Гост медь: ГОСТы на медь

alexxlab | 11.04.2023 | 0 | Разное

Медь катодная ГОСТ 859

Главная › Продукция ГОСТы и ТУ скачать › Прокат цветных металлов › Медный прокат › Катоды медные ГОСТ 546, с химическим составом по ГОСТ 859

ГОСТ 546-2001

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КАТОДЫ МЕДНЫЕ

Технические условия

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ
ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ

Минск

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 503 «Медь»

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 19 от 24 мая 2001 г.)

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Азербайджанская Республика

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Беларусь

Госстандарт Республики Беларусь

Республика Казахстан

Госстандарт Республики Казахстан

Кыргызская Республика

Кыргызстандарт

Республика Молдова

Молдовастандарт

Российская Федерация

Госстандарт России

Республика Таджикистан

Таджикстандарт

Туркменистан

Главгосслужба «Туркменстандартлары»

Республика Узбекистан

Узгосстандарт

Украина

Госстандарт Украины

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 28 августа 2001 г. № 358-ст межгосударственный стандарт ГОСТ 546-2001 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 марта 2002 г.

4 ВЗАМЕН ГОСТ 546-88 (ИСО 431-81)

ГОСТ 546-2001

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КАТОДЫ МЕДНЫЕ

Технические условия

Copper cathodes. Specifications

Дата введения 2002-03-01

1 Область применения

Настоящий стандарт распространяется на медные катоды, получаемые электролизом водных растворов и предназначенные для производства литых и деформированных изделий из меди и ее сплавов.

Стандарт пригоден для целей сертификации.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 859-2001 Медь. Марки

ГОСТ 7229-76 Кабели, провода и шнуры. Метод определения электрического сопротивления токопроводящих жил и проводников

ГОСТ 9717.1-82 Медь. Метод спектрального анализа по металлическим стандартным образцам с фотоэлектрической регистрацией спектра

ГОСТ 9717.2-82 Медь спектрального анализа по металлическим стандартным образцам с фотографической регистрацией спектра

ГОСТ 9717.3-82 Медь. Метод спектрального анализа по оксидным стандартным образцам

ГОСТ 13938.1-78 Медь. Методы определения меди

ГОСТ 13938.2-78 Медь. Методы определения серы

ГОСТ 13938.3-78 Медь. Метод определения фосфора

ГОСТ 13938.4-78 Медь. Методы определения железа

ГОСТ 13938.5-78 Медь. Методы определения цинка

ГОСТ 13938.6-78 Медь. Методы определения никеля

ГОСТ 13938.7-78 Медь. Методы определения свинца

ГОСТ 13938.8-78 Медь. Методы определения олова

ГОСТ 13938.9-78 Медь. Методы определения серебра

ГОСТ 13938.10-78 Медь. Методы определения сурьмы

ГОСТ 13938.11-78 Медь. Методы определения мышьяка

ГОСТ 13938.12-78 Медь. Методы определения висмута

ГОСТ 13938.13-93 Медь. Методы определения кислорода

ГОСТ 13938.15-88 Медь. Методы определения хрома и кадмия

ГОСТ 14192-96 Маркировка грузов

ГОСТ 16504-81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения

ГОСТ 18242-72* Статистический приемочный контроль по альтернативному признаку. Планы контроля

ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 21399-75 Пакеты транспортные чушек, катодов и слитков цветных металлов. Общие требования

ГОСТ 22235-76 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ

ГОСТ 24231-80 Цветные металлы и сплавы. Общие требования к отбору и подготовке проб для химического анализа

ГОСТ 27981. 0-88 Медь высокой чистоты. Общие требования к методам анализа

ГОСТ 27981.1-88 Медь высокой чистоты. Методы атомно-спектрального анализа

ГОСТ 27981.2-88 Медь высокой чистоты. Метод химико-атомно-эмиссионного анализа

ГОСТ 27981.3-88 Медь высокой чистоты. Метод эмиссионно-спектрального анализа с фотоэлектрической регистрацией спектра

ГОСТ 27981.4-88 Медь высокой чистоты. Методы атомно-абсорбционного анализа

ГОСТ 27981.5-88 Медь высокой чистоты. Фотометрические методы анализа

ГОСТ 27981.6-88 Медь высокой чистоты. Полярографические методы анализа

ГОСТ 28106-89 Катоды медные. Отбор и подготовка проб и образцов для определения удельного электрического сопротивления

ГОСТ 28515-97 Медь. Метод испытания проб на удлинение спирали

(Поправка, ИУС № 7 2002 г.)

* На территории Российской Федерации действует ГОСТ Р 50779.71-99.

3 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.

1 представительная выборка: Определенное количество катодов, отобранных из партии, которые в достаточной степени отражают свойства партии в целом и предназначены для отбора точечных проб.

3.2 точечная проба: Проба металла, взятая одновременно из установленной части катода, входящего в выборку.

3.3 объединенная проба: Проба, состоящая из всех точечных проб, характеризующая средний химический состав партии.

3.4 лабораторная проба: Вся или часть объединенной пробы, подготовленная соответствующим образом и являющаяся достаточной для проведения химического анализа.

3.5 контактная подвеска: Петля из медной пластины толщиной до 1 мм и шириной до 100 мм, приваренная или приклепанная к катодной основе и служащая для подвода тока к катоду и подвешивания его к катодной штанге (ушко).

3.6 наросты: Выступы различных размеров, формы и структуры. Могут иметь ярко выраженный дендритный характер с острым углом у основания и быть округлой формы при осаждении меди на частицах медного порошка и кромках катодов из-за перераспределения тока (краевой эффект).

3.7 цвета побежалости: Окисленные участки в виде пятен и полос различной окраски, обусловленной термическими условиями охлаждения катодов после промывки.

(Поправка, ИУС № 7 2002 г.)

3.8 налет окисленной меди: Участки темного цвета, состоящие из окиси меди, образовавшиеся при хранении катодов во влажной атмосфере.

3.9 налет сульфатов: Локальные образования зеленого или зелено-голубого цвета, возникшие за счет выделения серной кислоты из микропор при поглощении ею влаги из атмосферы.

3.10

следы солей жесткости: Нерастворимые в горячей воде отложения серого цвета (соли кальция, магния и других легких металлов).

3.11 налет солей в местах прикрепления подвесок к полотну катода: Смесь сложного состава из сульфата, карбоната и гидроксида меди, образующаяся по периметру подвески от взаимодействия атмосферы воздуха со следами кислоты, выступающей из зазора между подвеской и полотном при транспортировании и хранении катодов. При транспортировании морским транспортом в состав налета входят также хлориды.

4 Технические требования

4.1 Медные катоды по химическому составу должны соответствовать меди марок М00к, М0к, М1к и М2к по ГОСТ 859.

Коды ОКП приведены в приложении А.

Пример условного обозначения катодов из меди марки М00к:

М00к ГОСТ 546-2001

4.2 На поверхности и кромках катодов не должно быть дендритных наростов. Допускаются округленные наросты, вросшие в тело катода, а также выступы округлой формы на кромках катодов и пятна (углубления) от удаленных наростов.

На поверхности катодов из меди марки М2к допускаются дендритные наросты любой формы, не отделяющиеся при транспортировании и перегрузке.

4.3 Поверхность катодов должна быть чистой, хорошо отмытой от электролита и шлама и не должна иметь отложений сульфатов меди и никеля и механических загрязнений (кроме древесных остатков после транспортирования).

Допускаются на поверхности катодов цвета побежалости и налет окисленной меди.

Наличие солей жесткости и налета солей на контактных подвесках и в местах прикрепления подвески к полотну катода браковочным признаком не является.

На поверхности катодов из меди марки М2к допускаются следы (пленка) масла.

Определения поверхностных дефектов – в соответствии с разделом 3.

4.4 Катоды поставляют в виде целых катодов с контактными подвесками или без них либо в виде разрезанных катодов.

Форму, размеры и массу катода при необходимости устанавливают в контракте.

4.5 По согласованию (контракту) сторон устанавливаются не предусмотренные настоящим стандартом требования к физическим свойствам катодов (удельному электрическому сопротивлению, спиральному удлинению, плотности, пластичности, структуре осадка и пр.)

4.6 Упаковка

Катоды должны быть сформированы в пакеты массой не более 1500 кг и высотой не более 500 мм.

Требования к пакету должны соответствовать ГОСТ 21399.

По согласованию с потребителем допускается поставка пакетов, обвязанных медной проволокой, катанкой или лентой, для переплавки без расформирования, а также поставка пакетов увеличенной массы. Порядок формирования таких пакетов с указанием его размеров и массы, вида и сечения обвязочного материала и количества поясов устанавливается нормативными документами, согласованными с транспортными организациями и утвержденными в установленном порядке.

Пакеты медных катодов, предназначенные для транспортирования с участием нескольких видов транспорта и для длительного хранения, должны формироваться с опрессовкой усилием не менее 98 кН (10 000 кгс).

4.7 Маркировка

Катоды, сформированные в пакеты, следует маркировать по ГОСТ 21399. Каждый катод маркировке не подлежит.

Транспортная маркировка должна соответствовать ГОСТ 14192.

5 Правила приемки

5.1 Катоды принимают партиями, состоящими из катодов одной марки меди. Масса партии не ограничивается.

5.2 На каждую партию катодов оформляют документ о качестве, который должен содержать:

– наименование и (или) товарный знак предприятия-изготовителя;

– наименование продукции;

– количество мест в партии;

– номер партии;

– марку меди;

– массу партии – нетто и брутто;

– результаты испытаний или подтверждение о соответствии продукции требованиям настоящего стандарта;

– дату изготовления;

– обозначение настоящего стандарта.

5.3 Контролю подвергают каждую партию.

Для проверки химического состава катодов при содержании примесей, гарантированном технологией и составом сырья, допускается применение статистического приемочного контроля в соответствии с требованиями ГОСТ 18242.

5.4 Медные катоды в партии подвергают сплошному и выборочному контролю качества. Вид контроля – по ГОСТ 16504, минимальный объем представительной выборки при выборочном контроле в зависимости от контролируемого признака должен соответствовать таблице 1.

Таблица 1

Контролируемый признак

Технические требования по пунктам настоящего стандарта

Подготовка проб и методы испытаний

Вид контроля

Объем выборки

1 Химический состав

4.1

6.1, 6.3

Выборочный 0,1 % количества катодов в партии, но не менее двух катодов

2 Качество поверхности

4.2, 4.3

6.2

Сплошной

Каждый катод

3 Упаковка

4.6

6.5

Сплошной

Каждый пакет

4 Маркировка

4. 7

Визуально

Сплошной

Каждый пакет

Правила отбора катодов в выборку – по ГОСТ 18321.

5.5 При получении неудовлетворительных результатов испытаний по п. 4.1 проводят повторные испытания на удвоенной выборке, взятой от той же партии. Результаты повторных испытаний считаются окончательными и распространяются на всю партию.

5.6 По согласованию (контракту) с потребителем допускается поставка катодов из меди всех марок без проверки химического состава с подтверждением изготовителя о соответствии требованиям настоящего стандарта или с оценкой качества у потребителя.

6 Методы контроля

6.1 Отбор и подготовка проб

6.1.1 Для контроля химического состава от каждого катода выборки отбирают точечные пробы.

6.1.2 Для отбора проб должны применяться методы и инструменты, исключающие загрязнение и окисление проб. Поверхность катодов перед отбором проб должна быть очищена от пыли и других механических загрязнений жесткой щеткой (неметаллической).

Отбрасывать поверхностный слой металла при отборе проб не допускается.

6.1.3 Точечные пробы от целых катодов отбирают вырезанием (выдавливанием) дисков диаметром от 10 до 40 мм или сверлением насквозь в четырех точках по углам на расстоянии от 50 до 100 мм от краев катода и в одной точке в центре катода.

Допускается отбор проб стружки строганием или фрезерованием граней, полученных от разрезания катода по ГОСТ 24231.

6.1.4 Точечные пробы от разрезанных катодов отбирают в трех точках по диагонали разрезанного катода от угла к центру на равном расстоянии друг от друга или фрезерованием (строганием) граней, полученных от разрезания катода на части.

6.1.5 Точечные пробы – диски или объединенную пробу стружки, предварительно обработанную магнитом, массой не менее 500 г – расплавляют в графитовом тигле (форме) с плотно прилегающей крышкой в индукционной печи или печи сопротивления при температуре от 1180 до 1200 °С. Расплавленный металл выдерживают в тигле под крышкой в течение 5 – 10 мин и отливают в графитовые формы два пробных слитка диаметром не менее 35 мм и высотой 20 – 30 мм. Слиток выдерживают в форме на воздухе не более 1 мин, затем охлаждают форму со слитком в холодной воде.

Графитовый тигель перед использованием предварительно промывают переплавкой меди той же партии.

6.1.6 Пробные слитки подвергают механической обработке для удаления окисленного слоя и литейных дефектов и при необходимости разрезают вертикально на равные части.

Пробный слиток или его часть полностью измельчают обточкой, фрезерованием, строганием или сверлением инструментом с карбидным резцом или используют непосредственно в компактном виде для определения химического состава спектральными методами.

6.1.7 Пробу стружки при необходимости измельчают, обрабатывают магнитом и сокращают способом квартования до массы не менее 150 г.

Допускается использовать для химического анализа объединенную пробу стружки, полученную от катодов, без ее переплавки.

6.1.8 Для определения массовой доли кислорода от двух катодов из партии вырезают или выпиливают по два образца из каждого катода в местах отбора точечных проб (в одном из углов и центре) на всю толщину катода.

Допускается использовать точечные пробы – диски до их переплавки, а также объединенную пробу стружки от катодов. При этом обезжиривание или травление стружки не проводят.

Масса и подготовка образцов к анализу – по ГОСТ 13938.13.

6.1.9 По согласованию (контракту) изготовителя с потребителем допускается устанавливать другие объемы выборки, схемы и методы отбора и подготовки проб, не снижающие их представительность.

6.2 Контроль качества поверхности катодов по 4.2, 4.3 проводят визуально без применения увеличительных приборов.

6.3 Химический состав катодов определяют по ГОСТ 13938.1 – ГОСТ 13938.12; ГОСТ 27981.0 – ГОСТ 27981.6; ГОСТ 9717.1 – ГОСТ 9717.3, ГОСТ 13938.13 в зависимости от марки меди. Массовую долю меди в катодах из меди марок М0к, М1к, М2к определяют по разности 100 % и суммы примесей, нормируемых ГОСТ 859.

Допускается определять химический состав другими методами, по точности не уступающими указанным.

При разногласиях в оценке химического состава определение его проводят для меди марки М00к по ГОСТ 27981.0 – ГОСТ 27981.6; ГОСТ 13938.13; для меди марок М0к, М1к и М2к – по ГОСТ 13938.1 – ГОСТ 13938.13 и ГОСТ 13938.15.

6.4 Контроль физических свойств осуществляют по согласованным с потребителем методикам. Рекомендуемые методы определения удлинения спирали – по ГОСТ 28515, удельного электрического сопротивления – по ГОСТ 28106 и ГОСТ 7229.

6.5 Качество увязки пакетов, сформированных без опрессовки усилием не менее 98 кН (10 000 кгс), контролируют статической нагрузкой, равной массе двух пакетов. При этом не должно быть заметного ослабления упаковочной ленты или проволоки.

7 Транспортирование и хранение

7.1 Транспортирование пакетов медных катодов – по ГОСТ 21399 в соответствии с правилами перевозки грузов, действующими на каждом виде транспорта.

По железной дороге медные катоды транспортируют в крытых вагонах повагонными или контейнерными отправками. Размещение и крепление катодов в транспортных средствах – согласно техническим условиям погрузки и крепления грузов и ГОСТ 22235.

7.2 Катоды должны храниться штабелями в чистом крытом помещении, в котором отсутствуют пары активных химических веществ. Допускается хранение медных катодов на площадках с твердым покрытием под навесом или без навеса штабелями, защищенными от загрязнения и влаги, сроком не более одного года. Размещение штабелей на складе и пакетов в штабеле – по ГОСТ 21399.

(Поправка, ИУС № 7 2002 г.)

 

 

Таблица А.1

Марка меди

Код по общероссийскому классификатору продукции (ОКП)

Контрольное число (КЧ)

М00к

17 3323 0001

08

М0к

17 3323 0003

06

М1к

17 3323 0004

05

М2к

17 3323 0005

04

Ключевые слова: катод, проба, нарост, цвета побежалости, налет сульфатов, диск, выборка

СОДЕРЖАНИЕ

  

1 Область применения. 1

2 Нормативные ссылки. 2

3 Определения. 3

4 Технические требования. 3

5 Правила приемки. 4

6 Методы контроля. 5

7 Транспортирование и хранение. 6

Приложение А Коды ОКП на медные катоды.. 7

  

  • ГОСТ 859-2001

Медь. Химический состав.

Разделы данной статьи:

  • Литая и деформируемая медь
  • Катоды

Химический состав меди в литых и деформированных полуфабрикатах нормируется по ГОСТ 859-2001, “Медь. марки”.

 

 

Химический состав литой и деформированной меди

Марка

/

Сплав

Основа, не менее

Примеси, не более

Медь

Медь+ Серебро

Висмут

Железо

Никель

Цинк

Олово

Сурьма

Мышьяк

Свинец

Сера

Кислород

Фосфор

Серебро

Селен

Теллур

Cu

Cu+Ag

Bi

Fe

Ni

Zn

Sn

Sb

As

Pb

S

O

P

Ag

Se

Te

М00б

99,99

0,0005

0,001

0,001

0,001

0,001

0,001

0,001

0,001

0,001

0,001

0,0003

0,002

0,0005

0,0005

М0б

99,97

0,001

0,004

0,002

0,003

0,002

0,002

0,002

0,003

0,003

0,001

0,002

М1б

99,95

0,001

0,004

0,002

0,003

0,002

0,002

0,002

0,004

0,004

0,003

0,002

М00

99,96

0,0005

0,001

0,001

0,001

0,001

0,001

0,001

0,001

0,002

0,03

0,0005

0,002

0,0005

0,0005

М0

99,93

0,0005

0,004

0,002

0,003

0,001

0,002

0,001

0,003

0,003

0,04

М1

99,9

0,001

0,005

0,002

0,004

0,002

0,002

0,002

0,005

0,004

0,05

М1р

99,9

0,001

0,005

0,002

0,005

0,002

0,002

0,002

0,005

0,005

0,01

0,002-0,012

М1ф

99,9

0,001

0,005

0,002

0,005

0,002

0,002

0,002

0,005

0,005

0,012-0,04

М2р

99,7

0,002

0,05

0,2

0,05

0,005

0,01

0,01

0,01

0,01

0,005-0,06

М3р

99,5

0,003

0,05

0,2

0,05

0,05

0,05

0,03

0,01

0,01

0,005-0,06

М2

99,7

0,002

0,05

0,2

0,05

0,005

0,01

0,01

0,01

0,07

М3

99,5

0,003

0,05

0,2

0,05

0,05

0,01

0,05

0,01

0,08

 

По соглашению с потребителем допускается изготовление меди марки М0б с массовой долей кислорода не более 0,002%.

В обозначение меди марок М1 и М1р, предназначенной для электротехнической промышленности и подлежащей испытаниям на электропроводность, дополнительно включают букву Е.

Возможно согласование массовой доли элементов, не указанной в таблице.

Требования к физическим свойствам меди —  удельному электрическому сопротивлению, спиральному удлинению (способности к рекристаллизации при заданных параметрах термической обработки), механическим свойствам устанавливают в стандартах на конкретные вилы продукции и (или) соглашением сторон.

Химический состав катодной меди

Элемент

Массовая доля для марок

М00к

М0к

М1к

М2к

Медь, не менее

Cu

99,97

99,95

99,93

Примеси по группам, не более

 

 

 

 

№ гр.

Элемент

 

 

 

 

1

Висмут

Bi

0,00020

0,0005

0,001

0,001

Селен

Se

0,00020

Теллур

Te

0,00020

Сумма 1-й группы:

0,00030

2

Хром

Cr

Марганец

Mn

Сурьма

Sb

0,0004

0,001

0,002

0,002

Кадмий

Cd

Мышьяк

As

0,0005

0,001

0,002

0,002

Фосфор

P

0,001

0,002

0,002

Сумма 2-й группы

0,0015

3

Свинец

Pb

0,0005

0,001

0,003

0,005

4

Сера

S

0,0015

0,002

0,004

0,010

5

Олово

Sn

0,001

0,002

0,002

Никель

Ni

0,001

0,002

0,003

Железо

Fe

0,0010

0,001

0,003

0,005

Кремний

Si

Цинк

Zn

0,001

0,003

0,004

Кобальт

Co

Сумма 5-й группы

0,0020

6

Серебро

Ag

0,0020

0,002

0,003

0,003

Сумма перечисленных примесей

0,0065

Кислород, не более

O

0,01

0,015

0,02

0,03

 

Распространяется на медь, изготовляемую в виде катодов.

Возможно согласование массовой доли элементов, не указанной в таблице.

Требования к физическим свойствам меди —  удельному электрическому сопротивлению, спиральному удлинению (способности к рекристаллизации при заданных параметрах термической обработки), механическим свойствам устанавливают в стандартах на конкретные вилы продукции и (или) соглашением сторон.

 

Призрачная медь – MEL Chemistry

Реагенты

  • Медная проволока
  • Перекись водорода 3–5%
  • Карбонат натрия
  • Люминол

Безопасность

  • Наденьте защитные перчатки и очки.
  • Проведите все эксперименты на лотке.

Общие правила безопасности

  • Не допускайте попадания химических веществ в глаза или рот.
  • Держите маленьких детей, животных и тех, кто не носит защитные очки, подальше от экспериментальной зоны.
  • Храните этот экспериментальный набор в недоступном для детей младше 12 лет месте.
  • Очистите все оборудование после использования.
  • Убедитесь, что все контейнеры полностью закрыты и правильно хранятся после использования.
  • Убедитесь, что все пустые контейнеры утилизированы надлежащим образом.
  • Не используйте оборудование, которое не входит в комплект поставки или не рекомендовано в инструкции по эксплуатации.
  • Не заменяйте продукты питания в оригинальной упаковке. Утилизируйте немедленно.

Общая информация по оказанию первой помощи

  • При попадании в глаза: Промыть глаза большим количеством воды, при необходимости держать глаза открытыми. Немедленно обратитесь за медицинской помощью.
  • При проглатывании: прополоскать рот водой, выпить немного пресной воды. Не вызывает рвоту. Немедленно обратитесь за медицинской помощью.
  • При вдыхании: Вынести пострадавшего на свежий воздух.
  • При попадании на кожу и при ожогах: промыть пораженный участок большим количеством воды не менее 10 минут.
  • В случае сомнений немедленно обратитесь к врачу. Возьмите с собой химикат и его контейнер.
  • В случае травмы всегда обращайтесь за медицинской помощью.

Консультации для присматривающих за взрослыми

  • Неправильное использование химикатов может привести к травмам и ущербу для здоровья. Проводите только те опыты, которые указаны в инструкции.
  • Этот экспериментальный набор предназначен для использования только детьми старше 12 лет.
  • Поскольку способности детей сильно различаются даже в пределах возрастных групп, наблюдающие взрослые должны проявлять осторожность в отношении того, какие эксперименты подходят и безопасны для них. Инструкции должны позволять наблюдателям оценивать любой эксперимент, чтобы установить его пригодность для конкретного ребенка.
  • Перед началом экспериментов надзирающий взрослый должен обсудить предупреждения и информацию о безопасности с ребенком или детьми. Особое внимание следует уделять безопасному обращению с кислотами, щелочами и горючими жидкостями.
  • Территория, окружающая эксперимент, должна быть свободна от каких-либо препятствий и вдали от места хранения продуктов питания. Она должна быть хорошо освещена и проветрена, а также находиться рядом с водопроводом. Должен быть обеспечен прочный стол с термостойкой столешницей.
  • Вещества в одноразовой упаковке должны быть израсходованы (полностью) в течение одного эксперимента, т.е. после вскрытия упаковки.

Часто задаваемые вопросы и устранение неполадок

Медный провод не светится. Что я должен делать?

Сначала попробуйте немного подождать. Свечение проволоки не слишком яркое — возможно, ваши глаза еще не приспособились к темноте. Кстати, может, вокруг вас слишком светло? Помните, что чем темнее окружающая среда, тем эффектнее эксперимент!

Во-вторых, попробуйте снова окунуть проволоку в раствор и немного потереть ею дно стакана. Скорее всего, это поможет.

В-третьих, возможно, оксидная пленка недостаточно плотно покрывает провод. Отожгите проволоку на газовой горелке или турбо зажигалке. Медь реагирует с кислородом и образует оксид меди (CuO), необходимый для протекания реакции.

Наконец, в стакан можно добавить еще 5–10 капель раствора люминола. Перемешайте смесь и повторите пункт 6 инструкции.

Все еще не работает? Возможно, перекись водорода H 2 O 2 немного «выработалась» и для эксперимента уже не пригодна. Пожалуйста, замените его 3% медицинским раствором перекиси водорода, который продается в местной аптеке.

Пожалуйста, свяжитесь с нашей службой поддержки, если у вас есть какие-либо вопросы об этом эксперименте.

Другие эксперименты

Защита от ржавчины

Детектив Йодин

Расплав серы

Золото дураков

Пошаговые инструкции

Внимание! Часть этого эксперимента (начиная с шага 5) следует проводить в темноте: чем темнее окружающая среда, тем эффектнее эксперимент с призрачной медью. Организуйте подходящую среду до начала эксперимента. Приготовьте 3% раствор перекиси водорода H 2 O 2 .

Пошаговые инструкции

  1. Возьмите химический стакан из стартового набора и налейте в него 5 мл 2М раствора карбоната натрия Na 2 CO 3 .
  2. Возьмите пустой пластиковый флакон и наполните его 3% раствором перекиси водорода H 2 O 2 доверху.
  3. Вылейте перекись водорода из флакона в стакан с карбонатом натрия.
  4. Добавьте в химический стакан 10 капель 1% раствора люминола.
  5. Согните медную проволоку до желаемой формы. Например, вы можете сделать сольный ключ. Выберите форму, которую было бы удобно держать за длинный конец. Кроме того, эксперимент был бы более успешным, если бы фигура была плоской.
  6. Выключите свет. В темноте потрите проволокой дно стакана в течение 30 секунд.
  7. Вытащите провод и посмотрите на свечение. Вашим глазам может понадобиться пара минут, чтобы адаптироваться к темноте, и тогда свечение будет казаться ярче.

Ожидаемый результат

Медь помогает перекиси водорода H 2 O 2 для окисления люминола. В результате раствор люминола и других компонентов образует тонкий слой на медной проволоке. И этот остаточный слой светится в темноте.

Утилизация

Вылейте растворы в раковину. Промыть большим количеством воды.

Научное описание

Почему провод начинает светиться?

Люминол — уникальное соединение. При определенных условиях окисление люминола приводит к излучению света — потока многочисленных высокоактивных частиц, называемых фотонами, которые мы можем видеть своими глазами.

Почему на проводе появляется свечение? Фактически необходимым условием окисления люминола является наличие вещества, способного отбирать у люминола электроны строго по одному. Медь идеально подходит для этой цели. Но так как он нерастворим в воде, реакция может протекать только при непосредственном контакте с металлом. Таким образом, проволока светится, потому что на ее поверхности происходит реакция окисления люминола.

Что происходит с медью?

Свечение на медной проволоке происходит как в растворе, так и вне его (некоторое время). Чем можно объяснить такой эффект? Все необходимые «акторы» для окисления люминола способны достичь поверхности меди. Если проволока все еще находится в растворе, может произойти обмен между молекулами на поверхности меди и молекулами, свободно плавающими в воде. Поэтому эмиссия сохраняется в течение длительного времени. Однако удаление провода останавливает этот обмен и, следовательно, прекращает реакцию, поэтому свечение постепенно исчезает.

Медь в этой реакции не расходуется, но значительно облегчает протекание реакции, точнее ускоряет реакцию. Такие соединения, которые не расходуются в реакции, но увеличивают ее скорость, называются катализаторами.

Узнать больше

Как происходит электронный обмен на поверхности меди? Примечание: чтобы свечение произошло, проволоку нужно потереть о стенки сосуда. Это делается для того, чтобы «обнажить» поверхность меди, которая в противном случае покрыта тонким слоем оксида меди CuO. После этого медь может реагировать с приближающимися к ней частицами.

Как это происходит? Представьте себе поверхность медной проволоки: она состоит из соединенных между собой атомов меди.

Когда атом меди “раздражен” скучным однообразием металлической ячейки, он решает “исследовать” область, чтобы встретить новые молекулы, такие как вода. Таким образом, атом меди покидает ячейку в виде иона Cu + , оставляя свой электрон внутри проволоки.

Однако ион меди не может и не хочет оставить своих «собратьев» далеко позади. И поэтому он фактически перемещается в тонком (фактически толщиной всего в один атом) слое вблизи поверхности проволоки. Действительно, таких «бродячих» ионов на поверхности меди много.

Когда этот ион меди сталкивается с частицей, способной отдавать электроны (например, люминол), Cu + снова превращается в Cu 0 и возвращается к своим «товарищам» – в металлическую ячейку. Люминол отдает два электрона ионам меди. «Лишний» электрон забирает перекись водорода H 2 O 2 . Проделав это дважды, перекись водорода превращается в два гидроксильных аниона ОН :

Все эти процессы происходят на поверхности металла. Поэтому важно, чтобы реагирующие вещества, в том числе люминол и перекись водорода, имели возможность контактировать с медью.

Какова роль перекиси водорода?

Перекись водорода H 2 O 2 , как и вода H 2 O, состоит из водорода и кислорода. Однако кислороду внутри ему не так уютно, как в воде, и он пытается выйти из этого состояния. Следовательно, перекись водорода может действовать как окислитель. Именно эта перекись водорода в конечном итоге окисляет люминол. Он возбуждает люминол и заставляет его светиться.

Для чего нужен карбонат натрия?

Перекись водорода H 2 O 2 может и не самый слабый окислитель, но для выполнения своей задачи ему нужна особая среда. Все должно быть тщательно подготовлено, и все актеры должны быть на своих местах, чтобы застать люминол врасплох! И карбонат натрия здесь — еще один персонаж, благодаря которому может происходить реакция.

Окисление люминола перекисью водорода, приводящее в конечном итоге к люминесценции, происходит только в щелочной среде, т.е. при избытке ОН ионов в растворе. Эту среду создает карбонат натрия Na 2 CO 3 .

Подробнее

Щелочная среда в растворе карбоната натрия обусловлена ​​тем, что карбонат-ионы CO 3 2– , получаемые при растворении соединения, могут реагировать с водой. В результате реакции образуются гидрокарбонатные ионы HCO 3 и желаемые ионы OH :

CO 3 2– + H 2 O <=> HCO 3 + OH

Почему мы используем медь?

Потому что медь способна отбирать электроны у люминола один за другим. Большинство металлов предпочитают растворяться и образовывать двухзарядные катионы, предоставляя два электрона:

М → М 2+ + 2e

Однако медь способна отдать один электрон и на этом остановиться, перейдя в форму Cu + . Это свойство характерно и для всех щелочных металлов, таких как натрий Na или калий К. Но они делают это слишком активно, и поэтому их реакция с водой вызывает сильный нагрев или даже взрыв.

Тем не менее такой одноэлектронный обмен характерен и для серебра:

Ag + + e –> Ag

Ag – e –> Ag +

Поэтому он также подходит для этого эксперимента. Обратите внимание, что другие металлы тоже дают свой вклад в свечение, но оно будет слабее, чем в случае с медью или серебром.

Последующие действия

Светящаяся монета

Проведите эксперимент с несколькими разными монетами, чтобы можно было сравнить результаты. Вам не нужно будет готовить новый раствор: все необходимые компоненты уже есть в стакане.

Возьмите монету и смочите ее в растворе с помощью пинцета, пинцета или другого удобного инструмента. Потрите им дно стакана. Не забудьте провести эксперимент в темноте!

Достаньте монету из стакана. Он светится? Сравните разные монеты. Выясните, какие металлы использовались при чеканке (процессе изготовления монет) каждой из монет, которые вы взяли для этого эксперимента.

Гвоздь, скрепка и другие предметы

Проведите эксперимент еще раз с различными металлическими предметами. Вы можете использовать решение, полученное в ходе эксперимента «Призрачная медь». Попробуйте использовать:

  • гвоздь;
  • скрепка;
  • металлическая пуговица;
  • кусок алюминиевой фольги.

Удалось увидеть свечение? Было ли оно слабее, чем в случае с медным проводом? Почему так было, как вы думаете? Поделитесь результатами своих экспериментов на Facebook (https://www. facebook.com/melscience): давайте их обсудим!

Это интересно!

“ПРИЗРАЧНАЯ МЕДНАЯ ЖЕМЧУЖИНА”

Наведите курсор на изображение, чтобы увеличить Нажмите на изображение, чтобы увеличить

Сэкономьте $-11,88

Черные алмазные пигменты


Размер: 42 г

42г

168 г

462 г

Вариант

42 г — 11,88168 долл. США г — 45,88462 долл. США г — 112,88 долл. США

Поделиться этим продуктом

***ВСЕ ЗАКАЗЫ БУДУТ ДОСТАВЛЕНЫ В ТЕЧЕНИЕ 24-36 ЧАСОВ С МОМЕНТА РАЗМЕЩЕНИЯ ЗАКАЗА. ВСЕ ЗАКАЗЫ, РАЗМЕЩЕННЫЕ С 14:00 В ПЯТНИЦУ ДО 12:00 В ВОСКРЕСЕНЬЕ, БУДУТ ДОСТАВЛЕНЫ В ТЕЧЕНИЕ 24 ЧАСОВ С МОМЕНТА ОТКРЫТИЯ ПОНЕДЕЛЬНИКА, УТРОМ***

💎 Нетоксичный многоцелевой (GHOST COPPER PEARL) – это яркий цвет, который выглядит невероятно при использовании на темной или светлой основе. цвет.

💎 (GHOST COPPER PEARL) — это слюдяной пигмент профессионального класса , который также отлично подходит для поделок, таких как мыловарение, бомбы для ванны, поделки, изготовление свечей, лак, автомобильная краска, слизь, пластик, стекловолокно, ювелирные изделия, Plastidip, пластиковые смолы, деревообработка (и многое другое!) Рекомендуется использовать POLYSORBATE 80 с бомбочками для ванны – НЕ РЕКОМЕНДУЕТСЯ для бетона, цвет не будет таким, как показано на рисунке . ЛУЧШЕ, ЕСЛИ ДОБАВИТЬ В ПРОЗРАЧНУЮ ОСНОВУ.

💎 Клиент несет ответственность за все импортные пошлины и налоги 

💎  Пигмент слюды самого высокого качества из доступных  Нетоксичный и безопасный (10-60 микрон), диоксид титана (1,8 унции по весу), (температура плавления 1200-1800*F). ЛУЧШЕ, ЕСЛИ ДОБАВИТЬ В ПРОЗРАЧНУЮ ОСНОВУ.

💎 Руководство по порциям/смешиванию зависит от используемой среды. 1 г пигмента на 1-8 унций эпоксидной смолы. 25-50 г пигмента на галлон отслаивающейся краски. Пожалуйста, смотрите руководство по частям на фотографиях или на нашем веб-сайте.  

💎 Мы гордимся тем, что обеспечиваем превосходное обслуживание клиентов и предлагаем самые низкие цены, высочайшее качество и уникальные цвета. Пожалуйста, свяжитесь с нами здесь, в Instagram или на нашем веб-сайте Black Diamond Pigments по любым вопросам.

 Соотношение смешивания

💎 Возможны изменения в зависимости от таких переменных: глубина заливки, цветовая база, желаемый художником эффект. – 1 грамм пигмента на 1-8 унций используемой эпоксидной смолы-

 

Описание продукта

💎 Наши пигменты предлагаются в закрывающихся многоразовых контейнерах.

💎 Мы гордимся тем, что поставляем 100% веганский пигмент без жестокости, который НЕ получен с использованием детского труда или каких-либо пигментов нечеловеческого труда.

💎 Наши пигменты нетоксичны, безопасны для животных, не вызывают раздражения и бережно воздействуют на кожу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *