Формула металлический цинк: Цинк. Описание, свойства, происхождение и применение металла

alexxlab | 06.01.1970 | 2 | Разное

Содержание

Цинк. Описание, свойства, происхождение и применение металла

Цинк — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка). Эссенциальный (незаменимый) микроэлемент тканей человека. По количественному соотношению в организме занимает второе, после железа, место. Ему принадлежит ключевая роль в регенерации поврежденных тканей, так как без цинка нарушается синтез нуклеиновых кислот и белка.
 

СТРУКТУРА


Кристаллы цинка имеют гексагональную упаковку атомов. Но в отличие от плотнейшей гексагональной упаковки сферических атомов решетки цинка вытянуты в одном направлении. Каждый атом окружен шестью другими атомами, лежащими в одной плоскости или слое. Расстояние между центрами соседних атомов в этом плоском слое а равно 0,26649 нм. Внешняя электронная конфигурация атома 3d104s2. Не полиморфен.

СВОЙСТВА


При комнатной температуре хрупок, при сгибании пластинки слышен треск от трения кристаллитов (обычно сильнее, чем «крик олова»). Имеет низкую температуру плавления. Объем металла при плавлении увеличивается в соответствии со снижением плотности. С повышением температуры уменьшается кинетическая вязкость и электропроводность цинка и возрастает его удельное электрическое сопротивление. При 100—150 °C цинк пластичен. Примеси, даже незначительные, резко увеличивают хрупкость цинка. Является диамагнетиком.

ЗАПАСЫ И ДОБЫЧА


Среднее содержание цинка в земной коре — 8,3·10-3%, в основных извержённых породах его несколько больше (1,3·10-2%), чем в кислых (6·10-3%). Цинк — энергичный водный мигрант, особенно характерна его миграция в термальных водах вместе со свинцом. Из этих вод осаждаются сульфиды цинка, имеющие важное промышленное значение. Цинк также энергично мигрирует в поверхностных и подземных водах, главным осадителем для него является сероводород, меньшую роль играет сорбция глинами и другие процессы.

Месторождения цинка известны в Иране, Австралии, Боливии, Казахстане. В России крупнейшим производителем свинцово-цинковых концентратов является ОАО «ГМК Дальполиметалл»

Цинк добывают из полиметаллических руд, содержащих 1—4% Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50—60% Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты.
Основной способ получения цинка — электролитический (гидрометаллургический). Обожжённые концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах.

ПРОИСХОЖДЕНИЕ


Цинк в природе как самородный металл не встречается. Известно 66 минералов цинка, в частности цинкит, сфалерит, виллемит, каламин, смитсонит, франклинит. Наиболее распространенный минерал — сфалерит, или цинковая обманка. Основной компонент минерала — сульфид цинка ZnS, а разнообразные примеси придают этому веществу всевозможные цвета. Из-за трудности определения этого минерала его называют обманкой (др.-греч. σφαλερός — обманчивый). Цинковую обманку считают первичным минералом, из которого образовались другие минералы элемента № 30: смитсонит ZnCO

3, цинкит ZnO, каламин 2ZnO · SiO2 · Н2O. На Алтае нередко можно встретить полосатую «бурундучную» руду — смесь цинковой обманки и бурого шпата. Кусок такой руды издали действительно похож на затаившегося полосатого зверька.

ПРИМЕНЕНИЕ


Чистый металлический цинк используется для восстановления благородных металлов, добываемых подземным выщелачиванием (золото, серебро). Кроме того, цинк используется для извлечения серебра, золота (и других металлов) из чернового свинца в виде интерметаллидов цинка с серебром и золотом (так называемой «серебристой пены»), обрабатываемых затем обычными методами аффинажа.

Применяется для защиты стали от коррозии (оцинковка поверхностей, не подверженных механическим воздействиям, или металлизация — для мостов, емкостей, металлоконструкций).

Цинк используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах.

Пластины цинка широко используются в полиграфии, в частности, для печати иллюстраций в многотиражных изданиях. Для этого с XIX века применяется цинкография — изготовление клише на цинковой пластине при помощи вытравливания кислотой рисунка в ней. Примеси, за исключением небольшого количества свинца, ухудшают процесс травления. Перед травлением цинковую пластину подвергают отжигу и прокатывают в нагретом состоянии.

Цинк вводится в состав многих твёрдых припоев для снижения их температуры плавления.

Окись цинка широко используется в медицине как антисептическое и противовоспалительное средство. Также окись цинка используется для производства краски — цинковых белил.

Цинк — важный компонент латуни. Сплавы цинка с алюминием и магнием (ЦАМ, ZAMAK) благодаря сравнительно высоким механическим и очень высоким литейным качествам очень широко используются в машиностроении для точного литья. В частности, в оружейном деле из сплава ZAMAK (-3, −5) иногда отливают затворы пистолетов, особенно рассчитанных на использование слабых или травматических патронов. Также из цинковых сплавов отливают всевозможную техническую фурнитуру, вроде автомобильных ручек, корпусы карбюраторов, масштабные модели и всевозможные миниатюры, а также любые другие изделия, требующие точного литья при приемлемой прочности.

Хлорид цинка — важный флюс для пайки металлов и компонент при производстве фибры.

Теллурид, селенид, фосфид, сульфид цинка — широко применяемые полупроводники. Сульфид цинка — составная часть многих люминофоров. Фосфид цинка используется в качестве отравы для грызунов.

Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах.


Цинк (англ. Zinc) — Zn

Молекулярный вес65.39 г/моль
Происхождение названияСлово «цинк» впервые встречается в трудах Парацельса, который назвал этот металл словом «zincum» или «zinken» в книге Liber Mineralium II
IMA статусдействителен, описан впервые до 1959 (до IMA)

КЛАССИФИКАЦИЯ


Strunz (8-ое издание)1/A. 04-10
Nickel-Strunz (10-ое издание)1.AB.05
Dana (7-ое издание)1.1.8.1
Dana (8-ое издание)1.1.5.1
Hey’s CIM Ref1.8

ФИЗИЧЕСКИЕ СВОЙСТВА


Цвет минералабелый металлический
Цвет чертыбелый и слегка сероватый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьвесьма совершенная по 0001
Твердость (шкала Мооса)2
Прочностьхрупкий
Изломзазубренный
Плотность (измеренная)6.9 — 7.2 г/см3
Радиоактивность (GRapi)0
Магнетизмдиамагнетик

ОПТИЧЕСКИЕ СВОЙСТВА


Плеохроизмне плеохроирует
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


Точечная группа6/mmm (6/m 2/m 2/m) — дигексагональная дипирамидальная
Пространственная группаP63/mmc
Сингониягексагональная
Параметры ячейкиa = 2. 665Å, c = 4.947Å

Интересные статьи:

mineralpro.ru   13.07.2016  

Цинк — общая характеристика элемента, химические свойства цинка и его соединений

Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

В четвертом периоде цинк является последним d-элементом, его валентные электроны

3d104s2. В образовании химических связей участвуют только электроны внешнего энергетического уровня, поскольку конфигурация d10 является очень устойчивой. В соединениях для цинка характерна степень окисления +2.

Цинк – химически активный металл, обладает выраженными восстановительными свойствами, по активности уступает щелочно-земельным металлам. Проявляет амфотерные свойства.

Взаимодействие цинка с неметаллами
При сильном нагревании на воздухе сгорает ярким голубоватым пламенем с образованием оксида цинка:
2Zn + O2 → 2ZnO.

При поджигании энергично реагирует с серой:
Zn + S → ZnS.

С галогенами реагирует при обычных условиях в присутствии паров воды в качестве катализатора:
Zn + Cl2 → ZnCl2.

При действии паров фосфора на цинк образуются фосфиды:
Zn + 2P → ZnP2 или 3Zn + 2P → Zn3P2.

С водородом, азотом, бором, кремнием, углеродом цинк не взаимодействует.

Взаимодействие цинка с водой


Реагирует с парами воды при температуре красного каления с образованием оксида цинка и водорода:
Zn + H2O → ZnO + H2.

Взаимодействие цинка с кислотами
В электрохимическом ряду напряжений металлов цинк находится до водорода и вытесняет его из неокисляющих кислот:
Zn + 2HCl → ZnCl2 + H2;
Zn + H2SO4 → ZnSO4 + H2.

Взаимодействует с разбавленной азотной кислотой, образуя нитрат цинка и нитрат аммония:
4Zn + 10HNO3 → 4Zn(NO3)2 + NH4NO3 + 3H2O.

Реагирует с концентрированными серной и азотной кислотами с образованием соли цинка и продуктов восстановления кислот:
Zn + 2H2SO4 → ZnSO4 + SO2 + 2H2O;
Zn + 4HNO3 → Zn(NO3)2 + 2NO2 + 2H2O

Взаимодействие цинка со щелочами
Реагирует с растворами щелочей с образованием гидроксокомплексов:

Zn + 2NaOH + 2H2O → Na2[Zn(OH)4] + H2

при сплавлении образует цинкаты:
Zn + 2KOH → K2ZnO2 + H2.

Взаимодействие с аммиаком
С газообразным аммиаком при 550–600°С образует нитрид цинка:
3Zn + 2NH3 → Zn3N2 + 3H2;
растворяется в водном растворе аммиака, образуя гидроксид тетраамминцинка:
Zn + 4NH3 + 2H2O → [Zn(NH3)4](OH)2 + H2.

Взаимодействие цинка с оксидами и солями
Цинк вытесняет металлы, стоящие в ряду напряжения правее него, из растворов солей и оксидов:
Zn + CuSO4 → Cu + ZnSO4;
Zn + CuO → Cu + ZnO.

Оксид цинка (II) ZnO – белые кристаллы, при нагревании приобретают желтую окраску. Плотность 5,7 г/см3, температура возгонки 1800°С. При температуре выше 1000°С восстанавливается до металлического цинка углеродом, угарным газом и водородом:
ZnO + C → Zn + CO;

ZnO + CO → Zn + CO2;
ZnO + H2 → Zn + H2O.

С водой не взаимодействует. Проявляет амфотерные свойства, реагирует с растворами кислот и щелочей:
ZnO + 2HCl → ZnCl2 + H2O;
ZnO + 2NaOH + H2O → Na2[Zn(OH)4].

При сплавлении с оксидами металлов образует цинкаты:
ZnO + CoO → CoZnO2.

При взаимодействии с оксидами неметаллов образует соли, где является катионом:
2ZnO + SiO2 → Zn2SiO4,
ZnO + B2O3 → Zn(BO2)2.

Гидроксид цинка (II) Zn(OH)2 – бесцветное кристаллическое или аморфное вещество. Плотность 3,05 г/см3, при температуре выше 125°С разлагается:
Zn(OH)2 → ZnO + H2O.

Гидроксид цинка проявляет амфотерные свойства, легко растворяется в кислотах и щелочах:
Zn(OH)2 + H2SO4 → ZnSO4 + 2H2O;
Zn(OH)2 + 2NaOH → Na2[Zn(OH)4];

также легко растворяется в водном растворе аммиака с образованием гидроксида тетраамминцинка:
Zn(OH)2 + 4NH3 → [Zn(NH3)4](OH)2.

Получается в виде осадка белого цвета при взаимодействии солей цинка со щелочами:
ZnCl2 + 2NaOH → Zn(OH)2 + 2NaCl.

Металлические нанопорошки

КОМПАНИЯ «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» (ТОМСК, РФ) ИЗГОТАВЛИВАЕТ НАНОПОРОШКИ ОКСИДА МЕДИ И ЦИНКА С АНТИМИКРОБНЫМ ДЕЙСТВИЕМ

Пандемия коронавируса COVID-19 показала, что существует неотложная потребность в эффективных мерах по предотвращению распространения вирусных инфекций различных нозологий. Последние случаи вспышек вируса атипичной пневмонии, птичьего гриппа, гриппа h2N1, и наконец, коронавируса COVID-19 показали, что высокоэффективные бытовые технические средства, позволяющие прервать пути  распространения инфекций, отсутствуют. На данный момент известно, что есть два главных пути передачи вирусов. Во-первых, это воздушно-капельный механизм передачи инфекции, во-вторых, это контакт человека с зараженными поверхностями.
В настоящее время для прерывания путей передачи вирусов в быту в качестве индивидуальных защитных средств используются маски, защищающие органы дыхания, перчатки и различные антисептики, которыми обрабатываются руки и окружающие предметы и поверхности.
Защитные маски позволяют уменьшить распространение респираторных вирусов, особенно при использовании в замкнутом пространстве или при тесном контакте с человеком с симптомами заражения [1, 2]. Однако сами маски также могут быть источником инфекции [3]. Маска примерно через два часа становится влажной и уже в ней начинают размножаться микроорганизмы. По мнению ВОЗ, маски не гарантируют защиты от COVID-19. Установлено, что эффективность хирургических масок даже самого высокого класса защиты FFP3 недостаточна (гриппом заражается не менее 23 % медицинских сестер, носивших хирургические маски класса FFP3).
Вирус COVID-19 передается не только воздушно-капельным, но и контактным путем, и может сохраняться на поверхностях до 72 часов. Поэтому другой стороной вышеуказанной проблемы является передача вирусов, в т.ч. COVID-19, в лечебных учреждениях через медицинскую одежду, постельное белье, корпуса медицинского оборудования и др.
Одним из путей решений вышеуказанных проблем является придание натуральным и искусственным, в т.ч. медицинским, материалам и поверхностям антисептических свойств, например, с помощью биоцидных наночастиц. Волокна, импрегнированные биоактивными наночастицами, проявляют биоцидные свойства – антибактериальные, противогрибковые, противовирусные [4]. В большинстве современных исследований в области применения наночастиц для уничтожения патогеннов, основное внимание уделяется однокомпонентным наноматериалам (например, наночастицам оксида меди CuO, оксида цинка ZnO, серебра Ag). До недавнего времени серебро оставалось наиболее популярным материалом, который предлагался как эффективное антимикробное средство. Однако последние исследования показывают, что серебро при применении в действующих концентрациях оказывает цитотоксический эффект на клетки организма человека [5]. Кроме того серебро имеет высокую стоимость, что приведет к заметному увеличению цены конечной продукции. Поэтому сейчас основное внимание уделяется применению в качестве бактерицидных и противовирусных материалов наночастицам CuO и ZnO, которые практически малотоксичны для человека.
Например, импрегнация биоактивных наночастиц оксида меди в фильтрующий материал позволяет придать одноразовым респираторным маскам мощные биоцидные свойства без изменения их барьерных свойств [6]. При контакте с вирусом ионы меди вызывают массовое повреждение компонентов клеточной стенки, вирусных генов и ключевых белков [7].
Таким образом, с использованием нанопорошков оксидов меди и цинка, возможно разработать ряд продуктов, позволяющих прервать пути передачи вирусов в быту и в медицинских учреждениях – лицевых масок, одежды медицинского персонала, перчаток, больничных простыней, корпусов медицинского оборудования, контейнеры для хранения продуктов, клавиатуру компьютеров, корпуса мобильных телефонов и др.

Компания «ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ» может изготовить нанопорошки оксидов меди и цинка для разработки новых антимикробных материалов.

1.  Jefferson T, Foxlee R, Del Mar C, Dooley L, Ferroni E, et al. (2008) Physicalinterventions to interrupt or reduce the spread of respiratory viruses: systematicreview. BMJ 336: 77–80.
2. Jefferson T, Foxlee R, Del Mar C, Dooley L, Ferroni E, et al. (2007) Interventions for the interruption or reduction of the spread of respiratoryviruses. Cochrane Database Syst Rev 6207.
3. Zhiqing L. et al. Surgical masks as source of bacterial contamination during operative procedures //Journal of orthopaedic translation.2018; 14: 57-62.
4. Borkow, G. and Gabbay, J. (2004). Putting Copper into Action:Copper-impregnated Products with Potent Biocidal Activities, FASEB Jounal,18(14): 1728–1730.
5. Akter M. et al. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives //Journal of advanced research. – 2018. – Т. 9. – С. 1-16.
6. Gadi Borkow et al. A Novel Anti-Influenza Copper Oxide Containing Respiratory Face Mask // PLoS ONE, June 2010, Volume 5, Issue 6.
7. Borkow & Gabbay (2005) Copper as a biocidal tool. Current Medicinal Chemistry12:2163-75

ООО "ПЕРЕДОВЫЕ ПОРОШКОВЫЕ ТЕХНОЛОГИИ"
Адрес: 634055, Российская Федерация, Томск, проспект Академический, 8/8
Телефон/Факс: +7 (3822) 28-68-72 , 8-961-888-16-24
http://www.nanosized-powders.com

свойства, характеристики и применение элемента

Цинк – это металл, стоящий в таблице Менделеева, под номером 30 и имеет обозначение Zn. Плавится при температуре 419 °С градусов, если же температура кипения 913 °С – начинает превращаться в пар. При температурном обычном режиме, состояние хрупкое, а при ста градусах начинает гнуться.

Цвет цинка сине-белый. При воздействии кислорода появляется окисление, а также покрытие карбоната, предохраняющего металл от дальнейшей реакции окисления. Появление на цинке гидроокиси обозначает то, что вода на химический элемент не действует.

Цинк — химический элемент, имеет свои отличительные свойства, преимущества и недостатки. Он широко применяется в повседневной жизни человека, в фармацевтике и металлургии.

Цинк

Особенности цинка

Металл является необходимым и широко применяемым практически во всех отраслях повседневной жизни человека.

Добыча в основном, производится в Иране, Казахстане, Австралии, Боливии. В России изготовителем является ОАО «ГМК Дальполиметалл».

Это переходной металл, имеет степень окисления +2, радиоактивный изотоп, период полураспада 244 дня.

Водный арсенат кадмия, цинка и меди

В чистом виде элемент не добывается. Содержится в рудах и минералах: клейофане, марматите, вюртците, цинките. Обязательно присутствует в сплаве с алюминием, медью, оловом, никелем.

Химические, физические свойства и характеристики цинка

Цинк – металл, обладает рядом свойств и характеристик, отличающих его от иных элементов периодической таблицы.

К физическим свойствам цинка относится его состояние. Основным фактором выступает температурный режим. Если при комнатной температуре это хрупкий материал, плотность цинка 7130 кг/м3 (˃ плотности стали), который практически не гнётся, то при повышении он легко изгибается и прокатывается в листах на заводах. Если взять более высокий температурный режим – материал приобретает жидкое состояние, а если еще поднять температуру на 400-450 °С градусов, тогда он просто испарится. В этом уникальность – менять своё состояние. Если же подействовать кислотами и щелочами, он может рассыпаться, взорваться, расплавиться.

Цинк в жидком состоянии

Формула цинка Zn – zincum. Атомная масса цинка 65.382 а.е.м.

Электронная формула: ядро атома металла содержит 30 протон, 35 нейтрон. В атоме 4 энергетических уровня – 30 электронов. (рис. строение атома цинка)1s22s22p63s23p63d104s2.

Кристаллическая решётка цинка – шестиугольная кристаллическая система с плотно прижатыми атомами. Данные решётки: A=2.66У, С=4.94.

Структура и состав цинка

Добытый и не переработанный материал имеет изотопы 64, 66, 67, электроны 2-8-18-2.

По применению среди всех элементов периодической таблицы металл стоит на 23 месте. В природе элемент выступает в виде сульфида с примесями свинца Pb, кадмия Cd, железа Fe, меди Cu, серебра Ag.

Сульфид цинка

В зависимости от того, какое количество примесей, металл имеет маркировку.

Производство цинка

Как было сказано выше, чистого вида данного элемента в природе нет. Он добывается из иных пород, таких как руда – кадмий, галлий, минералы – сфалерит.

Металл получают на заводе. Каждый завод имеет свои отличительные особенности производства, поэтому оборудование для получения чистого материала различно. Оно может быть таким:

  • Роторы, расположенные вертикально, электролитные.
  • Специальные печи с достаточно высокой температурой для обжига, а также специальные электропечи.
  • Транспортёры и ванны для электролиза.

В зависимости от принимаемого метода добычи металла, задействовано соответствующее оборудование.

Получение чистого цинка

Как упоминалось выше – в природе чистого вида нет. В основном добыча производится из руд, в которых он идет с различными элементами.

Для получения чистого материала задействован специальный флотационный процесс с избирательностью (селективностью). После проведения процесса руда распадается на элементы: цинк, свинец, медь и так далее.

Добытый таким методом чистый металл обжигается в специальной печи. Там при определенных температурах сульфидное состояние материала переходит в оксидное. При обжиге выделяется газ с содержанием серы, направляемый для получения серной кислоты.

Чистый цинк

Есть 2 способа получения металла:

  1. Пирометаллургический – идет процесс обжигания, после — полученная масса восстанавливается с помощью чёрного угля и кокса. Конечным процессом является отстаивание.
  2. Электролитический – добытая масса обрабатывается серной кислотой. Полученный раствор подвергают электролизу, при этом металл оседает, его плавят в печах.

Выплавка цинка в печи

Температура плавления цинка в печи 419-480 °С градусов. Если же температурный режим превышен, тогда материал начинает испаряться. При данной температуре допускается примесь железа 0.05%.

При процентной ставке 0.2 железа, лист невозможно будет прокатать.

Применяются различные способы выплавки чистого металла, вплоть до получения цинковых паров, которые направляются в специальные резервуары и там вещество опадает вниз.

Применение металла

Свойства цинка позволяют его применение во многих сферах. В процентном соотношении:

  1. Цинкование – до 60%.
  2. Медицина – 10%.
  3. Различные сплавы, содержащие данный металл 10%.
  4. Выпуск шин 10%.
  5. Производство красок – 10%.

Медно-цинковый сплав

А также применение цинка необходимо для восстановления таких металлов, как золото, серебро, платина.

Цинк в металлургии

Металлургическая промышленность задействует данный элемент периодической таблицы как основной для достижения определенных целей. Выплавка чугуна, стали является главной во всей металлургии страны. Но, данные металлы подвержены негативному влиянию окружающей среды. Без определенной обработки идет быстрое окисление металлов, что приводит к их порче. Наилучшей защитой служит оцинкование.

Нанесение защитной плёнки на чугун и сталь является лучшим средством от коррозии. На оцинкование уходит около 40% всего производства чистого материала.

Способы оцинкования

Металлургические заводы отличительны не только своим оборудованием, но и применяемыми методами производства. Это зависит от ценовой политики, и месторасположения (природных ресурсов, используемых для металлургической промышленности). Есть несколько методов оцинкования, которые рассматриваются ниже.

Горячий способ оцинкования

Данный способ заключается в обмакивании металлической детали в жидком растворе. Происходит это так:

  1. Деталь или изделие обезжиривается, очищается, промывается и сушится.
  2. Далее, цинк расплавляется до жидкого состояния при температуре до 480 °С.
  3. В жидкий раствор опускается подготовленное изделие. При этом оно хорошо смачивается в растворе и образуется покрытие толщиной до 450 мкм. Это является 100% защитой от воздействия внешних факторов на изделие (влага, прямые солнечные лучи, вода с химическими примесями).

Горячее цинкование металлоконструкций

Но, данный метод имеет ряд недостатков:

  • Цинковая пленка на изделии получается неравномерного слоя.
  • Нельзя использовать данный метод для деталей, отвечающих точным стандартам по ГОСТу. Где каждый миллиметр считается браком.
  • После горячего оцинкования, не каждая деталь останется прочной и износостойкой, поскольку после прохождения высокой температуры появляется хрупкость.

А также данный метод не подходит для изделий, покрытых лакокрасочными материалами.

Холодное оцинкование

Этот метод носит 2 названия: гальванический и электролитический. Методика покрытия изделия защитой от коррозии такова:

  1. Металлическая деталь, изделие подготавливается (обезжиривается, очищается).
  2. После этого проводится «метод окрашивания» — применяется специальный состав, имеющий главный компонент – цинк.
  3. Деталь покрывается данным составом методом распыления.

Холодное цинкование

Благодаря этому методу защитой покрываются детали с точным допуском, изделия, покрытые лакокрасочными материалами. Повышается стойкость к внешним факторам, приводящим к коррозии.

Недостатки данного метода: тонкий защитный слой – до 35 мкм. Это приводит к меньшей защите и небольшим срокам защиты.

Термодиффузионный способ

Данный метод делает покрытие, которое является электродом с положительной полярностью, в то время как металл изделия (сталь) становится отрицательной полярности. Появляется электрохимический защитный слой.

Метод применим только в случае, если детали произведены из углеродистой стали, чугуна, стали с примесями. Цинк используется таким образом:

  1. При температуре от 290 °С до 450 °С в порошковой среде, поверхность детали насыщается Zn. Здесь маркировка стали, а также тип изделия имеют значение – выбирается соответствующая температура.
  2. Толщина защитного слоя достигает 110 мкм.
  3. В закрытый резервуар помещается изделие из стали, чугуна.
  4. Добавляется туда специальная смесь.
  5. Последним шагом является специальная обработка изделия от появления белых высолов от солёной воды.

Термодиффузионное цинкование

В основном данным методом пользуются в случае, если требуется покрыть детали, имеющие сложную форму: резьбу, мелкие штрихи. Образование равномерного защитного слоя является важным, поскольку данные детали претерпевают множественное воздействие внешней агрессивной среды (постоянная влага).

Данный метод дает самый большой процент защиты изделия от коррозии. Оцинкованное напыление является износостойким и практически нестираемым, что очень важно для деталей, которые время о времени крутятся и разбираются.

Иные сферы применения цинка

Помимо оцинкования, металл применяется и в других сферах промышленности.

  1. Цинковые листы. Для производства листа выполняется прокатка, в которой важна пластичность. Это зависит от температурного режима. Температура в 25 °С дает пластичность только в одной плоскости, что создает определенные свойства металла. Тут главное для чего изготавливается лист. Чем выше температура, тем тоньше получается металл. В зависимости от этого идет маркировка изделия Ц1, Ц2, Ц3. После этого из листов создаются различные изделия для автомобилей, профиля для строительства и ремонта, для полиграфии и так далее.
  2. Цинковые сплавы. Для улучшенных свойств металлических изделий, добавляется цинк. Данные сплавы создаются при высоких температурах в специальных печах. Чаще всего производятся сплавы из меди, алюминия. Данные сплавы применяются для производства подшипников, различных втулок, которые применимы в машиностроении, судостроении и авиации.

В домашнем обиходе оцинкованное ведро, корыто, листы на крыше – это норма. Применяется цинк, а не хром или никель. И дело не только в том, что оцинкование дешевле, чем покрытие другими материалами. Это наиболее надёжный и продолжительный по службе эксплуатации защитный материал нежели, хром или другие применяемые материалы.

В итоге – цинк наиболее распространенный металл, применяемый широко в металлургии. В машиностроении, строительстве, медицине – материал применим не только как защита от коррозии, но и для увеличения прочности, продолжительного срока эксплуатации. В частных домах оцинкованные листы защищают крышу от осадков, в зданиях выравниваются стены и потолки гипсокартонными листами на основе оцинкованных профилей.

Практически у каждой хозяйки в доме есть оцинкованное ведро, корыто, которым она пользуется длительное время.

нахождение в природе, получение, производство. Физические и химические свойства цинка

Своё название цинк получил с лёгкой руки Парацельса, назвавшего этот металл «zincum» («zinken»). В переводе с немецкого это означает «зубец» – именно такую форму имеют кристаллиты металлического цинка.

Нахождение цинка в природе

В чистом виде цинк в природе не встречается, однако он содержится в земной коре, в воде и даже практически в каждом живом организме. Его добыча чаще всего осуществляется из минералов: цинкита, виллемита, каламина, смитсонита и сфалерита. Последний является наиболее распространенным, а его основную часть составляет сульфид ZnS. Сфалерит в переводе с греческого – обманка. Такое название он получил из-за трудности определения минерала.

Zn можно обнаружить в термальных водах, где он постоянно мигрирует, осаждаясь в виде того же сульфида. В роли главного осадителя цинка выступает сероводород. В качестве биогенного элемента цинк активно участвует в жизни многих организмов, причем некоторые из них концентрируют в себе этот элемент (отдельные виды фиалок).

Наиболее крупными месторождениями минералов с содержанием Zn располагают Боливия и Австралия. Основные месторождения цинка в России находятся в Восточно-Сибирском и Уральском регионах. Общие прогнозируемые запасы страны – 22,7 млн. т.

Цинк: производство

Главное сырье для добычи цинка – это полиметаллическая руда, содержащая сульфид Zn в количестве 1-4 %. В дальнейшем это сырьё обогащается селективной флотацией, позволяющей получить цинковый концентрат (до 50-60 % Zn). Его помещают в печи, превращая сульфид в оксид ZnO. Затем обычно применяется дистилляционный (пирометаллургический) способ получения чистого Zn: концентрат обжигается и спекается до состояния зернистости и газопроницаемости, после чего восстанавливается коксом или углем при температуре 1200-1300°C. Простая формула показывает, как из оксида цинка получить цинк:

ZnO+С=Zn+CO

Данный способ позволяет добиться 98,7-процентной чистоты металла. Если же необходима чистота в 99,995%, применяется технологически более сложная очистка концентрата ректификацией.

Физические и химические свойства цинка

Элемент Zn, с атомной (молярной) массой 65,37 г/моль занимает в таблице Менделеева ячейку под номером 30. Чистый цинк – это металл сине-белого цвета с характерным металлическим блеском. Его основные характеристики:

  • плотность – 7,13 г/см3
  • температура плавления – 419,5оС (692,5 К)
  • температура кипения – 913оС (1186 К)
  • удельная теплоемкость цинка – 380 дж/кг
  • удельная электропроводность – 16,5*10-6 см/м
  • удельное электрическое сопротивление – 59,2*10-9 ом/м (при 293 К)

Контакт цинка с воздухом приводит к образованию оксидной пленки и потускнению поверхности металла. Элемент Zn легко образует оксиды, сульфиды, хлориды и фосфиды:

2Zn+О2=2ZnО

Zn+S=ZnS

Zn+Сl2=ZnСl2

3Zn+2Р=Zn3Р2

Цинк взаимодействует с водой, сероводородом, отлично растворяется в кислотах и щелочах:

Zn+Н2О=ZnО+Н2

Zn+Н2S=ZnS+Н2

Zn+Н2SO4=ZnSO42

4Zn+10НNО3=4Zn(NО3)2+NН4NО3+3 Н2О

Zn+2КОH+2Н2О=К2[Zn(ОН) 4]+Н2

Также цинк взаимодействует с раствором CuSO4, вытесняя медь, поскольку она менее активна, нежели Zn, а значит, первой выводится из раствора соли.

Цинк может находиться не только в твердом или пылеобразном виде, но и в виде газа. В частности, пары цинка возникают при сварочных работах. В данном виде Zn представляет собой яд, который становится причиной появления цинковой (металлической) лихорадки.

Сульфид цинка: физические и химические свойства

Свойства ZnS представлены в таблице:

Урок 12. медь. цинк. титан. хром. железо. никель. платина - Химия - 11 класс

Химия, 11 класс

Урок № 12. Медь. Цинк. Титан. Хром. Железо. Никель. Платина

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению основных металлов побочной подгруппы или Б-группы: меди, цинка, титана, хрома, железа, никеля и платины, их физическим и химическим свойствам, способам получения и применению.

Глоссарий

Катализатор – вещество, которое ускоряет химическую реакцию.

Пассивация – переход металла в неактивное состояние из-за образования на его поверхности оксидной плёнки. Может усиливаться концентрированными кислотами.

Проскок электрона – отступление от общей для большинства элементов последовательности заполнения электронных оболочек.

Хромирование/никелирование – покрытие поверхности металла другим, более устойчивым, для предотвращения коррозии.

Цинковая обманка (ZnS) – сложно идентифицируемое соединение цинка, подверженное сильному влиянию примесей на ее внешний вид.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тесто по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Медь

Электронная конфигурация

Медь является металлом, расположенным в I группе побочной подгруппе и имеет следующую электронную конфигурацию:

1s2

Рисунок 1 – Электронная конфигурация атома меди

Мы видим, что у меди наблюдается проскок электрона – отступление от общей для большинства элементов последовательности заполнения электронных оболочек. По принципу наименьшей энергии электронные орбитали должны заполняться в следующем порядке:

1s → 2s → 2p → 3s → 3p → 4s → 3d …

Но для некоторых атомов энергетически более выгодно иметь наполовину (5 электронов, дальше увидим у хрома) или полностью заполненную (10 электронов, как у меди) 3d-орбиталь.

Медь имеет две валентности: 1 и 2 и проявляет степени окисления +1 и +2.

Физические свойства

Медь обладает следующими физическими свойствами

Таблица 1 – Основные физические свойства меди

Свойство

Значение

Цвет

Светло-розовый

Структура

Тягучая, вязкая, легко прокатывается

Температура плавления, °С

1083

Нахождение в природе

В природе медь встречается в самородном виде, а также в составе некоторых минералов:

  • медный блеск, Cu2S;
  • куприт, Cu2O;
  • медный колчедан, CuFeS;
  • малахит, (CuOH)2CO3.

Способы получения меди

Основными способами получения меди являются:

  1. Восстановление коксом и оксидом углерода (II). Таким образом получают медь из куприта:

Cu2O + С = 2Сu + CO

Cu2O + CO = 2Cu + CO2

  1. Обжиг в специальных печах до оксидов. Данный способ подходит для сульфидных и карбонатных руд.
  2. Электролиз. Единственный из перечисленных способов, который позволяет получить медь без примесей.

Химические свойства

При комнатной температуре медь не вступает в реакции с большинством соединений. При повышенной температуре ее реакционная способность резко возрастает.

Реакции с простыми веществами:

2Cu + O2 = 2CuO

2Cu + Cl2 = 2CuCl2

Cu + S = CuS

Реакции со сложными веществами:

Cu + 2H2SO4(конц) = CuSO4 + SO2↑ +2H2O

Cu + 4HNO3(конц) = Cu(NO3)2 + 2NO2↑ + 2H2O

3Cu + 8HNO3(разб) = 3Cu(NO3)2 + 2NO↑ + 4H2O

Применение

Широкое применение находит как сама медь, так и её соединения. В чистом виде она используется для производства проводов, кабелей, теплообменных аппаратов, а также входит в состав многих сплавов.

Соединения меди, например, медный купорос CuSO4∙5H2O используется для защиты растений, а гидроксид меди является качественным реагентом для определения альдегидной группы у органических соединений, а также наличия глицерина (дает голубое окрашивание раствора).

Цинк

Электронная конфигурация

Цинк является металлом, расположенным в II группе побочной подгруппе, и имеет следующую электронную конфигурацию:

Рисунок 2 – Электронная конфигурация атома цинка

В связи с тем, что 4s-орбиталь заполнена, цинк может находиться в единственной степени окисления, равной +2.

Физические свойства

Цинк обладает следующими физическими свойствами

Таблица 2 – Основные физические свойства цинка

Свойство

Значение

Цвет

Голубовато-серебристый

Структура

Хрупок

Температура плавления, °С

419,5

Нахождение в природе

В природе цинк встречается только в связанном состоянии, а именно в цинковом шпате ZnCO3 и цинковой обманке ZnS. Свое название цинковая обманка получила за то, что его сложно идентифицировать, поскольку он может выглядеть совершенно по-разному: быть различного цвета и структуры в зависимости от посторонних примесей.

Способы получения цинка

Чистый цинк получают обжигом с последующим восстановлением:

ZnS + O2 = ZnO + SO2

ZnO + C = Zn + CO↑

Химические свойства

Цинк является довольно устойчивым металлом, поскольку на воздухе покрывается оксидной пленкой, и в дополнение практически не взаимодействует с водой при нормальных условиях. Но так же, как и медь, становится более активным при повышении температуры.

Реакции с простыми веществами:

2Zn + O2 = 2ZnO

2Zn + Cl2 = 2ZnCl2

Zn + S = ZnS

Реакции со сложными веществами:

Zn + 2NaOH(крист) = NaZnO2 + H2

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2

Zn + 2HCl = ZnCl2 + H2

Применение

Цинк является коррозионно-устойчивым металлом, поэтому он нашёл применение в производстве защитных покрытий металлов, гальванических элементов, а также как компонент сплавов.

Титан

Электронная конфигурация

Титан является элементом IV группы побочной подгруппы и имеет следующее электронное строение:

Рисунок 3 – Электронная конфигурация атома титана

Данная конфигурация позволяет атому титана проявлять две степени окисления: +2 и +4.

Физические свойства

Титан обладает следующими физическими свойствами:

Таблица 3 – Основные физические свойства титана

Свойство

Значение

Цвет

Серебристо-белый

Структура

Высокая прочность и взякость

Температура плавления, °С

1665

Нахождение в природе

В природе титан можно найти в составе таких минералов, как:

  • титаномагнетит, FeTiO3∙Fe3O4;
  • ильменит, FeTiO3;
  • рутил, TiO2.

Способы получения титана

В связи с тем, что в природе не существует титановых руд, человеку приходится извлекать его путём хлорирования рудных концентратов с их последующим восстановлением с помощью магния или натрия.

TiCl4 + 2Mg = Ti + 2MgCl2

Для удаления примесей магния и его соли полученную смесь продуктов нагревают под вакуумом.

Химические свойства

Титан является очень активным металлом, но его оксидная пленка не даёт ему взаимодействовать при нормальных условиях ни с морской водой, ни даже с «царской водкой». Поэтому все реакции протекают при повышенных температурах.

Реакции с простыми веществами:

Ti + 2Cl2 = TiCl4

Ti + O2 = TiO2

Азотная кислота действует на титан только в форме порошка, в то время как разбавленная серная кислота реагирует с металлом:

2Ti + 3H2SO4 = Ti2(SO4)3 + 3H2

Применение

Титан и его сплавы отличает не только коррозионная стойкость, но и лёгкость, прочность. В связи с этим он активно используется при построении космических ракет, самолётов, подлодок и морских судов. Титан не взаимодействует с тканями организмов, из-за чего используется в хирургии.

Хром

Электронная конфигурация

Хром находится в IV группе побочной подгруппе и имеет следующее электронное строение:

Рисунок 4 – Электронная конфигурация атома хрома

Так как для атома хрома энергетически более выгодно иметь наполовину заполненную 3d-орбиталь, у него, как и у меди, наблюдается проскок электрона, что позволяет ему находиться в степенях окисления от +1 до +6, но наиболее устойчивыми являются +2, +3, +6.

Физические свойства

Хром обладает следующими физическими свойствами:

Таблица 4 – Основные физические свойства хрома

Свойство

Значение

Цвет

Серебристо-белый с металлическим блеском

Структура

Твердый

Температура плавления, °С

1890

Нахождение в природе

В природе большая часть хрома заключена в составе хромистого железняка Fe(CrO2)2. Иногда может встречаться в виде оксида хрома (III) и других соединениях.

Способы получения хрома

Из хромистого железняка путем восстановлением углем при высоких температурах получают смесь железа и хрома – феррохром:

FeO + Cr2O3 + 3C = Fe + 2Cr + 3CO↑

Для получения чистого хрома проводят восстановление оксида хрома (III) алюминием:

Cr2O3 + 2Al = 2Cr + Al2O3

Химические свойства

Как и все вышеописанные металлы, хром покрыт оксидной плёнкой, которую трудно растворить даже сильными кислотами. Благодаря ней он обладает высокой стойкости к коррозии, поэтому начинает реагировать с разбавленными растворами кислот лишь спустя время. Концентрированные кислоты, такие как HNO3 и H2SO4, пассивируют оксидную пленку (укрепляют ее).

Применение

Благодаря своей коррозионной стойкости, хром используют в качестве защитных покрытий (хромируют поверхности металлов и сплавов). Также используется для создания легированных сталей, речь о которых пойдет в следующем уроке.

Железо

Железо – металл, с которым мы чаще всего сталкиваемся в нашей жизни, поэтому переоценить его значимость для человека невозможно. Он является самым распространенным после алюминия и составляет 5% земной коры. Теперь перейдем к рассмотрению его строения и свойств.

Электронная конфигурация

Железо находится в VII группе Б-подгруппе и имеет такое электронное строение, которое позволяет ему находиться в двух степенях окисления: +2 и +3. Конечно, в теории железо может выступать в качестве шестивалентного металла, но из-за пространственных затруднений ему не удается образовать такое количество связей. Поэтому такое состояние является неустойчивым для данного металла.

Рисунок 5 – Электронная конфигурация атома железа

Физические свойства

Железо обладает следующими физическими свойствами:

Таблица 5 – Основные физические свойства железа

Свойство

Значение

Цвет

Серебристо-белый

Структура

Мягкий, пластичный

Температура плавления, °С

1539

Нахождение в природе

 Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном виде железо находят в метеоритах, изредка встречается самородное железо (феррит) в земной коре как продукт застывания магмы.

Способы получения железа

Существует множество способов получения железа, и отличаются они друг от друга степенью его чистоты и требуемым типом конечного продукта.

  1. Восстановлением из оксидов (железо пирофорное).
  2. Электролизом водных растворов его солей (железо электролитическое).
  3. Разложением пентакарбонила железа Fe(CO)5 при нагревании до t 250°С.
  4. Методом зонной плавки (получение особо чистого железа).
  5. Технически чистое железо (около 0,16% примесей углерода, кремния, марганца, фосфора, серы и др.) выплавляют, окисляя компоненты чугуна в мартеновских сталеплавильных печах и в кислородных конверторах.
  6. Сварочное или кирпичное железо получают, окисляя примеси малоуглеродистой стали железным шлаком или путём восстановления руд твёрдым углеродом.

Химические свойства

Под воздействием высоких температур железо взаимодействует с простыми веществами:

2Fe + 3O2 = Fe2O3 ∙FeO

В ходе данной реакции происходит получение смеси оксидов, которую иногда записывают в виде общей формулы Fe3O4.

2Fe + 3Cl2 = 2FeCl3

Fe + S = FeS

Взаимодействует с разбавленными кислотами, причем с соляной кислотой происходит образование соли только двухвалентного железа:

Fe + 2HCl(разб) = FeCl2 + H2

При комнатной температуре железо пассивируется концентрированными кислотами, но при высоких температурах вступает в реакцию окисления:

2Fe + 6H2SO4(конц) = Fe2(SO4)3 + 3SO2 + 6H2O

Вступает в реакцию обмена с солями, образованными катионами более слабых металлов:

Fe + CuSO4 = FeSO4 + Cu↓

Применение

Про области применения железа можно говорить достаточно долго, поэтому выделим основные направления:

  1. В связи с его способностью быстро намагничиваться, его используют в трансформаторах и электромоторах.
  2. Основная масса железа расходуется на производство различных сплавов, таких как чугун и сталь.

Никель и платина

Далее стоит обратить на два металла: никель и платина. Как нам известно, они имеют схожие области применения, но отличаются по цене и качеству, потому предлагаю сравнить их.

Электронная конфигурация

Электронное строение металлов выглядит следующим образом:

Ni …3s2 3p6 3d8 4s2

Характерные степени окисления: + 2 и +3, но последняя является неустойчивой.

Pt …5s2 5p6 5d9 6s1

Характерные степени окисления: + 2 и +4.

Физические свойства

Таблица 5 – Основные физические свойства железа

Свойство

Значение

Ni

Pt

Цвет

Серебристо-белый

Белый

Структура

Очень твердый

Пластичный

Температура плавления, °С

1453

1769

Химические свойства

Никель при повышенных температурах реагирует с галогенами с образованием солей, и с кислородом с образованием оксида никеля (II), в то время как платина очень устойчива к любым взаимодействиям. Реагирует с серой и галогенами в мелкораздробленном виде.

Никель медленно взаимодействует с разбавленными кислотами, когда платина реагирует только с «царской водкой».

Применение

Оба металла активно используются в переработке нефти в качестве катализаторов.

Катализатор – вещество, которое ускоряет химическую реакцию.

Каждые 2-3 года закупаются тонны реагентов, в составе которых всего несколько десятых процента платины или никеля, но именно они определяют их стоимость.

Также они используются в составе высококачественных сплавов, а никель – как антикоррозионное покрытие.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

  1. Решение задачи на вычисление количества исходного реагента.

Условие задачи: При растворении меди в растворе концентрированной азотной кислоты выделилось 2 л газа. Вычислите массу прореагировавшей меди.

Шаг первый. Напишем уравнение реакции и определим, какой газ выделился, расставим коэффициенты.

Cu + 4HNO3(конц) = Cu(NO3)2 + 2NO2↑ + 2H2O

Шаг второй. Вычислим количество вещества газа:

Шаг третий. Вычислим количество вещества меди:

По уравнению реакции: n(Cu) = 0,5n(NO2), тогда

n(Cu) = 0,5 ∙ 0,089 = 0,044 (моль)

Шаг четвёртый. Вычислим массу меди:

m(Cu) = 0,044 ∙ 46 = 2,024 (г)

Ответ: 2,024 (г).

  1. Решение задачи на выход продукта.

Условия задачи: при обжиге 8,515 г сульфида цинка с последующим восстановлением оксида с помощью угля выделилось 3,45 л газа. Рассчитайте выход реакции обжига, если выход реакции восстановления равен 60%.

Шаг первый. Запишем уравнения реакций и вычислим молярные массы компонентов:

ZnS + O2 = ZnO + SO2

ZnO + C = Zn + CO↑

M (ZnO) = 81 г/моль

Шаг второй. Вычислим количество вещества газа:

Шаг третий. Вычислим массу оксида цинка:

Так как выход реакции составил 60%, то

n (ZnO) = 0,6n (CO) = 0,6 ∙ 0,154 = 0,0924 (моль)

Шаг четвёртый. Вычислим массу оксида цинка:

Шаг пятый. Вычислим выход реакции:

Ответ: 87, 89%.

Металлургия цинка

Историческая справка

Примеры использования сплавов, в состав которых входит цинк, известны с древности. Впервые металл был применен в Индии, Китае, странах Востока для плавки медно-цинкового сплава. Другое их название — латуни. Способности металлургии были ограничены, поэтому долгое время не получалось выделить чистый цинк. Другими препятствиями являлись высокая химическая активность элемента и летучесть. В средине XVIII века удалось выплавить металл высокого качества. После чего, изобретение было запатентовано, и началась эра промышленного производства цинка.

Физические свойства

Чистый металл обладает серебристо-серым цветом. Он хрупок и может ломаться при небольшом усилии. Присутствие примесей увеличивает это свойство. Температура плавления цинка — 419,5 ˚C. При нагреве до 500—600 ˚C происходит улетучивание металла в виде паров.

Химические свойства

На воздухе металл покрывается оксидной пленкой. Процесс можно описать уравнением:

                                                 2Zn + O2 = 2Zn O

При содержании в атмосфере большого количества паров воды и оксида углерода (IV) поверхностный слой образуется из карбоната и гидроксида цинка. Он практически полностью защищает металл от окисления. Это качество используют для создания покрытий от коррозии. Процесс носит название — цинкование.

 При нагревании металл вступает в реакцию со многими химическими элементами. С серой, фосфором, галогенами. В результате образуются соединения: сульфид ZnS, фосфиды Zn3P2, ZnP2, галогениды с общей формулойZnHal2. Цинк обладает амфотерными свойствами и вступает в реакции с кислотами и щелочами.

Применение

Цинк и его соединения широко используются в разных отраслях промышленности.

-         Оксид цинка востребован в производстве красок и медикаментов.

-         Сульфид металла входит в состав люминесцентных составов.

-         Хлорид цинка — компонент флюса для пайки.

Процентное соотношение по разным направлениям использования приведено в таблице 1. 

Таблица 1.

Наименование отрасли применения

Примерное значение от общей массы производимого цинка, %

Цинкование

25—40

Литейные сплавы

25—40

Сплавы на основе меди (латуни, бронзы)

10—30

Цинковый прокат

5—10

Производство оксида цинка

3—10

Прочие расходы

3—8



Сырье для производства цинка

Для получения металла применяют полиметаллические руды. Цинк находится в них в виде сульфида. Примерное содержание составляет 1 – 3 %. Это значение очень низкое и требует дополнительных действий перед переработкой. По составу руда является многокомпонентным материалом. В ней содержится в сульфидной форме ряд сопутствующих элементов: медь, свинец, висмут, кадмий, серебро и золото. Одновременно с выделением цинка происходит извлечение других компонентов. Например: свинца, меди, кадмия, индия, ртути, селена, теллура. Также полиметаллические руды содержат в незначительных количествах серебро и золото.

Переработка

 Для обогащения используют селективную флотацию, что позволяет выделить цинк в отдельный концентрат. Примерный состав отражен в таблице 2.

Таблица 2.

        Химический элемент

            Массовая доля в концентрате, %

Цинк

48—60

Свинец

1,5—2,5

Медь

1—3

Кадмий

до 0,5

Железо

3—10

Сера

30—38

Наиболее распространенным на территории Россия является гидрометаллургическое получение цинка. С помощью него получают до 90 % металла. Пирометаллургия используется реже.

Технология гидрометаллургического процесса основана на взаимодействии разбавленной серной кислоты с предварительно обожженным концентратом. Стадия обжига выполняется в печах кипящего слоя. Такой прием позволяет получить огарок из частиц небольшого размера, но с развитой поверхностью. Основные реакции, описывающие процесс представлены следующим образом:

                                             2ZnS + 3O2 = 2ZnO + 2SO2 ,

                                            4FeS2 + 11O2 = 2Fe2O3 + 8SO2

В ходе протекания процесса происходит выделение энергии в достаточном количестве для проведения сжигания без дополнительных затрат.

 Взаимодействие оксида цинка с раствором серной кислоты можно описать с помощью уравнения:

                                              ZnO + H2SO4 = ZnSO4 + H2O

Реакция проходит в специальных емкостях при перемешивании. Их объем может доходить до  140 м3. Часть концентрата, не вступившая в реакцию, отправляют на восстановление мелкой частью кокса. Процесс проводят в трубчатой печи при температуре 1100 – 1200 ˚C. В результате происходит извлечение оставшихся элементов: цинка, свинца, кадмия и др. После удаления летучих компонентов, клинкер, в составе которого находятся железо, медь и драгоценные металлы, попадает в медеплавильное производство. Этот продукт добавляют в шихту для плавки в печах шахтного типа.

Одновременно происходит взаимодействие реактива с сопутствующими компонентами. Полученный раствор содержит значительные количества меди, железа, кадмия и др. Перед следующим этапом требуется удаление посторонних примесей.

Для выделения металлического цинка из сернокислого раствора используют процесс электролиза. На катоде осаждается металлический цинк, а на аноде происходит регенерация серной кислоты. Окислительно-восстановительный процесс под действием электрического тока протекает по уравнению:

         2ZnSO4 + 2H2O = 2Zn + 2H2SO4 + O2

Условия прохождения реакции: плотность тока до 700 А/м2, высокий уровень очистки рабочего раствора от посторонних примесей, температура от 33 до 38 ˚C. 

Добавка в состав раствора для электролиза поверхностно-активных веществ способствует перенапряжению водорода. Материал катода представляет собой лист из алюминия, толщиной 34 мм. Анод выполнен из свинца с примесью серебра (1 %). Такая добавка увеличивает его стойкость в агрессивных условиях. Цинк, полученный в результате электролиза, переплавляют и разливают в изложницы для получения чушек.

 

Цинк Металл | AMERICAN ELEMENTS ®


РАЗДЕЛ 1. ИДЕНТИФИКАЦИЯ

Наименование продукта: Zinc Metal

Номер продукта: Все применимые коды продуктов American Elements, например ЗН-М-02 , ЗН-М-03 , ЗН-М-04 , ЗН-М-05 , ЗН-М-06 , ZN-M-07

Номер CAS: 7440-66-6

Соответствующие установленные области применения вещества: Научные исследования и разработки

Информация о поставщике:
American Elements
10884 Weyburn Ave.
Лос-Анджелес, Калифорния

Тел .: +1 310-208-0551
Факс: +1 310-208-0351

Телефон экстренной связи:
Внутренний номер, Северная Америка: +1 800-424-9300
Международный: +1 703-527-3887


РАЗДЕЛ 2. ИДЕНТИФИКАЦИЯ ОПАСНОСТИ

Классификация вещества или смеси
Классификация в соответствии с Регламентом (ЕС) № 1272/2008
Вещество не классифицируется как опасное для здоровья или окружающей среды в соответствии с правила CLP.
Опасности, не классифицированные иным образом
Данные отсутствуют
Элементы маркировки
Маркировка в соответствии с Регламентом (ЕС) № 1272/2008
Нет данных
Пиктограммы опасности
Нет данных
Сигнальное слово
Нет данных
Краткая характеристика опасности
Нет данных
Классификация WHMIS
Не контролируется
Система классификации
Рейтинги HMIS (шкала 0-4)
(Система идентификации опасных материалов)
Здоровье (острые последствия) = 0
Воспламеняемость = 0
Физическая опасность = 0
Другие опасности
Результаты PBT и vPvB оценка
PBT: нет данных
vPvB: нет данных


РАЗДЕЛ 3.СОСТАВ / ИНФОРМАЦИЯ ОБ ИНГРЕДИЕНТАХ

Вещества
Номер CAS / Название вещества:
7440-66-6 Цинк
Идентификационный номер (а):
Номер ЕС: 231-175-3


РАЗДЕЛ 4. ПЕРВАЯ ПОМОЩЬ

Описание мер первой помощи
Общие сведения
Никаких специальных мер не требуется.
При вдыхании:
В случае жалоб обратиться за медицинской помощью.
При попадании на кожу:
Обычно продукт не раздражает кожу.
При попадании в глаза:
Промыть открытый глаз под проточной водой в течение нескольких минут.Если симптомы не исчезнут, обратитесь к врачу.
При проглатывании:
Если симптомы не исчезнут, обратиться к врачу.
Информация для врача
Наиболее важные симптомы и воздействия, как острые, так и замедленные
Данные отсутствуют
Указание на необходимость немедленной медицинской помощи и специального лечения
Нет данных


РАЗДЕЛ 5. МЕРЫ ПОЖАРОТУШЕНИЯ

Средства пожаротушения
Подходящие средства пожаротушения
Специальный порошок для металлических огней. Не используйте воду.
Средства пожаротушения, непригодные из соображений безопасности
Вода
Особые опасности, исходящие от вещества или смеси
При пожаре могут образоваться следующие вещества:
Оксид металла
Рекомендации для пожарных
Защитное оборудование:
Нет специальных мер требуется


РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ

Меры личной безопасности, защитное снаряжение и порядок действий в чрезвычайной ситуации
Не требуется.
Меры по защите окружающей среды:
Не допускайте попадания материала в окружающую среду без официального разрешения.
Методы и материалы для локализации и очистки:
Подобрать механически.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы.
См. Раздел 7 для получения информации о безопасном обращении.
См. Раздел 8 для получения информации о средствах индивидуальной защиты.
См. Раздел 13 для получения информации об утилизации.


РАЗДЕЛ 7. ОБРАЩЕНИЕ И ХРАНЕНИЕ

Обращение
Меры предосторожности для безопасного обращения
Хранить контейнер плотно закрытым.
Хранить в сухом прохладном месте в плотно закрытой таре.
Информация о защите от взрывов и пожаров:
Никаких специальных мер не требуется.
Условия безопасного хранения с учетом несовместимости
Требования, предъявляемые к складским помещениям и таре:
Особых требований нет.
Информация о хранении в одном общем хранилище:
Не требуется.
Дополнительная информация об условиях хранения:
Держать емкость плотно закрытой.
Хранить в прохладном, сухом месте в хорошо закрытой таре.
Специфическое конечное использование
Данные отсутствуют


РАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ / ЛИЧНАЯ ЗАЩИТА

Дополнительная информация о конструкции технических систем:
Нет дополнительных данных; см. раздел 7.
Параметры контроля
Компоненты с предельными значениями, требующие контроля на рабочем месте:
Нет.
Дополнительная информация: Нет данных
Средства контроля за опасным воздействием
Средства индивидуальной защиты
Соблюдайте стандартные правила защиты и гигиены при обращении с химическими веществами.
Поддерживайте эргономичную рабочую среду.
Дыхательное оборудование: Не требуется.
Защита рук: Не требуется.
Время проницаемости материала перчаток (в минутах): данные отсутствуют
Защита глаз: защитные очки
Защита тела: защитная рабочая одежда.


РАЗДЕЛ 9. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Информация об основных физических и химических свойствах
Внешний вид:
Форма: Твердое вещество в различных формах
Цвет: Серый
Запах: Без запаха
Порог запаха: Нет данных.
pH: нет данных
Точка плавления / интервал плавления: 419,5 ° C (787 ° F)
Точка кипения / интервал кипения: 907 ° C (1665 ° F)
Температура сублимации / начало: данные отсутствуют
Воспламеняемость (твердое, газ): Нет данных.
Температура возгорания: Данные отсутствуют.
Температура разложения: Данные отсутствуют.
Самовоспламенение: Данные отсутствуют.
Взрывоопасность: данные отсутствуют.
Пределы взрываемости:
Нижний: данные отсутствуют
Верхние: данные отсутствуют
Давление пара: нет данных
Плотность при 20 ° C (68 ° F): 7.14 г / см 3 (59,583 фунта / галлон)
Относительная плотность: данные отсутствуют.
Плотность пара: Нет данных
Скорость испарения: Нет данных
Растворимость в воде (H 2 O): Нерастворимый
Коэффициент распределения (н-октанол / вода): данные отсутствуют.
Вязкость:
Динамическая: Нет данных
Кинематическая: Нет
Другая информация
Нет данных


РАЗДЕЛ 10. СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ

Реакционная способность
Нет данных
Химическая стабильность
Стабилен при рекомендуемых условиях хранения.
Термическое разложение / условия, которых следует избегать:
Разложение не происходит, если
хранить в соответствии со спецификациями.
Возможность опасных реакций
Неизвестно об опасных реакциях
Условия, которых следует избегать
Данные отсутствуют
Несовместимые материалы:
Данные отсутствуют
Опасные продукты разложения:
Пары оксидов металлов


РАЗДЕЛ 11. ТОКСИКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

Информация о токсикологическом воздействии
Острая токсичность:
Реестр токсических эффектов химических веществ (RTECS) содержит данные об острой токсичности компонентов этого продукта.
Значения LD / LC50, которые имеют отношение к классификации: Нет данных
Раздражение или разъедание кожи: Без раздражающего действия.
Раздражение или разъедание глаз: Без раздражающего действия.
Сенсибилизация: Сенсибилизирующие эффекты неизвестны.
Мутагенность зародышевых клеток: Эффекты неизвестны.
Канцерогенность:
EPA-I: Данные недостаточны для оценки канцерогенного потенциала человека.
Реестр токсических эффектов химических веществ (RTECS) содержит данные о онкогенных, канцерогенных и / или опухолевых заболеваниях для этого вещества.
Репродуктивная токсичность: Эффекты неизвестны.
Специфическая системная токсичность на органы-мишени - многократное воздействие: Эффекты неизвестны.
Специфическая системная токсичность, поражающая отдельные органы-мишени - однократное воздействие: Эффекты неизвестны.
Опасность при вдыхании: Эффекты неизвестны.
От подострой до хронической токсичности:
Реестр токсических эффектов химических веществ (RTECS) содержит данные о токсичности при множественных дозах этого вещества.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не изучена.
Канцерогенные категории
OSHA-Ca (Управление по охране труда)
Вещество не указано в списке.


РАЗДЕЛ 12. ЭКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

Токсичность
Водная токсичность:
Нет данных
Стойкость и разлагаемость
Нет данных
Потенциал биоаккумуляции
Нет данных
Мобильность в почве
Нет данных
Дополнительная экологическая информация:
Нет допускать попадание материала в окружающую среду без официальных разрешений.
Избегать попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT: N / A
vPvB: N / A
Другие побочные эффекты
Нет данных


РАЗДЕЛ 13. УТИЛИЗАЦИЯ

Методы обработки отходов
Рекомендация
Для обеспечения надлежащей утилизации см. Официальные правила .
Неочищенная тара:
Рекомендация:
Утилизация должна производиться в соответствии с официальными предписаниями.


РАЗДЕЛ 14. ТРАНСПОРТНАЯ ИНФОРМАЦИЯ

Номер ООН
DOT, ADN, IMDG, IATA
НЕТ
Собственное транспортное наименование ООН
DOT, ADN, IMDG, IATA
НЕТ
Класс (ы) опасности при транспортировке
DOT, ADR, ADN, IMDG, IATA
Class
N / A
Группа упаковки
DOT, IMDG, IATA
N / A
Опасности для окружающей среды:
N / A
Особые меры предосторожности для пользователя
N / A
Транспортировка навалом в соответствии с согласно Приложению II к MARPOL73 / 78 и Кодексу IBC
Н / Д
Транспортировка / Дополнительная информация:
DOT
Морской загрязнитель (DOT):
Нет


РАЗДЕЛ 15.НОРМАТИВНАЯ ИНФОРМАЦИЯ

Нормативы / законодательные акты по безопасности, охране здоровья и окружающей среды, относящиеся к веществу или смеси
Национальные правила
Все компоненты этого продукта перечислены в Реестре химических веществ в соответствии с Законом США о контроле за токсичными веществами.
Все компоненты этого продукта занесены в Канадский список веществ, предназначенных для домашнего использования (DSL).
SARA Раздел 313 (списки конкретных токсичных химических веществ)
7440-66-6 Цинк
Предложение штата Калифорния 65
Предложение 65 - Химические вещества, вызывающие рак
Вещество не указано в списке.
Prop 65 - Токсичность для развития
Вещество не указано.
Предложение 65 - Токсичность для развития, женщины
Вещество не указано.
Предложение 65 - Токсичность для развития, мужчины
Вещество не указано.
Информация об ограничении использования:
Для использования только технически квалифицированными специалистами.
Этот продукт подпадает под требования к отчетности раздела 313 Закона о чрезвычайном планировании и праве общества на информацию от 1986 года и 40CFR372.
Другие постановления, ограничения и запретительные постановления
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (EC) No.1907/2006.
Вещества нет в списке.
Необходимо соблюдать условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) для производства, размещения на рынке и использования.
Вещества нет в списке.
Приложение XIV Правил REACH (требуется разрешение на использование)
Вещество не указано.
Оценка химической безопасности:
Оценка химической безопасности не проводилась.


РАЗДЕЛ 16. ПРОЧАЯ ИНФОРМАЦИЯ

Паспорт безопасности в соответствии с Регламентом (ЕС) №1907/2006 (REACH). Вышеупомянутая информация считается правильной, но не претендует на исчерпывающий характер и должна использоваться только в качестве руководства. Информация в этом документе основана на текущем уровне наших знаний и применима к продукту с учетом соответствующих мер безопасности. Это не является гарантией свойств продукта. American Elements не несет ответственности за любой ущерб, возникший в результате обращения или контакта с вышеуказанным продуктом. Дополнительные условия продажи см. На обратной стороне счета-фактуры или упаковочного листа.АВТОРСКИЕ ПРАВА 1997-2021 AMERICAN ELEMENTS. ЛИЦЕНЗИОННЫМ ДАННЫМ РАЗРЕШЕНО ИЗГОТОВЛЕНИЕ НЕОГРАНИЧЕННЫХ КОПИЙ БУМАГИ ТОЛЬКО ДЛЯ ВНУТРЕННЕГО ИСПОЛЬЗОВАНИЯ

Цинк - Информация об элементе, свойства и применение

Расшифровка:

Химия в ее элементе: цинк

(Promo)

Вы слушаете Химию в ее элементе, представленную вам Chemistry World , журналом Королевского химического общества.

(Конец промо)

Chris Smith

На этой неделе химический лосьон с каламином для зудящей кожи, шампунь против перхоти для шелушащейся кожи головы и дезодорант для подмышек - ну, я думаю, мы все стоял рядом с кем-то, кто, как нам хотелось бы, знал немного больше о химии цинка. Вот Брайан Клегг.

Брайан Клегг

Не так много элементов с звукоподражательными названиями. Скажите «кислород» или «йод», и в звучании слова нет ключа к природе элемента.Но с цинком все иначе. Цинк - цинк - цинк - вы почти можете услышать, как набор монет падает в старомодную ванну. Это просто должен быть твердый металл.

При использовании цинк часто спрятан, почти скрыт. Он предотвращает ржавчину железа, успокаивает солнечные ожоги, защищает от перхоти, соединяется с медью, образуя очень знакомый сплав золотого цвета и сохраняет нам жизнь, но мы почти не замечаем этого. Этот сине-серый металл, известный под коммерческим названием Spelter, совсем не кричащий и привлекающий внимание. Даже происхождение этого вызывающего воспоминания имени неясно.

Словарь говорит нам, что слово цинк происходит от немецкого языка (с буквой K в конце вместо C), но как это название возникло, неизвестно. Самое раннее упоминание о цинке относится к 1651 году. Вещество было известно и раньше - предметы с цинком в них датируются более 2500 лет назад, и римляне использовали этот сплав золотого цвета, - но цинк не был идентифицирован как отдельный материал на западе до тех пор, пока семнадцатый век.

Цинк, представленный в периодической таблице как Zn, является переходным металлом, сгруппированным с кадмием и ртутью.Со средним атомным номером 30 он имеет пять стабильных изотопов с атомным весом от доминирующего цинка 64 до цинка 70, плюс еще 25 радиоизотопов.

Из-за туманного происхождения трудно определить одного человека как первооткрывателя стихии. Хотя кажется, что он был очищен в Индии еще в двенадцатом веке, первое конкретное заявление о том, что он произвел этот металл, было сделано еще в 1668 году, а процесс извлечения цинка из его оксида был запатентован в Великобритании в 1738 году торговцем металлами Уильямом. Чемпион.Но, как правило, именно немецкий химик Андреас Маргграф получает лавры как «первооткрыватель» за свой эксперимент 1746 года по выделению цинка.

Хотя история цинка более чем туманна, нет никаких сомнений в его полезности. Достаточно взглянуть на оцинкованную металлическую крышу или ведро, чтобы увидеть, как работает цинк. Гальванизация названа в честь Луиджи Гальвани, человека, который заставил лягушачьи лапки подергиваться электрическим током, но гальванизация не имеет ничего общего с электрическим зрелищем. На самом деле роль электричества удивительно тонка.

Наиболее распространенной формой цинкования является горячее цинкование, когда железо или сталь пропускают через ванну с жидким цинком при температуре около 460 градусов Цельсия, что на 40 градусов выше его точки плавления. Покрытие предохраняет обрабатываемый объект от ржавчины. Первоначально цинк просто предотвращает попадание воздуха в железо, но позже цинк подвергается коррозии, а не железу, в электрохимическом процессе, действуя как так называемый жертвенный анод. Здесь и появляется «гальваническая» часть названия. Некоторая гальванизация является более буквально электрической - например, автомобильные кузова покрываются гальваническим покрытием цинком, чтобы нанести тонкий ровный слой.

Электрические возможности цинка распространяются также на самые популярные батареи. Традиционный сухой элемент имеет внешний цинковый кожух, действующий как анод (что сбивает с толку, анод, который обычно считается положительным, является отрицательным концом батареи), в то время как углеродный стержень обеспечивает катод, положительный электрод. В щелочных батареях с более длительным сроком службы анод сформирован из порошкообразного цинка (что дает большую площадь поверхности для реакции), а катод - из сложного диоксида марганца.

Но самый видимый пример цинка в действии не дает никаких указаний на этот сероватый металл - вместо этого он находится в сплаве, который смешивает блеск золота с обычным оттенком.Когда расплавленный цинк и медь смешиваются вместе, результат становится жирным, как латунь. На самом деле это латунь. Из этого гибкого сплава изготовлено все, от дверных креплений до декоративных наклеек для конских ошейников. Любой оркестр был бы намного беднее без медных духовых инструментов. Он даже может застегнуть молнию на вашей одежде.

Хорошо отполированная латунь имеет приятное сияние, но наиболее тесный контакт с цинком, а точнее оксидом цинка, часто возникает, когда мы имеем дело с нежелательным сиянием солнечных ожогов.Когда я был молод, и солнцезащитных кремов было мало, загорелая кожа обильно покрывалась успокаивающим розовым лосьоном с каламином. Основным ингредиентом этого вещества является оксид цинка, который имеет белый цвет - это небольшое количество оксида железа, которое придает ему этот цвет. Даже сейчас, когда мы можем избежать потребности в каламине, оксид цинка играет свою роль. Оксид цинка, называемый китайским белым, когда его используют в красках, является хорошим поглотителем ультрафиолетового света, поэтому солнцезащитный крем часто содержит суспензию крошечных частиц оксида цинка - как и большинство косметических средств на минеральной основе.

И это только начало для этого универсального оксида. Вы найдете его в антипиренах и пищевых продуктах, где он обогащает сухие завтраки, в стекле и керамике, в клеях и резине. Это неожиданное появление на столе для завтрака отражает еще одну важную сторону цинка. Он нужен нам, чтобы оставаться здоровыми. Это один из микроэлементов, питательных веществ, в которых наш организм нуждается в небольших количествах для нормальной работы. Он часто присутствует в витаминных добавках, хотя большинство из нас получает много из мяса и яиц.Цинк попадает в различные белки, особенно в ферменты, участвующие в развитии организма, пищеварении и фертильности. Недостаток цинка в рационе может привести к замедленному заживлению, раздражению кожи и потере вкусовых ощущений, а также к развитию многих хронических заболеваний.

Поскольку цинк также присутствует в шампунях от перхоти в виде пиритиона цинка и в дезодорантах для подмышек в виде хлорида цинка, этот элемент даже делает нас более привлекательными для противоположного пола. Цинк - скрытая звезда.Мы редко осознаем это, в отличие от более ярких соседей в таблице периодов, но цинк - это элемент рабочей лошадки, который помогает всем нам.

Крис Смит

Научный писатель из Бристоля Брайан Клегг со звукоподражательным элементом, цинком. На следующей неделе, что таится в твоем подвале.

Кэтрин Холт

Первые сообщения о проблемах, связанных с газообразным радоном в жилых зданиях, были в Соединенных Штатах в 1984 году, когда служащий на атомной электростанции начал подавать сигналы тревоги детектора излучения по пути на работу .В конечном итоге проблема была обнаружена в его доме, где уровень газа радона в подвале оказался аномально высоким.

Крис Смит

Но откуда это взялось и каков риск для его здоровья. Кэтрин Холт будет здесь со всеми ответами и остальной частью рассказа Радона о химии в ее элементе на следующей неделе. Я действительно надеюсь, что вы присоединитесь к нам. Я Крис Смит, спасибо за внимание и до свидания.

(промо)

(конец промо)

цинк | Свойства, использование и факты

Возникновение, использование и свойства

Цинк, немного более распространенный, чем медь, составляет в среднем 65 граммов (2.3 унции) каждой тонны земной коры. Основным минералом цинка является сульфидный сфалерит (цинковая обманка), который вместе с продуктами его окисления смитсонитом и гемиморфитом составляет почти всю цинковую руду в мире. О самородном цинке сообщают из Австралии, Новой Зеландии и США, а ведущими производителями цинка в начале 21 века являются Китай, Австралия и Перу. Минералогические свойства цинка: см. самородный элемент.

Цинк является важным микроэлементом в организме человека, где он содержится в высоких концентрациях в красных кровяных тельцах в качестве важной части фермента карбоангидразы, который способствует многим реакциям, связанным с метаболизмом углекислого газа.Цинк, присутствующий в поджелудочной железе, может способствовать хранению инсулина. Цинк входит в состав некоторых ферментов, переваривающих белок в желудочно-кишечном тракте. Дефицит цинка в орехоплодных и плодовых деревьях вызывает такие заболевания, как розетка пекана, маленький лист и крапчатый лист. Цинк действует в гемосикотипсине крови улиток, транспортируя кислород аналогично железу в гемоглобине крови человека.

Металлический цинк получают путем обжига сульфидной руды с последующим выщелачиванием окисленного продукта в серной кислоте или плавлением его в доменной печи.Цинк извлекается из выщелачивающего раствора путем электролиза или конденсируется из доменного газа, а затем отгоняется от примесей. Для получения конкретной информации о добыче, извлечении и рафинировании цинка, см. переработка цинка.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Основное применение металлического цинка - цинкование железа и стали против коррозии, а также производство латуни и сплавов для литья под давлением. Сам цинк образует непроницаемое покрытие из своего оксида при воздействии атмосферы, и, следовательно, металл более устойчив к обычной атмосфере, чем железо, и корродирует с гораздо меньшей скоростью.Кроме того, поскольку цинк склонен к окислению, а не железо, некоторая защита обеспечивается стальной поверхности, даже если часть ее обнажается через трещины. Цинковое покрытие формируется методом горячего цинкования или электроцинкованием.

Горячее цинкование - это наиболее распространенный способ покрытия стали цинком. Это может быть периодический процесс, известный как общее цинкование или непрерывное покрытие рулонов стальной полосы. При обычном цинковании сталь протравливают в кислоте, обрабатывают флюсующими добавками, а затем погружают в ванну с расплавленным цинком при температуре около 450 ° C (840 ° F).Слои сплава железа с цинком сформированы на поверхности и покрыты внешним слоем цинка. Обрабатываемые таким образом объекты варьируются от небольших гаек и болтов до стальных оконных рам и больших балок, используемых в строительстве. В этом процессе обычно используется цинк обыкновенного сорта, содержащий до 1,5% свинца.

При гальваническом цинковании цинк наносится на стальную полосу в 20 последовательных ячейках электролитического покрытия. Есть несколько успешных конструкций ячеек; здесь обсуждается простая вертикальная ячейка, чтобы объяснить принцип.Полоса, подключенная к отрицательной стороне постоянного тока через проводящие ролики большого диаметра, расположенные выше и между двумя ячейками, погружается в резервуар с электролитом погруженным опускающим роликом. Частично погруженные аноды, расположенные напротив полосы, подключены к положительной стороне электрического тока тяжелыми шинами. Катионы цинка (т.е. положительно заряженные атомы цинка), присутствующие в электролите, преобразуются током в обычные атомы цинка, которые осаждаются на полосе. Ванну снабжают катионами цинка либо цинковыми анодами, которые непрерывно растворяются под действием постоянного тока, либо соединениями цинка, непрерывно добавляемыми в электролит.В последнем случае аноды изготовлены из нерастворимых материалов, таких как титан, покрытый оксидом иридия. Электролит представляет собой кислый раствор сульфида цинка или хлорида цинка с другими добавками для ванн для улучшения качества покрытия и выхода по току. Толщину покрытия легче контролировать, чем в процессе горячего погружения, из-за хорошего соотношения между электрическим током и нанесенным цинком.

Отрицательный электрод (внешний корпус) в одном из распространенных типов сухих электрических элементов состоит из цинка.Еще одна важная серия сплавов - это сплавы, образованные добавлением от 4 до 5 процентов алюминия к цинку; они имеют относительно низкую температуру плавления, но обладают хорошими механическими свойствами и могут быть отлиты под давлением в стальных штампах. Значительное количество цинка в рулонном виде используется для кровли, особенно в Европе; небольшие добавки меди и титана улучшают сопротивление ползучести, то есть сопротивление постепенной деформации.

Свежеотлитый цинк имеет голубоватую серебряную поверхность, но медленно окисляется на воздухе с образованием сероватой защитной оксидной пленки.Цинк высокой чистоты (99,99%) пластичен; Так называемый «прайм-вестерн» (чистота 99,8%) является хрупким в холодном состоянии, но при температуре выше 100 ° C (212 ° F) его можно свернуть в листы, которые останутся гибкими. Цинк кристаллизуется в гексагональной плотноупакованной структуре. Когда железо и цинк вместе подвергаются воздействию коррозионной среды, они образуют электролитическую ячейку, и цинк подвергается атаке (окисляется до иона Zn 2 + ) преимущественно из-за его более высокого электродного потенциала. Эта так называемая протекторная защита в сочетании с гораздо большей коррозионной стойкостью цинка в атмосферных условиях является основой для цинкования.

Природный цинк представляет собой смесь пяти стабильных изотопов: 6 4 Zn (48,6 процента), 6 6 Zn (27,9 процента), 6 7 Zn (4,1 процента), 6 8 Zn (18,8%) и 7 0 Zn (0,6%).

Какова формула металлического цинка? - Mvorganizing.org

Какова формула металлического цинка?

Цинк - это химический элемент с символом Zn и атомным номером 30.Цинк классифицируется как переходный металл. При комнатной температуре он находится в твердом состоянии… .7.1. Формы элементов.

CID 32051
Имя цинк (2+)
Формула Zn + 2
УЛЫБКИ [Zn + 2]
Молекулярный вес 65,38

Что такое цинк в химии?

Цинк (Zn), химический элемент, легкоплавкий металл группы 12 (IIb, или группа цинка) периодической таблицы Менделеева, который необходим для жизни и является одним из наиболее широко используемых металлов.Цинк имеет большое коммерческое значение.

Каков состав цинка?

Он состоит из цинка очень высокого качества Z1 (99,995% чистого цинка) в соответствии со стандартом EN 1179, к которому добавлены титан и медь. Медь увеличивает механическую стойкость сплава, делая его тверже и прочнее.

Каково научное название цинка?

Цинк - это химический элемент с символом Zn и атомным номером 30. Наиболее распространенной цинковой рудой является сфалерит (цинковая обманка), минерал сульфид цинка.

Для чего обычно используется цинк?

Чаще всего цинк используется для гальванизации других металлов, таких как железо, для предотвращения коррозии. Оцинкованная сталь используется для изготовления кузовов автомобилей, уличных фонарных столбов, барьеров безопасности и подвесных мостов. Большое количество цинка используется для производства отливок под давлением, которые важны в автомобильной, электротехнической и аппаратной промышленности.

Какая форма цинка самая лучшая?

Поскольку это одна из наиболее широко доступных и экономически эффективных форм цинка, глюконат цинка может быть хорошим вариантом для увеличения потребления без ущерба для вашего банка.Однако, если вы можете потратить немного больше, пиколинат цинка может лучше усваиваться.

25 мг цинка - это слишком много?

Многие врачи рекомендуют людям с диабетом 2 типа и низким уровнем цинка принимать от 15 до 25 мг цинка в день для нормализации уровня цинка. Прием высоких доз цинка в течение длительного времени увеличивает риск дефицита меди. Большинство поливитаминно-минеральных добавок содержат достаточное количество меди для предотвращения дефицита.

Какой цинк лучше всего подходит для иммунной системы?

Более ранние исследования показывают, что пиколинат цинка может быть одной из самых простых форм цинка, которые организм усваивает и усваивает (8).Одна таблетка этой добавки содержит 30 мг пиколината цинка. Для достижения наилучших результатов принимайте по одной таблетке в день или в соответствии с рекомендациями врача.

Безопасно ли принимать 50 мг цинка в день?

Более низкие уровни повышают риск сердечных заболеваний. Обзор нескольких исследований уровней цинка и холестерина показывает, что добавление более 50 мг цинка в день может снизить ваши «хорошие» уровни ЛПВП и не повлиять на «плохой» холестерин ЛПНП (11, 12, 13).

Могут ли витамин С и цинк вызывать запор?

Позвоните своему врачу или обратитесь за медицинской помощью, если какие-либо из этих побочных эффектов или любые другие побочные эффекты беспокоят вас или не проходят: расстройство желудка или рвота. Понос. Запор.

Какие витамины нельзя принимать вместе?

Большие дозы минералов могут конкурировать друг с другом за поглощение. Не принимайте одновременно добавки кальция, цинка или магния. Кроме того, эти три минерала легче переносятся вашим животом, когда вы принимаете их с едой, поэтому, если ваш врач рекомендует их, употребляйте их во время различных приемов пищи или перекусов.

Можно ли вместе принимать витамины D и C?

Витамин C и витамин D содержатся вместе во многих поливитаминах, поэтому их совместный прием не должен быть проблемой для большинства людей. Однако, если вы подвержены риску образования камней в почках, перед приемом пищевых добавок проконсультируйтесь с врачом.

Что важнее витамина C или D?

На самом деле, недавние исследования показывают, что витамин D может быть намного лучше и важнее для нашего организма, чем витамин C. Это не означает, что вы выбираете между одним или другим - важны оба.Но было отмечено, что витамин D влияет на до 2000 различных генов (это одна шестая часть генома человека).

В чем разница между витамином С и витамином D?

Витамин С содержится в цитрусовых и других овощах, включая брокколи, брюссельскую капусту, капусту, цветную капусту, картофель, шпинат и помидоры. Витамин D известен как «витамин солнечного света», потому что организм вырабатывает его после пребывания на солнце.

Какой самый лучший витаминный бренд?

Nature Made предлагает несколько продуктов с витаминами и добавками, которые сертифицированы USP и являются брендом №1, рекомендованным фармацевтами.В ассортимент добавок, которые предлагает компания, входят: поливитамины. витамины для беременных.

Какая пищевая добавка №1 в мире?

USANA Филиппины заняли первое место в рейтинге производителей витаминов и пищевых добавок по версии ведущей мировой исследовательской компании.

Цинковый порошок, 15 г | Инструменты для дома

Есть вопросы? Обратитесь в службу поддержки клиентов.

406-256-0990 или же Живой чат в

Возраст 12+
На складе, готово к отправке
Это нужно быстро? Смотрите варианты доставки в корзине.

Порошок цинка, или металлический цинк, представляет собой химический элемент с символом Zn и атомным номером 30. Этот 15-граммовый флакон с цинковым порошком является маленьким по размеру для домашних экспериментов. Ниже вы найдете формулу цинкового порошка, его плотность и многое другое! Читать Подробнее

участников My Science Perks получают не менее Возврат $ 0.10 за этот товар.Войдите или создайте Бесплатный HST Аккаунт, чтобы начать зарабатывать сегодня

ОПИСАНИЕ

Цинковый порошок, или металлический цинк, представляет собой химический элемент с символом Zn и атомным номером 30. Этот 15-граммовый флакон с цинковым порошком мал по размеру для домашних экспериментов. Найдите формулу порошка цинка, распространенные способы использования порошка цинка и многое другое ниже!

Формула Zn
Вес формулы 65.38
Марка Лаборатория
Форма Порошок
Плотность 7,14 г / см 3
Номер CAS 7440-66-6
Классификация DOT Нерегулируемый
Код хранилища Зеленый
Срок годности 36 месяцев
Обычное использование Лечение кожных заболеваний, используется в детской присыпке, кремах от сыпи и т. Д.

БЛОК ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ

ВКЛАДКА С СОДЕРЖАНИЕМ

ТАБЛИЦА ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК

Описание
CH-ZNPOWD
Технические характеристики
СОДЕРЖАНИЕ

Мы хотим, чтобы этот предмет был живым, когда вы его получите! Следовательно, нам необходимо знать, когда вы будете дома, чтобы получить его (минимизируя воздействие стихии).Пожалуйста, укажите дату доставки, среда - Пятница, это минимум 7 дней с сегодняшнего дня.

Химия / Химия

/ химия /, / химия / химия /

Мы поняли. Наука может быть беспорядочной. Но продукты и услуги Home Science Tools справятся с этим.

Наша продукция долговечна, надежна и доступна по цене, позволяя вам перемещаться из полевых условий в лабораторию и на кухню.Они не подведут вас, с чем бы они ни боролись. Будь то (чрезмерно) нетерпеливые молодые ученые из года в год или строгие требования, которые возникают раз в жизни.

И если ваш научный запрос идет не так, как ожидалось, вы можете рассчитывать на помощь нашей службы поддержки клиентов. Рассчитывайте на дружеские голоса на другом конце телефона и советы экспертов в вашем почтовом ящике. Они не будут счастливы, пока вы не станете счастливыми.

Итог? Мы гарантируем, что наши продукты и услуги не испортят ваше научное исследование, каким бы беспорядочным оно ни было.

Вопросы? Свяжитесь с нашей службой поддержки клиентов.

11.7: Реакции однократной замены - Химия LibreTexts

Показанная ниже чашка представляет собой пример потускнения, химического изменения, вызванного реакцией металлического серебра с газообразным сероводородом. Сероводород образуется в результате некоторых промышленных процессов или в результате разложения животных или растительных материалов:

\ [2 \ ce {Ag} + \ ce {H_2S} \ rightarrow \ ce {Ag_2S} + \ ce {H_2} \]

Потускнение можно удалить с помощью ряда полиролей, но вместе с ним удаляется также небольшое количество серебра.

Рисунок \ (\ PageIndex {1} \): потускневшая серебряная чашка. (CC BY-NC; CK-12)

Реакция однократного замещения - это реакция, в которой один элемент замещает аналогичный элемент в соединении. Общая форма реакции однократного замещения (также называемой однократным перемещением):

\ [\ ce {A} + \ ce {BC} \ rightarrow \ ce {AC} + \ ce {B} \]

В этой общей реакции элемент \ (\ ce {A} \) является металлом и заменяет элемент \ (\ ce {B} \), также металл, в соединении. Когда элемент, выполняющий замену, является неметаллом, он должен заменить другой неметалл в соединении, и общее уравнение принимает следующий вид:

\ [\ ce {Y} + \ ce {XZ} \ rightarrow \ ce {XY} + \ ce {Z} \]

, где \ (\ ce {Y} \) - неметалл и заменяет неметалл \ (\ ce {Z} \) в соединении на \ (\ ce {X} \).

Замена металла

Магний является более химически активным металлом, чем медь. Когда полоса металлического магния помещается в водный раствор нитрата меди (II), она заменяет медь. Продуктами реакции являются водный раствор нитрата магния и твердая металлическая медь.

\ [\ ce {Mg} \ left (s \ right) + \ ce {Cu (NO_3) _2} \ left (aq \ right) \ rightarrow \ ce {Mg (NO_3) _2} \ left (aq \ right) + \ ce {Cu} \ left (s \ right) \]

Эта подкатегория реакций однократного замещения называется реакцией замещения металла, потому что это металл, который заменяется (медь).

Замена водорода

Многие металлы легко вступают в реакцию с кислотами, и когда они это делают, одним из продуктов реакции является газообразный водород. Цинк реагирует с соляной кислотой с образованием водного хлорида цинка и водорода (рисунок ниже).

\ [\ ce {Zn} \ left (s \ right) + 2 \ ce {HCl} \ left (aq \ right) \ rightarrow \ ce {ZnCl_2} \ left (aq \ right) + \ ce {H_2} \ влево (г \ вправо) \]

В реакции замещения водорода водород в кислоте заменяется активным металлом.

Рисунок \ (\ PageIndex {2} \): Металлический цинк реагирует с соляной кислотой с выделением газообразного водорода в реакции одинарного вытеснения. (CC BY-NC; CK-12)

Некоторые металлы настолько реактивны, что способны заменять водород в воде. Продуктами такой реакции являются гидроксид металла и газообразный водород. Все металлы группы 1 подвергаются этому типу реакции. Натрий бурно реагирует с водой с образованием водного гидроксида натрия и водорода (см. Рисунок ниже).

\ [2 \ ce {Na} \ left (s \ right) + 2 \ ce {H_2O} \ left (l \ right) \ rightarrow 2 \ ce {NaOH} \ left (aq \ right) + \ ce {H_2 } \ left (g \ right) \]

Рисунок \ (\ PageIndex {3} \): Металлический натрий бурно реагирует с водой, выделяя газообразный водород.Большой кусок натрия часто выделяет столько тепла, что водород воспламеняется. (CC BY-NC; CK-12)

Замена галогена

Элемент хлор реагирует с водным раствором бромида натрия с образованием водного хлорида натрия и элементарного брома:

\ [\ ce {Cl_2} \ left (g \ right) + 2 \ ce {NaBr} \ left (aq \ right) \ rightarrow 2 \ ce {NaCl} \ left (aq \ right) + \ ce {Br_2} \ влево (л \ вправо) \]

Реакционная способность галогенной группы (группа 17) снижается сверху вниз внутри группы.Фтор является наиболее реактивным галогеном, а йод - наименее активным. Поскольку хлор выше брома, он более активен, чем бром, и может замещать его в реакции замещения галогена.

Сводка

Ряд активности описывает относительную химическую активность металлов и галогенов.

Авторы и авторство

  • Фонд CK-12 Шарон Бьюик, Ричард Парсонс, Тереза ​​Форсайт, Шонна Робинсон и Жан Дюпон.

14.5: Реакции кислот и оснований

Цели обучения

  • Запишите реакции кислотно-щелочной нейтрализации.
  • Напишите реакции кислот с металлами.
  • Запишите реакции оснований с металлами.

Реакция нейтрализации

Реакция, которая происходит, когда кислота, такая как \ (\ ce {HCl} \), смешивается с основанием, например \ (\ ce {NaOH} \):

\ [\ ce {HCl (водн.) + NaOH (водн.) → NaCl (водн.) + H_2O (l)} \ nonumber \]

При смешивании кислоты и основания образуются вода и соль. .{-}} \)] \) - получается нейтральный раствор с pH = 7. Кислота и основание нейтрализовали друг друга, и кислотные и основные свойства больше не присутствуют.

Однако солевые растворы не всегда имеют pH 7. Посредством процесса, известного как гидролиз , ионы, образующиеся при объединении кислоты и основания, могут реагировать с молекулами воды с образованием слабокислого или основного раствора. Как правило, если сильная кислота смешивается со слабым основанием, полученный раствор будет слегка кислым.Если сильное основание смешать со слабой кислотой, раствор будет слегка щелочным.

Видео: Эквимолярный (~ 0,01 M) и эквивалентный растворы \ (\ ce {HCl} \) и \ (\ ce {NaOH} \) объединяются для получения соленой воды. https://youtu.be/TS-I9KrUjB0

Пример \ (\ PageIndex {1} \): пропионовая кислота + гидроксид кальция

Пропионат кальция используется для подавления роста плесени в пищевых продуктах, табаке и некоторых лекарствах. Напишите сбалансированное химическое уравнение реакции водного раствора пропионовой кислоты (CH 3 CH 2 CO 2 H) с водным гидроксидом кальция [Ca (OH) 2 ].

Решение

Ступени Реакция

Напишите несбалансированное уравнение.

Это реакция двойного вытеснения, когда катионы и анионы меняются местами, образуя воду и соль.

CH 3 CH 2 CO 2 H (водн.) + Ca (OH) 2 (водн.) → (CH 3 CH 2 CO 2 ) 2 Ca (водн.) + H 2 O (л)

Сбалансируйте уравнение.

Поскольку в формуле для Ca (OH) 2 присутствуют два иона OH -, нам нужны два моля пропионовой кислоты, CH 3 CH 2 CO 2 H, чтобы получить H + ионы.

2 CH 3 CH 2 CO 2 H (водн.) + Ca (OH) 2 (водн.) → (CH 3 CH 2 CO 2 ) 2 Ca (водн.) + 2 H 2 O (л)

Упражнение \ (\ PageIndex {1} \)

Напишите сбалансированное химическое уравнение реакции твердого гидроксида бария с разбавленной уксусной кислотой.

Ответ

\ [\ ce {Ba (OH) 2 (s) + 2Ch4CO2H (водн.) → Ba (Ch4CO2) 2 (водн.) + 2h3O (l)} \ nonumber \ nonumber \]

Кислоты и основания вступают в реакцию с металлами

Кислоты реагируют с большинством металлов с образованием соли и газообразного водорода. Как обсуждалось ранее, металлы, которые более активны, чем кислоты, могут подвергаться реакции одинарного замещения . Например, металлический цинк реагирует с соляной кислотой с образованием хлорида цинка и газообразного водорода.

\ [\ ce {Zn (s) + 2HCl (водн.) → ZnCl2 (водн.) + H3 (g)} \ nonumber \]

Основания также реагируют с некоторыми металлами, такими как цинк или алюминий, с образованием газообразного водорода. Например, гидроксид натрия реагирует с цинком и водой с образованием цинката натрия и газообразного водорода.

\ [\ ce {Zn (s) + 2NaOH (водн.) + 2h3O (l) → Na2Zn (OH) 4 (водн.) + H3 (g)}. \ Nonumber \]

Материалы и авторство

Эта страница была создана на основе содержимого следующими участниками и отредактирована (тематически или всесторонне) командой разработчиков LibreTexts в соответствии со стилем, представлением и качеством платформы:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *