Физическое свойство меди: Свойства меди – все важные характеристики металла + Видео
alexxlab | 25.12.1988 | 0 | Разное
Физические свойства меди таблица. Целительная сила меди
Занимает второе по популярности место среди всех цветных металлов. Главным ее , которая добывается во многих месторождениях сланца и песчаника. На протяжении десятков сотен лет используются человеком медные листы и на данный момент они не теряют своего спроса.
Сам металл обладает красно-розовым цветом и имеет высокие показатели тепло- и электропроводности. Если сравнивать с остальными металлами, то медь превышает в 6 раз уровень теплопроводности по сравнению с железом. О том, каковы виды, свойства и области (сферы) применения меди и ее сплавов, какая их роль в строительстве — все это вы узнаете из данной статьи.
Как в чистом виде, так и в сочетании со сплавами медь активно используется в различных промышленных областях.
- Благодаря своим свойствам, она получила широкое распространение в области электротехники. Более половины всего добытого материала уходит на производство всевозможных электроприборов и электропередач.
- Из чистой меди изготавливается кабели для электропередач, различные составляющие для электрических генераторов, медная проволока и прочее.
- В сочетании со сплавами этот материал можно встретить в автомобильной области.
- В результате своей высокой теплопроводности также применяется при производстве теплотрасс и нагревательных устройств.
Сплавы меди получили применение в химическом производстве, отлично зарекомендовав себя.
О применении меди в гальванопластике смотрите видео ниже:
Ее использование в строительстве
Высокие показатели электро- и теплопроводности обусловили для меди активное использование, как в строительстве, так и в автомобиле- и приборостроении. Сам же материал устойчив к негативному воздействию коррозии и ультрафиолетовых лучей, также без деформации и нарушения структуры переносит резкие температурные перепады.
Благодаря таким особенностям, позволяет производить детали и прочие конструкции, которые рассчитаны на длительное воздействие влаги.
Провода
Наибольший спрос медь получила именно в электротехнической области, в частности для производства проводов. С этой целью используется максимально чистый металл, поскольку второстепенные компоненты существенно снижают его токопроводимость. Если в готовом материале присутствует более 0,02% алюминия, то его способность проводить ток снижается на 10%.
Существенно возрастание сопротивления происходит в результате присутствия в сырье примесей неметаллического характера. Сам же металл относится крайне низким сопротивлением, которое уступает лишь серебру. Такая особенность металла также послужила его использованию в силовых трансформаторах и энергосберегающих приводах.
Проволока
Высокий уровень вязкости и пластичности обусловили активное использование меди для производства изделий с различными узорами. Проволока, которая была изготовлена из красной меди, после обжига становится максимально пластичной и мягкой. В таком состоянии она позволяет создавать узоры и орнаменты любой сложности.
Такая проволока активно используется в следующих отраслях:
- Электротехника;
- Электроэнергетика;
- Автомобилестроение;
- Судостроение;
- Производство кабеля и проводов.
Водо- и теплоснабжение
Благодаря своей высокой теплопроводности медь используется в различных теплообменниках и теплоотводных приборах. Иными словами, из нее изготавливают кулера для системных блоков, радиаторы отопления, трубы, кондиционеры и прочие приборы.
Медные трубы обладают абсолютно уникальными характеристиками, которые и обусловили их широкое распространение не смотря на высокую стоимость самого сырья. Такие изделия не бояться ультрафиолетового излучения, устойчивы к возникновению коррозии и температурным перепадам. Эти свойства позволяют производить монтаж медных труб даже при низких температурах воздуха.
Высокий показатель механической прочности, а также возможность механической обработки материала позволяют создавать бесшовные медные трубы, обладающие круглым сечением. Они рассчитаны на транспортировку жидких веществ или газов в системах газо- и водоснабжения, кондиционирования и отопления.
О роли медных труб в водоснабжении расскажет данное видео:
Кровля
Одним из первых материалов, используемых в качестве , является медь. Такая кровля отличается длительным сроком службы (до 200 лет), который происходит благодаря ее уникальным особенностям. Кровля из меди спустя некоторое время претерпевает процесс окисления, который заключается в образовании патины.
Таким образом, медная кровля сразу после своего монтажа имеет золотистый оттенок, но уже через 10 лет становится более темной, в некоторых случаях практически черного цвета. Этот процесс образования патины при желании можно искусственно ускорить.
Про иные сфера применения меди читайте ниже.
Прочие сферы использования
- Помимо вышеперечисленных областей, медные сплавы могут использоваться в сочетании с золотом. Это необходимо для придания ювелирным изделиям большей прочности и устойчивости к истиранию.
- Широкое распространение металл получил и в области архитектурного строительства. Кровля, фасады, различные декоративные элементы – все это можно изготовить абсолютно любой формы и уровня сложности.
- Среди новой сферы использования является применение меди в качестве бактерицидной поверхности в лечебных заведениях: перила, ручки, двери, столешницы и многое другое.
Преимущества данного металла послужили не только его широкому распространению, но и расширению сфер применения.
Сегодня применение разных марок меди в промышленности, в быту, в электротехнике и строительстве, медицине считается весьма выгодным и перспективным.
О том, как переделать медь в «золото», расскажет данное видео:
Медь широко используется в чистом виде и в виде сплавов в электротехнической и радиотехнической промышленности, где расходуется около 50% получаемой меди, в машиностроении и приборостроении, и военной технике. Чистая медь – металл розового цвета с плотностью 8,93, температурой плавления 1084° С и температурой кипения 2582° С. Медь имеет высокую электропроводность и теплопроводность, обладает хорошей ковкостью и тягучестью, легко прокатывается в тонкий лист и вытягивается в проволоку.
С давних пор известны и нашли широкое распространение сплавы меди с цинком – латуни и меди с оловом – бронзы. Латунь содержит от 10 до 30% 2п и в ряде случаев небольшие количества олова и свинца. Латуни хорошо обрабатываются, имеют более высокую по сравнению с медью механическую прочность и, кроме того, дешевле чистой меди. Бронза содержит до 20% Бп. Несмотря на относительно высокую твердость, бронзы хорошо обрабатываются и хорошо заполняют форму при литье. Бронзы обладают высокой устойчивостью к износу, небольшим коэффициентом трения и поэтому используются для приготовления вкладышей подшипников, шестерен и других деталей. Бронза используется также в химическом производстве.
Медь очень хорошо проводит электричество и тепло. Удельное сопротивление меди равно 0,018 Ом мм 2 /м, а теплопроводность при 20 °С составляет 385 Вт/(м К). По электропроводности медь лишь немного уступает серебру. Ее электропроводность в 1,7 раза выше, чем у алюминия, и примерно в 6 раз выше, чем у платины и железа. Медь обладает ценными механическими свойствами – ковкостью и тягучестью.
В присутствии воздуха, влаги и сернистого газа медь постепенно покрывается плотной зеленовато-серой пленкой основной серно-кислой соли, предохраняющей металл от дальнейшего окисления. Поэтому медь и ее сплавы находят широкое применение при строительстве линий электропередач и устройстве различного вида связи, в электромашиностроении и приборостроении, в холодильной технике (производство теплообменников охлаждающих устройств) и химическом машиностроении (изготовление вакуум-аппаратов, змеевиков). Около 50 % всей меди расходует электропромышленность. На основе меди создано большое число сплавов с такими металлами, как Zn, Sn, Al, Ве, Ni, Mn, Pb, Ti, Ag, Au и др., и реже с неметаллами P, S, О и др. Область применения этих сплавов очень обширна. Многие из них обладают высокими антифрикционными свойствами. Сплавы применяют в литом и кованом состоянии, а также в виде изделий из порошка.
Например, широко применяют сплавы типа оловянных (4- 33 % Sn), свинцовых (~ 30 % Pb), алюминиевых (5-11 % Al), кремниевых (4-5 % Si) и сурьмяных бронз. Бронзы применяют для изготовления подшипников, теплообменников и других изделий в виде листа, прутков и труб в химической, бумажной и пищевой промышленности.
Сплавы меди с хромом и порошковый сплав с вольфрамом идут на изготовление электродов и электроконтактов.
В химической промышленности и машиностроении также широко применяют латунь – сплав меди с цинком (до 50 % Zn), обычно с добавками небольших количеств других элементов (Al, Si, Ni, Mn). Сплавы меди с фосфором (6-8 %) используют в качестве припоев.
Известны два способа извлечения меди из руд и концентратов: гидрометаллургический и пирометаллургический.
Первый из них не нашел широкого применения. Его используют при переработке бедных окисленных и самородных руд. Этот способ в отличие от пирометаллургического не позвляет извлекать попутно с медью драгоценные металлы.
Большую часть меди (85-90%) производят пирометаллургическим способом из сульфидных руд. Одновременно решается задача извлечения из руд помимо меди других ценных сопутствующих металлов. Пирометаллургический способ производства меди является многостадийным. Основные стадии этого производства: подготовка руд (обогащение и иногда дополнительно обжиг), плавка на штейн (выплавка медного штейна), конвертирование штейна с получением черновой меди, рафинирование черновой меди (сначала огневое, а затем электролитическое).
Приблизительно III тысячелетие до нашей эры считается переходным от камня как основного промышленного вещества к бронзе. Период перестройки принято считать медным веком. Ведь именно это соединение на тот период времени было самым главным в строительстве, в изготовлении предметов быта, посуды и прочих процессах.
На сегодняшний день медь своей актуальности не потеряла и по-прежнему считается очень важным металлом, часто используемым в разных нуждах. Медь – это тело или вещество? Какими свойствами она обладает и для чего нужна? Попробуем разобраться далее.
Общая характеристика элемента медь
Физические свойства
Медь – это вещество или тело? Полностью убедиться в правильности ответа можно лишь рассмотрев ее физические свойства. Если мы говорим о данном элементе как о простом веществе, то для него характерен следующий набор свойств.
- Металл красного цвета.
- Мягкий и очень ковкий.
- Отличный теплопроводник и электропроводник.
- Не тугоплавкий, температура плавления составляет 1084,5 0 С.
- Плотность составляет 8,9 г/см 3 .
- В природе встречается в основном в самородном виде.
Таким образом, получается, что медь – это вещество, причем известное с самой древности. На основе нее издревле создаются многие архитектурные сооружения, изготовляется посуда и предметы быта.
Химические свойства
С точки зрения химической активности, медь – это тело или вещество, обладающее низкой способностью к взаимодействию. Существует две основные степени окисления этого элемента, которые он проявляет в соединениях. Это:
Очень редко можно встретить вещества, в которых данные значения заменяются на +3.
Итак, медь может взаимодействовать с:
- воздухом;
- углекислым газом;
- соляной кислотой и некоторыми другими соединениями только при очень высоких температурах.
Все это объясняется тем, что на поверхности металла формируется защитная оксидная пленка. Именно она предохраняет его от дальнейшего окисления и придает стабильность и малоактивность.
Из простых веществ медь способна взаимодействовать с:
- галогенами;
- селеном;
- цианидами;
- серой.
Часто формирует комплексные соединения либо Практически все сложные соединения данного элемента, кроме оксидов – ядовитые вещества. Те молекулы, которые образует одновалентная медь, легко окисляются до двувалентных представителей.
Области применения
Медь – это смесь или которое в любом из этих состояний находит широкое применение в промышленности и быту. Можно обозначить несколько основных отраслей использования соединений меди и чистого металла.
- в которой используются некоторые соли.
- Производство меха и шелка.
- Изготовление удобрений, средств защиты растений от вредителей
- Сплавы меди находят широкое применение в автомобилестроении.
- Судостроение, авиаконструкции.
- Электротехника, в которой медь используется, благодаря хорошей антикоррозионной устойчивости и высокой электро- и теплопроводности.
- Различное приборостроение.
- Изготовление посуды и бытовых предметов хозяйственного значения.
Очевидно, что несмотря на долгие сотни лет, рассматриваемый металл только укрепил свои позиции и доказал состоятельность и незаменимость в применении.
Сплавы меди и их свойства
Существует много сплавов на основе меди. Она сама отличается высокими техническими характеристиками, так как легко поддается ковке и прокатке, является легкой и достаточно прочной. Однако при добавлении определенных компонентов свойства значительно улучшаются.
В данном случае следует задать вопрос: “Медь – это вещество или физическое тело, когда речь идет о ее сплавах?” Ответ будет такой: это вещество. Все равно она является именно им до тех пор, пока из сплава не будет изготовлено какое-либо физическое тело, то есть определенный продукт.
Какие сплавы меди бывают?
- Практически равное сочетание меди и цинка в одном составе принято называть латунью. Этот сплав отличается высокой прочностью и устойчивостью к химическим воздействиям.
- Оловянистая бронза – сочетание меди и олова.
- Мельхиор – никель и медь в соотношении 20/80 из 100. Используется для изготовления украшений.
- Константан – сочетание никеля, меди и добавка марганца.
Биологическое значение
Не столь важно, медь – это вещество или тело. Значимо другое. Какую роль играет медь в жизни живых организмов? Оказывается, весьма немаловажную. Так, ионы рассматриваемого металла выполняют следующие функции.
- Участвуют в преобразовании ионов железа в гемоглобин.
- Являются активными участниками процессов роста и размножения.
- Позволяют усваиваться аминокислоте тирозину, следовательно влияют на проявление цвета волос, кожи.
Если организм недополучает данный элемент в нужном количестве, то могут возникать неприятные заболевания. Например, анемия, облысение, болезненная худоба и прочее.
История меди
Медь называют одним из первых металлов, которые человек освоил в древности и пользуется им до сегодняшнего дня. Добыча меди была доступной, потому что руду необходимо было плавить при сравнительно невысокой температуре. Первой рудой, из которой стали добывать медь, была малахитовая руда (calorizator). Каменный век в истории человечества сменился именно медным, когда предметы быта, орудия труда и оружие из меди получили самое широкое распространение.
Медь является элементом XI группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 29 и атомную массу 63,546. Принятое обозначение – Cu (от латинского Cuprum).
Нахождение в природе
Медь достаточно широко представлена в земной коре, в осадочных породах, в водах морских и пресных водоёмах, в сланцах. Распространена как в виде соединений, так и в самостоятельном варианте.
Физические и химические свойства
Медь является пластичным, так называемым переходным металлом, имеет золотисто-розовый цвет. При контакте с воздухом на поверхности меди образуется оксидная плёнка, придающая металлу желтовато-красный оттенок. Известны основные сплавы меди – с цинком (латунь), с оловом (бронза), с никелем (мельхиор).
Суточная потребность в меди
Потребность в меди у взрослого человека составляет 2 мг в день (около 0,035 мг/ 1 кг веса).
Медь – один из самых важных микроэлементов для организма, поэтому продукты питания, богатые медью, должны быть в рационе каждого. Это:
- орехи, злаки,
- рыба,
- крупы (особенно и ),
- кисломолочные продукты
- , ягоды и
Признаки нехватки меди
Признаками недостаточного количества меди в организме служат: анемия и ухудшение дыхания, потеря аппетита, расстройства желудка, нервозность, депрессивные состояния, быстрая утомляемость, нарушения пигментации кожи и волос, ломкость и выпадение волос, сыпи на кожных покровах, частые инфекции. Возможны внутренние кровотечения.
Признаки избытка меди
Переизбыток меди характеризуется бессонницей, нарушениями мозговой активности, эпилепсией, проблемами с менструальным циклом.
Взаимодействия с другими
Предполагается, что медь и конкурируют друг с другом в процессе усваивания в пищеварительном тракте, поэтому избыток одного из этих элементов в пище может вызвать недостаток другого элемента.
Медь имеет огромное значение в народном хозяйстве, её основное применение – электротехника, но металл широко используется для чеканки монет, часто – в произведениях искусства. Медь также используется в медицине, архитектуре и строительстве.
Полезные свойства меди и его влияние на организм
Требуется для превращения организма в гемоглобин. Делает возможным использование аминокислоты тирозин, позволяя ей проявлять свое действие как фактору пигментации волос и кожи. После усваивания меди кишечником она транспортируется к печени с помощью альбумина. Медь также участвует в процессах роста и размножения. Принимает участие в образовании коллагена и эластина и синтезе эндорфинов – гормонов «счастья».
Которая относиться к цветным металлам, известна с давних пор. Ее производство было изобретено раньше, чем люди начали изготавливать железо. По предположениям произошло в результате ее доступности и достаточно простого извлечения из содержащих медь соединений и сплавов. Итак, давайте рассмотрим сегодня свойства и состав меди, страны мира-лидеры по производству меди, изготовление изделий из нее и особенности этих сфер.
Медь обладает высоким коэффициентом электропроводимости, что послужило росту ее ценности, как электротехнического материала. Если ранее на электропровод тратилось до половины всей произведенной в мире меди, то сейчас с этими целями используется алюминий, как более доступный металл. А сама медь становиться наиболее дефицитным цветным металлом.
В этом видео рассмотрен химический состав меди:
Структура
Структурный состав меди включает в себя множество кристаллов: , золото, кальций, серебро, и многие другие. Все металлы, входящие в ее структуру, отличаются относительной мягкостью, пластичностью и простотой обработки. Большинство таких кристаллов в сочетании с медью образуют твердые растворы с непрерывными рядами.
Элементарная ячейка данного металла представляет собой кубическую форму. На каждую такую ячейку приходится по четыре атома, располагающихся на вершинах и центральной части грани.
Химический состав
Состав меди в процессе ее производства может включать в себя ряд примесей, которые влияют на структуру и характеристики конечного продукта. При этом их содержание должно регулироваться как по отдельным элементам, так и по их суммарному количеству. К примесям, которые встречаются в составе меди, можно отнести:
- Висмут . Этот компонент негативно сказывается как на технологических, так и на механических свойствах металла. Именно поэтому он не должен превышать 0,001% от готового состава.
- Кислород . Считается наиболее нежелательной примесью в составе меди. Его предельное содержание в сплаве составляет до 0,008% и стремительно сокращается в процессе воздействия высоких температур. Кислород негативно отражается на пластичности металла, а также на его устойчивости к коррозии.
- Марганец . В случае изготовления проводниковой меди негативно отображается данный компонент на ее токопроводимости. Уже при комнатной температуре быстро растворяется в меди.
- Мышьяк . Этот компонент создает твердый раствор с медью и практически не влияет на ее свойства. Его действие по большей мере направлено на нейтрализацию негативного воздействия от сурьмы, висмута и кислорода.
- . Образует твердый раствор с медью и при этом снижает ее тепло- и электропроводность.
- . Создает твердый раствор и способствует усилению теплопроводности.
- Селен, сера . Эти два компонента имеют одинаковое воздействие на конечный продукт. Они организуют хрупкое соединение с медью и составляют не более 0,001%. При увеличении концентрации резко снижается степень пластичности меди.
- Сурьма . Данный компонент хорошо растворяется в меди, поэтому оказывает минимальное воздействие на ее конечные свойства. Допускается ее не больше 0,05% от общего объема.
- Фосфор . Служит главным раскислителем меди, предельная растворимость которого составляет 1,7% при температуре 714°С. Фосфор, в сочетании с медью, не только способствует ее лучшему свариванию, но и улучшает ее механические свойства.
- . Содержится в небольшом количестве меди, практически не влияет на ее тепло- и электропроводность.
Производство меди
Медь производится из сульфидных руд, которые содержат эту медь в объеме минимум 0,5%. В природе существует около 40 минералов, содержащих данный металл. Наиболее распространенным сульфидным минералом, который активно используется в производстве меди, является халькопирит.
Для производства 1 т меди необходимо взять огромное количество сырья, которое ее содержит. Взять, к примеру, производство чугуна, для получения этого металла в объеме 1 тонны потребуется переработать около 2,5 т железной руды. А для получения такого же количества меди потребуется обработка до 200 т руды ее содержащей.
Видео ниже расскажет о добыче меди:
Технология и необходимое оборудование
Производство меди включает в себя ряд этапов:
- Измельчение руды в специальных дробилках и последующее более тщательное ее измельчение в мельницах шарового типа.
- Флотация. Предварительно измельченное сырье смешивается с малым количеством флотореагента и затем помещается во флотационную машину. В качестве такого добавочного компонента обычно выступает ксантогенат калия и извести, который в камере машины покрывается минералами меди. Роль извести на этом этапе крайне важна, поскольку она предупреждает обволакивание ксантогената частичками других минералов. К медным частичкам прилипают лишь пузырьки воздуха, которые выносят ее на поверхность. В результате этого процесса получается медный концентрат, который направляется удаление из его состава избыточной влаги.
- Обжиг. Руды и их концентраты проходят процесс обжига в моноподовых печах, что необходимо для выведения из них серы. В результате получается огарок и серосодержащие газы, которые в дальнейшем используют для получения серной кислоты.
- Плавка шихты в печи отражательного типа. На этом этапе можно брать сырую или уже обожженную шихту и подвергать ее обжигу при температуре 1500°С. Важным условием работы является поддержанием нейтральной атмосферы в печи. В итоге происходит сульфидирование меди и ее преобразование в штейн.
- Конвертирование. Полученная медь в сочетании с кварцевым флюсом продувается в специальном конвекторе на протяжении 15-24 ч. В итоге получается черновая медь в результате полного выгорания серы и выведения газов. В ее состав может входить до 3% различных примесей, которые благодаря электролизу выводятся наружу.
- Рафинирование огнем. Металл предварительно расплавляется и затем рафинируется в специальных печах. На выходе образуется красная медь.
- Электролитическое рафинирование. Этот этап проходит анодная и огневая медь для максимальной очистки.
Про заводы и центры производства меди в России и в мире читайте ниже.
Известные производители
На территории России действует всего четыре наибольших предприятия по добыче и производству меди:
- «Норильский никель»;
- «Уралэлектромедь»;
- Новгородский металлургический завод;
- Кыштымский медеэлектролитный завод.
Первые две компании входят в состав известнейшего холдинга «УГМК», который включает в себя около 40 промышленных предприятий. Он производит более 40% всей меди в нашей стране. Последние два завода принадлежат Русской медной компании.
Видеоролик ниже расскажет о производстве меди:
Энергетические свойства меди
ЭНЕРГЕТИЧЕСКИЕ СВОЙСТВА МЕДИ
Жемчуг, драгоценные камни, металлы, растения древние риши всегда считали обладающими электромагнитными целебными свойствами. Их прикладывали прямо к коже человека, таким образом, физические клетки чувствительного организма человека с его электрическими жизненными токами намагничивались. Йог Парамаханса Йогананда писал в своих работах: «Точно так же, как можно установить на крышу дома медный стержень для предотвращения удара молнии, так и телесный храм может быть защищен определенными способами.
Электрические и магнитные излучения постоянно циркулируют во вселенной, положительно или отрицательно воздействуя на тело человека. Много столетий назад риши задумывались над проблемой преодоления дурного эффекта тонкого влияния космоса. Мудрецы обнаружили, что чистые металлы испускают астральный свет, оказывающий мощное противодействие негативному тяготению планет. Обнаружено, что также помогает сочетание определенных растений». Он советовал изготавливать браслет из золота, серебра и меди.
Колебания атмосферы планеты Венера и колебания ионов атома меди идентичны. То есть медь является металлическим проводником энергии Венеры, которая оказывает влияние на внешность человека. Возможно поэтому изваяния человека, дошедшие до нас с древних времён, поражают нас своей красотой и гармонией. Ведь в древности люди использовали медную посуду, украшения, купальни, ванны также были сделаны из меди.
Когда человек ложится на медный экран, то энергия меди медленно нежно прохладно его обволакивает. Потом проникает во внутрь, и начинает обволакивать тонкие поля больных органов. При этом не дает инфекции распространяться по организму.
Нередко человек начинает испытывать боль, тело ломит, не может заснуть, начинается кашель и др. Он начинает чувствовать больной орган и обращает на него внимание. Это говорит о том, что человеку необходимо начать с восстановления всей системы, к которой принадлежит беспокоящий орган.
Бывают случаи, когда медь начинает зеленеть. Это говорит о том, что металл устал, ему необходим отдых. В этом случае его необходимо помыть и отложить на некоторое время. Иногда экран чернеет. Данный случай свидетельствует о том, что экран работает. Идет восстановительный процесс.
У некоторых чернеют определенные зоны на экране. Это те места, где идет соприкосновение с больным органом.
Энергия этого металла – прохладная и густая, восстанавливает физическое поле человека, действуя через эфирное тело. Поэтому медь помогает человеку вылечить лёгкие болезни и травмы. Благодаря энергии Венеры происходит самоочищение человека, так как грязная энергия заземляется и выводится из него.
Медь работает на волне 8 Гц. Благодаря таким свойствам меди оживает шишковидное тело. Через 5-6 месяцев использования медного экрана начинается восстановление нервной системы. Раздражительный человек становится более спокойным, пассивные люди становятся более активными, подвижными. А через 1,5 года начинает восстанавливаться температурный режим всей лимфатической системы. Для помощи в восстановлении организма можно использовать витамины, травы.
Медь объединяет в себе свойства:
-нейтрализатора внешних воздействий
и
-активатора внутренних резервов организма.
Вольфрам | Plansee
Хорош во всех отношениях. Свойства вольфрамаВольфрам относится к группе тугоплавких металлов, то есть металлов, температура плавления которых выше, чем у платины (1772 °C). В тугоплавких металлах энергия связи между отдельными атомами особенно высока. Такие металлы отличаются высокой температурой плавления и одновременно низким давлением пара, хорошей жаропрочностью, а в случае вольфрамо-медных композитов — еще и высоким модулем упругости. Для них также характерны низкий коэффициент теплового расширения и относительно высокая плотность.
Вольфрам имеет самую высокую температуру плавления среди всех металлов, а также чрезвычайно высокий модуль упругости. В целом его свойства аналогичны молибдену. Оба металла относятся к одной группе в периодической системе химических элементов. Однако некоторые свойства вольфрама более ярко выражены по сравнению с молибденом. Благодаря превосходным термическим свойствам вольфрам легко выдерживает самые высокие температуры.
Чтобы придать выпускаемому вольфраму и его сплавам нужные свойства, мы используем разные виды и количества легирующих элементов и соответствующим образом настраиваем технологический процесс.
Мы используем преимущественно легированные вольфрамовые материалы. Например, в WVM и WК65 добавляется небольшое количество калия. Калий положительно влияет на механические свойства материала, особенно при высоких температурах. Добавлением La2O3 можно не только улучшить обрабатываемость сплава, но и, что особенно важно, снизить работу выхода электронов, что позволит использовать вольфрам для изготовления катодов.
Рений мы добавляем, чтобы повысить пластичность вольфрама. Медь же улучшает электропроводность материала. Благодаря хорошей обрабатываемости наши тяжелые сплавы подходят также для производства изделий сложной геометрии. Они могут использоваться, например, в качестве материала для экранирующих пластин или амортизирующих и абсорбирующих компонентов.
Презентация “Медь” – химия, презентации
Медь и ее соединения
Учитель МБОУ лицея №64
Музыченко-Бакланова Г.Л.
г.Краснодар
Положение в Периодической системе
I группа, побочная подгруппа.
64 29 Cu
d-элемент
1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1
Степени окисления +1, +2
Физические свойства меди.
Медь – металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.
Химические свойства меди.
Медь – малоактивный металл, в электрохимическом ряду напряжений она стоит правее водорода.
1.Окисление во влажном воздухе
2Cu + Н 2 О + O 2 + CO 2 = (CuOH) 2 CO 3
2. Медь реагирует с галогенами при нагревании
Cu + Cl 2 = CuCl 2
3. При сплавлении меди с серой образуетcя нерастворимый
в воде сульфид
2Cu + S = Cu 2 S
4. Взаимодействие с кислородом
4Cu + O 2 = 2Cu 2 O
2Cu + O 2 = 2CuO
t = 800
t = 400
Химические свойства меди.
5. В присутствии окислителей, прежде всего кислорода, медь реагирует с соляной и разбавленной серной кислотой, но водород при этом не выделяется:
2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.
6. С азотной кислотой различных концентраций медь реагирует активно, при этом выделяются различные оксиды азота
3Cu + 8HNO 3 = 3Cu(NO 3 ) 2 + 2NO + 4H 2 O.
7. С концентрированной серной кислотой медь реагирует при сильном нагревании:
Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.
8. Практическое значение имеет способность меди реагировать с растворами солей железа (III):
2FeCl 3 + Cu = CuCl 2 + 2FeCl 2
Соединения меди
Оксид меди (I)
Cu2O – красновато-коричневые кристаллы
1.В воде не растворяется и не реагирует с ней. Имеет слабовыраженные амфотерные свойства с преобладанием основных.
2.Взаимодействует с растворами щелочей с образованием гидроксокомплексов:
Cu 2 O + 2NaOH + H 2 O = 2Na[Cu(OH) 2 ].
3.В водных растворах аммиака образует гидроксид диамминмеди (I):
Cu 2 O + 4NH 3 + H 2 O = 2[Cu(NH 3 ) 2 ]OH.
4.С соляной кислотой взаимодействует с образованием дихлорокупрата (I) водорода:
Cu 2 O + 4HCl = 2H[CuCl 2 ] + H 2 O.
Соединения меди(+1)
окислитель
Cu 2 +1 O + CO = 2Cu 0 + CO 2
\ Cu +1 + 1e Cu 0
диспропорционирование
Cu 2 +1 O = Cu +2 O + Cu 0
восстановитель
4Cu +1 CL + O 2 + 4HCL = 4Cu +2 CL 2 + 2H 2 O
Cu +1 – 1e Cu +2
Соединения меди(+2)
оксид
гидроксид
CuO -амфотерный, черный
Получение
Cu(OH) 2 – амфотерный, синий.
Получение
2Cu(NO 3 ) 2 = 2CuO + 4NO 2 + O 2
Химические свойства
CuCL 2 + 2NaOH = Cu(OH) 2 + 2NaCL
-реагирует с кислотами и щелочами
Химические свойства
-реагирует с кислотами и щелочами
CuO + H 2 SO 4 = CuSO 4 + H 2 O
Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O
CuO + Na 2 O = Na 2 CuO 2
Cu(OH) 2 + 2NaOH = Na 2 Cu(OH) 4
Образование комплексов
Cu(OH) 2 + 4NH 3 = Cu(NH 3 ) 4 (OH) 2
Сг +2 – окислитель
Cu +2 O + H 2 = Cu 0 + H 2 O
Область применения меди
Сплав меди, известный с древнейших времен, — бронза — содержит 4—30% олова (обычно 8—10%). Интересно, что бронза по своей твердости превосходит отдельно взятые чистые медь и олово.
Из бронзы отливали в средние века орудия и многие другие изделия. Знаменитые Царь-пушка и Царь-колокол в Московском Кремле также отлиты из сплава меди с оловом.
Домашнее задание – выучить изученную тему, – к ОВР(изученных в классе) составить электронный баланс, – записать уравнения реакций обмена с участием солей меди(II) в молекулярном, ионном видах; 2-е задание (индивидуальное) – подготовить слайд-презентацию о нахождении меди в природе, применении меди, ее соединений, сплавы меди, получение, медь в организме человека.
Металлические свойства меди. Механические свойства меди
Свойства меди, которая в природе встречается и в виде достаточно крупных самородков, люди изучили еще в древние времена, когда из этого металла и его сплавов делали посуду, оружие, украшения, различные изделия бытового назначения. Активное использование данного металла на протяжении многих лет обусловлено не только его особыми свойствами, но и простотой обработки. Медь, которая присутствует в руде в виде карбонатов и окислов, достаточно легко восстанавливается, что и научились делать наши древние предки.
Изначально процесс восстановления этого металла выглядел очень примитивно: медную руду просто нагревали на кострах, а затем подвергали резкому охлаждению, что приводило к растрескиванию кусков руды, из которых уже можно было извлекать медь. Дальнейшее развитие такой технологии привело к тому, что в костры начали вдувать воздух: это повышало температуру нагревания руды. Затем нагрев руды стали выполнять в специальных конструкциях, которые и стали первыми прототипами шахтных печей.
О том, что медь используется человечеством с древних времен, свидетельствуют археологические находки, в результате которых были найдены изделия из данного металла. Историками установлено, что первые изделия из меди появились уже в 10 тысячелетии до н.э, а наиболее активно она стала добываться, перерабатываться и использоваться спустя 8–10 тысяч лет. Естественно, предпосылками к такому активному использованию данного металла стали не только относительная простота его получения из руды, но и его уникальные свойства: удельный вес, плотность, магнитные свойства, электрическая, а также удельная проводимость и др.
В наше время уже сложно найти в виде самородков, обычно ее добывают из руды, которая подразделяется на следующие виды.
- Борнит – в такой руде медь может содержаться в количестве до 65%.
- Халькозин, который также называют медным блеском. В такой руде меди может содержаться до 80%.
- Медный колчедан, также называемый халькопиритом (содержание до 30%).
- Ковеллин (содержание до 64%).
Медь также можно извлекать из множества других минералов (малахит, куприт и др.). В них она содержится в разных количествах.
Физические свойства
Медь в чистом виде представляет собой металл, цвет которого может варьироваться от розового до красного оттенка.
Радиус ионов меди, имеющих положительный заряд, может принимать следующие значения:
- если координационный показатель соответствует 6-ти – до 0,091 нм;
- если данный показатель соответствует 2 – до 0,06 нм.
Радиус атома меди составляет 0,128 нм, также он характеризуется сродством к электрону, равном 1,8 эВ. При ионизации атома данная величина может принимать значение от 7,726 до 82,7 эВ.
Медь – это переходный металл, показатель электроотрицательности которого составляет 1,9 единиц по шкале Полинга. Кроме этого, его степень окисления может принимать различные значения. При температурах, находящихся в интервале 20–100 градусов, его теплопроводность составляет 394 Вт/м*К. Электропроводность меди, которую превосходит лишь серебро, находится в интервале 55,5–58 МСм/м.
Так как медь в потенциальном ряду стоит правее водорода, она не может вытеснять этот элемент из воды и различных кислот. Ее кристаллическая решетка имеет кубический гранецентрированный тип, величина ее составляет 0,36150 нм. Плавится медь при температуре 1083 градусов, а температура ее кипения – 26570. Физические свойства меди определяет и ее плотность, которая составляет 8,92 г/см3.
Из ее механических свойств и физических показателей стоит также отметить следующие:
- термическое линейное расширение – 0,00000017 единиц;
- предел прочности, которому медные изделия соответствуют при растяжении, составляет 22 кгс/мм2;
- твердость меди по шкале Бринелля соответствует значению 35 кгс/мм2;
- удельный вес 8,94 г/см3;
- модуль упругости составляет 132000 Мн/м2;
- значение относительного удлинения равно 60%.
Совершенно уникальными можно считать магнитные свойства данного металла, который является полностью диамагнитным. Именно эти свойства, наряду с физическими параметрами: удельным весом, удельной проводимостью и другими, в полной мере объясняют широкую востребованность данного металла при производстве изделий электротехнического назначения. Похожими свойствами обладает алюминий, который также успешно используется при производстве различной электротехнической продукции: проводов, кабелей и др.
Основную часть характеристик, которыми обладает медь, практически невозможно изменить, за исключением предела прочности. Данное свойство можно улучшить практически в два раза (до 420–450 МН/м2), если осуществить такую технологическую операцию, как наклеп.
Химические свойства
Химические свойства меди определяются тем, какое положение она занимает в таблице Менделеева, где она имеет порядковый номер 29 и располагается в четвертом периоде. Что примечательно, она находится в одной группе с благородными металлами. Это лишний раз подтверждает уникальность ее химических свойств, о которых следует рассказать более подробно.
В условиях невысокой влажности медь практически не проявляет химическую активность. Все меняется, если изделие поместить в условия, характеризующиеся высокой влажностью и повышенным содержанием углекислого газа. В таких условиях начинается активное окисление меди: на ее поверхности формируется зеленоватая пленка, состоящая из CuCO3, Cu(OH)2 и различных сернистых соединений. Такая пленка, которая называется патиной, выполняет важную функцию защиты металла от дальнейшего разрушения.
Окисление начинает активно происходить и тогда, когда изделие подвергается нагреву. Если металл нагреть до температуры 375 градусов, то на его поверхности формируется оксид меди, если выше (375-1100 градусов) – то двухслойная окалина.
Медь достаточно легко реагирует с элементами, которые входят в группу галогенов. Если металл поместить в пары серы, то он воспламенится. Высокую степень родства он проявляет и к селену. Медь не вступает в реакцию с азотом, углеродом и водородом даже в условиях высоких температур.
Внимание заслуживает взаимодействие оксида меди с различными веществами. Так, при его взаимодействии с серной кислотой образуется сульфат и чистая медь, с бромоводородной и иодоводородной кислотой – бромид и иодид меди.
Иначе выглядят реакции оксида меди с щелочами, в результате которых образуется купрат. Получение меди, при котором металл восстанавливается до свободного состояния, осуществляют при помощи оксида углерода, аммиака, метана и других материалов.
Медь при взаимодействии с раствором солей железа переходит в раствор, при этом железо восстанавливается. Такая реакция используется для того, чтобы снять напыленный медный слой с различных изделий.
Одно- и двухвалентная медь способна создавать комплексные соединения, отличающиеся высокой устойчивостью. Такими соединениями являются двойные соли меди и аммиачные смеси. И те и другие нашли широкое применение в различных отраслях промышленности.
Области применения меди
Применение меди, как и наиболее схожего с ней по своим свойствам алюминия, хорошо известно – это производство кабельной продукции. Медные провода и кабели, характеризуются невысоким электрическим сопротивлением и особыми магнитными свойствами. Для производства кабельной продукции применяются виды меди, характеризующиеся высокой чистотой. Если в ее состав добавить даже незначительное количество посторонних металлических примесей, к примеру, всего 0,02% алюминия, то электрическая проводимость исходного металла уменьшится на 8–10%.
Невысокий и ее высокая прочность, а также способность поддаваться различным видам механической обработки – это те свойства, которые позволяют производить из нее трубы, успешно использующиеся для транспортировки газа, горячей и холодной воды, пара. Совершенно не случайно именно подобные трубы применяются в составе инженерных коммуникаций жилых и административных зданий в большинстве европейских стран.
Медь, кроме исключительно высокой электропроводности, отличается способностью хорошо проводить тепло. Благодаря этому свойству она успешно используется в составе следующих систем:
- тепловые трубки;
- кулеры, использующиеся для охлаждения элементов персональных компьютеров;
- системы отопления и охлаждения воздуха;
- системы, обеспечивающие перераспределение тепла в различных устройствах (теплообменники).
Металлические конструкции, в которых использованы медные элементы, отличаются не только небольшим весом, но и исключительной декоративностью. Именно это послужило причиной их активного использования в архитектуре, а также для создания различных интерьерных элементов.
Приблизительно III тысячелетие до нашей эры считается переходным от камня как основного промышленного вещества к бронзе. Период перестройки принято считать медным веком. Ведь именно это соединение на тот период времени было самым главным в строительстве, в изготовлении предметов быта, посуды и прочих процессах.
На сегодняшний день медь своей актуальности не потеряла и по-прежнему считается очень важным металлом, часто используемым в разных нуждах. Медь – это тело или вещество? Какими свойствами она обладает и для чего нужна? Попробуем разобраться далее.
Общая характеристика элемента медь
Физические свойства
Медь – это вещество или тело? Полностью убедиться в правильности ответа можно лишь рассмотрев ее физические свойства. Если мы говорим о данном элементе как о простом веществе, то для него характерен следующий набор свойств.
- Металл красного цвета.
- Мягкий и очень ковкий.
- Отличный теплопроводник и электропроводник.
- Не тугоплавкий, температура плавления составляет 1084,5 0 С.
- Плотность составляет 8,9 г/см 3 .
- В природе встречается в основном в самородном виде.
Таким образом, получается, что медь – это вещество, причем известное с самой древности. На основе нее издревле создаются многие архитектурные сооружения, изготовляется посуда и предметы быта.
Химические свойства
С точки зрения химической активности, медь – это тело или вещество, обладающее низкой способностью к взаимодействию. Существует две основные степени окисления этого элемента, которые он проявляет в соединениях. Это:
Очень редко можно встретить вещества, в которых данные значения заменяются на +3.
Итак, медь может взаимодействовать с:
- воздухом;
- углекислым газом;
- соляной кислотой и некоторыми другими соединениями только при очень высоких температурах.
Все это объясняется тем, что на поверхности металла формируется защитная оксидная пленка. Именно она предохраняет его от дальнейшего окисления и придает стабильность и малоактивность.
Из простых веществ медь способна взаимодействовать с:
- галогенами;
- селеном;
- цианидами;
- серой.
Часто формирует комплексные соединения либо Практически все сложные соединения данного элемента, кроме оксидов – ядовитые вещества. Те молекулы, которые образует одновалентная медь, легко окисляются до двувалентных представителей.
Области применения
Медь – это смесь или которое в любом из этих состояний находит широкое применение в промышленности и быту. Можно обозначить несколько основных отраслей использования соединений меди и чистого металла.
- в которой используются некоторые соли.
- Производство меха и шелка.
- Изготовление удобрений, средств защиты растений от вредителей
- Сплавы меди находят широкое применение в автомобилестроении.
- Судостроение, авиаконструкции.
- Электротехника, в которой медь используется, благодаря хорошей антикоррозионной устойчивости и высокой электро- и теплопроводности.
- Различное приборостроение.
- Изготовление посуды и бытовых предметов хозяйственного значения.
Очевидно, что несмотря на долгие сотни лет, рассматриваемый металл только укрепил свои позиции и доказал состоятельность и незаменимость в применении.
Сплавы меди и их свойства
Существует много сплавов на основе меди. Она сама отличается высокими техническими характеристиками, так как легко поддается ковке и прокатке, является легкой и достаточно прочной. Однако при добавлении определенных компонентов свойства значительно улучшаются.
В данном случае следует задать вопрос: “Медь – это вещество или физическое тело, когда речь идет о ее сплавах?” Ответ будет такой: это вещество. Все равно она является именно им до тех пор, пока из сплава не будет изготовлено какое-либо физическое тело, то есть определенный продукт.
Какие сплавы меди бывают?
- Практически равное сочетание меди и цинка в одном составе принято называть латунью. Этот сплав отличается высокой прочностью и устойчивостью к химическим воздействиям.
- Оловянистая бронза – сочетание меди и олова.
- Мельхиор – никель и медь в соотношении 20/80 из 100. Используется для изготовления украшений.
- Константан – сочетание никеля, меди и добавка марганца.
Биологическое значение
Не столь важно, медь – это вещество или тело. Значимо другое. Какую роль играет медь в жизни живых организмов? Оказывается, весьма немаловажную. Так, ионы рассматриваемого металла выполняют следующие функции.
- Участвуют в преобразовании ионов железа в гемоглобин.
- Являются активными участниками процессов роста и размножения.
- Позволяют усваиваться аминокислоте тирозину, следовательно влияют на проявление цвета волос, кожи.
Если организм недополучает данный элемент в нужном количестве, то могут возникать неприятные заболевания. Например, анемия, облысение, болезненная худоба и прочее.
В большей части промышленных отраслей используется такой металл, как медь. Благодаря высокой электропроводности без этого материала не обходится ни одна область электротехники. Из нее образуются проводники, обладающими отличными эксплуатационными особенностями. Помимо этих особенностей медь обладает пластичностью и тугоплавкостью, устойчивостью к коррозии и агрессивным средам. И сегодня мы рассмотрим металл со всех сторон: укажем цену за 1 кг лома меди, поведаем о ее использовании и производстве.
Понятие и особенности
Медь представляет собой химический элемент, носящийся к первой группы периодической системы имени Менделеева. Этот пластичный металл имеет золотисто – розовый цвет и является одним из трех металлов с ярко выраженным окрашиванием. С давних времен активно используется человеком во многих областях промышленности.
Главной особенностью металла является его высокая электро- и теплопроводность. Если сравнивать с другими металлами, то проведение электрического тока через медь выше в 1,7 раз, чем у алюминия, и почти в 6 раз выше, чем у железа.
Медь имеет ряд отличительных особенностей перед остальными металлами:
- Пластичность . Медь представляет собой мягкий и пластичный металл. Если брать во внимание медную проволоку, она легко гнется, принимает любые положения и при этом не деформируется. Сам же металл достаточно немного надавить, чтобы проверить эту особенность.
- Устойчивость к коррозии . Этот фоточувствительный материал отличается высокой устойчивостью к возникновению коррозии. Если медь на длительный срок оставить во влажной среде, на ее поверхности начнет появляться зеленая пленка, которая и защищает металл от негативного влияния влаги.
- Реакция на повышение температуры . Отличить медь от других металлов можно путем ее нагревания. В процессе медь начнет терять свой цвет, а затем становиться темнее. В результате при нагреве металла он достигнет черного цвета.
Благодаря таким особенностям можно отличить данный материал от , и других металлов.
Видео ниже расскажет вам про полезные свойства меди:
Плюсы и минусы
Преимуществами данного металла являются:
- Высокий показатель теплопроводности;
- Устойчивость к влиянию коррозии;
- Достаточно высокая прочность;
- Высокая пластичность, которая сохраняется до температуры -269 градусов;
- Хорошая электропроводность;
- Возможность легирования с различными добавочными компонентами.
Про характеристики, физические и химические свойства вещества-металла меди и ее сплавов читайте ниже.
Свойства и характеристики
Медь, как малоактивный металл, не вступает во взаимодействие с водой, солями, щелочами, а также со слабой серной кислотой, но при этом подвержена растворению в концентрированной серной и азотной кислоте.
Физические свойства метала:
- Температура плавления меди составляет 1084°C;
- Температура кипения меди составляет 2560°C;
- Плотность 8890 кг/м³;
- Электрическая проводимость 58 МОм/м;
- Теплопроводность 390 м*К.
Механические свойства:
- Предел прочности на разрыв при деформированном состоянии составляет 350-450 МПа, при отожженном – 220-250 МПа;
- Относительное сужение в деформированном состоянии 40-60%, в отожженном – 70-80%;
- Относительное удлинение в деформированном состоянии составляет 5-6 δ ψ%, в отожженном – 45-50 δ ψ%;
- Твердость составляет в деформированном состоянии 90-110 НВ, в отожженном – 35-55 НВ.
При температуре ниже 0°С этот материал обладает более высокой прочностью и пластичностью, чем при +20°С.
Структура и составМедь, имеющая высокий коэффициент электропроводности, отличается наименьшим содержанием примесей. Доля их в составе может приравниваться 0,1%. С целью увеличения прочности меди в нее добавляют различные примеси: сурьма, и прочее. В зависимости от ее состава и степени содержания чистой меди различают несколько ее марок.
Структурный тип меди может включать в себя также кристаллы серебра, кальция, алюминий, золота и других компонентов. Все они отличаются сравнительной мягкостью и пластичностью. Частичка самой меди имеет кубическую форму, атому которой расположены на вершинах F –ячейки. Каждая ячейка состоит из 4 атомов.
О том, где брать медь, смотрите в этом видеоролике:
Производство материалов
В природных условиях данный металл содержится в самородной меди и сульфидных рудах. Широкое распространение при производстве меди получили руды под названием «медный блеск» и «медный колчедан», которые содержат до 2% необходимого компонента.
Большую часть (до 90%) первичного металла благодаря пирометаллургическому способу, который включает в себя массу этапов: процесс обогащения, обжиг, плавка, обработка в конвертере и рафинирование. Оставшаяся часть получается гидрометаллургическим способом, который заключается в ее выщелачивании разведенной серной кислоты.
Области применения
в следующих областях:
- Электротехническая промышленность , которая заключается, в первую очередь, в производстве электропроводов. Для этих целей медь должна быть максимально чистой, без посторонних примесей.
- Изготовление филигранных изделий . Медная проволока в отожженном состоянии отличается высокой пластичностью и прочностью. Именно поэтому, она активно используется при производстве различных шнуров, орнаментов и прочих конструкций.
- Переплавка катодной меди в проволоку . Самые разнообразные медные изделия переплавляются в слитки, которые идеально подходят для дальнейшей прокатки.
Медь активно используется в самых различных сферах промышленности. Она может входить в состав не только проволоки, но и оружия и даже бижутерии. Ее свойства и широкая сфера применения благоприятно повлияли на ее популярность.
Видео ниже расскажет о том, как медь может изменить свои свойства:
Медь – один из первых металлов, которые человек начал применять для технических целей. Вместе с золотом, серебром, железом, оловом, свинцом и ртутью, медь известна людям с древнейших времен и сохраняет свое важное техническое значение до наших дней.
Медь или Сu(29)
Медь – металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.
Латинское название меди Cuprum произошло от названия острова Кипр, где уже в III в. до н. э. существовали медные рудники и выплавлялась медь. Около II – III в. выплавка меди производилась в широком масштабе в Египте, в Месопотамии, на Кавказе, в других странах древнего мира. Но, тем не менее, медь – далеко не самый распространенный в природе элемент: содержание меди в земной коре составляет 0,01%, а это лишь 23-е место среди всех встречающихся элементов.
Получение меди
В природе медь присутствует в виде сернистых соединений, оксидов, гидрокарбонатов, углекислых соединений, в составе сульфидных руд и самородной металлической меди.
Наиболее распространенные руды – медный колчедан и медный блеск, содержащие 1-2 % меди.
90 % первичной меди получают пирометаллургическим способом, 10 % – гидрометаллургическим. Гидрометаллургический способ – это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.
Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700-800°C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450°C.
С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200-1300°C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 – 99,4 % меди, 0,01 – 0,04 % железа, 0,02 – 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 – 99,7%. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой меди (99,95%). Электролиз проводят в ваннах, где анод – из меди огневого рафинирования, а катод – из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.
Кроме этого, существуют технологии получения меди из лома. В частности, путем огневого рафинирования из лома получают рафинированную медь.
По чистоте медь делится на марки: М0 (99,95% Cu), М1 (99,9%), М2(99,7%), М3 (99,5%), М4 (99%).
Химические свойства меди
Медь – малоактивный металл, который не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако, медь растворяется в сильных окислителях (например, азотной и концентрированной серной).
Медь обладает достаточно высокой стойкостью к коррозии. Однако, во влажной атмосфере, содержащей углекислый газ, поверхность металла покрывается зеленоватым налетом (патиной).
Основные физические свойства меди
Механические свойства меди
При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации.
Применение меди
Такие свойства меди, как электропроводность и теплопроводность, обусло- вили основную область применения меди – электротехническая промыш- ленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование.
Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий и т. д. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами.
Очень важная область применения меди – производство сплавов. Один из самых полезных и наиболее употребляемых сплавов – латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет.
С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.
Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве.
Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.
Среди товаров, которыми торговали в далекие времена александрийские купцы, большой популярностью пользовалась “медная зелень”. С помощью этой краски модницы подводили зеленые круги под глазами – в те времена это считалось проявлением хорошего вкуса.
С древних времен люди верили в чудодейственные свойства меди и исполь- зовали этот металл при лечении многих недугов. Считалось, что медный браслет, одетый на руку, приносит своему владельцу удачу и здоровье, нормализует давление, препятствует отложению солей.
Многие народы и в настоящее время приписывают меди целебные свойст- ва. Жители Непала, например, считают медь священным металлом, который способствует сосредоточению мыслей, улучшает пищеварение и лечит желудочно-кишечные заболевания (больным дают пить воду из стакана, в котором лежат несколько медных монет). Один из самых больших и красивых храмов в Непале носит название “Медный”.
Был случай, когда медная руда стала… виновником аварии, которую потер- пело норвежское грузовое судно “Анатина”. Трюмы теплохода, направляв- шегося к берегам Японии, были заполнены медным концентратом. Внезапно прозвучал сигнал тревоги: судно дало течь.
Оказалось, что медь, содержащаяся в концентрате, образовала со сталь- ным корпусом “Анатины” гальваническую пару, а испарения морской воды послужили электролитом. Возникший гальванический ток разъел обшивку судна до такой степени, что в ней появились дыры, куда и хлынула океан- ская вода.
Медь – элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) – это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.
История и происхождение названия
Медь – один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом – бронзы для изготовления оружия и т. п. (см бронзовый век).
Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.
У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков производят русское слово медь (польск. miedz, чешск. med) от древненемецкого smida (металл) и Schmied (кузнец, англ. Smith). Конечно, родство корней в данном случае несомненно, однако, оба эти слова произведены от греч. рудник, копь независимо друг от друга. От этого слова произошли и родственные названия – медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь венера (Venus). В более древние времена встречается название марс (Mars).
Физические свойства
Медь – золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.
Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра).
Имеет два стабильных изотопа – 63 Cu и 65 Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64 Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.
Существует ряд сплавов меди: латуни – с цинком, бронзы – с оловом и другими элементами, мельхиор – с никелем, баббиты – со свинцом и другие.
Химические свойства
Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.
Современные способы добычи
90 % первичной меди получают пирометаллургическим способом, 10 % – гидрометаллургическим. Гидрометаллургический способ – это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.
Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700-800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.
С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200-1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 – 99,4 % меди, 0,01 – 0,04 % железа, 0,02 – 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 – 99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод – из меди огневого рафинирования, а катод – из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.
Свойства золота — физические и химические
Золото, так же как серебро и шесть металлов платиновой группы, относится к благородным, или драгоценным металлам.
Первое определение (благородные металлы) отражает свойство золота крайне неохотно вступать в соединения с неметаллическими элементами, в частности с кислородом. С большинством кислот золото также не реагирует. У неблагородных металлов (меди, железа и так далее) взаимодействие с кислородом вызывает окисление — изменения структуры и внешнего вида. Золото в обычных условиях не реагирует с какими-либо природными веществами, и поэтому абсолютно не меняет внешний вид с течением времени.
Второе определение (драгоценные металлы) относится к сочетанию редкости, долговечности и красоты. Именно это позволило золоту с начала истории человечества и до 19 века оставаться самым дорогим металлом.
Физические свойства золота
Золото — элемент 11 группы Периодической системы химических элементов. Из известных 37 изотопов золота, в природе встречается только один стабильный изотоп – 197Au с атомным весом 197, атомным номером 79. Остальные изотопы, получаемые в атомных реакторах, нестабильны и обладают максимальным периодом полураспада в 186 дней (195Au).
В 1947 году в результате эксперимента в ядерном реакторе была осуществлена древняя мечта человечества, которую сделали своей главной целью средневековые алхимики – превращение ртути в золото. Американские физики Ингрем, Гесс и Гайдн получили 35 мг настоящего золота из ртути. Впоследствии было несколько попыток спекуляции на тему промышленного производства искусственного золота. Однако уже тогда ученые однозначно заявляли о том, что получение золота таким образом настолько дорогостоящий процесс, что он не имеет никакого экономического смысла. В итоге, кусочек искусственного золота выставлен в Музее науки и промышленности (Museum of Science and Industry) в Чикаго, и ситуация остается прежней – получать золото искусственным путем нецелесообразно.
Золото представляет собой металл желтого цвета, очень тяжелый, но при этом мягкий и пластичный.
Золото единственный металл, который в чистом виде обладает желтым цветом. Цвет золота яркий, теплый и приятный. Благодаря цвету, люди с самой древности связывали золото с солнцем.
Плотность золота составляет 19,32 г/см3 , то есть золото — очень тяжелый металл. Тяжелее его только платина, иридий, осмий и рений. Кубик золота со стороной всего 3,7 см весит 1 кг. Один кубический метр золота весит 19 320 кг, такой же объём железа будет весить почти в три раза меньше – 7 874 кг.
Температура плавления золота составляет 1064,43 °С, температура кипения — 2947°С. Золото в расплавленном состоянии имеет бледно-зеленый цвет. При нагревании выше температуры плавления начинает улетучиваться.
Золото очень мягкий металл, твердость по шкале Мооса 2,5-3,0. Сталь обладает твердостью 4,0-4,5, поэтому чистое золото можно разрезать ножом. В сплавах твердость золота значительно увеличивается, поэтому мы часто можем видеть в исторических фильмах или книгах, как раньше золото пробовали «на зуб». Действительно, выпускавшиеся ранее золотые монеты состояли почти из чистого золота и на них можно было оставить след при надкусывании. На поддельных монетах, в которых содержание золота было меньше, оставить зубами след не возможно.
Золото является наиболее ковким металлом. Его можно не нагревая расковать в полупрозрачные листочки, толщиной примерно от 1 до 0,1 мкм (толщина человеческого волоса от 80 до 110 мкм), которые при этом сохранят цвет и все свойства золота. Это так называемое «сусальное» золото, которым покрывают купола церквей и предметы интерьера. Из одного грамма золота получается лист площадью примерно в 0,5 м2. Таким образом, золотом можно декорировать значительные площади и практически любые материалы. При этом, стоимость самого золота будет относительно невелика и большая часть затрат уйдет на оплату работы мастера и сопутствующих материалов.
Золото очень пластичный и тягучий металл, который позволяет придавать ему любую форму, растягивать и сжимать, сгибать не ломая. К примеру, из одного грамма золота получают 100 метров проволоки диаметром 0,025 мм, которую используют в электронной промышленности для создания электрических цепей в микросхемах.
Также, широкое применение золота в производстве микроэлектроники обеспечивается его низким сопротивлением электричеству, хорошей теплопроводностью и устойчивостью к окислению.
Золото прекрасно отражает инфракрасный свет. Это свойство используют в системах остекления высотных зданий, покрывая стекла тончайшим золотым напылением, не позволяющим инфракрасным лучам проникнуть внутрь и тем самым снижая расходы на охлаждение здания. Золотым напылением покрыты визоры шлемов космонавтов. Золото в комбинации со специальным пластиком полностью защищает глаза космонавтов от агрессивных инфракрасных и ультрафиолетовых излучений, пропуская при этом видимую часть света.
Золото прекрасно поддается различным видам обработки, полировке, пайке, легко образует сплавы с другими металлами. Все эти свойства обусловили широкое применение золота для изготовления ювелирных изделий с самых древних времен.
Химические свойства золота
Химический символ золота — Au, происходит от латинского слова «aurum» — «сияющая заря».
Золото является одним из самых инертных веществ. В обычных условиях оно не реагирует с какими-либо природными веществами. Исключение составляет лишь ртуть, с которой золото при взаимодействии образует амальгаму.
Золото не растворяется в кислотах и щелочах. Исключение составляет царская водка (смесь концентрированных азотных и соляных кислот). Алхимики иллюстрировали растворение золота царской водкой изображением льва, пожирающего солнце.
Также, золото растворяется в жидком броме и в водных растворах цианидов при доступе кислорода. Медленно растворяется при взаимодействии с хлорной и бромной водой, растворе йода в йодистом калии (спиртовой раствор йода обычная вещь в бытовых аптечках).
При нагревании реакционность золота значительно возрастает. К примеру, его можно растворить в горячей концентрированной селеновой кислоте, серной кислоте при добавлении окислителя. При нагреве идет взаимодействие с галогенами и их соединениями, а также с некоторыми другими веществами.
Все соединения золота непрочны и оно достаточно легко восстанавливается до чистого металла. К примеру, соединение ртути с золотом (амальгаму) достаточно просто нагреть до температуры 750-800 °С.
В обычных бытовых условиях мало что химически может повлиять на золотые украшения, однако не следует допускать их взаимодействия с веществами, содержащими ртуть, хлор, йод.
ЮВЕЛИРНЫЕ МЕТАЛЛЫ — КАТАЛОГ | ЮВЕЛИРНЫЕ МЕТАЛЛЫ — СПРАВОЧНИК
Всё о золоте | Все о серебре | Все о платине | Все о палладии
Золотые сплавы и их цвета | Пробы для золота | Таблица физико-химических свойств драгоценных металлов | Как проверить золото на подлинность? | Как проверить платину? | Где в природе встречается золото | Основные золотые месторождения и их виды
Поделитесь статьей с друзьями
Работы дизайнеров из каталога ЮВЕЛИРУМ
Физические свойства бронзы
Обрабатываемость резанием практически всех бронз составляет 20% (по отношению к ЛС63-3). Исключение составляют оловянно-свинцовые бронзы БрОЦС с очень хорошей обрабатываемостью ( 90% для БрОЦС5-5-5).
Модуль упругости Е разных марок меняется в широких пределах: от 10000 (БрОФ, БрОЦ) до14000(БрКН1-3, БрЦр). Модуль сдвига G меняется в пределах 3900-4500. Эти величины сильно зависят от состояния бронзы (литье,прокат, до и после облагораживания). Для нагартованных лент наблюдается анизотропия по отношению к направлению прокатки. Ударная вязкость бронзы в основном меньше, чем ударная вязкость меди (для сопоставимости результатов все значения приведены для литья в кокиль):
Электропроводность бронзы намного ниже, чему меди и многих латуней (значения удельного сопротивления приведены в мкОм*м):
Низкое удельное сопротивление имеют низколегированные бронзовые сплавы БрКд, БрМг, БрЦр, БрХ.. Величина электропроводности имеет существенное значение для бронз, используемых для изготовления коллекторных полос, электродов сварочных машин, для пружинящих электрических контактов. Приведенные значения являются ориентировочными, т.к.на величину сопротивления оказывает влияние состояние материала. Особенно сильно оно может измениться под влиянием облагораживания (в сторону уменьшения, это касается БрХ, БрЦр, БрКН, БрБ2 и др.). Например, электросопротивление БрБ2 до и после облагораживания составляют 0.1 и 0.07 мкОм*м.
Теплопроводность бронзы намного ниже теплопроводности меди и ниже теплопроводности латуни (значения приведены вкал/cм*сС):
Высокую теплопроводность имеют низколегированные бронзы. Облагораживание улучшает теплопроводность. Высокая теплопроводность особенно важна для обеспечения отвода тепла в узлах трения и в электродах сварочных машин. Низкая теплопроводность облегчает процесс сварки бронзовых деталей. Сопротивление серебряной бронзы (медь легированная серебром до 0.25%) как и у чистой меди, но такой сплав имеет большую температуру рекристаллизациии малую ползучесть при высоких температурах.
металл
: физические свойства | Infoplease
Металлы настолько сильно различаются по твердости, пластичности (возможность вытягивания в проволоку), ковкости, прочности на разрыв, плотности и температуре плавления, что невозможно провести определенную границу между ними и неметаллами. Самый твердый элементарный металл – хром; самый мягкий, цезий. Медь, золото, платина и серебро особенно пластичны. Большинство металлов податливы; золото, серебро, медь, олово и алюминий в высшей степени таковы.Некоторые металлы, демонстрирующие большую прочность на растяжение, – это медь, железо и платина. Три металла (литий, калий и натрий) имеют плотность менее одного грамма на кубический сантиметр при обычных температурах и поэтому легче воды. Некоторые тяжелые металлы, начиная с самых плотных, включают осмий, иридий, платину, золото, вольфрам, уран, тантал, ртуть, гафний, свинец и серебро.
Для многих промышленных применений важны температуры плавления металлов. Вольфрам плавится или плавится только при очень высоких температурах (3370°C.), а цезий имеет температуру плавления 28,5°C. Лучшим металлическим проводником электричества является серебро. Медь, золото и алюминий следуют в указанном порядке. Все металлы являются относительно хорошими проводниками тепла; серебро, медь и алюминий являются особенно проводящими. Радиоактивный металлический уран используется в котлах реакторов для выработки пара и электроэнергии. Плутоний, еще один радиоактивный элемент, используется в ядерном оружии и ядерных реакторах, а также в кардиостимуляторах. Некоторые из радиоактивных металлов, не встречающихся в природе, напр.g., фермий и сиборгий, образуются ядерной бомбардировкой.
Некоторые элементы, например мышьяк и сурьма, проявляют как металлические, так и неметаллические свойства и называются металлоидами. Кроме того, хотя все металлы образуют кристаллы, это характерно и для некоторых неметаллов, например для углерода и серы.
Электронная энциклопедия Колумбии, , 6-е изд. Авторское право © 2012, издательство Колумбийского университета. Все права защищены.
См. больше статей энциклопедии по: Химия: общая
Какое физическое свойство меди? – Ответы на все
Какое физическое свойство меди?
Свойства: Медь имеет температуру плавления 1083.4 +/- 0,2°C, температура кипения 2567°C, удельный вес 8,96 (20°C), валентность 1 или 2. Медь имеет красноватый цвет и приобретает яркий металлический блеск. Он податлив, пластичен и хорошо проводит электричество и тепло.
Является ли медь физическим или химическим свойством?
Например, чистая медь всегда представляет собой красновато-коричневое твердое вещество (физическое свойство) и всегда растворяется в разбавленной азотной кислоте с образованием голубого раствора и коричневого газа (химическое свойство).
Каковы основные свойства меди?
Основные свойства меди:
- Высокая электропроводность.
- Высокая пластичность.
- Хорошая теплопроводность.
- Коррозионная стойкость.
- Хорошая обрабатываемость.
- Антимикробные свойства/стойкость к биообрастанию.
- Немагнитный.
Каковы 2 химических свойства меди?
Химические свойства меди – Воздействие меди на здоровье – Воздействие меди на окружающую среду
Атомный номер | 29 |
---|---|
Электроотрицательность по Полингу | 1.9 |
Плотность | 8,9 г.см-3 при 20°C |
Температура плавления | 1083 °С |
Температура кипения | 2595 °С |
Каковы свойства и применение меди?
Большая часть меди используется в электрическом оборудовании, таком как проводка и двигатели. Это потому, что он очень хорошо проводит тепло и электричество, и его можно втянуть в провода. Он также используется в строительстве (например, кровля и сантехника) и в промышленном оборудовании (например, в теплообменниках).
Каковы преимущества и недостатки меди?
Несмотря на то, что это прочный металл (способный выдерживать давление 1000 фунтов на квадратный дюйм), медь также легкая, что облегчает работу с ней (экономия затрат на оплату труда), а также ее легче растягивать на большие расстояния без опор. Это также дешевле, чем сталь и не содержит свинца.
Каковы физические и химические свойства меди, серебра и золота? – Найти 1 ответ и решение
Группа IB. Медь, серебро и золото
Группа IB периодической таблицы содержит три химических элемента — медь Cu, серебро Ag и золото Au.
Атомы этих элементов имеют следующие конфигурации:
29CU-1 S 22 S 22 P 63 S 23 P 63 D 104 S 1 [AR] 3D102 S 147AG-1 S 22 S 22 P 63 S 23 P 63 D 104 S 24 P 64 D 105 S 1 [KR] 4 D 105 S 179AU-1 S 22 S 22 P 63 S 23 P 63 D 104 S 24 P 64 D 104 F 145 S 25 P 65 D 106 S 1[Xe]5 д 106 с 1
Содержимое
Свойства элементов группы IB
Собственность
Медь
Серебро
Золото
Электронная конфигурация
[Ar] 3d102 s 1[Kr] 4 d 105 s 1[Xe] 5 d 106 s 1
Температура плавления, °С
124522003390
Температура кипения, °С
196245675600
Плотность, г/см3
8.911.520.53
Энергия ионизации, кДж/моль
Электроотрицательность (шкала Полинга)
Стандартный потенциал (вольт),
M + + e– → M 0
Ковалентный радиус, Å
1.281.441.44
Ионный радиус, Å
0.961.661.37
Химические свойства меди
[Вверх]
Медь имеет две распространенные степени окисления: +1 и +2.Соединения меди преимущественно ионные и содержат Cu+ или Cu2+. Электронная конфигурация меди: [Ar]3 d 104 s 1. Она теряет 4 s электронов, давая Cu+, и может потерять также один из 3 d электронов, давая Cu2+.
Медь металл реагирует непосредственно с хлором и кислородом только при нагревании:
Сu + Cl2 CuCl2; 2Cu + O2 2CuO.
С разбавленными кислотами (кроме азотной) металлическая медь не реагирует.
Концентрированные серная и азотная кислоты реагируют с медью при нагревании:
Сu + 2h3SO4(конц.) CuSO4 + SO2↑ + 2h3O;
3Cu + 8HNO3(дил) 3Cu(NO3)2 + 2NO↑ + 4h3O;
Cu + 4HNO3(конц.) Cu(NO3)2 + 2NO2↑ + 2h3O.
Степень окисления +1
При сильном нагревании CuO с медными опилками или медным порошком образуется красный оксид меди(l), Cu2O:
CuO + Cu Cu2O.
Черный сульфид меди(l), Cu2S, может быть получен простым нагреванием сульфида меди(ll), CuS:
2CuS Cu2S + S.
Также можно получить путем нагревания необходимого количества меди и серы:
2Cu + S Cu2S.
Белый хлорид меди(I), CuCl, образуется при пропускании газообразного HCl над нагретой медью:
2Cu + 2HCl(г) 2CuCl + h3↑.
Иодид меди(l) может быть получен восстановлением Cu2+ с помощью I– в реакции:
2CuSO4 + 4KI → 2Cul↓ + l2 + 2K2SO4.
Иодид меди(l) нерастворим в воде. Единственными соединениями меди(l), которые можно получить в водном растворе, являются нерастворимые соединения, такие как Cul, поскольку Cu+ нестабилен в водном растворе; реагирует, давая Cu и Cu2+:
2CuCl → CuCl2 + Cu↓.
Степень окисления +2
При сильном нагревании меди на воздухе или в кислороде образуется черный оксид меди(II), CuO:
2Cu + O2 2CuO.
Может быть также получен нагреванием нитрата меди(II):
2Cu(NO3)2 2CuO + 4NO2↑ + O2↑.
Нитрат меди(II) можно получить в виде синих гидратированных кристаллов Cu(NO3)2´6h3O путем выпаривания раствора, приготовленного путем растворения меди в азотной кислоте.Наиболее распространенной солью меди(II) является сульфат меди(II), CuSO4. Его можно получить реакцией CuO с разбавленной серной кислотой:
CuO + h3SO4 → CuSO4 + h3O.
Кристаллизуется из раствора в виде крупных голубых кристаллов гидрата CuSO4´5h3O. Четыре молекулы воды пентагидрата сульфата меди (II) связаны с Cu2+, а пятая связана водородной связью с ионом сульфата, а также с молекулами воды на ионе меди. Мы можем записать формулу как [Cu(h3O)4]SO4´h3O, чтобы лучше представить ее структуру.Белый CuSO4 образуется при сильном нагревании гидрата:
CuSO4´5h3O CuSO4 + 5h3O,
Называется безводный сульфат меди(II). Его можно использовать для обнаружения небольших количеств воды в растворителях, таких как спирт и эфир; когда его добавляют к этим жидкостям, он становится синим, если присутствует вода, потому что образуется гидрат CuSO4´5h3O.
Сульфид меди(II) представляет собой черное твердое вещество, которое образуется при нагревании меди с избытком серы или при пропускании h3S в раствор соли Cu2+:
Cu + S CuS;
CuSO4 + h3S → CuS↓ + 2h3SO4.
Гидроксид меди(II) формируется в виде бледно-голубого осадка при добавлении OH– к раствору соли Cu2+:
CuSO4 + 2KOH → Cu(OH)2 + K2SO4.
Этот осадок растворяется в водном растворе Nh4, образуя темно-синий раствор иона тетрааминомеди(II), [Cu(Nh4)4]2+:
Cu(OH)2 + 4Nh5OH → [Cu(Nh4)4](OH)2 + 4h3O,
и в концентрированном растворе гидроксида натрия, что дает темно-синий раствор иона тетрагидроксокупрата (II):
Cu(OH)2 + 2NaOH → Na2[Cu(OH)4].
, если Cu(OH)2 нагревают, образуется черный CuO:
Cu(OH)2 CuO + h3O.
Ион Cu2+ образует стабильные хелаты с аминокислотами и этиленгликолем:
Химические свойства серебра
[Вверх]
Химически серебро малоактивно. Не растворяется в разбавленных кислотах, но растворяется в концентрированной азотной или серной кислоте:
Ag + 2h3SO4(конц.) Ag2SO4 + SO2↑ + 2h3O;
Ag + 2HNO3 (конц.) AgNO3 + NO2↑ + h3O;
и не реагирует с кислородом или водой при обычных температурах.
Оксид серебра формируется в виде темно-коричневого осадка при добавлении OH– к раствору соли Ag+:
2AgNO3 + 2KOH → Ag2O↓ + 2KNO3 + h3O.
Растворяется в растворе гидроксида аммиака:
Ag2O + 4Nh5OH + h3O → 2[Ag(Nh4)2]OH + 4h3O.
Формы серебра, нерастворимые в воде, сульфид (черный цвет), хлорид (белый цвет), бромид (бело-желтый цвет) и йодид (желтый цвет):
AgNO3 + h3S → Ag2S↓ + 2HNO3;
AgNO3 + HCl → AgCl↓ + HNO3;
AgNO3 + HBr → AgBr↓ + HNO3;
AgNO3 + HI → AgI↓ + HNO3.
Хлорид, бромид и йодид серебра растворяют в растворе тиосульфата натрия:
AgCl( с ) + 2Na2S2O3 → Na3[Ag(S2O3)2]( водный раствор ) + NaCl;
AgBr( с ) + 2Na2S2O3 → Na3[Ag(S2O3)2]( водный раствор ) + NaBr;
AgI( с ) + 2Na2S2O3 → Na3[Ag(S2O3)2]( водный раствор ) + NaI.
Ион Ag+ является окислителем и реагирует с формальдегидом (HCHO) или глюкозой (C6h22O6) (реакция серебряного зеркала):
HCHO + 2[Ag(Nh4)2]OH → HCOOH + 2Ag↓ + 4Nh4↑ + h3O;
C6h22O6 + 2[Ag(Nh4)2]OH → C6h22O7 + 2Ag↓ + 4Nh4↑ + h3O.
Химические свойства золота
[Вверх]
Золоточрезвычайно неактивно и в соединениях имеет две распространенные степени окисления: +1 и +3.
Не боится воздуха, тепла, влаги и большинства растворителей. Однако растворяется в водном растворе, содержащем хлор и соляную кислоту:
Au + 3Cl + HCl → H[AuCl4].
Растворяется в некоторых окислительных смесях, например цианид-иона с кислородом:
4Au + O2 + 8NaCN + 2h3O → 4Na[Au(CN)2] + 4NaOH,
и в царской водке (смесь соляной и азотной кислот):
Au + HNO3 + 4HCl → H[AuCl4] + NO↑ + 2h3O.
Оксид и гидроксид золота (III) являются амфотерными соединениями:
Au(OH)3 + NaOH → Na[Au(OH)4];
Au(OH)3 + 4HNO3 → H[Au(NO3)4] + 3h3O.
Ион Au3+ является сильным окислителем, например:
3Na2[Sn(OH)4] + 2AuCl3 + 6h3O → 3Na[Sn(OH)6] + 2Au↓ +6HCl .
Каковы свойства и применение меди?
Следуя статье о железе, опубликованной в прошлом месяце, следующий выпуск серии «Металлы и их свойства» будет посвящен меди.Хотя ранее мы немного говорили об этом металле в нашей статье «Различные металлы и их свойства», теперь мы рассматриваем его более подробно.
Как и в случае с железом, знание всех свойств меди может помочь вам понять, можно ли ее переработать — как эксперты по переработке металлолома, мы стремимся предоставить точную и полезную информацию о черных и цветных металлах, которая может помочь вы получите более глубокое понимание мира переработки!
Что такое медь?Как химический элемент, медь представлена символом Cu в периодической таблице и имеет атомный номер 29.Как металл медь пластична и ковка и ценится за ее высокую тепло- и электропроводность. Медь встречается в природе, но ее самый большой источник находится в таких минералах, как халькопирит и борнит, и вы можете легко идентифицировать ее по красновато-золотому цвету.
Медь производится массивными звездами, и ее также можно найти в коре нашей планеты. Самая большая масса найденной меди весила впечатляющие 420 тонн!
Этот элемент также является ключевой частью анатомии человека и животных. У людей медь обычно содержится в печени, мышцах и костях со значением 1.4мг и 2,1мг меди на килограмм веса в пределах нормы.
История медиНазвание этого металла происходит от древнеанглийского «coper», которое, в свою очередь, происходит от латинского «Cyprium aes», что означает «металл с Кипра».
Медь восходит к доисторическим временам, поскольку она была известна некоторым из древнейших цивилизаций мира. Считается, что это был первый металл, который начали обрабатывать люди (самое раннее его использование около 9000 г. до н.э.), поскольку его можно найти в относительно чистых формах — это означает, что этот металл не обязательно нужно извлекать из руды.
Исторически медь также использовалась в качестве пигмента, поскольку было известно, что она придает синий или зеленый цвет таким минералам, как азурит и малахит.
Этот металл был первым, который был выплавлен из руды (около 5000 г. до н.э.), первым был отлит в форму с помощью формы (около 4000 г. до н.э.) и первым сплавом с оловом для создания бронзы (около 3500 г. до н.э.) .
Каковы свойства меди? Медьобладает множеством свойств, которые делают ее необходимой для современной металлургии и очень полезной в различных отраслях промышленности и секторах.Некоторые из наиболее востребованных свойств меди и ее сплавов включают следующее:
- Патина – зеленый слой медного купороса, образующийся на поверхности металла в результате коррозии; однако этот слой является защитным и предотвращает дальнейшее разрушение металла.
- Коррозионная стойкость – этот металл очень устойчив к коррозии, а медные сплавы были найдены почти в идеальном состоянии после тысячелетнего захоронения.
- Пластичность и пластичность – с медью легко работать, особенно когда речь идет об изготовлении и соединении.
- Anti-Bacterial – соединения меди используются в качестве бактериостатических средств и фунгицидов, а также в качестве консервантов для древесины. Гигиенические свойства этого металла делают его полезным для замедления роста бактерий, таких как кишечная палочка, легионелла и MRSA.
- Прочность – одним из замечательных механических свойств меди является прочность.Медь — прочный металл, как и ее сплавы, поскольку они не разрушаются и не становятся хрупкими при воздействии температур ниже 0 o
- Немагнитный – это цветной металл, что делает его пригодным, например, для военных целей.
- Легко легировать – еще одним свойством, которое делает медь столь востребованной, является ее способность легко сплавляться с другими металлами, такими как цинк, олово и никель.
- Проводимость – медь является отличным электрическим и тепловым проводником, поэтому ее часто используют для электропроводки.
Одним из интересных фактов о меди является то, что, как упоминалось выше, ее можно сплавлять с различными типами металлов. Следующий список ни в коем случае не является исчерпывающим, вместо этого он фокусируется на некоторых из наиболее часто используемых сплавов:
Бронза – образовалась при сплаве меди с небольшим количеством олова . Открытие этого нового металла привело к началу так называемого бронзового века.
Латунь – при сплаве меди с цинком получается латунь, которая обычно имеет желтый цвет и используется для широкого спектра применений, например, для изготовления музыкальных инструментов.
Мельхиор – образуется при сплаве меди с никелем , что создает более прочный металл, используемый, среди прочего, для производства монет, скобяных изделий, морской техники и вооружений.
Стерлинговое серебро – широко используется в ювелирных изделиях, стерлинговое серебро образуется при добавлении других металлов, таких как медь, к серебру .
Таким образом, существует множество применений медных сплавов, от предметов повседневного обихода до промышленных применений, таких как оружие.
Для чего используется медь?Медь имеет огромный спектр применения.
Поскольку этот металл очень хорошо проводит тепло и электричество, он используется в электрическом оборудовании, таком как проводка, разъемы и двигатели. Медь также часто используется в строительстве (например, в сантехнике) и в промышленном оборудовании.
Его также можно найти в гребных винтах лодок, днищах кастрюль, резервуарах для воды, полах с подогревом, автомобильных радиаторах, телевизорах, компьютерах и многом другом.Антибактериальные свойства меди и ее сплавов делают их невероятно полезными для приготовления пищи, сантехнических систем, дверных ручек и больниц. Сульфат меди можно найти в сельском хозяйстве как яд и альгицид при очистке воды.
Медь, латунь или бронза также могут использоваться для украшений, таких как украшения, статуи и части зданий (например, кровли).
Переработка медиМы твердо верим в то, что вносим свой вклад в защиту окружающей среды, и это относится и к переработке меди.В конце концов, если нам не придется, например, добывать, очищать или производить медь, воздействие на окружающую среду будет меньше. И одна из замечательных особенностей этого металла заключается в том, что его можно перерабатывать без потери качества и производительности, а это означает, что его можно легко использовать для других целей.
Спрос Европы на медь все больше и больше удовлетворяется за счет вторичной переработки. Считается, что 41,5% меди, используемой в Европе, приходится на переработку, что является хорошей новостью, учитывая, что мировой спрос на этот металл сейчас выше, чем когда-либо.
В 2011 году было повторно использовано 2,1 миллиона тонн меди, и, поскольку мы все больше зависим от нее (для наших компьютеров, солнечных систем, двигателей, электропроводки и т. д.), у ее переработки нет недостатков! Даже энергия, используемая для извлечения меди, будет снижена, что, в свою очередь, приведет к уменьшению выбросов таких газов, как CO 2 , в атмосферу.
Применение меди делает ее востребованным металлом во многих отраслях промышленности. В Morecambe Metals мы считаем, что знание свойств металлов может помочь вам узнать больше о материалах, которые вы используете в своей отрасли или проектах.Поскольку наше общество становится все более экологически сознательным, крайне важно сосредоточиться на устойчивых способах использования металла, таких как переработка.
Чтобы узнать больше об этой или любых других наших услугах, не стесняйтесь обращаться к нам или звонить по телефону 01524 69191. Вы также можете следить за нами на Facebook и LinkedIn, чтобы быть в курсе наших последних новостей.
1.3 Физические и химические свойства – Химия 2e
Цели обучения
К концу этого раздела вы сможете:
- Определение свойств и изменений в материи как физических или химических
- Определите свойства материи как экстенсивные или интенсивные
Характеристики, отличающие одно вещество от другого, называются свойствами.Физическое свойство – это характеристика вещества, не связанная с изменением его химического состава. Знакомые примеры физических свойств включают плотность, цвет, твердость, температуры плавления и кипения и электрическую проводимость. Некоторые физические свойства, такие как плотность и цвет, можно наблюдать, не изменяя физического состояния вещества. Другие физические свойства, такие как температура плавления железа или температура замерзания воды, можно наблюдать только по мере того, как материя претерпевает физические изменения.Физическое изменение — это изменение состояния или свойств материи без какого-либо сопутствующего изменения химического состава веществ, содержащихся в этой материи. Физические изменения наблюдаются при плавлении воска, при растворении сахара в кофе и при конденсации пара в жидкую воду (рис. 1.18). Другие примеры физических изменений включают намагничивание и размагничивание металлов (как это делается с обычными защитными бирками от кражи) и измельчение твердых частиц в порошок (что иногда может привести к заметным изменениям цвета).В каждом из этих примеров происходит изменение физического состояния, формы или свойств вещества, но не изменение его химического состава.
Фигура 1,18 (а) Воск претерпевает физические изменения, когда твердый воск нагревается и образует жидкий воск. (b) Конденсация пара внутри кастрюли представляет собой физическое изменение, поскольку водяной пар превращается в жидкую воду. (кредит a: модификация работы «95jb14»/Wikimedia Commons; кредит b: модификация работы mjneuby/Flickr)
Превращение одного типа материи в другой тип (или неспособность к изменению) является химическим свойством.Примеры химических свойств включают воспламеняемость, токсичность, кислотность и многие другие типы реактивности. Железо, например, соединяется с кислородом в присутствии воды, образуя ржавчину; хром не окисляется (рис. 1.19). Нитроглицерин очень опасен, потому что легко взрывается; неон почти не представляет опасности, потому что он очень неактивен.
Фигура 1.19 а) Одним из химических свойств железа является то, что оно ржавеет; (б) одно из химических свойств хрома состоит в том, что он этого не делает.(кредит a: модификация работы Тони Хигетта; кредит b: модификация работы Atoma/Wikimedia Commons)
Химическое изменение всегда производит один или несколько типов материи, которые отличаются от материи, существовавшей до изменения. Образование ржавчины — это химическое изменение, потому что ржавчина — это вещество, отличное от железа, кислорода и воды, существовавших до образования ржавчины. Взрыв нитроглицерина — это химическое изменение, поскольку образующиеся газы представляют собой вещества, сильно отличающиеся от исходного вещества.Другие примеры химических изменений включают реакции, проводимые в лаборатории (например, взаимодействие меди с азотной кислотой), все формы возгорания (горения) и приготовление, переваривание или гниение пищи (рис. 1.20).
Фигура 1,20 а) Медь и азотная кислота подвергаются химическому превращению с образованием нитрата меди и коричневого газообразного диоксида азота. (b) Во время горения спички целлюлоза спички и кислород воздуха претерпевают химические изменения с образованием углекислого газа и водяного пара.(c) Приготовление красного мяса вызывает ряд химических изменений, в том числе окисление железа в миоглобине, что приводит к знакомому изменению цвета с красного на коричневый. (d) Коричневый цвет банана — это химическое изменение, когда образуются новые, более темные (и менее вкусные) вещества. (кредит b: модификация работы Джеффа Тернера; кредит c: модификация работы Глории Кабада-Леман; кредит d: модификация работы Роберто Верцо)
Свойства материи попадают в одну из двух категорий. Если свойство зависит от количества присутствующей материи, это экстенсивное свойство.Масса и объем вещества являются примерами экстенсивных свойств; например, галлон молока имеет большую массу, чем чашка молока. Стоимость экстенсивного свойства прямо пропорциональна количеству рассматриваемой материи. Если свойство образца вещества не зависит от количества присутствующего вещества, оно является интенсивным свойством. Температура является примером интенсивного свойства. Если галлон и чашка молока имеют температуру 20 °C (комнатная температура), то при их объединении температура остается равной 20 °C.В качестве другого примера рассмотрим различные, но связанные свойства тепла и температуры. Капля горячего растительного масла, разбрызганная на руку, вызывает кратковременный незначительный дискомфорт, в то время как кастрюля с горячим маслом вызывает серьезные ожоги. И капля, и горшок с маслом имеют одинаковую температуру (интенсивное свойство), но горшок явно содержит гораздо больше тепла (экстенсивное свойство).
Химия в повседневной жизни
Опасный алмаз
Возможно, вы видели символ, показанный на рисунке 1.21 на контейнерах с химическими веществами в лаборатории или на рабочем месте. Этот алмаз химической опасности, который иногда называют «огненным бриллиантом» или «алмазом опасности», предоставляет ценную информацию, которая кратко суммирует различные опасности, о которых следует помнить при работе с конкретным веществом.
Фигура 1,21 Алмаз опасности Национального агентства противопожарной защиты (NFPA) обобщает основные опасности химического вещества.
Система идентификации опасностей 704 Национального агентства противопожарной защиты (NFPA) была разработана NFPA для предоставления информации о безопасности определенных веществ.Система подробно описывает воспламеняемость, реакционную способность, опасность для здоровья и другие опасности. В общем ромбовидном символе верхний (красный) ромб указывает уровень пожароопасности (температурный диапазон температуры вспышки). Синий (левый) ромб указывает на уровень опасности для здоровья. Желтый (справа) ромб описывает опасность реактивности, например, насколько легко вещество подвергается детонации или сильному химическому изменению. Белый (нижний) ромб указывает на особую опасность, например, если он является окислителем (который позволяет веществу гореть в отсутствие воздуха/кислорода), вступает в необычную или опасную реакцию с водой, является коррозионным, кислотным, щелочным, биологически опасные, радиоактивные и так далее.Каждая опасность оценивается по шкале от 0 до 4, где 0 — отсутствие опасности, 4 — чрезвычайно опасная.
Хотя многие элементы резко различаются по своим химическим и физическим свойствам, некоторые элементы обладают сходными свойствами. Например, многие элементы хорошо проводят тепло и электричество, тогда как другие являются плохими проводниками. Эти свойства можно использовать для разделения элементов на три класса: металлы (элементы с хорошей проводимостью), неметаллы (элементы с плохой проводимостью) и металлоиды (элементы с промежуточной проводимостью).
Периодическая таблица — это таблица элементов, в которой элементы со схожими свойствами расположены близко друг к другу (рис. 1.22). Вы узнаете больше о периодической таблице, когда продолжите изучение химии.
Фигура 1,22 Периодическая таблица показывает, как элементы могут быть сгруппированы в соответствии с некоторыми сходными свойствами. Обратите внимание, что цвет фона обозначает, является ли элемент металлом, металлоидом или неметаллом, тогда как цвет символа элемента указывает, является ли он твердым, жидким или газообразным.
Каковы некоторые физические и химические свойства меди? – Easyrwithpractice.com
Каковы некоторые физические и химические свойства меди?
Свойства: Медь имеет температуру плавления 1083,4 +/- 0,2°C, температуру кипения 2567°C, удельный вес 8,96 (20°C), валентность 1 или 2. Медь имеет красноватый цвет и приобретает яркую окраску. металлический блеск. Он податлив, пластичен и хорошо проводит электричество и тепло.
Какое из следующих химических свойств меди?
Химические свойства основаны на способности или неспособности вещества производить новые вещества.Пластичность, цвет, блеск, тепло- и электропроводность меди контрастируют с ее способностью реагировать с концентрированной азотной кислотой и нитратом серебра.
Медные трубы какого типа используются под землей?
Медная труба типа K
Как долго медные трубы прослужат под землей?
50 лет
Какая медь толще L или M?
Медь типа L тоньше, чем тип K, но толще, чем тип M.
На какое давление рассчитана медь типа М?
Тип M, 3/4-дюймовая тянутая медная труба выдерживает до 701 фунта на квадратный дюйм при 100 градусах.Отожженная медная труба того же размера и типа имеет максимальное номинальное давление всего 337 фунтов на квадратный дюйм.
Можно ли использовать медное охлаждение типа L?
Медные трубытипа L обычно используются для бытовых систем водоснабжения. Медь, используемая для охлаждения, обозначается как медь ACR. Измерьте внутренний и внешний диаметр конца трубы. Внешний диаметр типа L всегда на 1/8 дюйма больше, чем размер, указанный на трубке.
Почему железо быстрее ржавеет при контакте с медью?
Нажмите, чтобы увидеть взаимодействие между молекулами кислорода и атомами железа.Металлы ржавеют быстрее в море, потому что соленая вода позволяет электронам легко перетекать от металла к молекуле кислорода. Медь заставляет железную трубу ржаветь быстрее, чем обычно.
Предотвращает ли медь ржавление?
Это называется жертвенной защитой и используется в коммерческих целях для защиты железных конструкций в агрессивных средах. Гвоздь, обернутый медью, будет ржаветь больше всего.
Медь разъедает железо?
Ржавление обычно называют окислением и происходит, когда железо или металлические сплавы, содержащие железо (т.е. стали) подвергаются длительному воздействию воды и кислорода. Итак, ответ на вопрос НЕТ, медь не ржавеет. Однако он ржавеет!
ПЕНТАГИДРАТ СУЛЬФАТА МЕДИ | Камео Химикалс
Химический паспорт
Химические идентификаторы
То Поля химического идентификатора включают общие идентификационные номера, алмаз NFPA У.S. Знаки опасности Департамента транспорта и общее описание хим. Информация в CAMEO Chemicals поступает из множества источники данных.NFPA 704
данные недоступны
Общее описание
ФИЗИЧЕСКОЕ ОПИСАНИЕ: Синие кристаллические гранулы или порошок. Температура плавления 110°С (с разложением). Негорючий. Отвратительный металлический привкус. Без запаха. Белый при обезвоживании. (НТП, 1992 г.)
Опасности
Предупреждения о реактивности
никто
Реакции воздуха и воды
Медленно выцветает на воздухе.Вода.
Пожарная опасность
В литературных источниках указано, что это соединение негорюче. (НТП, 1992 г.)
Опасность для здоровья
СИМПТОМЫ: Симптомы воздействия этого соединения могут включать раздражение кожи, глаз, дыхательных путей и желудочно-кишечного тракта. Проглатывание может вызвать серьезные желудочно-кишечные расстройства (рвота, боль, локальная коррозия и кровоизлияния), прострацию, анурию, гематурию, анемию, увеличение количества лейкоцитов, желтуху, кому, затруднение дыхания и недостаточность кровообращения.Он также может вызывать тошноту, металлический привкус, потливость, головную боль, чувство жжения в пищеводе и желудке, боли в животе, геморрагический гастрит, слабый пульс, мелену, конъюнктивит, изъязвление роговицы, гипотонию и помутнение. Другие симптомы могут включать водянистый и кровянистый стул, жжение во рту и горле, поражение печени с желтухой, гемолиз, тенезмы, позывы на рвоту, коллапс и судороги. Сообщалось о случаях уремии, шока и почечной недостаточности. Контакт с кожей может вызвать жжение и ожоги первой степени при кратковременном воздействии.Длительное воздействие может привести к ожогам второй степени. Лица с ранее существовавшей болезнью Вильсона могут быть более восприимчивы к этим эффектам.ОСТРЫЕ/ХРОНИЧЕСКИЕ ОПАСНОСТИ: Это соединение токсично при проглатывании. Это сильный раздражитель. При нагревании до разложения выделяет ядовитые пары оксидов серы. Может всасываться через кожу (многократное нанесение на кожу вызывает отравление). (НТП, 1992 г.)
Профиль реактивности
ПЕНТАГИДРАТ СУЛЬФАТА МЕДИ можно обезвоживать нагреванием.Служит слабым окислителем. Вызывает воспламенение гидроксиламина. Легко набирает воду. Гидратированная соль энергично восстанавливается гидроксиламином [Mellor 8:292 (1946-1947)]. Обе формы несовместимы с тонко измельченными металлами. Оба несовместимы с магнием, разъедают сталь и железо, могут реагировать со щелочами, фосфатами, газообразным ацетиленом, гидразином или нитрометаном, а также могут реагировать с бета-нафтолом, пропиленгликолем, сульфатиазолом и триэтаноламином, если pH превышает 7 (NTP, 1992). . Оба действуют как кислые соли, разъедают металлы и раздражают ткани.
Принадлежит к следующей реакционной группе (группам)
Потенциально несовместимые абсорбенты
Информация отсутствует.
Рекомендации по ответу
То Поля рекомендации ответа включают в себя расстояния изоляции и эвакуации, а также рекомендации по пожаротушение, пожарное реагирование, защитная одежда и первая помощь. То информация в CAMEO Chemicals поступает из различных источники данных.Изоляция и эвакуация
Выдержка из Руководства ERG 151 [Вещества – Токсичные (негорючие)]:В качестве непосредственной меры предосторожности изолируйте место разлива или утечки во всех направлениях на расстоянии не менее 50 метров (150 футов) для жидкостей и не менее 25 метров (75 футов) ) для твердых тел.
РАЗЛИВ: При необходимости увеличьте в подветренном направлении изоляционное расстояние, указанное выше.
ПОЖАР: Если цистерна, железнодорожная цистерна или автоцистерна вовлечены в пожар, ИЗОЛИРОВАТЬ на расстоянии 800 метров (1/2 мили) во всех направлениях; также рассмотрите первоначальную эвакуацию на 800 метров (1/2 мили) во всех направлениях. (ЭРГ, 2016)
Пожаротушение
Пожары, связанные с этим материалом, можно контролировать с помощью сухих химикатов, двуокиси углерода или галонового огнетушителя. (НТП, 1992 г.)
Непожарный ответ
НЕБОЛЬШИЕ РАЗЛИВЫ И УТЕЧКИ: Если вы пролили это химическое вещество, вам следует смочить твердый разлитый материал водой, а затем переместить смоченный материал в подходящий контейнер.Используйте впитывающую бумагу, смоченную водой, чтобы собрать оставшийся материал. Запечатайте загрязненную одежду и впитывающую бумагу в паронепроницаемый пластиковый пакет для возможной утилизации. Вымойте все загрязненные поверхности мыльным раствором. Не возвращайтесь в загрязненную зону до тех пор, пока сотрудник службы безопасности (или другое ответственное лицо) не убедится, что зона была должным образом очищена.МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ ХРАНЕНИИ: Этот материал следует хранить в условиях окружающей среды и защищать от влаги.(НТП, 1992 г.)
Защитная одежда
РЕКОМЕНДУЕМЫЙ РЕСПИРАТОР: В случае взвешивания и разбавления чистого испытуемого химического вещества наденьте полумаску, одобренную NIOSH, оснащенную картриджем для органических паров/кислых газов (специально для органических паров, HCl, кислотных газов и SO2) с фильтром пыли/тумана. (НТП, 1992 г.)
Ткани для костюмов DuPont Tychem®
Нет доступной информации.
Первая помощь
ГЛАЗА: Сначала проверьте наличие у пострадавшего контактных линз и снимите их, если они есть.Промывать глаза пострадавшего водой или физиологическим раствором в течение 20–30 минут, одновременно звоня в больницу или токсикологический центр. Не закапывайте в глаза пострадавшему какие-либо мази, масла или лекарства без специальных указаний врача. НЕМЕДЛЕННО доставьте пострадавшего после промывания глаз в больницу, даже если симптомы (например, покраснение или раздражение) не развиваются.КОЖА: НЕМЕДЛЕННО промойте пораженные участки кожи водой, сняв и изолировав всю загрязненную одежду.Тщательно промойте все пораженные участки кожи водой с мылом. При появлении таких симптомов, как покраснение или раздражение, НЕМЕДЛЕННО вызовите врача и будьте готовы доставить пострадавшего в больницу для лечения.
ПРИ ВДЫХАНИИ: НЕМЕДЛЕННО покинуть зараженную зону; сделать глубокий вдох свежего воздуха. При появлении симптомов (таких как свистящее дыхание, кашель, одышка или жжение во рту, горле или груди) вызовите врача и будьте готовы доставить пострадавшего в больницу.Обеспечьте надлежащую защиту органов дыхания спасателям, входящим в неизвестную атмосферу. По возможности следует использовать автономный дыхательный аппарат (SCBA); если это невозможно, используйте уровень защиты выше или равный рекомендованному в разделе «Защитная одежда».
ПРОГЛАТЫВАНИЕ: Некоторые тяжелые металлы являются ОЧЕНЬ ТОКСИЧНЫМИ ЯДАМИ, особенно если их соли хорошо растворимы в воде (например, свинец, хром, ртуть, висмут, осмий и мышьяк). НЕМЕДЛЕННО позвоните в больницу или в токсикологический центр и найдите активированный уголь, яичный белок или молоко на случай, если медицинский консультант порекомендует принять один из них.Также найдите сироп ипекакуаны или стакан соленой воды на случай, если медицинский консультант порекомендует вызвать рвоту. Обычно это НЕ РЕКОМЕНДУЕТСЯ без наблюдения врача. Если консультация врача недоступна, а пострадавший находится в сознании и у него нет конвульсий, дайте пострадавшему стакан взвеси активированного угля в воде или, если это невозможно, стакан молока или взбитых яичных белков и НЕМЕДЛЕННО транспортируйте пострадавшего. в больницу. Если пострадавший находится в судорогах или без сознания, ничего не давайте ртом, убедитесь, что дыхательные пути пострадавшего открыты, и положите пострадавшего на бок так, чтобы голова была ниже туловища.НЕ ВЫЗЫВАЕТ РВОТУ. НЕМЕДЛЕННО доставьте пострадавшего в больницу. (НТП, 1992 г.)
Физические свойства
Химическая формула: |
Точка воспламенения: данные недоступны
Нижний предел взрываемости (НПВ): данные недоступны
Верхний предел взрываемости (ВПВ): данные недоступны
Температура самовоспламенения: данные недоступны
Температура плавления: 297°F (обезвоживает) (НТП, 1992 г.)
Давление паров: данные недоступны
Плотность пара (относительно воздуха): данные недоступны
Удельный вес: 2.284 (НТП, 1992 г.)
Точка кипения: 1207°F при 760 мм рт.ст. (разлагается) (НТП, 1992 г.)
Молекулярная масса: 249,68 (НТП, 1992 г.)
Растворимость воды: больше или равно 100 мг/мл при 70° по Фаренгейту (НТП, 1992 г.)
Потенциал ионизации: данные недоступны
ИДЛХ: данные недоступны
AEGL (рекомендательные уровни острого воздействия)
Информация об AEGL отсутствует.ERPG (Руководство по планированию реагирования на чрезвычайные ситуации)
Информация о ERPG отсутствует.PAC (критерии защитных действий)
Химическая | ПАК-1 | ПАК-2 | ПАК-3 |
---|---|---|---|
Пентагидрат сульфата меди(II) (7758-99-8) | 12 мг/м3 | 32 мг/м3 | 190 мг/м3 |
(Министерство энергетики, 2016 г.)
Нормативная информация
То Поля нормативной информации включить информацию из У.S. Раздел III Агентства по охране окружающей среды Сводный список списки, Химический завод Министерства внутренней безопасности США антитеррористические стандарты, и Управление по охране труда и здоровья США Перечень стандартов по управлению безопасностью технологического процесса при работе с особо опасными химическими веществами (подробнее об этих источники данных).Сводный перечень списков EPA
Нормативное наименование | Номер CAS/ 313 Код категории | EPCRA 302 EHS TPQ | EPCRA 304 EHS RQ | CERCLA RQ | ЭПКРА 313 ТРИ | RCRA Код | CAA 112(r) RMP TQ |
---|---|---|---|---|---|---|---|
Соединения меди | Н100 | и | 313 |
(Список списков Агентства по охране окружающей среды, 2015 г.)
Антитеррористические стандарты DHS Chemical Facility (CFATS)
Отсутствует нормативная информация.Список стандартов OSHA по управлению безопасностью процессов (PSM)
Отсутствует нормативная информация.Альтернативные химические названия
В этом разделе представлен список альтернативных названий этого химического вещества, включая торговые названия и синонимы.
- СИНЯЯ МЕДЬ КАК
- СИНИЙ ВИТРИОЛ
- БЛЮСТОУМ
- МЕДИ (2+) СУЛЬФАТ ПЕНТАГИДРАТ
- МЕДИ (II) СУЛЬФАТ ПЕНТАГИДРАТ
- МЕДИ (II) СУЛЬФАТ ПЕНТАГИДРАТ (1:1:5)
- СУЛЬФАТ МЕДИ
- СУЛЬФАТ МЕДИ (CUSO4) ПЕНТАГИДРАТ
- ПЕНТАГИДРАТ СУЛЬФАТА МЕДИ
- СУЛЬФАТ МЕДИ
- МЕДИ(2+) СУЛЬФАТ ПЕНТАГИДРАТ
- МЕДИ(II) СУЛЬФАТ ПЕНТАГИДРАТ
- МЕДЬ-ЦИНК
- CSP
- МЕДИ СУЛЬФАТ ПЕНТАГИДРАТ
- ПРИРОДНЫЙ ХАЛЬКАНТИТ
- РИМСКИЙ ВИТРИОЛ
- ЗАЛЬЦБУРГСКИЙ ВИТРИОЛ
- КИСЛОТА СЕРНАЯ, СОЛЬ МЕДИ (2+) (1:1), ПЕНТАГИДРАТ
- СЕРНАЯ КИСЛОТА, МЕДНАЯ (2+) СОЛЬ, ПЕНТАГИДРАТ
- ТРЕУГОЛЬНИК