Формула углекислого газа и кислорода: Углекислый газ (диоксид углерода) – Что такое Углекислый газ (диоксид углерода)?

alexxlab | 27.04.2023 | 0 | Разное

Содержание

Углекислый газ – применение – сайт АО «ГРАСИС»

Запрос на оборудование

Углекислый газ формируется при соединении двух элементов: углерода и кислорода. Он образуется в процессе сжигания угля или углеводородных соединений, при ферментации жидкостей, а также как продукт дыхания людей и животных. В небольших количествах он содержится и в атмосфере, откуда он ассимилируется растениями, которые в свою очередь производят кислород. Углекислый газ бесцветен и тяжелее воздуха. Он не пригоден для поддержания жизни. Углекислый газ замерзает при температуре −78,5 °C с образованием снега, состоящего из двуокиси углерода. В виде водного раствора он образует угольную кислоту, однако она не обладает достаточной стабильностью для того, чтобы ее можно было легко изолировать.

Диоксид углерода


Другие названияуглекислый газ, двуокись углерода,
сухой лёд(твердый)
Формула
CO2
Молярная масса44,0095(14) г/моль
В твердом видесухой лёд
Видбесцветный газ
Номер CAS[124-38-9]
Свойства
Плотность и фазовое состояние1,9769 кг/м3, при н. у.;
771 кг/м3, жидкий;
1512 кг/м3, твёрдый
Растворимость в воде1,45 кг/м3
Удельная теплоемкость0,846 кДж/(кг*С) при 27 °C
Удельная теплота плавления25,13 кДж/моль
Точка плавления−57 °C (216 K), под давлением
Точка кипения−78 °C (195 K), возгоняется
Константа диссоциации кислоты (pKa)6,35 и 10,33
Вязкость0,07 пз при −78 °C
Строение
Форма молекулы
линейная
Кристаллическая решёткамолекулярная
Дипольный моментноль
Техника безопасности
MSDSExternal MSDS
Главные опасностиудушающее, раздражающее
NFPA 704
R-phrasesR: As, Fb
[источник не указан 830 дней]
S-phrasesS9, S23, S36 (ж)
RTECS numberFF6400000
Страница дополнительных сведений
Структура и свойстваn, εr, и т. д.
СпектрУФ, ИК, ЯМР, Масс-спектроскопия
Родственные соединения
ОксидыCO
C3O2
C2O
CO3
Если не указано иное, данные даны для
материалов при стандартных условиях (25 °C, 100 кПа)
Infobox disclaimer and references

Химическая отрасль

Углекислый газ используется при производстве синтетических химических веществ и регулировании реакторных температур.

CO2 также служит для нейтрализации щелочных сточных вод. В закритических условиях диоксид углерода используется в процессах очистки или осушки полимеров, волокон животного или растительного происхождения.

Фармацевтика

Углекислый газ используется для создания инертной среды, синтеза химических веществ, сверхкритической флюидной экстракции (SFE), подкисления (pH) сточных вод или продукта при их низкотемпературной транспортировке (−78 °C или −108 °F).

Пищевая отрасль

В пищевой отрасли выделяются следующие основные направления применения CO
2
  • Насыщение углекислотой шипучих напитков, в том числе безалкогольных напитков, минеральной воды и пива.
  • Упаковка пищевых продуктов — инертные и бактерицидные свойства газа успешно используются в азотных смесях (упаковка в модифицированной атмосфере) для увеличения срока хранения многих продуктов питания (§ ALIGAL™).
  • Процессы охлаждения или заморозки (в виде криогенной жидкости) и контроль температуры при распределении пищевых продуктов (в виде сухого льда).
  • Удаление кофеина из кофе с использованием диоксида углерода в сверхкритическом состоянии.

Медицина

При проведении операций на искусственных органах углекислый газ служит для создания атмосферных условий, близких к физиологическим.

В качестве одного из компонентов кислородной или воздушной смеси углекислый газ служит стимулятором глубокого дыхания. Другим его применением является хирургическая дилатация при интраабдоминальных инсуффляциях.

Металлургическая отрасль

Наиболее популярным применением углекислого газа в металлургии является защита окружающей среды
  • CO2 применяется для осаждения бурого дыма в процессах завалки лома и закачки углерода, для сокращения объема поглощения азота в процессе вскрытия электродуговых печей, а также для донного перемешивания.
  • Отрасль переработки цветных металлов использует углекислый газ для осаждения дыма в процессе ковшовой транспортировки штейна (производство Cu/Ni) или слитков (производство Zn/Pb).
  • Небольшое количество жидкого диоксида углерода может использоваться при рециркуляции воды в процессе отвода кислотных шахтных вод.
  • Лазеры, использующие CO2, хорошо известны еще и как потребители некоторых специальных марок диоксида углерода (§ LASAL™).

Лабораторные исследования и анализ

Диоксид углерода в сверхкритическом состоянии представляет собой подвижную фазу, используемую как в процессе хроматографического анализа, так и в процессах экстрагирования.

Целлюлозно-бумажная отрасль

После щелочной отбелки древесной массы или целлюлозы диоксид углерода позволяет с высокой точностью регулировать уровень pH в переработанном сырье.

CO2 может использоваться в процессах нейтрализации талового масла и в целях повышения производительности бумагоделательных машин.

Электроника

Диоксид углерода стандартно применяется для обработки сточных вод, а в качестве охладителя он используется при испытании электронных приборов на воздействие окружающей среды.

Помимо этого диоксид углерода позволяет повышать проводимость сверхчистой воды, а в виде снега используется для абразивной очистки деталей или удаления осадков на кристаллических пластинах.

Дополнительно диоксид углерода может использоваться в качестве экологически чистой сверхкритической жидкости для удаления фототвердеющих материалов из кристаллических пластин без применения органических растворителей.

Охрана окружающей среды

Добавление диоксида углерода позволяет поддерживать необходимый уровень pH в жидких стоках. В качестве регулятора рН он является прекрасной альтернативой серной кислоте.

Как сжечь углекислый газ? | Наука и жизнь

Новые катализаторы помогут превратить диоксид углерода в топливо.

Чтобы получить энергию, как правило, необходимо что-нибудь сжечь: обычные автомобили сжигают топливо в двигателях внутреннего сгорания, электромобили заряжают свои батареи от электричества, поступающего, например, на ТЭЦ, где сжигают природный газ, и даже нам для мышечной или умственной работы надо «сжечь» внутри себя съеденный завтрак.

Пористая структура поверхности серебряного катализатора после удаления полистирольной матрицы. (Фото: MIT)

Открыть в полном размере

В любом органическом топливе, будь то бензиновые углеводороды или углеводы из шоколадки, содержатся атомы углерода, которые в конце своего энергетического пути превращаются в углекислый газ. Ну а газ, в свою очередь, отправляется в атмосферу, где он может накапливаться и вызывать всякие нехорошие эффекты вроде глобального потепления.

С энергетической точки зрения углекислый газ абсолютно бесполезен, поскольку углерод в нём полностью «сгорел», прочно и неразрывно связав себя с двумя атомами кислорода. Гореть он уже не горит, и единственное что с ним можно сделать – утопить или закопать. Утопить его можно, растворив в океане – и это действительно один из способов утилизации СО

2. Другой способ – закачать его под высоким давлением под землю, желательно там, где есть нефтяные месторождения; это позволит повысить отдачу нефтяных пластов и поможет добыть больше нефти. Однако химики всё же нашли способ «сварить кашу из топора» – существует третий путь утилизации СО2, когда его превращают в топливо.

Чтобы превратить СО2 в топливо, нужно «похимичить» с молекулой углекислого газа, например, отобрать у неё один атом кислорода. Тогда углекислый газ превратится в угарный газ СО. Несмотря на то, что для большинства угарный газ – это «тот газ, от которого периодически погибают неаккуратные пользователи дровяных печей», в промышленности его используют в самых разных процессах: во-первых, его можно сжечь и получить энергию, во-вторых, его можно использовать в металлургических процессах, а в-третьих, из него можно синтезировать различные органические молекулы, в том числе и жидкое топливо.

Как раз последний пункт и открывает перед углекислым газом нефтехимические перспективы.

Однако стоит заметить, что использование угарного газа в химических целях не есть что-то совсем новое. Ещё на заре ХХ века германские химики Франц Фишер и Ганс Тропш разработали способ, как из обычного угля получить жидкое топливо: сначала из каменного угля и воды получают синтез-газ – так называется смесь угарного газа и водорода, а затем с помощью катализатора из синтез-газа получают различные углеводороды. Этот способ был востребован, когда обычной нефти не хватало, однако со временем, во второй половине двадцатого века метод получения топлива из угля стала просто дорогой альтернативой «классическим» нефтеперерабатывающим технологиям. Но если в процессе Фишера-Тропша в качестве сырья используют каменный уголь, который сам по себе есть полезное ископаемое, то химики из Массачусетского технологического института для той же цели – получения синтез-газа – разработали способ, позволяющий делать его из «ненужного» углекислого газа.

Такие вещи невозможны без использования катализаторов, и, чтобы получить работающий катализатор, химикам порой приходится идти на самые разные хитрости. Дело в том, что, кроме определённого химического состава, для катализатора очень важна его внутренняя структура. Если говорить упрощённо, катализатор, нанесённый на ровную поверхность, может оказаться нерабочим, а вот если его нанести на пористую поверхность, и если у пор при этом будет определённый размер, то тогда он сможет заработать в полную силу.

Для того чтобы создать такой катализатор, химики взяли электропроводящий материал в качестве подложки и нанесли на него слой из полистирольных шариков диаметром около 200 нанометров. После чего пустоты, оставшиеся в пространстве между шариками, заполнили атомами серебра. (В качестве аналогии можно представить, что мы насыпали на пол слой из бильярдных шаров, а потом всё сверху залили ровным слоем расплавленного парафина.) Теперь, чтобы получить пористый субстрат, нужно каким-то образом убрать из материала все шарики, оставив в целости оставшуюся структуру.

В случае с бильярдными шарами это было бы весьма проблематично, а вот в случае с полистирольными шариками все оказалось намного проще – и в итоге после удаления полистирола на поверхности электрода получилась ячеистая структура из серебра с «сотами» определённого размера.

Подобный материал, как оказалось, хорошо превращает углекислый газ в синтез-газ, причём эффективность и селективность катализатора управляется за счёт размера сот: если на этапе синтеза катализатора взять полистирольные шарики покрупнее, то после реакции получится один состав продуктов, а если помельче – то другой. Подробно результаты исследований опубликованы в журнале

Angewandte Chemie.

И вроде бы всё хорошо, и человечество должно бы праздновать победу над выбросами парниковых газов, а каждую трубу, чадящую в атмосферу продуктами сгорания, нужно оборудовать подобным серебряным катализатором, но всё-таки стоит сделать одно замечание. Один из важных законов, по которому живёт окружающий нас мир – закон сохранения: масса и энергия не возникают ниоткуда и не пропадают в никуда. Это справедливо и для атомов химических элементов, и для тепла, вырабатываемого при сжигании топлива, и для электрической энергии. Поэтому сколько энергии получается при сжигании угарного газа до углекислого, как минимум, столько же энергии нужно затратить (упрощённо), чтобы превратить молекулу углекислого газа обратно в молекулу угарного. И очевидно, что для такой, в общем-то, «зелёной» технологии по утилизации парникового газа нужен свой источник энергии, который как минимум не «начадил» бы в атмосферу столько СО

2, сколько можно было бы превратить в полезный продукт.

Откуда взять энергию для превращения одного газа в другой? Например, от ветряных или солнечных энергоустановок, которые производят энергию, но не выбрасывают в атмосферу продукты сгорания топлива – в результате это позволило бы уменьшить общее количество углекислого газа.

Забавно, что похожей деятельностью занимались древние растения и бактерии, поглощавшие находившийся тогда в избытке в атмосфере углекислый газ, и преобразовывшие его в органические вещества, ставшие потом ископаемым топливом. Возможно, что человечеству в будущем придётся заниматься чем-то похожим, но только уже с использованием химических технологий.

СМЕСЬ ДВУОКИСИ УГЛЕРОДА И КИСЛОРОДА | CAMEO Chemicals

Добавить в MyChemicals Страница для печати

Химический паспорт

Химические идентификаторы | Опасности | Рекомендации по ответу | Физические свойства | Нормативная информация | Альтернативные химические названия

Химические идентификаторы

Что это за информация?

Поля химического идентификатора включают общие идентификационные номера, алмаз NFPA Знаки опасности Министерства транспорта США и общий описание хим. Информация в CAMEO Chemicals поступает из множества источники данных.

Номер CAS Номер ООН/НА Знак опасности DOT Береговая охрана США КРИС Код
  • 124-38-9  
  • 7782-44-7
  • 1014
  • Невоспламеняющийся газ
  • Окислитель
никто
Карманный справочник NIOSH Международная карта химической безопасности
Углекислый газ
  • УГЛЕРОДА ДВУОКИСЬ
  • КИСЛОРОД
  • КИСЛОРОД (СЖИЖЕННЫЙ)

NFPA 704

Алмаз Опасность Значение Описание
0
3 0
бык
Здоровье 3 Может привести к серьезной или необратимой травме.
Воспламеняемость 0 Не горит в обычных условиях пожара.
нестабильность 0 Обычно стабилен даже в условиях пожара.
Особенный ОХ Обладает окисляющими свойствами.

Примечание. Рейтинги NFPA указаны для кислорода, номер CAS 7782-44-7.

(NFPA, 2010)

Общее описание

Смесь углекислого газа с кислородом представляет собой бесцветный газ без запаха. И углекислый газ, и кислород негорючи; однако кислород может ускорить горение огня. При длительном воздействии огня или сильного нагрева контейнеры могут сильно разорваться и взорваться.

Опасности

Что это за информация?

Опасные поля включать специальные предупреждения об опасности воздух и вода реакции, пожароопасность, опасность для здоровья, профиль реактивности и подробности о задания реактивных групп и потенциально несовместимые абсорбенты. Информация в CAMEO Chemicals поступает из различных источников. источники данных.

Предупреждения о реактивности

  • Сильный окислитель

Реакции с воздухом и водой

Двуокись углерода растворима в воде и образует угольную кислоту, слабую кислоту в воде.

Пожароопасность

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

Вещество не горит, но поддерживает горение. Некоторые из них могут вступать во взрывоопасную реакцию с топливом. Может воспламенить горючие материалы (дерево, бумагу, масло, одежду и т. д.). Пары сжиженного газа изначально тяжелее воздуха и распространяются по земле. Слив может создать опасность пожара или взрыва. Контейнеры могут взорваться при нагревании. Разорванные цилиндры могут взлететь. (ЭРГ, 2020)

Опасность для здоровья

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

Пары могут вызвать головокружение или удушье без предупреждения. Контакт с газом или сжиженным газом может вызвать ожоги, серьезные травмы и/или обморожение. При пожаре могут выделяться раздражающие и/или ядовитые газы. (ЭРГ, 2020)

Профиль реактивности

Чистый кислород является сильным окислителем. CO2 инертен, поэтому большая часть реакционной способности этой смеси связана с процентным содержанием каждого компонента. Чем выше процентное содержание инертного газа, тем менее реакционноспособным он является в качестве окислителя. Пыли магния, лития, калия, натрия, циркония, титана и некоторых магниево-алюминиевых сплавов, а также нагретые алюминий, хром и магний во взвешенном состоянии в углекислом газе воспламеняются и взрывоопасны. Это особенно верно в присутствии сильных окислителей, таких как пероксиды. Наличие двуокиси углерода в растворах гидрида алюминия в эфире может вызвать бурное разложение при нагревании остатка [J. амер. хим. Соц., 1948, 70, 877]. Рассмотрены опасности, возникающие при использовании углекислого газа в системах предотвращения и тушения замкнутых объемов воздуха и горючих паров. Опасность, связанная с его использованием, заключается в том, что могут создаваться сильные электростатические разряды, которые инициируют взрыв [Quart. Саф. Summ., 1973, 44(1740, 10].

Принадлежит к следующей реакционной группе(ам)

  • Окислители сильные

Потенциально несовместимые абсорбенты

Соблюдайте осторожность: Жидкости с этой классификацией реактивной группы были Известно, что он реагирует с абсорбенты перечислено ниже. Больше информации о абсорбентах, в том числе о ситуациях, на которые следует обратить внимание…

  • Абсорбенты на основе целлюлозы
  • Вспененные полимерные абсорбенты

Рекомендации по ответу

Что это за информация?

Поля рекомендации ответа включают в себя расстояния изоляции и эвакуации, а также рекомендации по пожаротушение, пожарное реагирование, защитная одежда и первая помощь. информация в CAMEO Chemicals поступает из различных источники данных.

Изоляция и эвакуация

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

НЕМЕДЛЕННЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ: Изолируйте место разлива или утечки на расстоянии не менее 100 метров (330 футов) во всех направлениях.

КРУПНЫЙ РАЗЛИВ: Рассмотрите начальную эвакуацию по ветру на расстояние не менее 500 метров (1/3 мили).

ПОЖАР: Если цистерна, железнодорожная цистерна или автоцистерна вовлечены в пожар, ИЗОЛИРОВАТЬ на расстоянии 800 метров (1/2 мили) во всех направлениях; также рассмотрите первоначальную эвакуацию на 800 метров (1/2 мили) во всех направлениях. (ЭРГ, 2020)

Пожаротушение

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

Используйте огнетушащее вещество, подходящее для типа окружающего пожара.

НЕБОЛЬШОЙ ПОЖАР: Сухой химикат или CO2.

БОЛЬШОЙ ПОЖАР: Распыление воды, туман или обычная пена. Если это можно сделать безопасно, уберите неповрежденные контейнеры из зоны вокруг огня. С поврежденными баллонами должны обращаться только специалисты.

ПОЖАР В РЕЗЕРВУАРАХ: Тушить огонь с максимального расстояния или использовать беспилотные устройства управления потоком или контрольные насадки. Охладите контейнеры заливающим количеством воды до тех пор, пока огонь не погаснет. Не направляйте воду на источник утечки или предохранительные устройства; может произойти обледенение. Немедленно отозвать в случае усиления звука от вентиляционных предохранительных устройств или обесцвечивания бака. ВСЕГДА держитесь подальше от танков, охваченных огнем. При массовом возгорании используйте беспилотные устройства управления потоком или стволы-мониторы; если это невозможно, отойдите от зоны и дайте огню гореть. (ЭРГ, 2020)

Непожарное реагирование

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

Держите горючие материалы (дерево, бумагу, масло и т. д.) вдали от разлитого материала. Не прикасайтесь к рассыпанному материалу и не ходите по нему. Остановите утечку, если вы можете сделать это без риска. Если возможно, переверните контейнеры с протечками так, чтобы выходил газ, а не жидкость. Не направляйте воду на разлив или источник утечки. Используйте распыление воды, чтобы уменьшить количество паров или отклонить дрейф облаков паров. Избегайте попадания стекающей воды на разлитый материал. Не допускать попадания в водные пути, канализацию, подвалы или замкнутые пространства. Дайте веществу испариться. Изолируйте зону, пока газ не рассеется. ВНИМАНИЕ! При контакте с охлажденными/криогенными жидкостями многие материалы становятся хрупкими и могут неожиданно сломаться. (ЭРГ, 2020)

Защитная одежда

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

Наденьте автономный дыхательный аппарат с положительным давлением (SCBA). Носите одежду химической защиты, специально рекомендованную производителем, когда НЕТ РИСКА ПОЖАРА. Структурная защитная одежда пожарных обеспечивает тепловую защиту, но лишь ограниченную химическую защиту. Всегда надевайте термозащитную одежду при работе с охлажденными/криогенными жидкостями. (ЭРГ, 2020)

Ткани для костюмов DuPont Tychem®

Информация отсутствует.

Первая помощь

Выдержка из Руководства ERG 122 [Газы – Окисляющие (включая охлажденные жидкости)]:

Позвоните в службу 911 или в службу неотложной медицинской помощи. Убедитесь, что медицинский персонал знает о материале(ах) и принимает меры предосторожности для своей защиты. Переместите пострадавшего на свежий воздух, если это можно сделать безопасно. Сделайте искусственное дыхание, если пострадавший не дышит. Дайте кислород, если дыхание затруднено. Снять и изолировать загрязненную одежду и обувь. Одежду, примерзшую к коже, следует разморозить, прежде чем снимать. В случае контакта со сжиженным газом оттаивайте обледеневшие части теплой водой. Держите пострадавшего в покое и тепле. (ЭРГ, 2020)

Физические свойства

Что это за информация?

Поля физических свойств включают в себя такие свойства, как давление пара и температура кипения, а также пределы взрываемости и пороги токсического воздействия Информация в CAMEO Chemicals поступает из различных источников. источники данных.

Химическая формула:
  • СО2
  • О2

Температура вспышки: данные недоступны

Нижний предел взрываемости (НПВ): данные отсутствуют

Верхний предел взрываемости (ВПВ): данные отсутствуют

Температура самовоспламенения: данные отсутствуют

Температура плавления: данные отсутствуют

Давление пара: данные отсутствуют Воздух): данные отсутствуют

Удельный вес: данные отсутствуют

Температура кипения: данные отсутствуют

Молекулярная масса: данные отсутствуют

Растворимость в воде: данные отсутствуют

Энергия/потенциал ионизации: 13,77 эВ [Из NPG: Углекислый газ] (NIOSH, 2022)

IDLH: 40000 частей на миллион [Из NPG: Углекислый газ] (NIOSH, 2022)

AEGL (Рекомендуемые уровни острого воздействия)

Информация об AEGL отсутствует.

ERPG (руководство по планированию реагирования на чрезвычайные ситуации)

Информация о ERPG отсутствует.

PAC (критерии защитных действий)

Информация о PAC отсутствует.

Нормативная информация

Что это за информация?

Поля нормативной информации включить информацию из Сводный список III Агентства по охране окружающей среды США списки, Химический завод Агентства кибербезопасности и безопасности инфраструктуры США антитеррористические стандарты, и Управление по охране труда и здоровья США Перечень стандартов по управлению безопасностью технологического процесса при работе с особо опасными химическими веществами (подробнее об этих источники данных).

Сводный перечень списков EPA

Отсутствует нормативная информация.

Антитеррористические стандарты CISA Chemical Facility (CFATS)

Отсутствует нормативная информация.

Список стандартов OSHA по управлению безопасностью процессов (PSM)

Отсутствует нормативная информация.

Альтернативные химические названия

Что это за информация?

В этом разделе приводится список альтернативных названий этого химического вещества, включая торговые названия и синонимы.

  • КАРБОГЕН
  • КАРБОГЕН 240
  • СМЕСЬ УГЛЕРОДА И КИСЛОРОДА
  • УГЛЕРОДА ДИОКСИДА И КИСЛОРОДА СМЕСЬ СЖАТАЯ
  • СМЕСЬ ДВУОКИСИ УГЛЕРОДА И КИСЛОРОДА.
  • СМЕСЬ ДВУОКИСИ УГЛЕРОДА И КИСЛОРОДА
  • СМЕСЬ КИСЛОРОДА И УГЛЕРОДА
  • КИСЛОРОДА И УГЛЕРОДА СМЕСЬ СЖАТАЯ
  • КИСЛОРОД, СМЕСЬ. СОДЕРЖИТ

Образец двуокиси углерода (CO2) массой 1,0 г полностью разложен в я…

Воспроизвести видео:

Добро пожаловать обратно в этот пример, нам сказали, что образец воды весит один г и разлагается на 0,111 г водорода и 0,889 г кислорода. Другой образец другого соединения разлагается на 0,59 г водорода и 0,941 г кислорода. И нам нужно определить нашу эмпирическую формулу другого соединения, основанную на атомной теории Дальтона. Итак, наш первый шаг — вспомнить, что говорит нам атомная теория Дальтона. В частности, мы вспоминаем наш четвертый постулат теории Дальтона. Так что мы должны помнить об этом. Это говорит нам о том, что состав нашего химического соединения должен соответствовать соотношению второго соединения. И под отношением мы подразумеваем наши массы наших атомов и то, где они определяют состав. Это относится к количеству атомов в нашем соединении, что и даст нам нашу эмпирическую формулу. И поэтому мы сначала хотим записать наши массовые отношения обоих наших соединений. Таким образом, для нашего первого массового отношения, согласно подсказке, у нас есть сравнение нашей массы кислорода с нашей массой водорода, и согласно подсказке у нас есть массивный кислород, равный 0,889.г кислорода, тогда как наш массивный водород из подсказки дается как 0, г водорода. Таким образом, это даст нам коэффициент в наших калькуляторах, равный восьми. И затем, переходя к нашему второму соотношению масс для второго соединения, мы снова сравниваем нашу массу кислорода с нашей массой водорода. И согласно подсказке для нашего массивного кислорода для соединения два у нас есть масса 0,9 41 г кислорода для соединения. Или извините за нашего Адама Водорода. У нас есть масса, данная из подсказки как 0,59.г водорода. И это даст нам отношение, равное значению 16. Итак, если мы знаем, что наше отношение нашего второго соединения равно этому значению здесь, мы хотим увидеть, будет ли наше Отношение наших атомных масс кислорода к водороду также изменяться. чтобы сравняться с этим значением здесь, 16. Что снова является нашим отношением для нашего второго соединения, указанного в подсказке. И поэтому мы хотим вспомнить наши атомные массы кислорода и водорода в наших таблицах Менделеева. И мы увидели бы, что для кислорода мы имеем атомную массу, равную значению 16,0 г. И тогда для нашей атомной массы водорода мы увидим в периодической таблице значение, равное нулю или 1,8 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *