к появлению фазового сдвига между сигналом, который используется для управления лазером, и который принимается от объекта.
    У этих дальномеров есть преимущества:
    — Высокая точность измерения расстояния (единицы миллиметров и меньше). Может падать при увеличении отношения сигнал/шум.
    — Можно сделать малогабаритное устройство.
    Но есть и недостатки:
    — Лазер работает постоянно, поэтому приходится ограничивать его мощность. Это приводит к тому, что на больших расстояниях принимаемый сигнал оказывается довольно низким, что сказывается на точности дальномера.
    — Электроника такого дальномера относительно сложная.
    — Сложно получить высокую скорость измерений.

    Дальномеры такого типа используются в промышленности, геодезии. Лазерные рулетки в большинстве своем используют как раз фазовый метод измерения расстояния. Достаточно известный в робототехнике лидар «Hokuyo URG-04LX» тоже является фазовым.
    Специализированные 3D-сенсоры (range imaging camera) тоже часто используют этот метод.

    Про дальномеры такого типа я подробно писал в своих статьях: Самодельный фазовый лазерный дальномер и Как работает лазерная рулетка: реверс-инжиниринг

  3. Импульсные. Также их называют «времяпролетные», Time-Of-Flight (TOF). Они используют «классический», наиболее известный большинству метод измерения расстояния — дальномер измеряет время «полета» вспышки света до объекта и обратно. Несмотря на кажущуюся простоту метода, из-за высокой скорости света довольно сложно сделать дальномер, способный точно измерять расстояние.

    У этих дальномеров есть преимущества:
    — Лазер используется в импульсном режиме, что позволяет формировать импульсы сверхбольшой мощности (более МВт). За счет этого можно измерять очень большие расстояния (даже до Луны).
    — Можно сделать малогабаритное устройство. Датчики вроде VL53L0X используют именно этот метод.
    — Можно получить очень высокую скорость измерений — 100 кГц и более.
    Но есть и недостатки:
    — Сложно измерить расстояние с высокой точностью (< ±0.5 м).
    — Электроника такого дальномера относительно сложная.

    Дальномеры такого типа активно используют военные, они используются в геодезии, дистанционном зондировании Земли, промышленности, автономных автомобилях, их устанавливают на беспилотники — т.е. они встречаются везде, где требуется измерение больших расстояний.

    Я с подобным дальномером сталкивался в процессе реверс-инжиниринга: Реверс-инжиниринг лазерного сканера Leuze RS4
    Однако реверс-инжиниринг готового устройства это одно, а вот изготовление своего дальномера — совершенно другое.


Устройство импульсного лазерного дальномера

Ключевые компоненты лазерного дальномера это электроника и оптика. Если дальномер сканирующий (2D/3D), то к ним обычно добавляется и механика.

Вот так выглядит структурная схема моего дальномера:

Основные узлы электроники такого дальномера:


  • Узел импульсного лазера. Содержит сам лазер и электронику, управляющую им. Главное требование к этому узлу — возможность сформировать максимально мощный импульс света с максимально крутым передним фронтом. Чем мощнее импульс — тем больше отношение сигнал/шум принимаемого сигнала, а чем круче фронт — тем выше точность измерения расстояния.
  • Узел фотоприемника. Содержит фотоприемник, принимающий отраженный от объекта сигнал; электронику для его питания, усилитель сигнала и компаратор, выделяющий полезный сигнал среди помех. Главные требования здесь — возможность максимально усилить принятый сигнал, не добавляя в него слишком много помех и не ухудшить крутизну переднего фронта импульса.
  • Узел измерения времени. Здесь происходит особая «магия» — высокоточное измерение времени «полета» светового импульса. Расстояние 1 м до объекта и обратно свет проходит за 6.6 нс — микроскопически малое время! Чтобы получить разрешение 1 см, требуется измерять время полета с дискретностью 66 пс.
    Если попытаться использовать традиционный метод измерения времени — подсчитывать импульсы от некого генератора частоты во время «полета», то выходит, что для получения разрешения 1 см требуется частота генератора > 15 ГГц! Понятно, что изготовить генератор и счетчик, способные работать с такой частотой, очень сложно.
    Поэтому для измерения настолько малых интервалов времени были разработаны специальные микросхемы TDC (Time-to-digital converter). Эти микросхемы могут использовать различные методы измерения времени, но наиболее распространенный — использование линий задержки. На Хабре есть хорошая статья, описывающая принцип работы TDC: Преобразователи Time-To-Digital (TDC): что это такое и как они реализованы в FPGA
  • Микроконтроллер (MCU). Он отвечает за формирование лазерных импульсов в заданные моменты времени, считывает данные из TDC, вычисляет расстояние до объекта, вычисляет необходимые коррекции, управляет некоторыми аналоговыми параметрами схемы, отправляет данные на компьютер.

Оптику дальномера можно разделить на два узла — объектив лазера и объектив фотоприемника.
Лазерные диоды, используемые в дальномерах, имеют довольно широкую диаграмму направленности (т.е. они светят не узким лучом, а расходящимся пучком). Для того, чтобы получить узкий пучок, как раз и используются объективы различных типов.

Объектив фотоприемника предназначен для того, чтобы принять рассеянный свет от объекта, и сфокусировать его в точку — чувствительную область фотоприемника. Про то, какие объективы я использовал в своем дальномере, я расскажу далее.


Практика

Как видно, в лазерном дальномере много деталей и узлов, совершенно непривычных для радиолюбительской практики, поэтому я постараюсь подробно описать их выбор и принцип работы.
Пойдем по пунктам.


Узел импульсного лазера

В последнее время в продаже появились относительно дешевые и достаточно мощные импульсные лазерные диоды OSRAM “SPL PL90_3”. Выглядят они вот так:


Работают на длине волны 905 нм, и выдают в импульсе мощность до 75 Вт. Сразу замечу, что эти диоды абсолютно невозможно использовать в режиме постоянного свечения (CW). Для того, чтобы получить такую мощность, нужно пропустить через диод довольно большой ток — 30А!
Для управления лазером была использована такая схема (она достаточно стандартная):

Лазерный диод здесь обозначен D4. Узел управления лазером работает достаточно просто. Изначально транзистор Q2 закрыт, лазер не светит, конденсатор С17 заряжается через резистор R18 до напряжения Vlaser. Фактически, в этом конденсаторе запасается вся энергия, которая будет использована для излучения лазера. Она не так уж и велика — при напряжении 16В и емкости конденсатора 20 нФ запасенная в нем энергия будет составлять 2,5 мкДж.
В заданный момент на драйвер транзистора DA6 поступает импульс, он усиливает этот импульс, транзистор Q2 резко открывается и лазер начинает излучать свет, забирая при этом энергию из конденсатора. Длительность световой вспышки лазера ограничена именно емкостью конденсатора. Если бы все компоненты были бы идеальными, то в таком случае максимальный ток через лазер мог бы быть очень большим, но в реальности он сильно ограничивается индуктивностями элементов.

Полезная особенность такой схемотехники — даже если транзистор выйдет из строя и в нем возникнет короткое замыкание — ток через лазерный диод будет ограничен резистором R18, и не будет превышать и 0.1 А. Генерация излучения в лазере начинается при токе 0.5 А, так что такая неисправность не станет опасной для зрения.

Резистор R19 используется для контроля за током лазера. К нему подключен миниатюрный высокочастотный разъем U.FL, через который можно подключить осциллограф и наблюдать за формой тока, протекающего через лазер. Вот пример такой осциллограммы при Vlaser=15V
:
Видно, что импульс тока длится около 25 нс, колебания тока во время импульса связаны с резонансными явлениями. Максимальное значение напряжения в данном случае соответствует максимальному току около 15А.
При помощи достаточно скоростного APD-фотоприемника с усилителем я получил вот такую осциллограмму, показывающую форму сигнала лазера (канал 2, сигнал инвертирован):

Видно, что длительность переднего фронта лазера — около 10нс.

Регулируя напряжение Vlaser, можно регулировать максимальный ток лазера. Специально для формирования этого напряжения на микросхеме DA1 сделан узел DC-DC преобразователя, выходное напряжение которого можно регулировать с микроконтроллера.

Для того, чтобы уведомить микросхему TDC о том, что лазер включился, сделан специальный узел на микросхеме DA5. Эта микросхема — высокоскоростной компаратор, срабатывающий, когда ток через лазер достигает определенного значения.


Узел фотоприемника

В настоящее время в лазерных дальномерах в качестве фотоприемников чаще всего используют лавинные фотодиоды (avalanche photodiode — APD). В отличие от обычных фотодиодов, они обладают собственным усилением фототока, за счет чего их чувствительность возрастает. С точки зрения схемотехники это очень полезно, так как в случае больших расстояний фототок обычного фотодиода усилить очень сложно — он теряется на уровне шумов усилителя. Долгое время APD были довольно дороги (> 100$) и труднодоступны, но сейчас ситуация поменялась.
К примеру, на Digikey фотодиод MTAPD-07-013 стоит в розницу 24$. В последней версии дальномера я использовал именно его. На Aliexpress можно найти еще боле дешевые AD500-8 за 10-15$. Цена эта несколько странная, так как на Mouser они продаются более чем за 100$. Тем не менее, в первой версии дальномера я использовал именно такой фотодиод, и он проявил себя достаточно хорошо. Оба вышеупомянутых фотодиода имеют диаметр чувствительной площадки 0.5 мм. На aliexpress можно найти в продаже фотодиоды AD230-8 за 24$, но они имеют площадку диаметром 0.2 мм. Это позволяет уменьшить емкость фотодиода, но усложняет юстировку оптики.

Важная особенность лавинных фотодиодов — их усиление зависит от величины напряжения обратного смещения и от температуры корпуса. Вот пример такой зависимости, взятой из datasheet на фотодиод AD500-8 TO:

Видно, что усиление начинает значительно расти при напряжении, большем 70В. При приближении к 90В чувствительность усиления фотодиода к напряжению значительно увеличивается. С ростом усиления также повышается и уровня шумов.
Если продолжить увеличивать напряжение, то наступает лавинный пробой фотодиода — ток через него значительно увеличивается, причем он становится сильно зашумленным, пропадает реакция на свет. При этом фотодиод не выходит из строя (если совсем уж не поднимать ток).

Для того, чтобы сформировать достаточно высокое напряжение смещения фотодиода, я использую в своей конструкции DC-DC преобразователь, ШИМ сигнал для которого формирует микроконтроллер. Этот преобразователь включает в себя компоненты Q1, L5, D1, C10. Для измерения напряжения используется резисторный делитель на R8/R9. Обратная связь по напряжению реализована в микроконтроллере. Частота ШИМ — 100 кГц.
Я пробовал организовать синхронное управление формированием ШИМ и запуском лазера, так как предполагал, что небольшие колебания напряжения будут ухудшать точность измерений, но не заметил никакой разницы между синхронным и несинхронным режимом. Судя по всему, RC-фильтр R10-C11 достаточно хорошо справляется со своей задачей.

Теперь стоит перейти к усилителю сигнала фотодиода. Традиционно в качестве таких усилителей используют трансимпедансные усилители (TIA). Такой усилитель получает на вход ток, а на выход выдает пропорциональное ему напряжение. В простейшем случае он представляет собой операционный усилитель с единственным резистором обратной связи:


Подробнее про TIA можно почитать, например, здесь.

Для изготовления импульсного дальномера необходимо использовать TIA с большой полосой пропускания сигнала и малой входной емкостью. Доступных микросхем не так уж и много, примерами могут быть MAX3658, MAX40658, OPA858. В своем лидаре я использовал MAX3658.
Эта микросхема разработана специально для использования с фотодиодами, имеет усиление 18000, и полосу пропускания — 580MHz. Кроме того, микросхема содержит встроенный фильтр, отсекающий низкие частоты (DC Cancellation Circuit).
Недостаток микросхемы — довольно специфическое построение ее выходного каскада:

Здесь реализован не Push-Pull выход, а Open Collector + сильная подтяжка выходов в питанию, как в (Current Mode Logic — CML).
Для того, чтобы повысить напряжение на одном из своих выходов, микросхеме нужно закрыть один из транзисторов, т.е. повышение напряжения всегда происходит через резисторы подтяжки. Это может приводить к ухудшению временных характеристик сигнала.

У микросхемы есть еще один недостаток — она не содержит защиты от статического напряжения на своем входе.


Внимание! Микросхема MAX3658 очень сильно боится статического напряжения! Устанавливать ее нужно максимально осторожно. В своем лидаре я поставил во входную цепь микросхемы защитный диод D6, его желательно установить на плату до установки TIA.

К сожалению, у меня в процессе экспериментов вышли из строя штуки 4 этих микросхем, судя по всему, именно из-за статического электричества. Ни с одной другой из микросхем я подобного никогда не встречал.

В результате у меня получилась такая схема узла фотоприемника:

Разъем J1 используется для того, чтобы смотреть форму сигнала на выходе TIA.
Конденсаторы C12, C13 подключены к следующему узлу — узлу измерения времени.


Узел измерения времени

Благодаря использованию готовой микросхемы TDC этот узел достаточно прост. Выбор дешевых микросхем тоже невелик. Есть TDC7200, есть TDC-GP21/22, остальные микросхемы обычно дороги и достать их трудно. В своем лидаре я использовал TDC-GP21.

Эта микросхема предназначена для использования в ультразвуковых счетчиках потока жидкости, но ее можно использовать и в TOF дальномерах. Дискретность измерения времени (BIN) этой микросхемы составляет ~90 пс. Управление TDC с микроконтроллера производится по SPI.
TDC имеет два отдельных канала измерения времени (линии STOP1/2), на которые я в своей схеме завел сигналы с двух компараторов — упомянутого выше компаратора лазера и компаратора сигнала TIA. Также этот TDC может выдавать на свои линии “FIRE” сигнал для управления ультразвуковым излучателем, его удобно использовать для управления лазером. В таком случае по команде микроконтроллера TDC отправляет на узел лазера сигнал на включение и сразу же начинает измерять время (линия TDC “START” соединена внутри TDC с линией “FIRE”). У микросхемы есть ограничение на минимальное время между сигналами “START” и “STOP” — 3.5 нс, но в реальной схемотехнике задержка между отправкой сигнала “START” и появлением тока через лазер значительно больше этого времени. За счет этого измерение малых расстояний не является проблемой.

TDC-GP21 может фиксировать время сразу нескольких подряд идущих событий. С одной стороны, в импульсном лазерном этот режим можно было бы использовать для измерения расстояния до нескольких подряд идущих объектов (к примеру, для измерения расстояния сквозь стекло или ветки дерева), но я не стал реализовывать этот режим. Вместо этого я настроил канал STOP2 на детектирование как положительного, так и отрицательного фронта сигнала с компаратора TIA. Таким образом, за счет регистрации времени обоих фронтов принятого импульса, появилась возможность измерять длительность импульса. Это достаточно важная информация, о которой я расскажу далее.

После того, как будет принят отраженный от объекта сигнал, можно считать из TDC данные. Замечу, что эта микросхема имеет механизм первичной обработки принятых сигналов (ALU), который невозможно обойти, т.е. “сырые” данные получить из микросхемы нельзя. Каждый раз перед считыванием информации нужно указать TDC, какой вариант вычисления нужно производить, подождать, и только потом считывать информацию.
Вычитание времени STOP2 — STOP1 дает искомое “время полета”, но при этом в него входят различные задержки, возникающие в узлах схемы. Для получения информации о ширине импульса приходится перенастраивать TDC.

С выхода TIA выходит аналоговый сигнал довольно малой амплитуды (<200 мВ), а TDC требуется цифровой сигнал. Для преобразования одного сигнала в другой используется компаратор, построенный на микросхеме DA4 — ADCMP600. Эта микросхема имеет следующие параметры:
Propagation Delay (Задержка распространения): 3.5 нс
Overdrive Dispersion: 1.2 нс
Common-Mode Dispersion: 200 пс
Нельзя сказать, что компаратор очень быстрый, но для измерения расстояния с точностью несколько сантиметров он подходит. Более быстрые компараторы обычно имеют уже не TTL/CMOS выход, а какой-нибудь LVPECL, который проблематично завести на выбранный TDC.
Так как сигнал на выходе TIA дифференциальный, и при этом хочется иметь возможность настраивать порог срабатывания компаратора, то пришлось сделать схему, показанную ниже:

Порог срабатывания компаратора определяется напряжением, поступающем с микроконтроллера по линии “COMP_DAC”. Это напряжение определяет величину падения напряжения на резисторе R15. При отсутствии сигнала на выходе TIA, именно эта разность напряжений поступает на вход компаратора. Следует заметить, что резистор подключен к компаратору так, что разность напряжений на входах компаратора оказывается отрицательной, так что он выдает 0 на своем выходе. При появлении сигнала на выходе TIA, этот сигнал проходит сквозь конденсаторы C12, C13, напряжение на R15 меняет полярность, и в момент перехода напряжения через 0 компаратор переключается в 1.


Оставшаяся электроника

Микроконтроллер (MCU). Для управления лидаром я использовал микроконтроллер STM32F303CBT6. В описываемом лидаре микроконтроллер выполняет следующие функции:
Управляет напряжением лазера, используя встроенный ЦАП.
Измеряет напряжение APD.
Управляет напряжением APD, формируя ШИМ с нужным коэффициентом заполнения.
Устанавливает напряжение порога срабатывания компаратора, используя встроенный ЦАП.
Управляет работой TDC (инициализация, запуск измерения, считывание данных).
Получает данные с энкодера зеркала.
Управляет мотором зеркала (подробнее про энкодер и мотор — ниже).
Обеспечивает связь с компьютером — изменение настроек лидара по командам с компьютера, отправка данных на компьютер.
Производит коррекцию данных, полученных из TDC и пересчитывает их в расстояние.
Сохраняет и считывает настройки из Flash-памяти.

Коррекцию данных я опишу более подробно. Процесс преобразования аналогового сигнала в цифровой, происходящий в компараторе, всегда обладает некой неоднозначностью во времени: при одном и том же пороге срабатывания компаратора в зависимости от амплитуды сигнала, момент времени переключения компаратора будет отличаться:


Эту проблему можно решить, используя программную коррекцию результатов измерения времени полета в зависимости от амплитуды. В реальности измерить амплитуду настолько быстрых и малых сигналов достаточно сложно. Кроме того, микросхема TIA имеет довольно низкий порог насыщения — при слишком большом уровне входного фототока амплитуда сигнала на ее выходе перестает меняться. Как оказалось, значительно проще измерить длительность импульса средствами TDC (об этом я писал выше), и использовать для коррекции сигнала именно этот параметр. Методику вычисления коррекции я опишу далее.

Я написал два варианта управляющей программы для микроконтроллера. Один из из них, более простой, можно использовать только в несканирующем режиме. В этом варианте прошивке лазер постоянно “вспыхивает” с частотой 1000 Гц, так что этот режим удобно использовать для тестирования электроники и юстировки.
Второй вариант прошивки — основной, поддерживает 2D сканирование пространства.

Узел управления мотором. Для вращения сканирующего зеркала я использовал бесколлекторный мотор (BLDC), который требует специального метода управления. В качестве управляющей микросхемы я использовал DRV11873, которая достаточна распространена и не требует большого числа дополнительных элементов. Управление скоростью вращения мотора происходит при помощи ШИМ сигнала, подаваемого на вход микросхемы с MCU. Схемотехника этого узла взята из datasheet на микросхему и ничем не примечательна. Есть, правда, у выбранной связки мотор + драйвер недостаток — при включении мотор неконтролируемо разгоняется до большой скорости. Насколько я понимаю, это связано с методом обнаружения back-EMF в DRV11873.

В результате получается вот такая окончательная схема лидара:

Трассировка печатной платы лидара не так уж и проста, с учетом того, что на плате соседствуют токи более 15А в узле лазера и микроамперы фототока в узле фотодиода. Плату я решил делать четырехслойную, так как только так можно организовать качественные земляные полигоны — в случае четырехслойной платы один из внутренних слоев используется только для для земляных полигонов. Как видно из схемы, я разделил все земли лидара на три вида — земля узла лазера (LGND), земля узла мотора (MGND), главный земляной полигон (GND). Земли соединяются только в нескольких точках.
Для уменьшения индуктивности в цепи лазера важно расположить максимально близко друг к другу лазер D4, транзистор Q2, R19, C17 — фактически, в момент включения лазера, ток через эти компоненты замыкается.
Также важно установить фотодиод максимально близко к входу TIA.
Конечно, важно соблюдать целую кучу остальных плавил трассировки аналоговых и цифровых цепей. Однако я не являюсь профессиональным разработчиком печатных плат, так что не могу гарантировать, что плата разведена по всем правилам.

Вот так выглядит собранная плата (со стороны оптических компонентов):

И с другой стороны (со стороны микроконтроллера):


Оптические компоненты

Могу предположить, что у многих людей, не знакомых с оптоэлектроникой, на этом этапе могут возникнуть проблемы, связанные с недостатком знаний в этой области. В реальности, в случае такого простого дальномера, как у меня, все достаточно просто. В первую очередь стоит рассказать про объектив лазера.

Как я уже упоминал, объектив лазера предназначен для того, чтобы получить узкий пучок света от лазерного диода. Лазер можно условно принять за точечный источник света, так что для того, чтобы получить от него узкий пучок, достаточно использовать одиночную собирающую (положительную) линзу:


Изображение взято с сайта thorlabs.de
Достаточно удобно использовать в качестве объектива стандартный объектив M12 — они широко используются в камерах видеонаблюдения. Для таких объективов выпускаются и продаются стандартизированные держатели, которые прикручиваются к печатной плате.

Излучающая площадка лазерного диода представляет собой прямоугольник, в случае диода “SPL PL90_3” он имеет размеры 200 X 10 μm. Это приводит к тому, что пучок лазерного излучения тоже будет прямоугольной формы. Как видно, излучающая площадка имеет достаточно большую протяженность, что приводит к тому, что излучение на выходе объектива все равно имеет определенную расходимость. Из-за этого с ростом расстояния растет и размер пятна света, падающего на объекты. Фактически, именно величина угла расходимости излучения лазера определяет угловое разрешение лидара (количество измерений на один оборот).

Кроме размеров излучающей площадки, на величину угла расходимости влияет и фокусное расстояние объектива. Чем оно больше — тем меньше расходимость излучения:

Если использовать объектив с фокусным расстоянием 12 мм, то угол расходимости излучения будет около 1 градуса; у объектива с фокусным расстоянием 25 мм угол будет уже ~0.45 градуса. Мне удалось найти на Aliexpress достаточно подходящий объектив:

Его параметры: 25 мм; M12*0,5; 1/3; F2.0.
Этот объектив достаточно короткий, так что для того, чтобы соединить его с держателем, я использовал дополнительную покупную деталь: переходник-удлинитель (M12 Extension Adapter).
Вот так выглядит пятно лазера на расстоянии около 1.8м (слева):

Справа для сравнения — пятно от лазерной рулетки диаметром около 4 мм. Видно, что пятно от лидара примерно в 2.5 больше, так что его ширина около 10 мм.

Важно, что объективы лидара должны быть установлены максимально близко друг к другу. Если расстояние между ними увеличить, то на малых расстояниях лидар просто перестанет принимать отраженное излучение — оно не будет попадать на фотоприемник. Это требование создает ограничение на размеры объективов. В моей конструкции диаметр объектива лазера не может превышать 20 мм.

Также я экспериментировал с самодельным объективом, сделанным из одиночной линзы, взятой из фотоаппарата, и пластиковой оправы объектива M12 от web-камеры:

Использованная линза пропускает ИК излучение, так что объектив достаточно неплохо работал, но из-за короткого фокусного расстояния (около 13 мм) излучение после него имело слишком большую расходимость.

Теперь стоит рассказать про объектив фотоприемника. Наиболее важный его параметр в случае лазерного дальномера — диаметр входного зрачка. Чем больше этот параметр — тем больше отраженного света попадет на фотодиод и тем больше будет отношение сигнал-шум. Это значит, что объектив должен иметь максимально большой диаметр. Именно поэтому я решил использовать стандартный объектив с креплением типа CS-mount. Для таких объективов также есть держатели, прикручивающиеся к плате.
В этом лидаре я использовал покупной объектив с параметрами 25mm; F1.2; CS 1/2.5″. Видно, что у объектива большая светосила, при этом он имеет достаточно большое фокусное расстояние — 25 мм, так что диаметр входного зрачка получается достаточно большим. По расчету получается, что диаметр входного зрачка должен быть около 20 мм, однако, судя по всему, в реальности он ближе в 14 мм.
Также я пробовал использовать самодельный объектив, используя линзу диаметром 25 мм и часть от ненужного CS-объектива. Этот объектив действительно оказался лучше по энергетике (сигнал с фотодиода был заметно выше), но он ловил переотражения от сканирующего зеркала, так что он не очень подошел мне.

В случае, если предполагается использование лидара в условиях сильной световой засветки (особенно на улице), то между фотодиодом и объективом должен быть установлен интерференционный светофильтр, рассчитанный на длину волны 905 нм. Чаще всего они круглые, так что такой светофильтр можно приклеить к выходному отверстию объектива.
Я не стал использовать светофильтр — при комнатном освещении лидар может работать и без него.

Замечу, что как в случае лазера, так и в случае фотоприемника объектив работает на одной длине волны, так что проблема хроматических аберраций не возникает. Также при использовании APD с достаточно большой площадкой (0.5 мм) нет каких-то серьезных требований к параметрам объектива. Это значит, что в подобном дальномере можно использовать однолинзовые объективы.

В результате получившийся лазерный дальномер имеет такой вид:

Как и многие другие оптико-электронные устройства, этот дальномер требует проведения юстировки — выставления объектива лазера в оптимальное положение. Для того, чтобы была возможность перемещать объектив лазера, отверстия под его держатель в плате сделаны больше, чем диаметров винтов. Сама юстировка заключается в поиске такого положения держателя объектива, в котором амплитуда принимаемого с фотодиода сигнала максимальна. Вот так это изменение выглядит на осциллографе:

Довольно хорошо заметен переход усилителя в режим насыщения. Об амплитуде фототока при этом можно судить по длине импульса.

Теперь следует добавить механику, чтобы сделать лазерный дальномер сканирующим.


Механика

Если не обсуждать твердотельные (solid-state) лидары, то можно выделить два метода 2D сканирования пространства — сканирование можно производить, вращая весь дальномер целиком, или вращать зеркало, наклонное на 45 градусов относительно оптических осей лидара.
Плюсы первого метода:


  • Не требуется достаточно крупное зеркало, которое сложно изготовить
  • Нет потерь на зеркале и проблем с переотражениями от него
  • Если сканирование идет в горизонтальной плоскости, то высоту лидара можно сделать маленькой
  • Нет проблем сделать сканирование на все 360 градусов

Недостатки:


  • Нужно как-то передавать на вращающуюся электронику питание и передавать данные. То есть нужно использовать либо скользящие контакты, ибо индуктивную+оптическую связь
  • Тяжелую вращающуюся конструкцию сложно балансировать
  • Нужна некая механика, чтобы вращать тяжелую конструкцию
  • Нужен относительно мощный мотор
  • Проблематично отлаживать вращающуюся электронику

Именно такой метод сканирования используется в лидарах пылесосов и PRLIDAR.

Плюсы использования сканирования зеркалом:


  • Зеркало и его держатель можно сделать достаточно легкими, так что нет больших проблем с балансировкой на больших оборотах
  • Легкое зеркало можно закрепить прямо на валу бесколлектрного мотора
  • Вращается только зеркало, так что нет необходимости в передаче электричества сквозь вращающиеся элементы

Недостатки:


  • Зеркало нужно как-то закрепить напротив объективов лидара, и крепление будет закрывать часть «обзора». Даже если использовать в качестве крепления прозрачную трубку-корпус всего дальномера, то к мотору зеркала и энкодеру все равно нужно подвести провода, и они будут перекрывать луч
  • Зеркало дает потери света и переотражения
  • Большая высота дальномера

Так как я хотел сделать именно лидар с высокой скоростью сканирования (не менее 15 оборотов/сек), я решил использовать сканирующее зеркало.
Важное требование к зеркалу — оно должно иметь внешнее отражающее покрытие (то есть покрытие должно быть на передней поверхности зеркала).
Если для сканирования использовать обычное прямоугольное зеркало, то его края не будут никак использоваться — свет туда попадать не будет. Идеальная форма такого зеркала — эллипс, так как в проекции он дает окружность. Именно с таким зеркалом я уже сталкивался в готовом лидаре. Изготовить зеркало такой формы сложно, так что часто в лидарах используют восьмиугольное зеркало. Я пробовал изготовить такое зеркало самостоятельно, но только сломал несколько зеркал-заготовок из-за отсутствия опыта резки стекла малых размеров. Зато мне удалось найти на Aliexpress компанию, которая по моим чертежам изготовила четыре зеркала за 15$.
К сожалению, заказанное зеркало имеет недостаток — оно ослабляет сигнал практически в 2 раза. Насколько я поникаю, это связано с тем, что зеркало покрыто алюминием, также оно может иметь некое защитное покрытие. Это может приводить к падению коэффициента отражения до 0.7 на длине волны 905 нм, что как раз дает коэффициент отражения ~0.5 с учетом того, что луч проходит зеркало дважды.
Для длины волны 905 нм лучше подходят зеркала с серебряным или золотым покрытием, но они обычно стоят дороже. Подробнее про покрытия зеркал можно почитать здесь.

Зеркало нужно как-то вращать. Просто закрепить его валу коллекторного мотора нельзя — большинство таких моторов рассчитаны на слишком высокие обороты. Использовать редуктор не хотелось — слишком большое усложнение конструкции и лишний шум.
Идеальным решением было бы использование бесколлекторного мотора со встроенной электроникой (как в компьютерных вентиляторах), но, к сожалению, подходящий мотор мне найти не удалось. У меня были мысли использовать мотор и вентилятора, но в маленьких вентиляторах моторы вращались слишком быстро даже при низком напряжении, а моторы из больших вентиляторов не подходили по габаритам.
Поэтому я решил использовать покупной бесколлекторный мотор (BLDC). Я специально нашел на Aliexpress маленький плоский Outrunner-мотор, имеющий вал, на который можно закрепить диск энкодера:

Чтобы закрепить зеркало на моторе, была напечатана специальная деталь — держатель зеркала. В этом держателе было сделано специальное углубление для мотора, а само зеркало было приклеено к держателю. Вот так он выглядит:

Для того, чтобы микроконтроллер мог определить, куда направлено зеркало, я установил на вал мотора простейший оптический энкодер. Диск для энкодера я взял из старой мышки, он имел 65 прорезей и хорошо стыковался с валом мотора. Одну из прорезей энкодера я заклеил — она используется как начало отсчета, то есть индикация нулевого угла:

Оптопару я использовал из старого принтера. Сигнал с нее заведен на компаратор, встроенный в MCU. Вот так выглядит сигнал с фототранзистора оптопары в момент пересечения начала отсчета:

В результате, получившийся лидар выглядит вот так:

На фотографии можно заметить белую пластмассовую пластинку, закрепленную вертикально напротив зеркала. Эта пластинка используется для автоматической калибровки дальномера. В прошивке указано расстояние до этой пластинки в миллиметрах, так что производя измерения расстояния до нее, можно вычислить смещение нуля в результатах, возвращаемых TDC.


Безопасность

В этом дальномере я использовал достаточно мощный лазер, работающий на длине волны 905 нм. Это излучение абсолютно невидимо глазом, но способно повредить сетчатку, так что оно представляет достаточно большую опасность для зрения.


Внимание! Использование прошивки микроконтроллера для несканирующего режима особенно опасно, так в этом режиме лазер работает постоянно с частотой 1 кГц, и постоянно направлен в одну точку. Я измерял среднюю оптическую мощность на выходе объектива лазера специализированным измерителем мощности — она составляла 0.35 мВт (при напряжении питания узла лазера 16В). Даже такая мощность может быть опасна, так так излучение не видно! Любые работы с дальномером в этом режиме нужно производить в защитных очках!

В сканирующем режиме из-за увеличения частоты импульсов средняя мощность излучения может доходить до 4.4 мВт, но благодаря тому, что луч постоянно перемещается, он не так опасен для зрения. В программе MCU имеются специальные проверки скорости мотора, так что лазер отключается, если скорость слишком большая или маленькая.


Управление дальномером

Для настройки и управления дальномером я написал для ПК две утилиты.
Первая из них используется для настройки и тестирования дальномера в несканирующем режиме. Здесь можно настроить параметры работы лазера и фотоприемника, но главное — посмотреть данные с TDC:

Эта программа отправляет на дальномер команду на проведение 100 измерений, которые заносятся в память MCU и затем отправляются на ПК и анализируются. Результаты анализа выводятся в окно в центре программы, кроме того, на их основе строится гистограмма, показывающая разброс результатов измерения времени полета (колонка START).

Для сбора данных, используемых для калибровки, в утилите есть возможность сохранять величины средних значений по серии из 100 измерений в файл. Процесс калибровки состоит из следующих пунктов:


  1. Запускается запись данных.
  2. Плавно регулируется амплитуда сигнала, расстояние при этом должно быть неизменным. Для того, чтобы регулировать амплитуду, я перекрывал объектив фотодиода непрозрачной пластинкой. Уровень амплитуды косвенно контролируется по значению длительности импульса (WIDTH)
  3. Собрав достаточное количество точек, нужно остановить запись, и перейти на вкладку калибровки (Calibration). Здесь происходит обработка записанных данных. Выглядят они вот так:

    По горизонтальной оси на этом графике — значение длительности импульса в BIN, по вертикальной оси — относительное изменение времени полета. Также на этой вкладке производится приближение экспоненциальной функции к собранным данным. Полученная функция показана на графике красной кривой. В результате приближения находятся два коэффициента, характеризующие эту функцию. Их следует записать в память MCU.

Кроме того, используя эту утилиту, можно контролировать работу мотора лидара.

Следующая утилита используется для проверки работы лидара в основном его режиме — сканирующем. Главное здесь — отображение сканов с лидара:

Видно, что часть пространства (внизу изображения) не сканируется. В этой зоне находятся стойки, на которых держится сканирующая механика и пластинка для калибровки. Величину этой зоны нужно задавать вручную.
Также в утилите можно настраивать некоторые параметры лидара и производить простой анализ качества измерения расстояния до выбранного угла. В том числе по получаемым данным можно построить гистограмму (опять же для одного угла):

По горизонтальной оси здесь — сантиметры. В проекте на Гитхабе выложены аналогичные измерения для других расстояний.


Результаты

Получившийся лидар имеет такие характеристики:


  • Скорость сканирования: 15 оборотов/сек. Эта скорость ограничена частично программой MCU (ее нужно дополнительно оптимизировать), уровнем вибрации (зеркало не очень хорошо сбалансировано) и соображениями безопасности — чем выше скорость сканирования, тем выше средняя энергия, попадающая в определенную точку пространства.
  • Точность измерений. Один BIN TDC равен ~13 мм. Уровень шума измерения расстояния сильно зависит от расстояния, типа поверхности, угла падения луча лазера на поверхность.
    В примеру, на светло-серой стене на расстоянии 10 м максимальный разброс значений по 20 сканам составлял 3 см (0.3%), на расстоянии 20 м — 13 см, на 25 м — 17 см, на 30 м — 30 см (1%).
    Однако и на близких расстояниях получить уровень шума меньше 2 см практически невозможно.
  • Минимальное измеряемое расстояние: 5 см, максимальное ~25м (белая поверхность объекта)
  • Частота измерений: 11 кГц
  • Угловое разрешение: 0.5 градуса
  • Диапазон сканируемых углов: 230 градусов. Он может быть расширен, если переделать механику лидара
  • Потребление: 0.1 А на 5 В (0.5 Вт). Пусковой ток может доходить до 0.8 А
  • Размер: 50x50x120 мм

Проблемы существующей конструкции лидара и не реализованная функциональность

Наиболее важная проблема, которая пока никак не решена в моем лидаре — компенсация чувствительности электроники лидара к температуре. Наиболее к температуре чувствителен APD, у которого коэффициент усиления достаточно сильно уменьшается с ростом температуры. Изменение температуры в диапазоне 0-40 градусов приводит к изменению усиления в несколько раз. Наиболее правильно было бы измерять температуры APD, и подстраивать подаваемое на него напряжение. Для измерения температуры в схеме даже есть специальный терморезистор (NTC), но подстройку напряжения не стал реализовывать в прошивке — это достаточно сложно, так как нужно исследовать поведение APD во всем нужном диапазоне температур.

Еще одна нереализованная вещь — калибровка TDC. Все экземпляры TDC имеют немного различающееся время задержки между элементами (BIN). Кроме того, это время также зависит от температуры. Сама микросхема TDC имеет специальный механизм калибровки, но я не стал его реализовывать его в прошивке — для ее упрощения. Сейчас величина BIN жестко задается в коде MCU.

Из-за достаточно большой расходимости луча расстояние до узких объектов (например, ножек стульев) может измеряться неправильно, так как в луч попадает несколько объектов подряд. Эта же проблема проявляется и при резком переходе луча с одного расстояния на другое. На скане это выглядит как несколько ложных точек между правильными измерениями.

Версия платы “PCB_project_v4”, рассчитанная на APD MTAPD-07-13, имеет сильную чувствительность к излучению расположенной рядом Wi-Fi антенны. Это выражается в том, что во время работы Wi-Fi данные лидара становятся сильно зашумленными (точность измерения падает в разы). Насколько я понял, сигнал наводится на вход усилителя фотодиода. Попытки экранировать плату особо не помогли, пробовал даже помещать плату в металлическую банку без крышки. Наводка пропадает, только если полностью экранировать конструкцию, что в случае лидара невозможно.
Помогает лишь установка антенны за нерабочей частью лидара и установка между ними специальной металлической пластинки-экрана.
В предыдущей версии платы, рассчитанной на использование APD AD500-8 этот эффект выражен значительно слабее. Платы несколько различаются разводкой, в старой плате усилитель установлен на нижней стороне платы, а фотодиод имеет металлический корпус, что может улучшать ситуацию.

Код MCU недостаточно оптимизирован. Можно заметно улучшить обработку данных от энкодера, реализовать связь с TDC по SPI используя прерывания, а не polling, как это сделано сейчас. Все эти доработки требуют времени, а его всегда не хватает.

Механика сканирующего механизма — не самая удачная (но максимально простая). Во время вращения зеркало немного вибрирует из-за недостаточно хорошей балансировки. Сколько я не пытался, я так и не смог полностью устранить вибрацию.

Из-за переотражений на зеркале не удается использовать объектив фотоприемника большого диаметра.


Стоимость компонентов


Грубо подсчитанный BOM

Более подробный BOM с ссылками на магазины находится в проекте Github.

Общая стоимость компонентов без доставки получается около 114$ (при использовании APD AD500-8). Важно отметить, что некоторые компоненты (например PCB и зеркала) продавались партией по несколько штук, и в общую стоимость включена именно стоимость партии. Довольно дорогой вышла оптика с ее держателями — 23$. Если использовать одиночные линзы и самодельные держатели, то возможно, можно уменьшить стоимость оптики в несколько раз.


Практическое применение лидара

Я решил проверить работу получившегося лидара, установив его на многострадальный пылесос Roomba (я ставлю на него самодельные лидары с 2012 года). Лидар подключен к компьютеру Orange Pi PC, на котором запущен ROS с работающим SLAM. Выглядит это вот так:

Для того, чтобы передавать в ROS данные от лидара, я написал для него специальный узел. Пример данных, выдаваемых лидаром:

Длина клетки на изображении — 1 метр. На нижнем изображении дальномер “сморит” сквозь коридор сложной формы.

В результате работы SLAM получается вот такая карта:

В центре квартиры находится зеркальный шкаф; я частично закрыл его зеркальную поверхность перед запуском сканирования пластиковыми панелями, но они оказались слишком низкими, так что в некоторое моменты времени луч все равно попадал на зеркальную поверхность.

Вот такая карта получается, если запустить SLAM в достаточно большом помещении:

Сканирование этого помещения сильно осложнялось большим количеством блестящих стульев и темными стенами.

Видео про лидар:



Аналогичные проекты

Таких проектов не очень много. В первую очередь, следует упомянуть проект Open Source лидара Unruly. К сожалению, на данный момент этот проект заморожен или остановлен — информации о его состоянии нет. Фактически, главное что выхожено в этом проекте — схема лидара и информация о его характеристиках. Не буду скрывать, некоторые части схемы я взял именно из этого проекта.

Также здесь стоить упомянуть Reference Design от TI: TIDA-00663. Это довольно подробный открытый проект, но у него есть недостаток — конструкция платы просто не предназначена для присоединения к ней оптики.

С другими аналогичными проектами (т.е. достаточно простыми, без использования FPGA и скоростных АЦП), я сожалению, не знаком. На просторах интернета нередко можно найти различные студенческие работы, но часто в них просто не приводятся параметры получившегося устройства, либо в них используются труднодоступные/дорогие компоненты. О наличии в открытом доступе прошивки и Geber-файлах говорить в таких случаях обычно не приходится.

Репозиторий проекта на Github: https://github.com/iliasam/OpenTOFLidar
Он содержит файлы проекта печатной платы, Gerber-файлы, подробный BOM к плате, BOM на весь проект с указанием ссылок для приобретения компонентов, некоторую информацию по механическим деталям, исходные коды прошивок, тестовые утилиты для ПК с исходными кодами, драйвер для ROS.

Принцип работы лазерного дальномера

Принцип работы лазерного дальномера

В ходе ремонта многочисленные промеры рулеткой и вычисления площади объектов требуют высокой концентрации и времени.

Справиться с этим помогают лазерные рулетки (дальномеры) — простые в эксплуатации приборы с высокой точностью измерения.

Они не только мгновенно определят расстояние, но и вычислят площадь, объем и другие характеристики объекта.

Принцип работы лазерного дальномера

Лазерный дальномер называют по-разному. Из-за умения измерять расстояние его окрестили электронной или лазерной рулеткой, хотя на самом деле традиционного для рулетки колеса в нем нет. Этим же объясняется и название лазерной линейки.

Дальномеры бывают импульсные и фазовые. Принцип действия импульсных дальномеров схож с принципом работы эхолотов. При включении лазерного дальномера в нем генерируется лазерный луч и посылается излучателем до объекта, например до ближайшей стены комнаты (в звуковых дальномерах генерируется ультразвук). Луч отражается от объекта и поступает в приемник устройства. По времени, которое проходит с момента передачи до приема луча, и определяется расстояние до объекта. Полученный сигнал обрабатывается микропроцессором умного устройства и передается на дисплей в понятном для восприятия виде. Фазовые дальномеры измеряют разность фаз волны (подробнее ниже).

Для проведения замера достаточно включить функцию лазерного луча, навести дальномер на объект и нажать кнопку измерения расстояния. Расчет площади, объема и прочих характеристик также происходит при нажатии на предусмотренные для этого кнопки.

Функции лазерных дальномеров

Определение расстояния из разных точек отсчета

У лазерного дальномера есть несколько точек отсчета, что связано с особенностями измерения. Луч лазера исходит из корпуса прибора, так что при измерении расстояния от одной стены до другой придется учитывать длину этого корпуса. Чтобы не пришлось вести такие подсчеты в уме, в дальномерах настраивается точка отсчета. Она ведется от заднего торца устройства, от переднего торца или от упорной скобы (при ее наличии). Когда нужно узнать точную длину объекта, скобу выдвигают на 90 градусов (фактически цепляют за край объекта). Если нужно мерить из угла, то скобу выдвигают на 180 градусов, ведь сам прибор строго в угол не поместится.

Измерение площади и объема

Для измерения лазерным дальномером площади прямоугольника нужно определить его длину, ширину и нажать на специальную кнопку. Прибор рассчитает площадь фигуры и выведет результат на экран. Для определения объема параллелепипеда придется измерить его длину, ширину и высоту. Некоторые электронные рулетки умеют измерять углы, площади и объемы более сложных фигур. Такие измерения помогут быстро определить площадь пола, потолка, стен или узнать объем конструкции. Последнее потребуется, например, при строительстве бассейна или установке кондиционера, когда нужно знать объем воздуха кондиционируемых комнат. В некоторых приборах есть специальная функция маляра, которая складывает длины стен помещения и умножает на высоту, чтобы узнать общую площадь окрашиваемого или оклеиваемого обоями помещения.

Непрерывные измерения

У лазерных рулеток есть один минус по сравнению с обычными рулетками. В то время как мерной лентой легко отступить от стены на заданное расстояние, лазерной линейке нужна поверхность, от которой отразится луч. Для решения этой проблемы придумана функция непрерывных измерений. То есть если нужно отступить от стены, положим, на полтора метра, нужно включить эту функцию и постепенно отходить от стены. В это время прибор будет делать промеры через 1 секунду (зависит от настроек), что поможет отступить на точно заданное расстояние.

Измерения на основе вычислений

Если длину линии по каким-то причинам измерить прибором не получается, можно рассчитать ее по определенным формулам. Представим, что у помещения наклонная крыша. Тогда для определения длины наклонной линии понадобится не прямоугольник, а трапеция. Измерить три линии этой трапеции дальномером труда не составит, в то время как длину четвертой линии прибор рассчитает сам по функции трапеции.

Аналогично рассчитывается и высота до объекта, если напрямую измерить ее затруднительно. Тогда измеряется расстояние до этой точки по диагонали (гипотенуза) и по горизонтали (первый катет). По известной со школьного курса геометрии теореме Пифагора прибор рассчитает вертикаль (второй катет). Такой расчет возможен только для прямоугольных треугольников, то есть в случае вертикальных, а не наклонных поверхностей.

Определение минимума и максимума

Определить с помощью лазерной рулетки длину диагонали большой комнаты не так-то просто, поскольку нужно четкое попадание из угла в угол. Режим максимума помогает снизить риск ошибки и предполагает проведение нескольких последовательных замеров. Прибор ориентируется на первый замер и считает его наименьшим. Если при последующих замерах найдется большее значение, то оно и будет считаться длиной диагонали. Это делается из соображений, что длина диагонали всегда является наибольшей величиной из всех возможных длин помещения.

Режим минимума аналогичен предыдущему и снижает риски измерить расстояние не строго под прямым углом, а по диагонали. Например, нужно измерить расстояние от пола до потолка. Тогда в режиме минимума прибор найдет наименьшее из всех измеренных значений.

Виды лазерных дальномеров

По назначению лазерные дальномеры делят на бытовые и профессиональные. Первые чаще всего имеют небольшую (до 10 м) или среднюю (до 50 м) дальность измерения, и ограниченный функционал. Профессиональные электронные рулетки способны измерять расстояния более двухсот метров, имеют широкий набор функций и могут работать в сложных погодных условиях. Большая дальность необходима при возведении крупных объектов, измерении территории и в других случаях.

По области применения лазерные рулетки делятся на разные категории. Есть дальномеры для промышленности, военной сферы, геодезии, строительства. Есть гаджеты для рыбалки, охоты и даже для гольфа! Они отличаются друг от друга как по внешнему виду, так и по набору функций, так как призваны решать разные задачи. Например, качественный лазерный дальномер для охоты ориентирован на работу в условиях дождя, пыли, высокой влажности, мороза, умеет игнорировать траву, ветки деревьев и рассеянные в воздухе частицы вроде снежинок или дождинок.

По принципу работы бывают импульсные дальномеры и фазовые. Импульсные содержат встроенный таймер, с помощью которого определяют время отражения луча от объекта. На основании времени и скорости света рассчитывается расстояние. У импульсных лазерных рулеток мощный лазер, так что они могут измерять значительные расстояния, но обладают меньшей точностью по сравнению с фазовыми. Снижение точности связано с тем, что на расстоянии даже в несколько сот метров световой луч отражается слишком быстро (скорость света 300 тыс. км/с), что требует сверхточного таймера. Свое название импульсные рулетки получили из-за того, что в них луч лазера посылается импульсами.

В фазовых лазерных дальномерах луч посылается постоянно и модулируется сигналом определенной частоты. Отраженная от объекта волна фиксируется фотоприемником. Волна посылается в одной фазе, а отражается в другой, так что разность фаз и позволяет вычислить расстояние до объекта. Фазовые рулетки более точны, но из-за постоянной работы лазера теряют в мощности луча, потому используются в основном для измерения на небольших расстояниях.

Как выбрать лазерный дальномер       

При выборе лазерного дальномера советуем определиться с теми задачами, для которых он приобретается. От этого будут зависеть и характеристики гаджета.Максимум и минимум измерений. Для дома подойдет лазерная линейка с дальностью до 30 метров. Но для измерений на улице или в больших помещениях имеет смысл покупать прибор с высоким максимумом (100 и более метров). Минимум связан с тем, что лазерный дальномер не может измерять маленькое расстояние, как обычная линейка. У одних приборов этот показатель составляет около полуметра, у других — только пять сантиметров (чем дороже, тем шире шкала измерений).

Количество точек начала отсчета. Отсчет можно вести от верхнего края электронной рулетки, нижнего края и скобы (см. выше). Чем больше точек отсчета, тем точнее измерения.

Функционал. Помимо функциональных возможностей (расчета площади, объема, непрерывных измерений, сохранения измерений в память и пр.) советуем обратить внимание и на наличие автоотключения, жидкостного уровня для точной установки прибора, возможности установки на штатив, наличие дополнительных функций (уклономера, видоискателя, цифрового уровня и пр.).

Длина волны и класс лазера. Чем короче длина волны, тем лучше видно луч. Измеряется эта величина в нанометрах. Класс лазера характеризует его мощность и безопасность для глаз. Чем выше класс, тем мощнее луч. Его лучше видно в сложных условиях, но и опасность повреждения глаз при попадании в них лазерного луча возрастает. Безопасным и наиболее распространенным считает второй класс, в то время как использовать дальномер с лазером третьего класса рекомендуется только в защитных очках.

Другие характеристики. Среди них диапазон рабочих температур, подсветка и звуковая индикация, комплектация (наличие USB-зарядки, штатива, сумки, ремешка, адаптера), степень защиты от ударов, влаги и прочего и габариты прибора.

 

Лазерные дальномеры — устройства для измерения расстояния с широкой сферой применения

Дальномеры при работе постоянно излучают сигнал, частота которого не превышает 500 МГц. Волна имеет неизменную длину (500-1100 нанометров). Фотоприёмник принимает отражающийся от объекта импульс. Расстояние определяется на основании расчёта разницы между изначальной и конечной фазами сигнала. Такие приборы обеспечивают высокую точность измерений при удалённости объекта не более 1 км.

Сфера применения

  • Строительство.
  • Некоторые виды геодезических работ.
  • Сканеры.
  • Робототехника.
  • Навигация.
  • Геодезия.
  • Военное дело.
  • Астрономия и т.д.

Характеристики прибора

Вне зависимости от того, какими дополнительными опциями оснащён лазерный дальномер, он обладает следующими характеристиками:

  • Диапазон измерений (показывает максимальное расстояние, на котором прибор может измерить параметры объекта с точностью, заявленной производителем. У современных моделей этот показатель достигает 100 м).
  • Точность (допустимая погрешность в измерениях. Обычно находится в пределах 3 мм).
  • Питание. Обычно осуществляется от элементов АА или ААА (так называемых «пальчиковых» или «мизинчиковых» батареек). Некоторые модели питаются от аккумуляторов или элементов питания нестандартных типов, однако лучше выбрать прибор на классических батареях, которые без труда можно найти в магазине.
  • Масса. Современные компактные дальномеры весят до 150 грамм. Более тяжёлые модели неудобны в использовании, особенно если с прибором приходится работать постоянно.

Дополнительные функции

Наиболее популярными являются следующие дополнения:

  • Уровень (с его помощью можно определить отклонения плоскостей по вертикали и горизонтали).
  • Угломер (в совокупности с уровнем позволяет производить одновременно несколько измерений).
  • Защита от пыли и влаги. Дальномеры являются точными электронными устройствами. Попадание внутрь пыли или влаги может привести к выходу его из строя. Защищёнными корпусами оснащаются практически все современные модели. Однако если прибор планируется эксплуатировать в неблагоприятных условиях, рекомендуется выбрать вариант с повышенной защитой. Дополнительно можно приобрести специальный чехол.
  • Подсветка. Даже на дорогостоящих моделях со множеством дополнительных опций иногда можно встретить монохромный дисплей и клавиатуру без подсветки. Такие приборы не очень удобны в эксплуатации. Лучше выбрать устройство с активируемой либо постоянной подсветкой и цветным дисплеем.
  • Дальномер, оснащённый этой функцией, можно подключить к смартфону, планшету или ноутбуку для сохранения, анализа и передачи данных. Если выполнять все эти действия вручную, темп работы существенно снизится.

Критерии выбора лазерного дальномера

Главное, чтобы прибор мог справиться с поставленной задачей. Чтобы не ошибиться, рекомендуется обратить внимание на несколько важных факторов.

Место проведения измерений

При ярком солнечном свете лазерный луч можно визуально распознать на расстоянии до 10 м. Для замеров на более дальних дистанциях в дальномер должен быть встроен оптический или цифровой визир. При работе на больших открытых площадках следует выбирать устройства с повышенной дальностью и точностью. В помещениях можно использовать любую модель.

Точность и диапазон

Стандартные дальномеры обеспечивает точность 1-3 мм на расстоянии от 50 см до 100 м. 

Условия

Уровень защиты большинства современных дальномеров — IP54. Первая цифра обозначает степень пыленепроницаемости. Показатель 5 говорит о том, что попадание пыли внутрь корпуса в малых количествах не исключается, однако работе прибора это не помешает.

Вторая цифра – защита от влаги. Дальномер с уровнем 4 вряд ли выдержит полное погружение в воду, однако вполне может работать под дождём и брызгами.

В большинстве случаев таких параметров бывает достаточно для бесперебойной работы устройства. Однако если на площадке в большом количестве присутствует мелкая пыль или на прибор может попасть вода, рекомендуется выбрать модель с усиленной защитой либо купить специальный чехол.

Устройство лазерного дальномера

Лазерный дальномер предназначен для измерения расстояний.

Работа этого прибора основана на следующем принципе: он посылает лазерный сигнал, который отражается от объекта и возвращается обратно, измеряет время его прохождения и относительно него высчитывает расстояние до объекта.

Большинство современных дальномеров имеет компактную форму и удобны в применении.

Чтобы пользоваться таким устройством, не нужно особых умений. 

Основные элементы строительного дальномера

  1. Оптический лазерный излучатель — служит для генерирования и посылки луча в нужную точку.
  2. Оптический отражатель — принимает отражённый луч.
  3. Компьютерный преобразователь или микропроцессор.
  4. Встроенная программа вычислений — предназначена для обработки результатов измерений и выдачи их в нужном виде.
  5. Фиксатор дальномера.
  6. Оптический прицел — позволяет направить луч точно в нужное место.
  7. Пузырьковый уровень.Строительный лазерный дальномер: выбор и эксплуатацияПузырьковый уровень, встроенный в лазерный дальномер, позволяет устанавливать прибор ровно на поверхности

В строительных лазерных дальномерах есть блокнот и калькулятор. Прибор сам будет производить вычисления и сохранять данные в памяти.

Виды дальномеров

По принципу работы лазерные дальномеры разделяются на фазовые и импульсные.

Фазовые измерители

Фазовые дальномеры имеют не очень большую дальность действия, но они намного точнее в силу принципа своей работы и дешевле из-за того, что в них не встраивают дорогой сверхточный таймер.

Фазовый дальномер работает на небольших расстояниях, но имеет хорошую точность и низкую цену

Принцип работы дальномеров такого типа заключается в том, что лазерная волна посылается на объект с одной фазой, а отражаясь, возвращается с другой. Рассчитав сдвиг фаз, прибор определяет расстояние до объекта. Благодаря такому принципу работы измерения фазовым дальномером имеют высокую точность. При необходимости работы на расстояниях, превышающих длину излучаемой волны, прибор посылает сигнал несколько раз, изменяя частоту модуляции. Затем процессор устройства определяет точное расстояние до цели путём решения системы линейных уравнений.

Импульсные измерители

Импульсный дальномер состоит из детектора излучения и импульсного лазера. Он вычисляет расстояние до объекта путём умножения времени прохождения луча на величину скорости света. Импульсные измерители работают на гораздо больших расстояниях, чем фазовые, благодаря более высокой мощности излучаемого импульса. Такие дальномеры часто применяют для военных прицелов.

Видео: принцип работы лазерного дальномера

Применение и функции лазерного дальномера

С помощью лазерной рулетки можно рассчитать объём, вычислить площадь помещения, замерить сложные недоступные отрезки, определить длину ската крыши и угол его наклона, найти площадь стены с наклоном у потолка, а также её диагональ.

Дополнительные функции некоторых современных дальномеров

  1. Подсветка.
  2. Ватерпас или пузырьковый уровень. Это приспособление чаще всего устанавливают на строительных лазерных рулетках. Оно поможет определить, ровно ли располагается прибор на поверхности.
  3. Визир — специальное устройство, приближающее точку, до которой ведётся измерение. Функция работает аналогично цифровому увеличению (зуму) на видеокамерах и особенно актуальна для работы на больших расстояниях.
  4. Дисплей с цветным экраном.
  5. Измеритель температуры воздуха. Допустимые погодные условия для использования каждого прибора указаны в инструкции. В любом случае при работе на морозе необходимо дать устройству некоторое время на адаптацию к окружающей температуре.
  6. Датчик для измерения наклона в пределах до 45°. Он нужен для проведения расчёта угла ската крыши, наклона навеса и других аналогичных операций. Лазерный дальномер со встроенным датчиком измерения угла наклона позволяет вычислять расстояния на криволинейной поверхности
  7. Индикатор уровня зарядки батареи.
  8. Функция Bluetooth.
  9. Трекинг — непрерывное измерение расстояний. При перемещении дальномера трекинг производит замеры не один, а несколько раз с определённой периодичностью и показывает получаемые результаты. Такая опция необходима для того, чтобы отмерить нужную длину конструкции или помещения.
  10. Различные математические функции.

Работа с лазерной рулеткой

  1. Установить и зафиксировать прибор в точке начала измерений.
  2. Включить дальномер при помощи специальной кнопки.
  3. Выбрать нужную точку отсчёта. Во многих моделях для удобства встроена возможность выбора точки — от передней части корпуса прибора или от задней. Такая функция нужна для определения расстояния без учёта размеров корпуса. Некоторые устройства также оснащены специальными скобами, позволяющими проводить измерения в неудобных местах. Точку отсчёта в них можно выбрать от края корпуса либо от самой скобы.
  4. Выбрать необходимые единицы измерения.
  5. Начать измерения, нажав функциональную кнопку.
  6. Просмотреть результат на дисплее прибора.

Например, если нужно определить расстояние от одной стены до другой, необходимо провести следующие действия:

  1. Установить прибор на одной стене.
  2. Убедиться, что прибор зафиксирован ровно на поверхности и плотно у стены.
  3. Назначить точкой отсчёта прижатую часть корпуса. Это позволит учесть в расчётах толщину самой рулетки.
  4. Включить функцию начала замеров.
  5. Посмотреть полученные результаты на экране. Для того чтобы измерить необходимое расстояние, нужно приложить прибор к стене и нажать функциональную кнопку — все остальные действия прибор произведёт сам.

Для получения более точных расчётов не рекомендуется держать прибор в руках при измерении. Запрещается направлять лазерный луч прибора в лицо, потому что он может обжечь сетчатку глаза.

Видео: как пользоваться лазерной рулеткой

Правила эксплуатации дальномера

  1. Лазерную рулетку следует эксплуатировать согласно технической инструкции.
  2. Нельзя допускать попадания влаги и грязи в прибор, а также перегрева и переохлаждения дальномера.
  3. Необходимо беречь прибор от падения и ударов.
  4. Проводить ремонт дальномера следует только в специальных мастерских.
  5. Хранить лазерный дальномер рекомендуется в специальном чехле.

Устройство компактного лазерного строительного дальномера

Устройство лазерного дальномера состоит из следующих узлов:

Схема работы лазерного дальномера

  1. Излучатель – он генерирует луч и отправляет его в нужную точку.
  2. Отражатель – он необходим для приема, отраженного от объекта луча.
  3. Микропроцессор, для выполнения необходимых расчетов.
  4. Предустановленная программа необходимая для обработки полученных при замерах данных.
  5. Прицел, позволяющий направить луч в необходимое место.
  6. Уровень, с помощью которого прибор можно строго выставить в горизонтальной или вертикальной плоскости.

Дополнительные функции

Применяемая в составе лазерных дальномеров микроэлектроника позволяет не только выполнять прямые замеры. Многие устройства подобного типа обладают некоторыми дополнительными функции, к которым можно отнести:

1. Функция непрерывного измерения. При работе в обычном режиме дальномер при нажатии кнопки на пульте фиксирует результат и выводит его на монитор. Но, довольно часто, возникает необходимость в проведении постоянного измерения расстояния, например, от стены до будущей перегородки. Для этого прибор переводят в режим непрерывного измерения. В таком режиме работы, устройство с некоторой частотой самостоятельно выполняет замер и показывает их результаты на монитор. Измерение проходит в реальном режиме времени.

2. Определение наибольшего и наименьшего расстояния. Эта функция полезна при определении диагонали в комнате. Дело в том, что выполнить ее замер не так и просто при направлении лазерного луча можно промахнуться и в результате будут получены неточные результаты. После установки на приборе минимального расстояния, он будет фиксировать только те замеры, которые больше установленной.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 6 чел.
Средний рейтинг: 3.8 из 5.

Прибор для измерения расстояния лазерный, дальномер принцип работы

Устройство лазерного дальномера

Лазерный дальномер предназначен для измерения расстояний. Работа этого прибора основана на следующем принципе: он посылает лазерный сигнал, который отражается от объекта и возвращается обратно, измеряет время его прохождения и относительно него высчитывает расстояние до объекта. Большинство современных дальномеров имеет компактную форму и удобны в применении. Чтобы пользоваться таким устройством, не нужно особых умений. Лазерные измерители расстояния получили широкое распространение в астрономии, строительстве, военной отрасли и навигации. Дальномеры также применяются для топографических съёмок.

Фотогалерея: разновидности лазерных дальномеров

Топографический лазерный дальномер позволяет вычислять расстояние до территорий или участков землиНавигационный дальномер помогает определять расстояние до объектов на водеЛазерные дальномеры используют в военной отрасли для оружейных прицеловСтроительным лазерным дальномером можно определять расстояния до стен и высчитывать площадь и объём помещений

В строительстве лазерный дальномер часто используется для измерения расстояния до стен и порогов. С его помощью можно также вычислять площади помещений. Прибор нужно установить на нужную опцию, установить на рабочей поверхности и направить лазер на интересующий объект, например, противоположную стену. Для получения более точных показаний дальномер необходимо устанавливать строго перпендикулярно. Для облегчения этой задачи в строительных лазерных измерителях имеется специальный уровень с пузырьком.

Основные элементы строительного дальномера

  1. Оптический лазерный излучатель — служит для генерирования и посылки луча в нужную точку.
  2. Оптический отражатель — принимает отражённый луч.
  3. Компьютерный преобразователь или микропроцессор.
  4. Встроенная программа вычислений — предназначена для обработки результатов измерений и выдачи их в нужном виде.
  5. Фиксатор дальномера.
  6. Оптический прицел — позволяет направить луч точно в нужное место.
  7. Пузырьковый уровень.Пузырьковый уровень, встроенный в лазерный дальномер, позволяет устанавливать прибор ровно на поверхности

В строительных лазерных дальномерах есть блокнот и калькулятор. Прибор сам будет производить вычисления и сохранять данные в памяти.

Виды дальномеров

По принципу работы лазерные дальномеры разделяются на фазовые и импульсные.

Фазовые измерители

Фазовые дальномеры имеют не очень большую дальность действия, но они намного точнее в силу принципа своей работы и дешевле из-за того, что в них не встраивают дорогой сверхточный таймер.

Фазовый дальномер работает на небольших расстояниях, но имеет хорошую точность и низкую цену

Принцип работы дальномеров такого типа заключается в том, что лазерная волна посылается на объект с одной фазой, а отражаясь, возвращается с другой. Рассчитав сдвиг фаз, прибор определяет расстояние до объекта. Благодаря такому принципу работы измерения фазовым дальномером имеют высокую точность. При необходимости работы на расстояниях, превышающих длину излучаемой волны, прибор посылает сигнал несколько раз, изменяя частоту модуляции. Затем процессор устройства определяет точное расстояние до цели путём решения системы линейных уравнений.

Импульсные измерители

Импульсный дальномер состоит из детектора излучения и импульсного лазера. Он вычисляет расстояние до объекта путём умножения времени прохождения луча на величину скорости света. Импульсные измерители работают на гораздо больших расстояниях, чем фазовые, благодаря более высокой мощности излучаемого импульса. Такие дальномеры часто применяют для военных прицелов.

Сравнение принципов работы импульсных и фазовых измерителей

  1. Фазовый дальномер при измерении расстояния использует модулированный световой сигнал, а импульсный — световой импульс.
  2. Импульсные дальномеры измеряют гораздо большие расстояния, чем фазовые, так как мощность посылаемых импульсов у них гораздо больше.
  3. Импульсный метод измерения расстояния менее точен, чем метод измерения разности фаз. Но благодаря современным методикам обработки сигнала в импульсных дальномерах это различие становится не таким значительным.
  4. Размер отражаемой лазерной точки становится больше с увеличением расстояния. Это справедливо для обоих принципов измерения, хотя отклонение лазера от точки отражения разное, так как отличаются размер и форма лазерного пятна.
  5. Фазовый и импульсный принципы работы различаются также чувствительностью к прерыванию сигнала. При работе под воздействием некоторых внешних факторов (в потоке транспорта, при плохих погодных условиях) фазовый дальномер будет работать хуже, чем импульсный.

Видео: принцип работы лазерного дальномера

Применение и функции лазерного дальномера

С помощью лазерной рулетки можно рассчитать объём, вычислить площадь помещения, замерить сложные недоступные отрезки, определить длину ската крыши и угол его наклона, найти площадь стены с наклоном у потолка, а также её диагональ.

Дополнительные функции некоторых современных дальномеров

  1. Подсветка.
  2. Ватерпас или пузырьковый уровень. Это приспособление чаще всего устанавливают на строительных лазерных рулетках. Оно поможет определить, ровно ли располагается прибор на поверхности.
  3. Визир — специальное устройство, приближающее точку, до которой ведётся измерение. Функция работает аналогично цифровому увеличению (зуму) на видеокамерах и особенно актуальна для работы на больших расстояниях.Визир представляет собой миниатюрную камеру, которая позволяет приблизить объект измерений
  4. Дисплей с цветным экраном.
  5. Измеритель температуры воздуха. Допустимые погодные условия для использования каждого прибора указаны в инструкции. В любом случае при работе на морозе необходимо дать устройству некоторое время на адаптацию к окружающей температуре.
  6. Датчик для измерения наклона в пределах до 45o. Он нужен для проведения расчёта угла ската крыши, наклона навеса и других аналогичных операций.Лазерный дальномер со встроенным датчиком измерения угла наклона позволяет вычислять расстояния на криволинейной поверхности
  7. Индикатор уровня зарядки батареи.
  8. Функция Bluetooth.
  9. Трекинг — непрерывное измерение расстояний. При перемещении дальномера трекинг производит замеры не один, а несколько раз с определённой периодичностью и показывает получаемые результаты. Такая опция необходима для того, чтобы отмерить нужную длину конструкции или помещения.
  10. Различные математические функции.

Наличие в лазерном дальномере дополнительных функций помогает более точно и удобно производить необходимые замеры и во многом облегчает работу. Но и цена таких приборов гораздо выше.

Работа с лазерной рулеткой

  1. Установить и зафиксировать прибор в точке начала измерений.
  2. Включить дальномер при помощи специальной кнопки.
  3. Выбрать нужную точку отсчёта. Во многих моделях для удобства встроена возможность выбора точки — от передней части корпуса прибора или от задней. Такая функция нужна для определения расстояния без учёта размеров корпуса. Некоторые устройства также оснащены специальными скобами, позволяющими проводить измерения в неудобных местах. Точку отсчёта в них можно выбрать от края корпуса либо от самой скобы.
  4. Выбрать необходимые единицы измерения.
  5. Начать измерения, нажав функциональную кнопку.
  6. Просмотреть результат на дисплее прибора.Лазерный дальномер позволяет определить длину, ширину и высоту помещений, а также автоматически посчитать его площадь и объём

Например, если нужно определить расстояние от одной стены до другой, необходимо провести следующие действия:

  1. Установить прибор на одной стене.
  2. Убедиться, что прибор зафиксирован ровно на поверхности и плотно у стены.
  3. Назначить точкой отсчёта прижатую часть корпуса. Это позволит учесть в расчётах толщину самой рулетки.
  4. Включить функцию начала замеров.
  5. Посмотреть полученные результаты на экране.Для того чтобы измерить необходимое расстояние, нужно приложить прибор к стене и нажать функциональную кнопку — все остальные действия прибор произведёт сам

Для получения более точных расчётов не рекомендуется держать прибор в руках при измерении. Запрещается направлять лазерный луч прибора в лицо, потому что он может обжечь сетчатку глаза.

Видео: как пользоваться лазерной рулеткой

Правила эксплуатации дальномера

  1. Лазерную рулетку следует эксплуатировать согласно технической инструкции.
  2. Нельзя допускать попадания влаги и грязи в прибор, а также перегрева и переохлаждения дальномера.
  3. Необходимо беречь прибор от падения и ударов.
  4. Проводить ремонт дальномера следует только в специальных мастерских.
  5. Хранить лазерный дальномер рекомендуется в специальном чехле.

Рекомендации по выбору лазерной рулетки

  1. Каждый лазерный дальномер имеет определённый диапазон расстояний. При выборе рулетки необходимо знать, какие приблизительные размеры вам надо будет определять. Приобретать рулетку следует с несколько большей максимальной дальностью, чтобы был хотя бы небольшой запас.
  2. Чем мощнее микропроцессор дальномера, тем быстрее и точнее анализируются данные. Но если лазерная рулетка нужна для несложных измерений в быту, будет достаточно самой простой модели, иначе вы переплатите деньги за функции и способности прибора, которыми не будете пользоваться. Простые рулетки настроены только на измерение расстояния. Приборы с мощным микропроцессором и улучшенным программным обеспечением могут производить множество расчётов с применением сложных геометрических формул (площади, объёма, углов и т. д.).Современные лазерные дальномеры с мощными процессорами позволяют рассчитывать расстояния до объектов, площади и объёмы помещений и переводить результат в разные системы единиц
  3. Лазерную рулетку лучше приобретать с надёжным штативом, если в корпусе прибора есть крепёжная резьба. Для произведения расчётов в комнатных условиях достаточно будет неподвижно зафиксировать прибор на полу, у стены или на предмете с ровной поверхностью. Если при измерении дальномер плотно зафиксирован, то погрешность в расчётах сведётся к минимуму.
  4. При покупке важно учитывать тип элементов питания дальномера. Не стоит приобретать прибор со встроенным аккумулятором, так как по истечении ресурса заменить его будет сложно. Лучше остановить выбор на рулетке, работающей от батареек.

Видео: обзор лазерного дальномера ЛДМ-70

Дополнительные функции дальномера

  1. Функция измерения площади полезна во время ремонта, когда требуется рассчитать необходимое количество материала. Нужно включить специальную опцию дальномера (кнопка обычно имеет обозначение в виде плоской и объёмной фигуры, они символизируют измерение площади и объёма соответственно) и измерить все стороны помещения. Далее аппарат проведёт расчёты путём умножения сторон и выдаст результат на дисплее. С помощью этой функции можно определить площадь пола, стен и потолка.Выбор режима вычислений производится при помощи специальной кнопки с изображением плоской и объёмной фигуры
  2. Измерение объёма проводится аналогично измерению площади. При нахождении объёма помещения сначала замеряются стороны пола, затем высота. Прибор анализирует полученные данные и вычисляет объём комнаты. Эта опция дальномера полезна, например, при выборе кондиционера, когда нужно знать объём расходуемого в помещении воздуха.
  3. Выдвижная скоба. Для проведения измерений из неудобных точек некоторые модели дальномеров оборудованы специальной скобой. Например, для определения размера комнаты по диагонали можно упереть прибор скобой в один из углов и включить необходимый режим. Для получения точного результата нужно назначить точкой отсчёта начало скобы.
    В современных дальномерах скоба может фиксироваться в нескольких положениях, чтобы можно было максимально просто проводить измерения из неудобных точек
  4. Трекинг. Если нужно отмерить определённое расстояние от стены, например, для того, чтобы возвести перегородку, нужно воспользоваться функцией трекинга. Некоторые строительные модели лазерных рулеток оснащены режимом непрерывного измерения расстояния. Для нахождения нужного отрезка таким способом потребуется включить прибор и перемещать его вдоль выбранной линии до получения искомого расстояния.
  5. Некоторые лазерные дальномеры оснащаются функцией поиска минимальных и максимальных расстояний. С её помощью также можно вычислить точную диагональ помещения. Для этого необходимо установить прибор в одном углу, а луч направить на противоположный угол комнаты, стараясь попасть в границу между стенами как можно точнее. Рулетка произведёт серию измерений и найдёт максимальное значение, которое и будет искомой диагональю. Таким же способом проводится и поиск минимального расстояния.
  6. Измерение сторон стены в форме трапеции — ещё одна опция некоторых современных лазерных рулеток. Для этого необходимо включить нужный режим и измерить три стороны стены, расположенных под углом 90o друг к другу. Далее дальномер с помощью полученных данных автоматически произведёт расчёт четвёртой стены и выведет результат на экран.Одну из сторон трапеции (например, длину ската кровли) лазерный дальномер может рассчитать по трём остальным сторонам
  7. Косвенный метод измерения расстояний — функция теоремы Пифагора. Позволяет определить расстояния и длины отрезков на труднодоступных участках. Допустим, нужно измерить расстояние от пола до шурупа в стене. Сначала выбираем начальную точку на небольшом расстоянии от стены на полу и измеряем расстояние от неё до стены. Затем направляем точку лазера на шуруп. Отрезок от рулетки до стены будет являться катетом, а длина от прибора до шурупа — гипотенузой. При включении рассматриваемой опции прибор автоматически произведёт вычисления, найдёт второй катет треугольника и выдаст, на какой высоте от пола находится шуруп.
  8. В солнечную погоду удобно пользоваться специальными очками. Они имеют красный или зелёный цвет стекла в зависимости от цвета луча лазера. Эти защитные стёкла оснащены световым фильтром, который приглушает все остальные цвета, кроме своего, тем самым позволяя легко находить точку отражения луча.Световой фильтр в очках приглушает все цвета, кроме своего, поэтому, например, в красных очках намного проще увидеть луч красного лазера

Видео: измерение площади непрямоугольных стен лазерным дальномером

Сделав правильный выбор лазерной рулетки, можно во многом облегчить работу. С использованием лазерного дальномера будет возможно вычислить любые нужные длины и площади. Несмотря на множество проводимых вычислительных операций, такой прибор прост для использования и не требует никаких особых знаний или навыков.

  • Александр Макарычев

Как работает инструмент лазерный дальномер

Благодаря тому, как работает лазерный дальномер, можно осуществлять замеры плоскостей с максимальной точностью. Поэтому его применяют в военном деле, астрономии строительстве, инженерной геодезии и т.д.

Лазерный дальномер — удобное современное устройство для измерения площадей поверхностей.

Он представляет собой рулетку электронного типа. Такой прибор достаточно прост в эксплуатации, поэтому его используют профессиональные бригады, да и начинающие строители тоже.

Инструкция по работе с таким инструментом выглядит следующим образом:

  1. Дальномер включается на необходимую опцию.
  2. Далее он устанавливается вблизи одной из рабочих поверхностей.
  3. Луч лазера наводится на противолежащую сторону помещения.
  4. Аналогичным образом осуществляются замеры и других плоскостей.

Устройство лазерного дальномера.

Благодаря таким нехитрым действиям дальномер выдаст размер площади помещения. Если необходимо просчитать объем, действуют так же. Все приборы такого типа работают по схожему принципу.

Одно из главных удобств дальномера в том, что он заменяет калькулятор и блокнот с карандашом. Каждая модель может складывать и вычитать имеющиеся значения, а полученные цифры автоматически сохраняются. Но тут главное — знать о том, может ли потерять прибор данные, если извлечь из него флеш-карту.

Чтобы лазерный дальномер давал точные показания, очень важным моментом является соблюдение условий перпендикулярности рулетки. Чтобы облегчить эту задачу, современные производители оснащают свои изделия встроенным пузырьковым уровнем. Это значительно облегчает задачу.

Принцип работы лазерного дальномера

Чтобы осуществить замеры стен при помощи дальномера, сначала необходимо включить уровень. После этого измеряют поверхность стены по высоте и длине. От полученных значений следует отнять площадь, занимаемую окнами и дверными проемами.

Полученные цифры помогут сориентироваться в необходимом количестве строительных материалов, чтобы максимально избежать перерасхода. Для новичков лазерный дальномер является хорошим помощником.

Для удобства использования в различных условиях некоторые производители оснащают приборы встроенными камерами и визорами.

Но это касается геометрически правильных форм. Однако прибор используют и в инженерной сфере, например, для измерения котлованов. Тут будут присутствовать определенные погрешности. Кстати, на точность показаний во многом влияет и результативность самой рулетки, так как в темное время суток она выше, чем днем. Поэтому нередко используется дополнительное оборудование в виде визира или видеокамер, чтобы была возможность хорошо видеть лазер.

Чтобы определить дальность нахождения объекта, используют беспрерывное электромагнитное излучение. Дальномер может работать в трех режимах:

  • фазовом;
  • импульсном;
  • комбинированном, который объединяет в себе предыдущие два.

В первом случае принцип действия — модуляция синусоидального сигнала, при этом частота будет варьироваться от 10 до 150 МГц.

Во втором варианте идет отражение импульса и его периодическая задержка. Несмотря на то что такая техника достаточно умна, контроль за ней все-таки необходим, так как сбои свойственны любой аппаратуре. Для того чтобы иметь правильное представление о принципе работы дальномера, руководство по эксплуатации требует тщательного изучения.

В зависимости от того, насколько тщательно придерживаться требований инструкции, дальномер будет работать точно или давать погрешности.

Зависимость техники от условий

Дальномер имеет два функциональных блока: излучательный, в составе которого есть лазерный диод, и приемник. За счет электромагнитной волны возникает лазерный луч. Сама волна производится дальномером, далее она отражается от рабочей плоскости, будь то полы, стены, потолок или другая рабочая сторона объекта. После этого идет ее возврат в приемник. Каждая волна имеет свою амплитуду и длину. Последний показатель изначально известен вычислителю дальномера, поэтому дальнейшие его вычисления производятся за счет принципа сложения всех длин волн, которые прошли путь до объекта и обратно. После этого выполняется деление данной суммы надвое. А если есть «обрезанная» волна, то и ее показатель приплюсовывается.

Сравнительные характеристики нескольких моделей лазерного дальномера.

Полученная цифра выводится на дисплей прибора. Измерительная величина, то есть метры или сантиметры, устанавливается по личным требованиям.

Дальномер отлично справляется в условиях закрытых помещений, так как в этом случае расстояния имеют небольшие значения, а помехи и вовсе отсутствуют. А что касается природы, то тут есть несколько факторов, которые могут создать погрешности в работе:

  1. Солнце. Зачастую цвет лазеров является красным, поэтому чем ярче поверхность, тем хуже видна конечная точка. Почему это так важно? Потому что дальномер должен уметь обработать сигнал, а он будет слишком слабым, что может повлиять на точность показаний. Поэтому в темное время суток показания лазерного дальномера более точны.
  2. Загрязненность окружающей среды. Лучший вариант — если работа проводится за городом, так как воздух там прозрачнее. В условиях загазованности или туманности опять-таки возникает риск возникновения погрешностей.
  3. Надежность крепления дальномера. Ручные измерения всегда сопровождаются неточностями. Поэтому лучше для замеров использовать специальный штатив. Кстати, многие современные приборы имеют уже в стандартной комплектации такой элемент.
  4. Рабочая поверхность. Если измеряемая плоскость будет иметь темный цвет или шершавую структуру, то луч станет поглощаться. Поэтому для таких целей используют светлую поверхность, которая за счет гладкости и цвета помогает повысить коэффициент отражения.

Как работать инструментом на улице?

Для удобства использования дальномер можно закрепить на штативе.

Все же в большинстве случаев дальномер применяют с внешней стороны зданий. Поэтому, чтобы максимально обеспечить точность показаний, можно воспользоваться следующими рекомендациями:

  1. Использовать для таких работ необходимо те приборы, которые имеют дальность работы в пределах 150-200 м, то есть для больших расстояний.
  2. Следует использовать мишень. В большинстве стандартных комплектов она уже имеется.
  3. Для того чтобы показания были точны, следует применять штатив. Если данная деталь покупается отдельно, то дальномер в обязательном порядке должен иметь специальное гнездо с нижней стороны.

Многие модели дальномеров имеют скобу, расположенную сзади. Она может устанавливаться под 90-градусным или 180-градусным углом. Если ее положение перпендикулярно, то прибор измеряет расстояние заподлицо с краем или внешним углом.

Это позволяет знать размер диагонали помещения. В данном случае точка отсчета устанавливается вручную, она начинается от задней или передней стенки скобы. Но некоторые модели оснащены автоматической функцией переноса нулевой точки.

Правильная эксплуатация

Для удобства хранения лазерные дальномеры комплектуются специальными чехлами.

Так как длина волны составляет 635 нм, человеческий глаз видит луч красного цвета. Поэтому, работая с таким прибором, следует быть аккуратными. Попадая в глаз, такой луч может нести разрушительное воздействие. Все зависит от класса используемого лазера: чем он выше, тем опаснее контакт луча и глаза. По стандарту дальномеры имеют луч со вторым классом излучения. Это, в свою очередь, означает, что при кратковременном воздействии перед глазами человека непродолжительный период будут мелькать пятна света. Но если луч будет напрямую и долго воздействовать, то последствия могут стать крайне неприятными.

Дальномер — прибор, которому для работы требуются батарейки. После того как их заряд окончен (примерно 5-10 тысяч измерительных процессов), их следует правильно утилизировать. Если содержимое батарейки вытечет внутри прибора, это может привести к поломке аппарата, что однозначно потребует дорогостоящего ремонта. Поэтому перед и после каждого применения батарейки следует тщательно осматривать.

Такой прибор требует деликатного обращения, поэтому для него не допускаются воздействия физической силой, а тем более падения. Это тоже чревато ремонтом или даже покупкой новой техники.

Иметь под рукой такой прибор — значит ощутимо улучшить условия своей работы. Во-первых, исчезает необходимость производить вычисления в уме — все делает техника. Во-вторых, это значительно экономит время, особенно если дальномер — новой модификации, так как в нем много дополнительных функций. В-третьих, автоматическое сохранение данных помогает не забивать голову большим количеством цифр, что тоже крайне удобно.

Самодельный сканирующий лазерный дальномер



В этой статье я расскажу о том, как я делал самодельный лазерный сканирующий дальномер, использующий триангуляционный принцип измерения расстояния, и об опыте его использования на роботе.

Зачем нужен сканирующий дальномер?

На сегодняшний день в робототехнике не так уж и много методов навигации внутри помещений. Определение положения робота в пространстве с использованием лазерного сканера — один из них. Важное достоинство этого метода — он не требует установки в помещении каких-либо маяков. В отличие от систем, использующих распознавание изображения с камер, обработка данных с дальномера не так ресурсоемка. Но есть и недостаток — сложность, и соответственно, цена дальномера.
Традиционно в робототехнике используются лазерные сканеры, использующие фазовый или времяпролетный принцип для измерения расстояния до объектов. Реализация этих принципов требует довольно сложной схемотехники и дорогих деталей, хотя и характеристики при этом получаются приличные — используя эти принципы, можно добиться высокой скорости сканирования и большой дальности измерения расстояния.
Но для домашних экспериментов в робототехнике такие сканеры мало подходят — цена на них начинаются от 1000$.
На помощь приходят дальномеры, использующие триангуляционный принцип измерения расстояния. Дальномер такого типа впервые появился в роботах-пылесосах Neato:

Довольно быстро любители расшифровали протокол этого дальномера, и начали использовать его в своих проектах. Сами дальномеры в качестве запчастей появились на ebay в небольших количествах по цене около 100$. Через несколько лет китайская компания смогла выпустить сканирующий дальномер RPLIDAR, который поставлялся как полноценный прибор, а не запчасть. Только цена этих дальномеров оказалась достаточно высокой — 400$.

Самодельный дальномер

Как только я узнал о дальномерах Neato, мне захотелось собрать самому аналогичный. В конце концов, мне это удалось, и процесс сборки я описал на Робофоруме.
Первая версия дальномера:

Позже я сделал еще одну версию дальномера, более пригодную для использования на реальном роботе, но и ее качество работы не полностью устроило меня. Настало время третьей версии дальномера, и именно она будет описана далее.

Устройство сканирующего триангуляционного лазерного дальномера

Принцип измерения расстояния до объекта основан на измерении угла между лазерным лучом, попадающим на объект, и объективом дальномера. Зная расстояние лазер-объектив (h) и измеренный угол, можно вычислить расстояние до объекта — чем меньше угол, тем больше расстояние.
Принцип хорошо иллюстрирует картинка из статьи:

Таким образом, ключевые оптические компоненты такого дальномера — лазер, объектив и фотоприемная линейка.
Так как дальномер сканирующий, то все эти детали, а так же управляющая электроника устанавливаются на вращающейся головке.
Тут может возникнуть вопрос — зачем нужно вращать оптику и электронику, ведь можно установить вращающееся зеркало? Проблема в том, что точность дальномера зависит от расстояния между объективом и лазером (базового расстояния), так что оно должно быть достаточно большим. Соответственно, для кругового сканирования понадобится зеркало диаметром, большим базового расстояния. Дальномер с таким зеркалом получается достаточно громоздким.
Сканирующая головка дальномера при помощи подшипника закрепляется на неподвижном основании. На нем же закрепляется двигатель, вращающий головку. Также в состав дальномера должен входить энкодер, предназначенный для получения информации о положении головки.
Как видно, дальномеры Neato, RPLIDAR и мои самодельные сделаны именно по этой схеме.

Самое сложное в самодельном дальномере — изготовление механической части. Именно ее работа вызывала у меня больше всего нареканий в ранних версиях дальномера. Сложность заключается в изготовлении сканирующей головки, которая должна быть прочно закреплена на подшипнике, вращаться без биений и при этом не нее нужно каким-то образом передавать электрические сигналы.
Во второй версии дальномера первые две проблемы я решил, использовав части старого HDD — сам диск использовался как основание сканирующей головки, а двигатель, на котором он закреплен, уже содержал качественные подшипники. В то же время, при этом возникла третья проблема — электрические линии можно было провести только через небольшое отверстие в оси двигателя. Мне удалось сделать самодельный щеточный узел на 3 линии, закрепленный в этом отверстии, но получившаяся конструкция получилась шумной и ненадежной. При этом возникла еще одна проблема — линии, чтобы пробросить сигнал энкодера, не было, и датчик энкодера в такой конструкции должен быть установлен на головке, а диск энкодера с метками — на неподвижном основании. Диск энкодера получился не жестким, и это часто вызывало проблемы.
Фотография второй версии дальномера:

Еще один недостаток получившегося дальномера — низкая скорость сканирования и сильное падение точности на расстояниях больше 3м.
Именно эти недостатки я решил устранить в третьей версии дальномера.

Электроника

В принципе, электронная часть триангуляционного дальномера достаточно проста и содержит всего два ключевых компонента -светочувствительную линейку и микроконтроллер. Если с выбором контроллера проблем нет, то с линейкой все значительно сложнее. Светочувствительная линейка, используемая в подобном дальномере, должна одновременно иметь достаточно высокую световую чувствительность, позволять считывать сигнал с высокой скоростью и иметь маленькие габариты. Различные CCD линейки, применяемые в бытовых сканерах, обычно довольно длинные. Линейки, используемые в сканерах штрихкодов — тоже не самые короткие и быстрые.
В первой и второй версии дальномера я использовал линейки TSL1401 и ее аналог iC-LF1401. Эти линейки хорошо подходят по размеру, они дешевые, но содержат всего 128 пикселей. Для точного измерения расстояния до 3 метров этого мало, и спасает только возможность субпискельного анализа изображения.
В третьей версии дальномера я решил использовать линейку ELIS-1024:

Однако купить ее оказалось непросто. У основных поставщиков электроники этих линеек просто нет.
Первая линейка, которую я смог купить на Taobao, оказалась нерабочей. Второю я купил на Aliexpress (за 18$), она оказалась рабочей. Обе линейки выглядели паянными — обе имели облуженные контакты и, судя по маркировке, были изготовлены в 2007 году. Причем даже на фотографиях у большинства китайских продавцов линейки именно такие. Похоже, что действительно новую линейку ELIS-1024 можно купить только напрямую у производителя.
Светочувствительная линейка ELIS-1024, как следует из названия, содержит 1024 пикселя. Она имеет аналоговый выход, и достаточно просто управляется.
Еще более хорошими характеристиками обладает линейка DLIS-2K. При сходных размерах, она содержит 2048 пикселей и имеет цифровой выход. Насколько мне известно, именно она используется в дальномере Neato, и возможно, в RPLIDAR. Однако, найти ее в свободной продаже очень сложно, даже в китайских магазинах она появляется не часто и дорого стоит — более 50$.

Так как я решил использовать линейку с аналоговым выходом сигнала, то микроконтроллер дальномера должен содержать достаточно быстрый АЦП. Поэтому я решил использовать серию контроллеров — STM32F303, которые, при относительно небольшой стоимости, имеют несколько быстрых АЦП, способных работать одновременно.
В результате у меня получилась такая схема:

Сигнал с линейки (вывод 10) имеет достаточно высокий уровень постоянной составляющей, и ее приходится отфильтровывать при помощи разделительного конденсатора.
Далее сигнал нужно усилить — для этого используется операционный усилитель AD8061. Далеко расположенные объекты дают достаточно слабый сигнал, так что пришлось установить коэффициент усиления равным 100.
Как оказалось в результате экспериментов, даже при отсутствии сигнала, на выходе выбранного ОУ по какой-то причине постоянно присутствует напряжение около 1.5В, что мешает обработке результатов и ухудшает точность измерения амплитуды сигнала. Для того, чтобы избавится от этого смещения, мне пришлось подать дополнительное напряжение на инвертирующий вход ОУ.

Плату разводил двухстороннюю, сделать такую плату в домашних условиях качественно довольно сложно, так что заказал изготовление плат в Китае (пришлось заказать сразу 10 штук):

В этом дальномере я использовал дешевый объектив с резьбой M12, имеющий фокусное расстояние 16мм. Объектив закреплен на печатной плате при помощи готового держателя объектива (такие используются в различных камерах).
Лазер в данном дальномере — инфракрасный (780 нм) лазерный модуль, мощностью 3.5 мВт.
Изначально я предполагал, что излучение лазера нужно будет модулировать, но позже оказалось, что с используемой линейкой в этом нет смысла, и поэтому сейчас лазер включен постоянно.
Для проверки работоспособности электроники была собрана вот такая конструкция, имитирующая сканирующую головку дальномера:

Уже в таком виде можно было проверить, какую точность измерения расстояния позволяет обеспечить дальномер.
Для анализа сигнала, формируемого линейкой, были написаны тестовые программы для микроконтроллера и ПК.
Пример вида сигнала с линейки (объект на расстоянии 3 м).

Изначально схема была не совсем такая, как приведена выше. В ходе экспериментов мне пришлось частично переделать изначальную схему, так что, как видно из фотографий, некоторые детали пришлось установить навесным монтажом.

Механическая часть

После того, как электроника была отлажена, настало время изготовить механическую часть.
В этот раз я не стал связываться с механикой из HDD, и решил изготовить механические детали из жидкого пластика, заливаемого в силиконовую форму. Эта технология подробно описана в Интернете, в том числе и на Гиктаймс.
Уже после того, как я изготовил детали, стало понятно, что изготовить детали на 3D принтере было бы проще, они могли выйти тверже, и возможно, можно было бы сделать одну деталь вместо двух. Доступа к 3D принтеру у меня нет, так что пришлось бы заказывать изготовление детали в какой-либо компании.
Фото одной из деталей сканирующей головки дальномера:

Эта деталь является основой головки. Она состоит из втулки, на которую позже надевается подшипник, и диска. Диск предназначен для крепления второй детали башни, кроме того, на него снизу наклеивается диск энкодера.
Втулка и диск содержат сквозное отверстие, в которое вставляется покупной щеточный узел на 6 линий — его видно на фотографии. Именно те провода, что видны на фотографии, могут вращаться относительно корпуса этого узла. Для повышения стабильности работы для передачи сигналов GND и UART TX используется 2 пары линий щеток. Оставшиеся 2 линии используются для передачи напряжения питания и сигнала энкодера.

Силиконовая форма для отливки этой детали:

Вторая деталь сканирующей головки была изготовлена тем же способом. Она предназначена для крепления печатной платы и лазера к диску. К сожалению, фотографий изготовления этой детали у меня не сохранилось, так что ее можно увидеть только в составе дальномера.

Для крепления сканирующей головки к основанию дальномера используется шариковый подшипник. Я использовал дешевый китайский подшипник 6806ZZ. Честно говоря, качество подшипника мне не понравилось — ось его внутренней втулки могла отклонятся относительно оси внешней на небольшой угол, из-за чего головка дальномера тоже немного наклоняется. Крепление подшипника к детали с диском и основанию будет показано ниже.

Основание я сделал из прозрачного оргстекла толщиной 5 мм. К основанию крепится подшипник, датчик энкодера, двигатель дальномера и маленькая печатная плата. Само основание устанавливается на любую подходящую поверхность при помощи стоек.
Вот так выглядит основание дальномера снизу:

Печатная плата содержит регулируемый линейный стабилизатор напряжения для питания двигателя, и площадки для подключения проводов узла щеток. Сюда же подводится питание дальномера.
Как и в других дальномерах, двигатель вращает сканирующую головку при помощи пассика. Для того, чтобы он не сваливался с втулки, на ней имеется специальное углубление.
Как видно из фотографии, подшипник закреплен в основании при помощи трех винтов. На сканирующей головке подшипник удерживается за счет выступа на втулке и прижимается к ней другими винтами, одновременно удерживающими щеточный узел.

Энкодер состоит из бумажного диска с напечатанными рисками и оптопары с фототранзистором, работающей на отражение. Оптопара закреплена при помощи стойки на основании так, что плоскость диска оказывается рядом с ней:

Сигнал от оптопары через щетки передается на вход компаратора микроконтроллера. В качестве источника опорного напряжения для компаратора выступает ЦАП микроконтроллера.
Для того, чтобы дальномер мог определить положение нулевого угла, на диск энкодера нанесена длинная риска, отмечающая нулевое положение головки (она видна справа на фотографии выше).

Вот так выглядит собранный дальномер:

Вид сверху:

Разъем сзади дальномера используется для прошивки микроконтроллера.
Для балансировки сканирующей головки на нее спереди устанавливается крупная гайка — она практически полностью устраняет вибрацию при вращении головки.

Собранный дальномер нужно отюстировать — установить лазер в такое положение, чтобы отраженный от объектов свет попадал на фотоприемную линейку. Обе пластмассовые детали содержат соосные отверстия, располагающиеся под пазом лазера. В отверстия вворачиваются регулировочные винты, упирающиеся в корпус лазера. Поворачивая эти винты, можно изменять наклон лазера.
Наблюдая в программе на компьютере форму и амплитуду принятого сигнала и изменяя наклон лазера, нужно добиться максимальной амплитуды сигнала.
Также триангуляционные дальномеры требуют проведения калибровки, о чем я писал ранее:

Для того, чтобы при помощи датчика можно было измерять расстояние, нужно произвести его калибровку, т.е. определить закон, связывающий результат, возвращаемый датчиком, и реальное расстояние. Сам процесс калибровки представляет собой серию измерений, в результате которых формируется набор расстояний от датчика до некоторого объекта, и соответствующих им результатов.

В данном случае калибровка представляла собой серию измерений расстояний до различных объектов самодельным дальномером и лазерной рулеткой, после чего по полученным парам измерений выполняется регрессионный анализ и составляется математическое выражение.

Получившийся дальномер имеет существенный недостаток — из-за отсутствия модуляции излучения лазера он некорректно работает при любой сильной засветке. Обычное комнатное освещение (даже при использовании мощной люстры) не влияет на работу дальномера, но вот расстояние до поверхностей, прямо освещенных Солнцем, дальномер измеряет неправильно. Для решения этой проблемы в состав дальномера нужно включить интерференционный светофильтр, пропускающий световое излучение только определенной длины волны — в данном случае 780 нм.

Эволюция самодельных дальномеров:

Габаритные размеры получившегося дальномера:
Размер основания: 88×110 мм.
Общая высота дальномера: 65 мм (может быть уменьшена до 55 при уменьшении высоты стоек).
Диаметр сканирующей головки: 80 мм (как у mini-CD диска).

Как и у любого другого триангуляционного дальномера, точность измерения расстояния этого дальномера резко падает с ростом расстояния.
При измерениях расстояния до объекта с коэффициентом отражения около 0.7 у меня получились примерно такие точностные характеристики:

РасстояниеРазброс
1 м<1 см
2 м2 см
5 м7 см

Стоимость изготовления дальномера:

DIY, $Опт., $
Основание
Пластина основания1,000,50
Двигатель0,001,00
Подшипник1,501,00
Щеточный узел7,505,00
Крепежные детали0,002,00
Сканирующая головка
Контроллер STM32F303CBT65,004,00
Фотоприемная линейка18,0012,00
Остальная электроника4,003,00
Плата1,500,50
Объектив2,001,50
Держатель объектива1,000,50
Лазер1,000,80
Пластиковые детали3,002,00
Крепежные детали0,001,00
Сборка0,0020,00
Итого:45,5054,80

В первой колонке — во сколько дальномер обошелся мне, во второй — сколько он мог бы стоить при промышленном изготовлении (оценка очень приблизительная).

Программная часть дальномера

Перед написанием программы нужно рассчитать тактовую частоту, на которой будет работать фотоприемная линейка.
В старых версиях дальномера частота сканирования была ограничена 3 Гц, в новом дальномере я решил сделать ее выше — 6Гц (это учитывалось при выборе линейки). Дальномер делает 360 измерений на один оборот, так что при указанной скорости он должен быть способен производить 2160 измерений в секунду, то есть одно измерение должно занимать менее 460 мкс. Каждое измерение состоит из двух этапов — экспозиция (накопление света линейкой) и считывание данных с линейки. Чем быстрее будет произведено считывание сигнала, тем длиннее может быть время экспозиции, а значит, и тем больше будет амплитуда сигнала. При тактовой частоте линейки 8 МГц время считывания 1024 пикселей будет составлять 128 мкс, при 6 МГц — 170 мкс.

При тактовой частоте микроконтроллера серии STM32F303 в 72 МГц максимальная частота выборок АЦП — 6 MSPS (при разрядности преобразования 10 бит). Так как я хотел проверить работу дальномера при тактовой частоте линейки 8 МГц, я решил использовать режим работы АЦП, в котором два АЦП работают одновременно (Dual ADC mode — Interleaved mode). В этом режиме по сигналу от внешнего источника начала запускается ADC1, а затем, через настраиваемое время, ADC2:

Как видно из диаграммы, суммарная частота выборок АЦП в два раза выше, чем частота триггера (в данном случае это сигнал от таймера TIM1).
При этом TIM1 также должен формировать сигнал тактовой частоты для фотоприемной линейки, синхронный с выборками АЦП.
Чтобы получить с одного таймера два сигнала с частотами, различающимися в два раза, можно переключить один из каналов таймера в режим TIM_OCMode_Toggle, а второй канал должен формировать обычный ШИМ сигнал.

Структурная схема программы дальномера:

Ключевой частью программы является именно захват данных с линейки и управление ей. Как видно из схемы, этот процесс идет на аппаратном уровне, за счет совместной работы TIM1, ADC1/2 и DMA. Для того, чтобы время экспозиции линейки было постоянным, используется таймер TIM17, работающий в режиме Single Pulse.

Таймер TIM3 генерирует прерывания при срабатывании компаратора, соединенного с энкодером. За счет этого рассчитывается период вращения сканирующей головки дальномера и ее положение. По полученному периоду вращения рассчитывается период таймера TIM16 таким образом, чтобы он формировал прерывания при повороте головки на 1 градус. Именно эти прерывания служат для запуска экспозиции линейки.

После того, как DMA передаст все 1024 значения, захваченные ADC, в память контроллера, программа начинает анализ эти данных: сначала производится поиск положения максимума сигнала с точностью до пикселя, затем, при помощи алгоритма поиска центра тяжести — с более высокой точностью (0.1 пикселя). Полученное значение сохраняется в массив результатов. После того, как сканирующая головка сделает полный оборот, в момент прохождения нуля этот массив предаются в модуль UART при помощи еще одного канала DMA.

Использование дальномера

Качество работы этого дальномера, как предыдущих, проверялось при помощи самописной программы. Ниже пример изображения, формируемого этой программой в результате работы дальномера:

Однако дальномер делался не для того, чтобы просто лежать на столе — он был установлен на старый пылесос Roomba 400 вместо дальномера второй версии:

Также на роботе установлен компьютер Orange Pi PC, предназначенный для управления роботом и связи с ним.
Как оказалось, из-за большой просадки напряжения на линейном источнике питания двигателя дальномера, для работы на скорости 6 об/сек дальномеру требуется питающее напряжение 6В. Поэтому Orange Pi и дальномер питаются от отдельных DC-DC преобразователей.

Для управления роботом и анализа данных от дальномера я использую ROS.
Данные от дальномера обрабатываются специальным ROS-драйвером (основанном на драйвере дальномера Neato), который получает по UART данные от дальномера, пересчитывает их в расстояния до объектов (используя данные калибровки) и публикует их в стандартном формате ROS.
Вот так выглядит полученная информация в rviz (программа для визуализации данных ROS), робот установлен на полу:

Длина стороны клетки — 1 метр.

После того, как данные попали в ROS, их можно обрабатывать, используя уже готовые пакеты программ. Для того, чтобы построить карту квартиры, я использовал hector_slam. Для справки: SLAM — метод одновременного построения карты местности и определения положения робота на ней.
Пример получившейся карты квартиры (форма несколько необычна, потому что дальномер «видит» мебель, а не стены, и не все комнаты показаны):

ROS позволяет объединять несколько программ («узлов» в терминологии ROS), работающих на разных компьютерах, в единую систему. Благодаря этому, на Orange Pi можно запускать только ROS-драйверы Roomba и дальномера, а анализ данных и управление роботом вести с другого компьютера. При этом эксперименты показали, что hector_slam нормально работает и на Orange Pi, приемлемо загружая процессор, так что вполне реально организовать полностью автономную работу робота.

Система SLAM благодаря данным от дальномера позволяет роботу определять свое положение в пространстве. Используя данные о положении робота и построенную карту, можно организовать навигационную систему, позволяющую «направить» робота в указанную точку на карте. ROS содержит в себе пакет программ для решения этой задачи, но, к сожалению, я так и не смог заставить его качественно работать.

Видео работы дальномера:

Более подробное видео построения карты при помощи hector_slam:

Исходные коды программы контроллера

P. S. Также у меня есть проект более простого лидара.

Метод фазового сдвига для измерения расстояний, поясняемый энциклопедией RP Photonics; лазерные дальномеры

Энциклопедия > буква П > метод фазового сдвига для измерения расстояний

Определение: метод оптических измерений расстояния

Более общий термин: измерение расстояния с помощью лазеров

Категории: оптическая метрология, методы

Как цитировать статью; предложить дополнительную литературу

Автор: д-р Рюдигер Пашотта

URL-адрес: https://www.rp-photonics.com/phase_shift_method_for_distance_measurements.html

Лазерные дальномеры часто основаны на методе фазового сдвига , способе измерения расстояний следующим образом. Лазерный луч с синусоидально модулированной оптической мощностью направляется на цель. Отслеживается некоторый отраженный свет (от диффузных или зеркальных отражений), который будет демонстрировать модуляцию мощности с той же частотой и той же относительной амплитудой. Затем фаза этой модуляции сравнивается с фазой посланного света.Полученный фазовый сдвиг в 2π раз превышает время пролета, умноженное на частоту модуляции. Это показывает, что более высокие частоты модуляции могут привести к более высокому пространственному разрешению.

Хотя фазовый сдвиг прямо пропорционален времени пролета, термин метод времени пролета следует зарезервировать для случаев, когда время задержки действительно измеряется более непосредственно, т.е. со световыми импульсами.

Как и для оптического интерферометра, метод фазового сдвига связан с неоднозначностью измеряемого расстояния, поскольку с увеличением расстояния фаза будет периодически меняться.Однако периодичность значительно больше, чем в интерферометре, так как частота модуляции значительно ниже оптической частоты. Кроме того, двусмысленность может быть легко устранена, например. путем использования результатов измерений с разными частотами модуляции.

По сравнению с интерферометрами приборы, основанные на методе фазового сдвига, менее точны, но позволяют проводить однозначные измерения на больших расстояниях. Также они подходят для целей с диффузным отражением (рассеянием) от шероховатой поверхности.

Различные реализации

Модуляция мощности может быть достигнута с помощью электрооптического модулятора, воздействующего на непрерывный лазерный луч. Легко получить частоты модуляции в несколько мегагерц или даже в несколько гигагерц. Модулятор резонансного типа может работать при относительно низком входном напряжении, но только в небольшом диапазоне частот модуляции, что затрудняет устранение указанной неоднозначности.

Некоторые типы лазеров, в частности лазерные диоды, можно модулировать непосредственно через управляющий ток на частотах в диапазоне мегагерц или даже выше.

Особый вид модуляции мощности достигается за счет использования лазера с синхронизацией мод. Преимуществами являются высокая частота модуляции (обеспечивающая высокую точность) и (для пассивной синхронизации мод) отсутствие необходимости в оптическом модуляторе.

Использование лазерного луча позволяет реализовать лазерный радар , в котором изображение формируется путем сканирования направления лазерного луча в двух измерениях. Однако системы визуализации также могут быть выполнены с одним или несколькими токомодулированными светоизлучающими диодами (СИД), освещающими всю площадь объекта.Пространственное разрешение затем получают путем обнаружения изображений. Существуют фотонные интегральные схемы с двумерными матрицами датчиков, способные измерять фазовый сдвиг для каждого пикселя.

Вопросы и комментарии от пользователей

Здесь вы можете оставить вопросы и комментарии. Если они будут приняты автором, они появятся над этим абзацем вместе с ответом автора. Автор принимает решение о принятии на основе определенных критериев. По существу, вопрос должен представлять достаточно широкий интерес.

Пожалуйста, не вводите здесь личные данные; в противном случае мы бы удалили его в ближайшее время. (См. также нашу декларацию о конфиденциальности.) Если вы хотите получить личную обратную связь или консультацию от автора, свяжитесь с ним, например. по электронной почте.

Отправляя информацию, вы даете свое согласие на возможную публикацию ваших материалов на нашем веб-сайте в соответствии с нашими правилами. (Если вы позже отзовете свое согласие, мы удалим эти материалы.) Поскольку ваши материалы сначала просматриваются автором, они могут быть опубликованы с некоторой задержкой.

См. также: лазерные дальномеры, лазерные дальномеры, интерферометры, времяпролетные измерения
и др. статьи в рубриках Оптическая метрология, методы

Поделитесь этим с друзьями и коллегами, например. через социальные сети:

Эти кнопки обмена реализованы с учетом конфиденциальности!

Код для ссылок на других сайтах

Если вы хотите разместить ссылку на эту статью на каком-либо другом ресурсе (например,г. ваш веб-сайт, социальные сети, дискуссионный форум, Википедия), вы можете получить необходимый код здесь.

HTML-ссылка на эту статью:

   
Статья о методе фазового сдвига для измерения расстояний

в
RP Photonics Encyclopedia

С изображением для предварительного просмотра (см. поле чуть выше):

   
alt="article">

Для Википедии, например. в разделе “==Внешние ссылки==”:

  * [https://www.rp-photonics.com/phase_shift_method_for_distance_measurements.html 
статья о методе фазового сдвига для измерения расстояний в энциклопедии RP Photonics]

Исследовательские статьи, журналы, авторы, подписчики, издатели

 
 
Крупный международный издатель академических и исследовательских журналов, Science Alert публикует и разрабатывает игры в партнерстве с самыми престижные научные общества и издательства.Наша цель заключается в проведении высококачественных исследований в максимально широком аудитория.
   
 
 
Мы прилагаем все усилия, чтобы поддержать исследователей которые публикуются в наших журналах. Существует огромное количество информации здесь, чтобы помочь вам опубликоваться у нас, а также ценные услуги для авторов, которые уже публиковались у нас.
   
 
 
Цены 2022 уже доступны. Ты может получить личную / институциональную подписку на перечисленные журналы непосредственно из Science Alert. В качестве альтернативы вы возможно, вы захотите связаться с предпочитаемым агентством по подписке. Пожалуйста, направляйте заказы, платежи и запросы в службу поддержки клиентов в службу поддержки клиентов журнала Science Alert.
   
 
 
Science Alert гордится своим тесные и прозрачные отношения с обществом. В виде некоммерческий издатель, мы стремимся к самому широкому возможное распространение материалов, которые мы публикуем, и на предоставление услуг самого высокого качества нашим издательские партнеры.
   
 
 
Здесь вы найдете ответы на наиболее часто задаваемые вопросы (FAQ), которые мы получили по электронной почте или через контактную веб-форму.В соответствии с характером вопросов мы разделили часто задаваемые вопросы на разные категории.
   
 
 
Азиатский индекс научного цитирования (ASCI) обязуется предоставлять авторитетный, надежный и значимая информация путем охвата наиболее важных и влиятельные журналы для удовлетворения потребностей глобального научное сообщество.База данных ASCI также предоставляет ссылку до полнотекстовых статей до более чем 25 000 записей с ссылка на цитируемые источники.
   
 

лазер_дальномер

Лазерный дальномер — это устройство, использующее лазерный луч для определения расстояния до отражающего объекта. Наиболее распространенная форма лазерного дальномера работает по принципу времени пролета, посылая лазерный импульс узким лучом к объекту и измеряя время, необходимое импульсу для отражения от цели и возвращения к отправителю.Из-за высокой скорости света этот метод не подходит для высокоточных субмиллиметровых измерений, где часто используются триангуляция и другие методы.

Дополнительные рекомендуемые знания

Операция

Импульс

Импульс может быть закодирован, чтобы снизить вероятность заклинивания дальномера.Можно использовать методы эффекта Доплера, чтобы определить, движется ли объект к дальномеру или от него, и если да, то с какой скоростью.

Точность прибора определяется краткостью лазерного импульса и скоростью приемника. Тот, который использует очень короткие, острые лазерные импульсы и имеет очень быстрый детектор, может перемещаться по объекту с точностью до нескольких сантиметров.

Диапазон

Несмотря на узкий пучок, в конечном итоге он распространяется на большие расстояния из-за расходимости лазерного луча, а также из-за эффектов мерцания и дрейфа луча, вызванных наличием в воздухе пузырьков воздуха, действующих как линзы размером от микроскопического примерно до половины высоты пути лазерного луча над землей.

Эти атмосферные искажения в сочетании с расходимостью самого лазера и с поперечными ветрами, которые толкают атмосферные тепловые пузыри в стороны, могут в совокупности затруднить точное определение расстояния до объекта, скажем, под деревьями или за кустами или даже на большие расстояния более 1 км по открытой и незатененной пустынной местности.

Часть лазерного излучения может отражаться от листьев или ветвей, находящихся ближе к объекту, что приводит к раннему возвращению и слишком низким показаниям.В качестве альтернативы, на расстояниях более 1200 футов (365 м) цель, если она находится близко к земле, может просто исчезнуть в мираже, вызванном температурными градиентами в воздухе вблизи раскаленной пустыни, искривляющей лазерный луч. Все эти эффекты необходимо учитывать.

Дискриминация

Некоторые инструменты могут определять множественную доходность, как указано выше. В этих приборах используются детекторы с разрешением формы волны, что означает, что они определяют количество света, вернувшегося за определенное время, обычно очень короткое.Форма волны от лазерного импульса, попавшего в дерево, а затем в землю, будет иметь два пика. Первый пик будет расстоянием до дерева, а второй — расстоянием до земли.

Способность бортовых приборов видеть «сквозь» плотные навесы и другие полуотражающие поверхности, такие как океан, обеспечивает множество применений бортовых приборов, таких как:

  • Создание топографических карт “голая земля” – удаление всех деревьев
  • Создание карт толщины растительности
  • Измерение рельефа дна океана
  • Опасность лесных пожаров
  • Угроза наводнения на барьерных островах

Технологии

Время полета – измеряет время, необходимое световому импульсу для прохождения до цели и обратно.Зная скорость света и точно измеряя затраченное время, можно рассчитать расстояние. Многие импульсы запускаются последовательно, и чаще всего используется средний отклик. Этот метод требует очень точной субнаносекундной схемы синхронизации.

Многочастотный фазовый сдвиг – измеряет фазовый сдвиг нескольких частот при отражении, а затем решает некоторые одновременные уравнения для получения окончательного результата.

Интерферометрия — наиболее точный и наиболее полезный метод измерения изменений расстояния, а не абсолютного расстояния.

приложений

Военный

Для того, чтобы сделать лазерные дальномеры и оружие с лазерным наведением менее полезными против военных целей, различные вооруженные силы, возможно, разработали краску, поглощающую лазерное излучение, для своих транспортных средств. Тем не менее, некоторые объекты не очень хорошо отражают лазерный свет, и использовать на них лазерный дальномер сложно.

Трехмерное моделирование

Лазерные дальномеры широко используются для распознавания трехмерных объектов, трехмерного моделирования объектов и в самых разных областях, связанных с компьютерным зрением.Эта технология лежит в основе так называемых времяпролетных 3D-сканеров . В отличие от военных инструментов, описанных выше, лазерные дальномеры предлагают возможности высокоточного сканирования в режимах одностороннего сканирования или сканирования на 360 градусов.

Был разработан ряд алгоритмов для объединения данных о дальности, полученных с разных ракурсов одного объекта, для создания полных трехмерных моделей с минимально возможной ошибкой. Одно из преимуществ лазерных дальномеров по сравнению с другими методами компьютерного зрения заключается в том, что компьютеру не нужно сопоставлять особенности двух изображений для определения информации о глубине, как в стереоскопических методах.

Лазерные дальномеры, используемые в приложениях компьютерного зрения, часто имеют разрешение по глубине в десятые доли миллиметра или меньше. Этого можно достичь, используя методы измерения триангуляции или рефракции, в отличие от методов измерения времени пролета, используемых в LIDAR.

Ручные дальномеры

[Opti-Logic Corporation] представила первый потребительский портативный лазерный дальномер времени полета в 1987 году. Первоначальные портативные лазерные дальномеры по потребительской цене использовались для гольфа.С тех пор было разработано множество приложений. Самое популярное применение – охота.

До 1993 года приборы с фазовым сдвигом были зарезервированы для профессиональных пользователей из-за их цены и богатых функций, таких как передача измерений через Bluetooth. Менее дорогие модели стоимостью около 100 долларов США/евро появляются у Bosch с DLE 50 или у Stanley Works с TLM 100.

Vectronix предлагает безопасные для глаз портативные лазерные дальномеры для военного и гражданского использования, [1]

См. также

80 м 20 Гц высокоскоростной лазерный измеритель фазы лазерный дальномер модуль TTL интерфейс Ardunio

 

Параметры: Источник питания
Напряжение: DC3V ~ 3.3 В
Ток: 100 мА
Диапазон измерения: 0,01–80 м
Частота измерения: 5 Гц, 10 Гц, 20 Гц (регулируемая)
Измеряемая скорость движущихся объектов: менее 2 м/с
Точность измерения (стандартное отклонение): ± 1 мм
Расстояние Единица измерения: m
Тип лазера: 620–690 нм
Класс лазера: класс II,
Скорость передачи данных: 9600 бит/с;
бит данных: 8 бит;
Стартовый бит: 1 бит;
Стоповый бит: 1 бит;
Четность: нет.
Примечания: поскольку интенсивность окружающего света слишком велика, температура окружающей среды слишком высока или слишком низка, отражатель слишком слаб или слишком силен, или целью является шероховатая поверхность, различные цели измерения и условия измерения могут привести к некоторой ошибке измерения. диапазон измерений или результаты измерений.

• Адрес устройства ADDR

• Позиция равна 1, считать сверху, когда элемент равен 0, считать с конца (FA 04 08 01 F9), настройка по умолчанию — с конца

•Проверочный байт CS, он суммирует все байты впереди,Возвращает обратное плюс 1, в данных, возвращаемых одиночными измерениями и последовательными измерениями, в которых кавычки являются частью данных,Формат – ASCII выборка:123,456 м дисплей 31 32 33 2E 34 35 36 ADDR Значение по умолчанию 80(128)

Команда чтения данных, когда параметр имеет заводскую настройку: Одиночное измерение: 80 06 02 78 Непрерывное измерение: 80 06 03 77

 

Устройство отключения:

80 04 02 7А

 

Установить адрес:

ФА 04 01 80 81

Дистанционная модификация:

FA 04 06 2D 01 CE -1
FA 04 06 2B 01 D0 +1

временной интервал (1S):
FA 04 05 01 FC

Установить начальную точку:
FA 04 08 01 F9 Верх
FA 04 08 00 FA задние концы

Диапазон настройки:
FA 04 09 05 F4 5 м
FA 04 09 0A EF 10 м
FA 04 09 1E DB 30 м
FA 04 09 32 C7 50 м
FA 04 09 50 A9 80 м
FA 04 09 32 C7 50 м

Установленная частота:
FA 04 0A 00 F8
FA 04 0A 05 F3 5
FA 04 0A 0A EE 10
FA 04 0A 14 E4 20

Установите разрешение:
FA 04 0C 01 F5 1 мм
FA 04 0C 02 F4 0.1мм

Установить запуск измерения при включении питания:
FA 04 0D 00 F5 выключить
FA 04 0D 01 F4 включить

Одиночное измерение (трансляция)
FA 06 06 FA

Кэш чтения:
80 06 07 73

Контрольный лазер:
80 06 05 01 74 открыть
80 06 05 00 75 закрыть

Какие бывают классификации лазера ra

Датчики лазерного дальномера делятся на две категории: триангуляционные и времяпролетные методы.Времяпролетную лазерную локацию можно разделить на три типы: импульсная лазерная локация, фазовая лазерная локация и интерферометрическая лазерная ранжирование.

1. Импульсная лазерная дальнометрия

Датчик импульсной лазерной дальнометрии использует относительно сосредоточена энергия лазерных импульсов во времени, а мгновенная мощность очень большие (обычно до ватт). В случае совместных целей импульсный лазер измерение дальности может обеспечить измерение краев и импульсную лазерную дальнометрию общего назначения датчики могут измерять расстояния в десятки и даже десятки тысяч километров, достижение точности измерения более 10 см.При выполнении малой дальности от нескольких километров до нескольких десятков километров, даже если совместная цель не используется, измерение расстояния может быть выполнено только с помощью цели измерения для диффузного отражения сигнала в пульсовая трубка. Недостаток в том, что абсолютная точность дальнометрии не очень высокий.

2. Фазовый лазерный дальномер

Датчик фазового лазерного дальномера использует фиксированную частоту высокой частоты синусоидальный сигнал для непрерывной модуляции силы света лазера источник, и измеряет фазовую задержку, генерируемую модулированным лазером обратно и вперед один раз.Измеренное расстояние рассчитывается по фазовой задержке.

Определение дальности по фазе позволяет косвенно измерить время распространения сигнала с помощью измерение фазовой задержки, генерируемой непрерывным амплитудно-модулированным сигналом распространяясь туда и обратно на измеряемое расстояние, тем самым получая измеренное расстояние. Этот метод имеет высокую точность измерения, как правило, на порядка миллиметров.

3. Интерферометрическая лазерная локация

Метод интерферометрической локации также является методом фазовой локации.То Отличие от общего метода фазовой дальнометрии состоит в том, что он не измеряет расстояние путем измерения фазы сигнала лазерной модуляции, но измеряет расстояния путем измерения интерференционных полос. Сам лазер.

Laser Technology — Laser Technology, Inc., новое определение сбора данных с помощью гибридной технологии измерения

  • Главная
  • Комната новостей LTI
  • Лазерные технологии, ООО, Переосмысление сбора данных с помощью технологии гибридных измерений

CENTENNIAL, CO 11 февраля 2020 г. — Laser Technology, Inc., производственная компания, специализирующаяся на лазерных устройствах для измерения скорости, расстояния и измерения, объявила о выпуске нового измерительного инструмента в рамках своего подразделения профессиональных измерений: TruPoint™ 200h с интегрированной технологией гибридных измерений (HMT).

LTI известна разработкой лазеров с использованием импульсной технологии, которая используется в их лазерах профессионального уровня для полевых измерений и картографирования, а также в самой популярной в мире линейке рекреационных дальномеров для охоты и гольфа.

TruPoint 200ч

После успешного выхода на рынок технологии фазовых лазеров в 2017 году, когда компания LTI представила TruPoint™ 300, LTI захотела еще больше улучшить сбор данных о лазерных измерениях, интегрировав фазовую и импульсную технологии в одно устройство. TruPoint™ 200h — первый в своем роде прибор, который меняет представление о том, как профессионалы измеряют и собирают данные, обеспечивая точные измерения на больших расстояниях вне помещений и точность измерений на малых расстояниях в помещениях.

TruPoint 200h измеряет наклонные расстояния и угол наклона, позволяя устройству вычислять горизонтальные и вертикальные расстояния, высоту и значения недостающих линий 2D. Точность лазера зависит от используемой технологии: +/- 2–4 см (0,8–1,5 дюйма) для импульса и +/– 1,5 мм (0,05 дюйма) для фазы.

«TruPoint 200h — это уникальный полевой прибор, который сочетает в себе возможности лазерного дальномера для дальномерных измерений на открытом воздухе и высокую точность лазерного дальномера в помещении.Он сочетает в себе традиционные характеристики и функции обоих измерительных устройств, обеспечивая привычный и эффективный пользовательский интерфейс, независимо от того, каковы ваши полевые измерения. Носить TruPoint 200h в своем ящике с инструментами — это все равно, что иметь два разных продукта в одном, что снижает затраты, экономит время и сводит к минимуму количество инструментов, которые вам нужно взять с собой в поле», — говорит Эрик Миллер, президент и главный операционный директор LTI.

Основные характеристики

:

  • Гибридная технология измерения (HMT): Сочетает в себе импульсную технологию наружного дальномера с фазовой технологией внутреннего дальномера.
  • Точность: Достигает точности от миллиметра до сантиметра.
  • Проекционный дисплей (HUD): Сверхъяркий дисплей работает в любых условиях освещения на рабочем месте… в помещении или на улице!
  • Создан для работы: Создан для повседневного использования в суровых условиях благодаря сверхпрочной пыле- и водонепроницаемой конструкции со степенью защиты IP67 для современных активных сотрудников.
  • Bluetooth Smart Dual Ready Mode: Сочетает в себе беспроводные технологии Bluetooth Classic и Bluetooth SMART (с низким энергопотреблением) для подключения к любому типу устройства сбора данных.
  • Встроенные решения: включают вычисление площади и объема, высоты, значений недостающей линии 2D, сложения/вычитания и минимума/максимума.

 

Модель 200h идеально подходит для традиционных импульсных технологий LTI для электроэнергетики, лесного хозяйства, горнодобывающей промышленности, ГИС и наружного строительства. Добавление поэтапной технологии открывает дополнительные возможности для оценщиков, страховых агентов и подрядчиков по строительству коммерческих и жилых помещений как для внутренних, так и для наружных проектов.

Сочетание точности от миллиметра до сантиметра с прочным корпусом и классом защиты IP67 делает этот измерительный инструмент оптимальным для любой среды. Высокая точность диапазона лучше всего используется в приложениях, определенных на рынках электроэнергетики, включая аудит и инвентаризацию столбов / совместного использования, управление растительностью и дерево опасностей в полосе землеотвода.

Приложение WorkSite

 

LTI одновременно выпустила LaserSoft® WorkSite, новое бесплатное приложение для операционных систем Android® и iOS, использующее возможности TruPoint™ 200h.Тесное сотрудничество для хранения наиболее важной информации об измерениях и предоставления полных и профессиональных отчетов. WorkSite был разработан для расширения возможностей TruPoint 200h, чтобы сделать повседневную работу проще, безопаснее и эффективнее.

WorkSite можно использовать без подключения к какому-либо лазеру, а измерения любого инструмента можно вводить в его записи измерений (из TruPulse, рулетки и т. д.), что отличает его от любого другого приложения LTI, представленного на рынке сегодня.Кроме того, вы можете объединить эти инструменты с вашими текущими технологиями GPS/GNSS и программным обеспечением/приложениями для высококлассного решения с непревзойденной точностью по доступной цене. TruPoint готов к отправке вам. Узнайте больше о ценах и найдите список авторизованных дилеров или позвоните по телефону 1.303.649.1000, чтобы поговорить напрямую с представителем LTI.

 

О Laser Technology, Inc.

Laser Technology, Inc. — производитель из Колорадо, предлагающий лазерные продукты и решения для измерения скорости и расстояния для удовлетворения реальных потребностей и приложений, включая контроль скорости, расследование происшествий, лесное хозяйство, горнодобывающую промышленность, коммунальные услуги, геодезию и промышленные процессы. контроль.Предоставление решений по всему миру через их сильного партнера и дистрибьюторскую сеть. Имея более 68 патентов, многие из которых в настоящее время находятся на рассмотрении, LTI является лидером в области инновационных технологий измерения пульса и является частной компанией, управляемой генеральным директором Дэвидом Уильямсом. Посетите сайт www.lasertech.com для получения дополнительной информации.

###

Точность ультразвуковых и лазерных дальномеров

Ультразвуковой или лазерный дальномер?

Если вы собираетесь купить дальномер, перед вами встанет дилемма финансового инжиниринга.Приобретете ли вы более дорогой лазерный дальномер, или завладеете недорогой моделью, работающей на ультразвуке. Некоторая теоретическая база и практическая информация необходимы и помогут вам сделать правильный выбор.

Высокая точность и точность измерения – дальномер может измерять расстояния даже с точностью до миллиметра и достигать этого результата с очень высокой воспроизводимостью. Погрешность в миллиметрах очень трудно измерить с помощью традиционной рулетки или других измерительных приборов, особенно при измерении больших расстояний.

Тахиметр-дальномер измеряет расстояние без использования специальных зеркал или отражающего материала. Электромагнитная волна, излучаемая прибором, отражается от объекта, находящегося в фокусе, обратно в прибор. Расстояние определяется анализом возвратной волны.

Большая дальность – на рынке есть ручные дальномеры, которые измеряют километраж, но с низкой точностью. Большинство приборов класса строительства позволяют устанавливать участки длиной 250 метров.

Расчеты на экране — некоторые дальномеры могут рассчитывать различные значения на основе измеренной длины. Простые инструменты вычисляют поверхность и объем, более продвинутые дальномеры могут определять длины недоступных сегментов, используя теорему Пифагора, а инструменты высшего уровня показывают даже наклон объектов.

Миниатюрный размер – ручные дальномеры небольшие, легкие, устойчивы к неблагоприятным погодным условиям, работают от 2-3 батареек, что позволяет проводить несколько тысяч измерений.

Ручные дальномеры, представленные на рынке, делятся на две основные группы:

  • дальномеры электромагнитные (частный случай лазерных дальномеров)
  • ультразвуковые дальномеры

Первая группа может быть обусловлена ​​методикой определения расстояния деления

  • импульсные дальномеры
  • фазовые дальномеры

Ультразвуковой или лазерный?

Чтобы ответить на заглавный вопрос, несколько слов полезной теории.В основе каждого лазерного дальномера лежит оптико-электронная система. Он отвечает за отправку электромагнитного импульса (лазера) и прием отраженного сигнала и его анализ. Импульс, посылаемый передатчиком, достигает измеряемого объекта, отражается от его поверхности и возвращается в дальномер, где электронная система определяет расстояние:

  • расчет времени по измерению фазового сдвига посылаемых и возвращающихся волн – в дальномерной фазе,
  • на основе прямого измерения времени прохождения импульсом двойной линии между дальномером и объектом – в импульсе дальномера.

Ультразвуковые дальномеры работают по тому же принципу, что и лазерные дальномеры. Однако здесь передающий блок состоит из динамика и микрофона. Динамик излучает не электромагнитные волны, а звуковую волну. Электронный модуль измеряет время, прошедшее с момента отправки ультразвукового сигнала до приема отраженных сигналов через приемник.

Что лучше?

Преимущества и недостатки лазерных и ультразвуковых дальномеров напрямую зависят от типа волн, которые они используют для измерения расстояний.Даже если скорость, определяющая расстояние, тесно зависит от скорости распространения волн – электромагнитная скорость около 300 000 км/с (скорость света), а ультразвук около 343 м/с (скорость звука в воздухе). Оба типа волн несут с собой основные физические явления – отражение, преломление и поглощение. Различное поведение электромагнитных волн и ультразвуковых дальномеров обоих типов имеет свои преимущества и недостатки.

В чем преимущества лазерных дальномеров?
  • очень высокая точность (например, 1 мм, фазовые дальномеры)

    Измерение лазерным лучом

  • высокая достоверность измерений в условиях сложной местности и препятствий
  • очень большая дальность до 1000 м (импульсные дальномеры)
  • высокоэффективное измерение объектов, отражающих сигнал под большим углом
  • видимое лазерное пятно, которое служит индикатором и облегчает наведение
  • скорость работы – лазерный дальномер измеряет расстояние в несколько метров примерно за 1 секунду
  • интеграция с измерением и расчетом, а также возможность использования заданной длины для расчета других геометрических величин (например,г., площадь поверхности )
  • Низкое энергопотребление — выполнение даже нескольких тысяч измерений при использовании от 2 до 4 батарей
Каковы недостатки лазерных дальномеров?
  • относительно низкая точность импульсных дальномеров
  • отсутствие измерения прозрачных объектов
  • значительная чувствительность к работе под прямыми солнечными лучами в помещении и на улице при ярком солнце – часто отраженный сигнал рассеивается и его мощность после возвращения в приемную систему недостаточна для определения расстояния
Каковы преимущества ультразвуковых дальномеров?
  • возможность измерения прозрачных объектов, в том числе поверхности воды

    Ультразвуковое измерение

  • низкая закупочная цена
Каковы недостатки ультразвуковых дальномеров?
  • очень маленький диапазон измерения (до нескольких метров)
  • требует, чтобы пользователь очень тщательно контролировал измерения из-за риска ошибок, возникающих из-за отражений от случайных предметов / объектов — ультразвуковые дальномеры лучше всего работают в пустых помещениях или на открытом воздухе
  • очень низкая точность
  • ограниченное использование в технических приложениях
  • низкоэффективное измерение объектов, отражающих сигнал под большим углом

Все, что мы должны знать

Глядя на вышеперечисленные пункты, идем дальше, становится ясно, что ультразвуковые дальномеры проигрывают практически во всех аспектах конкуренции с лазерными дальномерами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *