Характеристики сварочного инвертора: Основные характеристики сварочного инвертора | Разное | Cписок категорий | Блог

alexxlab | 06.05.1977 | 0 | Разное

Содержание

Основные характеристики сварочного инвертора | Разное | Cписок категорий | Блог

Максимальный диаметр электрода

По своей сути – та же характеристика диапазона рабочего тока. Иногда по неграмотности или злонамеренно указывается диаметр электрода, которым заявленным максимальным током варить не получится. Иногда наоборот: указан максимальный диаметр электрода, явно не дотягивающий до значения заявленного сварочного тока.


Последний вариант изредка является проблеском совести поставщиков-обманщиков. В качестве максимального тока они указывают ток короткого замыкания. А максимальный рабочий диаметр электрода указывают все-таки честно.

Тип сварочного тока: постоянный (DC) или переменный (AC)

Варить постоянным (иначе прямым, по-английски – DC) током проще: легче удерживать дугу. Поэтому 99,9% современных инверторных аппаратов ММА выдают постоянный сварочный ток.

А вот среди трансформаторов раньше большинство составляли как раз аппараты переменного тока.

Переменный ток (по-английски – AC) используется для сварки цветных металлов. Но не аппаратами ММА, а аппаратами TIG. Поэтому сварочный инвертор ММА, выдающий переменный ток, — большая редкость.

Напряжение без нагрузки

После включения аппарата, до момента поджига дуги напряжение на кончике электрода существенно выше, чем во время работы. И чем оно выше, тем легче поджечь дугу. Но стандарты запрещают уровень напряжения холостого хода на аппаратах, выдающих прямой ток, свыше 100В.

Для еще большего сокращения рисков используют т.н. блоки VRD. Аппарат, снабженный VRD, имеет на кончике электрода до начала поджига дуги всего несколько вольт. И лишь при прикосновении к металлу напряжение холостого хода восстанавливается до уровня, необходимого для поджига дуги.

На всех электродах всегда указывается полярность подключения, тип сварочного тока (постоянный или переменный) и минимально требуемый для поджига уровень напряжения холостого хода. Для абсолютного большинства широко распространенных электродов он не превышает 60В.

Напряжение холостого хода, также как и сварочный ток, зависит от уровня входного напряжения. Чем ниже напряжение в источнике питания, тем ниже напряжение холостого хода. Поэтому по мере снижения напряжения питания поджиг электрода становится все сложнее.

Рабочий цикл, он же ПВ (период включения), он же ПН (полезная нагрузка)

ПВ указывается двумя цифрами. Первая – сила тока. Вторая – процент времени. Например, «130А-50%» означает, что данный аппарат током 130А может варить половину времени. А столько же будет простаивать в ожидании охлаждения до рабочей температуры. Если измерения проводятся на максимальном токе аппарата, первую цифру опускают, оставляя только показатель в процентах. Например, если аппарат с номиналом 160А имеет напротив «ПВ» запись «30%», это означает, что током 160 ампер он может работать 30% времени, а 70% будет остывать.

Все верно. Остается только добавить, что отечественный ГОСТ Р МЭК 60974-1-2004 не устанавливает единой обязательной методики измерения показателя ПН для аппаратов ММА.

«Стандарт не распространяется на источники питания для ручной дуговой сварки с ограниченным режимом эксплуатации, которые проектируются преимущественно для эксплуатации непрофессионалами»
.

Европейская методика, изложенная в стандарте EN60974-1, предлагает измерение на нагрузочном стенде при температуре окружающей среды 40С только до первого отключения ввиду перегрева. Полученный результат относят к 10-минутному промежутку. Получается, сработала термозащита через 3 минуты, цикл аппарата на данном токе – 30%.

Методика концерна TELWIN. К настоящему времени ее используют большинство китайских производителей (тех, которые вообще проводят такие испытания своих машин). Сам итальянский концерн при замерах ПВ своих аппаратов по собственной методике после показателя скромно указывает «TELWIN». Абсолютное большинство китайских производителей этого не делает.

Наконец, существует российская, она же советская, методика. По своей сути она ближе к методике TELWIN: суммируются все промежутки за контрольный период, когда аппарат работал. Но отрезок берется не 10, а 5 минут. И – самое главное – аппарат сначала вводится в режим срабатывания защиты от перегрева, после чего начинаются измерения.

В итоге один и тот же аппарат по всем 3 методикам выдает совершенно различный процент! Естественно, самые скромные «циферки» получаются по европейской методике, а самые впечатляющие – до 2 раз и более – по методике Telwin.

Исполнение: класс защиты IP


Класс защиты IP указывает на исполнение электротехнических приборов в отношении твердых объектов (первая цифра) и жидкостей (вторая цифра).

Определить степень защиты аппарата можно визуально. Если у аппарата с IP21 все вентиляционные щели полностью открыты, то у IP22 они уже прикрыты сверху выступающими козырьками. А у аппарата с IP23 эти козырьки почти полностью закрывают щели.

Степень защиты IP24 и выше технически затруднена и не имеет смысла.

Исполнение: класс изоляции (по нагревостойкости)

Многие материалы при нагреве выше определенной температуры утрачивают свои рабочие свойства. Для стандартизации материалов по данному признаку введена классификация изоляции по нагревостойкости. Почти все сварочные инверторы на транзисторах IGBT имеют класс изоляции H, что соответствует предельной температуре нагрева 180С. Предыдущая «ступенька» — класс F – означает предел нагрева 155С. Выше класса F – только класс С, указывающий на возможную температуру нагрева свыше 180С.

Температура эксплуатации


Как и внутренний нагрев, внешний нагрев и особенно охлаждение накладывают на эксплуатацию определенные ограничения. Большинство инверторных сварочных аппаратов пригодны для работы в диапазоне от 0С до +40С. Если аппарат пригоден для эксплуатации на морозе, обязательно указывается его предельное значение: минус 20С или минус 40С.

Автор текста: Ю.Шкляревский.

Характеристики сварочных аппаратов. На что обратить внимание при выборе?


Если у вас есть свой гараж, мастерская или загородный дом, вы рано или поздно столкнетесь с необходимостью уметь пользоваться сварочной техникой. Ничего страшного здесь нет – современные аппараты не требуют каких-то академических знаний и долгой подготовки, а выбор моделей для бытовых задач достаточно велик, чтобы удовлетворить любые запросы. Чем раньше вы перейдете от планирования к действию – тем лучше. В предыдущей статье мы рассмотрели основные типы сварочных аппаратов, а сейчас поговорим о том, на какие их характеристики нужно обращать внимание при покупке. Наиболее важными из них являются продолжительность включения, диапазон изменения сварочного тока и ток холостого хода.

Для измерения продолжительности включения разные производители используют свои методы. Европейский стандарт EN60974-1 принимает во внимание время работы до первой остановки от перегрева при внешней температуре 40oC. Нужная величина вычисляется отношением этого времени к десятиминутному циклу. Методика, используемая специалистами компании TELWIN, предусматривает температуру в 20 градусов и работу с перерывами. Нужное значение здесь рассчитывается, исходя из количества электродов, которые используются за это время. Продолжительность включения, вычисляемая по второму способу будет значительно выше, поэтому при покупке следует уточнить, как считалась ПВ, и при каком токе. Чаще всего значения ПВ указывают при максимальном токе, а ток, при ПВ, равном 100%. Во время работы редко приходится сжигать несколько электродов подряд на полной мощности, и аппарат с ПВ, рассчитанным по европейской системе и равным 10-20%, будет работать до перерыва примерно столько же, сколько и «телвиновский» 60-80%.

Диапазон изменения сварочного тока – самый важный параметр аппарата, на который в первую очередь советуют обратить внимание специалисты. Косвенно он отражает мощность сварочного аппарата. Для работы в быту обычно используются трехмиллиметровые сварочные электроды. В этом случае трансформатору вполне хватит максимальной мощности в 150A, для сварочного инвертора потребуется ещё меньше. Если вы сомневаетесь в правильности выбора сварочного тока, посмотрите на коробку с электродами – там указаны рекомендуемые параметры.

Последнее, на что требуется обратить внимание при выборе сварочного аппарата – ток холостого хода. Чем он выше, тем легче появиться дуге. Обычно эта величина находится в пределах от 60 до 85 вольт.

 Источник: интернет-магазин www.toool.ru

Перепечатка информации только с использованием ссылки на www.toool.ru

Характеристики инверторных сварочных аппаратов

Сварка – это самый эффективный инструмент для соединения металлических элементов. Используя для сварки деталей инверторное оборудование, можно создавать прочные конструкции из металлических заготовок, как в производственных, так и в бытовых условиях. Для выполнения сварочных работ в небольших мастерских целесообразнее всего использовать именно агрегаты инверторного типа, например, сварочные аппараты модели вд 306, характеристики которых идеально для этого подходят.

Несмотря на свои небольшие размеры, массу, инверторы отличаются многофункциональностью. Чтобы подобрать наиболее оптимальный вариант такого оборудования для собственной мастерской на дому, нужно уметь читать техническое описание сварочного оборудования.

Разновидности оборудования

Сварка – это недешевое удовольствие, поэтому к выбору инструментов необходимо подходить правильно. Первым делом нужно определиться, какие придется работы выполнять сваркой, предполагаемые нагрузки на агрегат, продолжительность его бесперебойной работы. Уже на основании этих данных нужно подбирать технические характеристики самого оборудования.

Современный рынок представляет несколько вариантов приборов для сваривания металлических конструкций:

  • Трансформаторы
  • Выпрямители
  • Инверторы

Благодаря небольшим габаритам, удобству эксплуатации, многофункциональности, эффективной работе, продолжительному сроку эксплуатации основная масса пользователей предпочитает приборы инверторного типа. И это еще не все достоинства инверторов.

Особенности работы инверторной сварки

Каждая отдельная модель инструмента отличается своими техническими показателями, которые необходимо знать для того, чтобы правильно подобрать наиболее оптимальный вариант инструмента.

Главное отличие инверторного оборудования заключается в его мобильности: инструмент можно свободно передвигать, переносить на новое рабочее место, даже поднимать на необходимую высоту, а также использовать для работы на труднодоступных участках.

Для универсальных инверторов подходят электроды любого типа, работающие как на переменном, так и на постоянном токе. Можно выполнять аргонодуговую сварку неплавящимися электродами. Сила тока в данном случае регулируется в широком диапазоне.


Инверторы наделены специализированными функциями, облегчающими работу сварщика, особенно новичков:

  • HotStart – горячий старт
  • ArkForce – форсирование сварной дуги
  • AntiStick – анти залипание

Недостатки инверторного оборудования:

  • ограниченная длина кабеля – 2,5 метра;
  • температурный диапазон определяется моделью инверторного устройства;
  • необходима постоянная чистка внутренней схемы инструмента;
  • дорогостоящее оборудование;
  • некоторые модели инверторов запрещается использовать для сварки в зимний период.

Контраргументом, противостоящим всем перечисленным недостаткам, является многофункциональность инструмента, удобство его эксплуатации. Техника работы на таких аппаратах наиболее простая, понятная для новичков. Именно поэтому большинство пользователей выбирает сварку инверторного типа.

Инверторные аппараты получили такое обширное применение также благодаря разнообразию доступных технических параметров, которые предоставляют возможность эффективно и качественно соединять любые конструкции, выполненные из разных металлов и их сплавов. Характеристики сварочных инверторов зависят от типа сварки, характерного для конкретной модели инструмента:

  • Автомат
  • Полуавтомат
  • Дуговая ручная сварка

При помощи инверторной сварки можно осуществлять не только соединение металлических конструкций, но и их резку.

Как подобрать инвертор для эксплуатации в домашних условиях

  • Если работы, связанные со сваркой металлических конструкций, не слишком объемные и продолжительные, к примеру, сварочный аппарат нужен всего лишь для соединения заготовок из углеродистой стали, толщина которых до 5 мм, можно спокойно покупать недорогой инвертор.
  • Если предполагается достаточно большой объем, продолжительные по времени сварочные работы, необходимо будет сваривать элементы конструкций разной толщины, из разных металлов, их сплавов, тогда рекомендуется обращать внимание на более мощные дорогие инструменты, обладающие широким функционалом (AC/DC, MMA/TIG, большой диапазон рабочего тока и прочие показатели).

По желанию покупателя при выборе сварки можно дополнительно обратить внимание на наличие функций: горячий старт, анти залипание электродной проволоки, форсирование сварочной дуги, прочих функций, облегчающих эксплуатацию оборудования.

Технические характеристики сварочных инверторов

Развитие возможностей использования инверторов для сварки различных металлов и сплавов определяет разнообразие характеристик. Для ручной, полуавтоматической и


автоматической сварки, а также для резки металлов воздушно дуговой строжкой подразумевает различные характеристики сварочных инверторов. Сварочные инверторы для автоматической и полуавтоматической сварки не только имеют иные характеристики, но и конструктивно отличаются от устройств ручной дуговой сварки.

Основной характеристикой любого инвертора является его потребляемая мощность. Она определяет величину и диапазон изменений сварочного тока. Максимальный ток сварки может превышать 300А. Малой мощности инверторы сварочные технические характеристики, которых рассчитаны на диапазон регулирования 10-130А. От величины максимального тока зависит возможность варить электродами определенного диаметра и скорость сварки. Скорость обычно не указывается, но это получается само собой. Повышенный ток способствует быстрому переходу металла электрода на свариваемые кромки. Скорость сварки мало влияет на производительность, поскольку в сварочном процессе больше времени уходит на настройки, подгонку свариваемых деталей удаление шлака со сварочного шва.

Важное место занимают характеристики защищенности агрегата от внешнего воздействия: пылезащищенность, влагозащищенность, противоударность конструкции. Каждый тип инвертора имеет рабочий диапазон температур, который определяется производителем. Полупроводниковые приборы и транзисторы чувствительны к отрицательным значениям. Агрегат, хранящийся в холодном помещении при отрицательной температуре, может не включиться.

Специфические характеристики сварочных инверторов позволяют производить резку металла воздушно-дуговым способом. Одновременно они могут использоваться в качестве сварочного устройства для ручной сварки. Для этого достаточно произвести настройку тока сварки и выбрать полярность.

Все инверторы сварочные технические характеристики, у которых содержат указание на их профессиональную принадлежность, рассчитываются на время непрерывной работы 8 часов. Бытовые устройства рассчитываются на период непрерывного горения дуги в пределах 30 минут. Малый период непрерывной работы дает возможность использование силовых элементов и транзисторных ключей меньшей мощности. Это определяет меньшие габариты и цену сварочного инвертора. Прочие технические характеристики и возможности бытовых и профессиональных устройств не отличаются и не влияют на качество сварного шва по окончанию работы. Поэтому разделение по этому признаку носит условный характер.

Читайте также


  • Сварочный инвертор своими руками

    Что нужно знать для того чтобы собрать сварочный аппарат, работающий на инверторном принципе своими руками, вы узнаете из этой статьи. …


  • Сварочный аппарат инвертор

    В статье описываются основные достоинства сварочных аппаратов, работающих на инвертором принципе, которые с очевидностью показывают преимущества …


Главные характеристики сварочных инверторов

выбор сварочного инвертора профессионально


Тема источника питания для сварочного оборудования незаслуженно упускается из виду. Между тем, это одно из ключевых условий, определяющих возможности аппарата и, соответственно, его выбор.

 
Рабочий диапазон входного напряжения
Отечественный стандарт однофазного напряжения с 2002 года составляет 230 вольт при частоте 50 герц. По привычке с советских времен мы говорим «220 вольт». Именно таков был стандарт в СССР. С точки зрения того же ГОСТ, допускающего долговременное (читай – постоянное) отклонение уровня напряжения в 5%, 220 вольт – в пределах нормы.
 
Частота питающего сигнала для сварочного инвертора значения не имеет. 50 или 60 Гц – все равно на входе аппарата переменное напряжение сначала преобразуется в постоянное. А вот уровень напряжения значение имеет, причем очень серьезное.
 
Во-первых, любой сварочный инвертор имеет диапазон напряжения питания, в пределах которого он работает. При выходе уровня напряжения питания за эти границы аппарат перестает функционировать.
 
Рабочий диапазон напряжения питания определяется конструктивными особенностями самого аппарата. Например, аппарат серии «Хозяин» Best Rus может функционировать в диапазоне напряжения питания от 185 до 265В. Если напряжение ниже 185В или выше 265В, он сообщит об ошибке и не будет выдавать никакого сварочного тока. Аппарат серии Best Mini сможет функционировать при пониженном напряжении вплоть до 140 вольт и повышенном до тех же 265В. Если напряжение выйдет за указанные рамки в процессе работы, аппарат остановит процесс сварки.
 
Характерно, что напряжение в ограниченных по мощности источниках может существенно проседать с поджигом дуги. Померили напряжение в розетке – 230В. Подключили аппарат, стали варить – «не тянет». Отключили, опять замерили напряжение – 230В. Включили, стали варить – опять не тянет. А оказывается, сварочный аппарат для местного участка цепи – явная перегрузка. Типичное следствие перегрузки – снижение уровня напряжения. Поэтому полезной функцией является вольтметр входящего напряжения.
 
А вот трансформаторные аппараты ММА такого недостатка как ограниченный диапазон рабочего входного напряжения не имеют: у них нет нижней границы рабочего диапазона напряжения питания. Каким бы низким ни было напряжение питания, трансформаторный аппарат ММА будет выдавать сварочный ток. Правда, возможно, он будет бесполезно малым. Но об этом подробнее несколько позже.
 
 
Блок PFC
Для снижения нижней границы рабочего диапазона существует 2 принципиальных конструкционных решения:

  1. Комбинирование характеристик штатных узлов аппарата. Например, изменение соотношения числа витков в первичной и вторичной обмотках трансформатора.
  2. Добавление дополнительных узлов, обеспечивающих изменение электрических параметров.

 
Ко второй категории относится добавление т.н. блока PFC – блока корректировки коэффициента мощности (Power Factor Correction). Это дополнительный электронный узел, обеспечивающий повышение эффективности использования поступающей энергии.
 
В числовом исчислении возможности блока PFC в части повышения эффективности используемой энергии небезграничны – в пределах 15%. Но применение данного блока также позволяет снизить нижнюю границу рабочего диапазона напряжения до 90В и даже ниже. В то время как добиться границы ниже 140 вольт при сохранении всех основных параметров просто варьированием характеристик штатных узлов затруднительно.
 
Остается добавить, что сам по себе блок PFC – решение весьма затратное. Поэтому его реализуют только на мощных и сравнительно дорогих аппаратах.
 
 
Расчет потребляемой мощности аппарата ММА
И вот самый интересный и практичный момент статьи: какую же мощность потребляет сварочный аппарат ММА?
 
Мощность на выходе, т.е. на сварочных проводах, у любого аппарата ММА, если только он выдает заявленные характеристики, т.е. обеспечивает для сварочного тока требуемое по ГОСТ напряжение дуги, одинакова:
 
Рвых = Iсвар*(20 + 0,04*Iсвар)
 
Где Iсвар – сила используемого сварочного тока, а (20+0,04*Iсвар) – требуемое по стандарту напряжение сварочной дуги.
 
Но в процессе прохождения электротока по компонентам аппарата часть энергии преобразуется в тепло (нагрев компонентов) и улетучивается с воздухом, нагнетаемым вентиляторами охлаждения. КПД (Коэффициент Полезного Действия) отражает процент эффективно преобразованной энергии.  В зависимости от режима эксплуатации и условий окружающей среды его значение будет варьироваться. Но усреднено можно взять 85%, или 0,85.
 
Однако и это еще не все. Сварочный инверторный аппарат также имеет реактивную нагрузку. Т.е. из полученной от источника энергии часть возвращается в сеть не преобразованной. Долю преобразованной энергии от общей потребленной указывает показатель коэффициента мощности. В отечественной классификации он же называется «косинус фи». В разных инверторах он может существенно разниться. А в пределах одного и того же аппарата он будет не одинаков для различных токов. Усреднено можно взять тоже 0,85. (В России запрещена эксплуатация электрических приборов, подключаемых к бытовым сетям, если их «косинус фи» ниже 0,7).
 
И вот теперь можно записать формулу полной мощности, потребляемой аппаратом ММА от сети 230В:    
 
Рпотр = Iсвар*(20 + 0,04*Iсвар)/0,85/0,85
 
У аппаратов, оборудованных блоком PFC, коэффициент мощности выше – 0,95-0,98. Поэтому формула для них будет выглядеть так:  
 
Рпотр = Iсвар*(20 + 0,04*Iсвар)/0,85/0,98
 
Обратите внимание, что полная мощность указывается в Вольт-Амперах, а не Ваттах!
 
Простые расчеты по приведенной формуле показывают, что аппарат без блока PFC на сварочном токе 160А будет потреблять около 5,9кВА (ток 25А при напряжении 230В), а при токе 200А – 7,6кВА (ток 34А при напряжении 230В).
 
У таких же аппаратов с блоком PFC эти цифры составят 5,1кВА (22А при 230В) и 6,7кВА (29А при 230В), соответственно.
 
А теперь вопрос: на какой максимальный ток рассчитана обычная бытовая розетка? Напомню: 16А (3,68кВА) . При более высоком токе выбивает пробки.
 
Если у Вас есть ребенок-старшеклассник или Вы сами обожаете решать квадратные уравнения, попрактикуйтесь. Для остальных сообщу, что 3,68кВА обычной розетки позволят варить током не более 105А. (При наличии блока PFC – чуть больше 120А). Так что какой бы ни был у Вас номинал сварочного аппарата ММА, от розетки варить электродом толще 3,2 мм не получится.
 
На практике при разрыве сварочной дуги потребляемая мощность несколько повышается. Причем процент увеличения потребляемой при разрыве дуги мощности может существенно разниться. Однако в наше время, когда ценовая конкуренция не позволяет раскошеливаться на компоненты «с запасом», эта цифра чаще всего существенно ниже 20%, а по времени занимает долю секунды. Потому в расчетах обычно не учитывается.
 
При использовании трехфазных аппаратов, подключаемых к источнику 380В (400В), расчет потребляемой мощности производится аналогичным путем, но результат нужно разделить на «корень из 3», что составляет приблизительно 1,73.
 
 
Работа от пониженного напряжения
Работа от пониженного напряжения имеет свою специфику. Она заключается в том, что при пониженном уровне напряжения аппарат выдает меньший сварочный ток, чем заявлено для нормального напряжения. Чем ниже напряжения питания, тем ниже максимальный сварочный ток. Ведь с понижением уровня напряжения снижается уровень отбираемой аппаратом мощности.  При этом дисплей будет показывать расчетное значение, а не фактическое. К сожалению, лишь единицы производителей указывают реальный максимальный ток для различных уровней напряжения питания.
 
Например, аппарат Best Mini 160 при напряжении 220 вольт обеспечивает сварочный ток 160А при напряжении дуги 26,4В. Этого с лихвой хватает, чтобы варить электродом 4,0 мм. При 140В входного напряжения Best Mini 160 работать будет, но током не выше 100А при 24В напряжения дуги. Этого хватит, чтобы варить электродом 3,2 мм, но не 4,0 мм.
 
Таблица изменения рабочего диапазона сварочного тока Best Mini 160 в зависимости от уровня входного напряжения выглядит следующим образом:

Уровень вход.напряжения Диапазон рабочего тока Диаметр электрода
220В 10-160А 1,6-4,0мм
200В 10-160А 1,6-4,0мм
180В 10-160А 1,6-4,0мм
160В 10-120А 1,6-3,2мм
140В 10-100А 1,6-3,2мм

 
Хотя при 140В напряжения питания на дисплее Best Mini 160 и будет красоваться 160А, реально будет выдаваться только 100. То же и у любого другого аппарата ММА. Если бы сварочный ток действительно замерялся, цифры на дисплее непрерывно скакали бы.
 
Получается, что брать аппарат с «запасом» по току имеет смысл, когда известны:

  • точный уровень пониженного напряжения питания;
  • каков диапазон рабочего тока у аппарата при таком уровне напряжения.

 
Пониженный уровень напряжения питания сказывается не только на количественном показателе  сварочного тока, снижая верхнюю границу его диапазона, но и на качестве тока. Аппараты, которые при нормальном напряжении легко варят электродами УОНИ, с понижением уровня напряжения питания утрачивают эту способность.
 
С понижением уровня напряжения также снижается уровень напряжения холостого хода (оно же напряжение без нагрузки). Поджиг электродов усложняется пропорционально снижению уровня напряжения.
 
 
Работа от генератора
В заключение буквально пару замечаний о работе сварочных инверторов ММА от генератора:

  1. Никогда не подключайте сварочный инвертор к инверторному генератору. Даже если инверторный генератор имеет достаточную мощность. Оба прибора используют конденсаторные блоки. Чтобы исключить повреждение инверторного генератора, нужно знать характеристики конденсаторных блоков обоих приборов и уметь их сравнивать.
  2. Подключать инверторный сварочный аппарат ММА к обычному генератору можно, если рабочая (она же номинальная) мощность генератора превышает расчетную мощность потребления аппарата на данном сварочном токе. А в случае сварочного тока свыше 105А при наличии на генераторе силовой розетки или силовых выводов-клемм.
 
 
Ю.Шкляревский, ООО «БэстВелд»

Инверторный сварочный аппарат: выбор, устройство, характеристики

Для проведения сварочных работ в домашних условиях можно приобрести инверторный сварочный аппарат. В продаже можно встретить просто огромное количество различных вариантов исполнения этого устройства, что дает возможность подобрать наиболее подходящую модель. Довольно распространенным является вопрос о том, как выбрать инверторный сварочный аппарат для дома, а также какими эксплуатационными характеристиками он должен обладать. Инвертор – устройство, обладающее компактными размерами и незначительным весом, что существенно упрощает процесс транспортировки и хранение. При применении сварочного инверторного аппарата можно проводить практически все виды работ, главное подобрать более подходящую модель.

Инверторный сварочный аппарат

Устройство инверторов

Рассматривая то, как работают сварочные инверторы, нужно вспомнить принцип действия трансформаторов, предназначенных для преобразования силы тока и напряжения. Аппарат инверторного типа обладает следующими особенностями:

  1. Магнитная индукция применяется для существенного снижения напряжения, которое подается на рабочий орган.
  2. При снижении напряжения в условии постоянного сопротивления существенно повышается сила тока. Сварочные аппараты инверторного типа обычное напряжение 220 В снижают до показателя 30 В, за счет чего сила тока увеличивается на несколько сотен ампер.
  3. Повышение рассматриваемого показателя приводит к образованию дуги, которая становится источником тепла. За счет излучения происходит расплавка металла.

Инверторный сварочный аппарат изнутри

Простота конструкции определяет то, что домашний сварочный аппарат получил широкое распространение, применяется для осуществления различных по сложности задач. Однако, для повышения качества шва нужно точно контролировать параметры образующейся дуги. Именно поэтому преобразование напряжения проводится в несколько этапов.

При рассмотрении того, как правильно выбрать сварочный аппарат для дома, отметим, что типовая конструкция инвертора представлена следующими элементами:

  1. На первом этапе проводится выпрямление напряжения, которое поступает от сети питания.
  2. Далее проводится сглаживание импульсов, возникающие после выпрямления.
  3. Постоянное напряжение преобразуется в переменный, частота которого варьируется в пределе от 20-50 кГц.
  4. Выполняется понижение величины напряжения высокочастотного тока до 70-80 В. За счет этого сила тока возрастает до показателя 100-250 А.
  5. Последний шаг заключается в преобразовании переменного тока в постоянный, что обеспечивает более благоприятные условия для образования сварочного шва.

Инверторы в последнее время получили более широкое распространение по причине того, что обладают достаточно большим количеством различных функций, которые могут быть полезными на момент проведения сварочных работ.

Инверторный сварочный аппарат может обладать следующими функциями:

  1. Ускоренный процесс зажигания дуги.
  2. Форсирование образующей дуги в зоне резания. Эта функция связана с увеличением силы тока при сближении электрода с обрабатываемой поверхностью, что позволяет снизить вероятность его прилипания.
  3. Снижение вероятности прилипания электрода к обрабатываемой поверхности. Подобная функция заключается в автоматическом прекращении подачи напряжения на электрод, после его размыкания с поверхностью инверторный аппарат автоматически возобновляет ранее установленные режимы преобразования напряжения.

Схема конструкции инверторного сварочного аппарата

Для применения дома рекомендуется выбирать именно инверторный сварочный аппарат. Это связано с тем, что за счет дополнительных функций можно обеспечить наиболее высокое качество обработки.

Основные характеристики

Выделяют довольно большое количество различных характеристик, которые следует учитывать при выборе наиболее подходящего оборудования. Для начала отметим, что инверторный аппарат характеризуется высокой надежностью и практичностью в применении. К его ключевым моментам можно отнести:

  1. Величину питающего напряжения. Некоторые модели предназначены для работы в сети с напряжением 220 В, другие же подключаются к трехфазной цепи питания. Для бытового применения подходит вариант исполнения, работающий от стандартной сети. Применение специальной цепи преобразования напряжения определяет то, что при включении инверторного сварочного аппарата в сеть не происходит скачка напряжения. Это достигается за счет применения устройства плавного пуска.
  2. Продолжительность цикла обработки. Данный параметр можно назвать одним из основных. При показателе ПВ 60% после работы в течение 10 минут нужно обеспечить отдыха продолжительностью 10 минут. При работе устройство может серьезно нагреваться, и даже эффективная система охлаждения не позволяет беспрерывно проводить сварку на протяжении нескольких часов.
  3. Диапазон регулировок. Этот показатель определяет область применения устройства. Бытовые инверторы способны выдавать то с значением силы в диапазоне от 150 до 200 А. У промышленных инверторных аппаратов диапазон существенно расширяется, что позволяет их применять для выполнения сварочных работ в различных условиях.
  4. Подходящий диаметр электродов, применяемых при проведении сварочных работ. Он зависит от максимальной силы тока. В зависимости от особенностей оборудования могут применяться электроды со диаметром от 1,4 до 6 мм. Стоит учитывать, что этот показатель всегда указывается в маркировке инверторного аппарата.
  5. Эффективность системы охлаждения. Как ранее было отмечено, во время работы инвертор может существенно нагреваться. Продлить непрерывный цикл работы можно за счет установки эффективной системы охлаждения. Как правило, она представлена сочетанием нескольких вентиляторов. Эффективность охлаждения зависит от количества вентиляторов, правильности их расположения, размеров и максимальной скорости вращения лопастей.
  6. Рекомендуемые условия эксплуатации. Большинство моделей не может эксплуатироваться при температуре ниже -15 градусов Цельсия, что связано с включением в конструкцию большого количества электрических схем. При хранении инверторного аппарата следует исключать вероятность образования конденсата на поверхности, так как он может привести к повреждению микросхем и других элементов. Бытовые варианты исполнения могут храниться и использоваться при температуре от -10 до +40 градусов Цельсия.

Характеристики инвертора в зависимости от толщины металла

Рассматривая то, как выбрать сварочный инвертор для дома, также следует уделить внимание популярности бренда. Подобрать можно модель с бюджетной группы известного производителя или приобрести устройство, которое применимо для выполнения работ на профессиональном уровне. Инверторный сварочный аппарат (какой лучше выбрать вариант для дома зависит от поставленных задач) может иметь различные размеры и вид, что следует учитывать.

Сварочный ток

Преобразователи постоянного тока, которые называют инверторами, могут обладать различными эксплуатационными характеристиками. Изменение показателей сварочного тока проводится для того, чтобы сформировать дугу с наиболее подходящими характеристиками. Наиболее важным показателем считается сила тока: с ее повышением увеличивается показатель излучаемого тепла.

В продаже встречается довольно большое количество моделей, которые имеют регулировку показателей в обширном диапазоне. За счет этого можно существенно расширить область применения устройства.

Напряжение холостого хода

Этот показатель может варьироваться в достаточно большом диапазоне. При холостом ходе инверторный аппарат находится в режиме ожидания и не должен нагреваться. Слишком высокий показатель приводит к снижению срока работы.

Сварка инверторным сварочным аппаратом

Все основные показатели работы устройства должны указываться в технической документации. Некоторые производители наносят информацию на обратной стороне корпуса, размещая табличку

Питающее напряжение

При выборе инверторного сварочного аппарата для применения дома следует рассматривать варианты исполнения, которые работают с напряжением 220-230 В. Некоторые производители указывают на то, что устройство может применяться при отклонении показателя на 10-15%. Это свойство позволяет работать при скачках напряжений и его падении. Однако, для обеспечения продолжительного срока службы рекомендуется приобретать устройство, которое отвечает за контроль подаваемого напряжения. Слишком большой скачок напряжения может привести к повреждению основных элементов конструкции инверторного сварочного аппарата.

Режим работы на максимальном токе

Для того чтобы существенно расширить область применения инертного сварочного аппарата некоторые производители снабжают их режимом работы на максимальном токе. Он применяется в том случае, если нужно кратковременно увеличить показатель силы тока. Стоит учитывать, что этот режим не может применяться на протяжении длительного периода, так как слишком высокое значение становится причиной перегрева устройства.

Режим работы на максимальном ток – полезная функция, которая позволяет существенно расширить область применения сварочного инвертора.

Разновидности инверторов

Аппарат инвертор подбирается под конкретные условия эксплуатации. Основная классификация выглядит следующим образом:

  1. Модели для бытовых целей.
  2. Профессиональные, предназначенные для проведения различных работа на высоком уровне качества.
  3. Промышленные, применяемые при массовом производстве.

Рассматривая сварочный аппарат инвертор и какой лучше для дома уделим внимание также классификации по типу режима сварки:

  1. Аргоновая сварка.
  2. Плазменная резка.
  3. Ручная сварка.
  4. Полуавтомат.

Для начинающих подходит мини сварочный аппарат из бюджетной группы. Это связано с тем, что небольшой аппарат подходит для большей части работ в домашней мастерской и при этом обходится не дорого. Переносной автомат сварочный также выбирается по показателю максимальной силы тока. Даже портативный инвертор способен подавать ток большой силы, чего будет достаточно для работы с металлами большой толщины.

Дополнительные функции инверторных сварочных аппаратов

Выбирая хороший сварочный аппарат следует учитывать, что многие оснащаются дополнительными функциями, которые позволяют существенно упростить работу и сделать ее безопасной. Примером приведем нижеприведенную информацию:

  1. Защита от перегрева. При фиксации на одном из узлов высокой температуры термодатчик отключает подачу тока.
  2. Некоторые приборы имеют повышенную защиту от воздействия пыли и влаги. При этом больше всего внимания уделяется системе охлаждения, которая захватывает воздух: устанавливаются специальные фильтры для защиты внутреннего устройства.
  3. Большинство мастеров уделяет больше всего внимания функции антиприлипания. Она позволяет существенно повысить качество сварки и снизить вероятность того, что электрод прилипнет к поверхности.

Сварочный аппарат бытовой инверторный может обладать большим количество дополнительных функций, которые обеспечивают условия для качественного проведения сварки. Лучший сварочный инвертор также понижает силу тока на момент сварки в режиме холостого хода, что снижает вероятность получения травмы из-за случайного поражения электричеством.

Выбор марки инвертора

Какой сварочный аппарат лучше для дома – довольно распространенный вопрос, дать ответ на который можно только при рассмотрении особенностей каждой фирмы производителя. Недорогой сварочный инверторный аппарат выпускается также известными производителями, но при этом они обладают высоким качеством сборки и весьма привлекательными эксплуатационными характеристиками.

Популярные марки сварочных аппаратов обходятся дороже, но, как показывает практика, они служат намного дольше. Больше всего пользуются спросом сварочное оборудование, которое производится на территории Германии, Италии и Финляндии. Выбрать инвертор из средней ценовой категории можно при рассмотрении предложений, которые производятся на территории Китая и России. Самым доступным предложением можно назвать китайскую продукцию малоизвестных производителей. Некоторые европейские производители также включают в линейку продаж недорогие модели с заниженными эксплуатационными характеристиками.

При выборе недорогой модели стоит учитывать, что она будет существенно уступать в плане функциональности и надежности. К примеру, регулировка показателей образующейся дуги проводится в очень узком диапазоне с большим шагом.

Советы по выбору

При рассмотрении того, как выбрать сварочный аппарат для дома, следует уделить внимание нижеприведенным моментам:

  1. Продолжительности рабочего цикла.
  2. Спектру нагрузочных характеристик.
  3. Наличию дополнительных функций.
  4. Диапазону напряжений, при котором устройство может подключаться к сети.

Лучше купить инвертор у производителя, который обеспечивает сервисное обслуживание. Кроме этого, многие проводят сравнение сварочных инверторов для определения того, какой именно вариант исполнения в большей степени подойдет для применения в конкретном случае.

В заключение отметим, что сварочный инверторный аппарат для гаража (какой выбрать инвертор или трансформатор можно понять только после составления списка критериев) должен подбираться в соответствии с условиями сварки. Некоторые модели не могут использоваться под открытым небом во время выпадения осадков или повышенной влажности, другие производятся при применении качественных материалов, которые могут обеспечить защиту от воздействия окружающей среды. Сравнить основные параметры можно по спецификации, входящей в комплект поставки. Стоит учитывать, что не всегда заявленные технические характеристики соответствуют реальным. Подобная ситуация часто встречается в случае приобретения продукции малоизвестного производителя.

Реальные характеристики сварочных инверторов Ресанта

Сварочные инверторы Ресанта пользуются сегодня большой популярностью у сварщиков и именно поэтому невозможно не уделить внимание этой торговой марке более подробно. Аппараты реализуются по достаточно лояльной и доступной цене, качество же остается приемлемым, если сложить в сумме все плюсы и минусы. Это не реклама Ресанты, тем более что у пользователей интернета, тем более у сварщиков, сформировался уже «негативный условный рефлекс» на навязчивые и необъективные материалы рекламного характера, ориентированные на продажи, а не на поиск истины. Чтобы к последней приблизиться, протестируем линейку аппаратов Ресанта серии К, отчет о проделанной работе предлагаем вашему вниманию. Выводы о соответствии реальных характеристик Ресант заявленным вы сможете сделать самостоятельно.

К серии относится 4 аппарата САИ 160К; САИ 190К; САИ 220К; САИ 250К. Буква «К» в данном случае означает «компактный». С актуальной стоимостью этих устройств вы всегда можете ознакомиться на официальном сайте, поэтому не будем приводить здесь какие-то цифры.

Начнем с исследования комплектации

Все аппараты поставляются в картонных коробках с одинаковой комплектацией: инструкция по эксплуатации, ремень для переноски, сварочные кабели. Длина кабелей держака у всех аппаратов 190 см; кабеля массы – 120 см. Пакеты кабелей не промаркированы, но заметно отличаются по сечению:

  • У инвертора 160К в комплекте очень тонкие кабели сечением 10-12 кв. мм;
  • Инвертор 190К и 220К укомплектован кабелем 14 кв. мм;
  • У 250К самое большое сечение – около 16 кв. мм.

Нужно отметить, что омедненные алюминиевые сварочные кабели имеют недостаточные сечения и во время работы будут греться. Стоит также отметить, что байонетные разъемы инверторов на 220 и 250А должны быть большего сечения, иначе не избежать выгорания контактов при серьезной эксплуатации. Что касается кабеля питания, то полутораметровый провод имеет недостаточное сечение 1,5 кв мм на моделях 160К и 190К. На аппарате 220К стоит странный кабель сечением 3х1,8 кв. мм. К питающему кабелю к аппарату на 250А вопросов нет, его сечение составляет 2,5 кв. мм.

Особенности устройства аппаратов

Среди плюсов линейки «К» следует отметить аккуратную машинную сборку, достаточный уровень ремонтопригодности, применение нового поколения IGBT-транзисторов GT50JR22 фирмы «Тошиба». Новые элементы отличаются повышенным быстродействием и невысоким напряжением насыщения по сравнению с традиционными FGh50N60.

Новые транзисторы позволяют повысить тактовую частоту инвертора и уменьшить габариты реактивных элементов: входных конденсаторов, импульсного трансформатора и т.д. Однако в погоне за малыми габаритами разработчики ухудшили условия охлаждения. Радиаторы стали меньше в сравнении с полноформатной версией аппаратов, а мощность вентилятора не изменилась. Для того, чтобы предотвратить вечный перегрев компактного источника инженерам пришлось снизить максимальные сварочные токи с помощью ШИМ-контроллера. То есть  160А; 190А; 220А; 250А инверторы смогут выдать всего 120А; 130А; 170А; 180А.

Чтобы выяснить, что представляют собой источники, подключим их к регистратору сварочных процессов AWR-224MD, нагрузим током с помощью балластных реостатов и снимем вольт-амперные характеристики.

Начнем с напряжения холостого хода

Модель

Ресанта

Заявлено

Uхх, В

Фактически

Uхх, В

САИ 160К8582
САИ 190К8065
САИ 220К8082
САИ 250К8082

Можно сказать, что напряжение ХХ трех аппаратов соответствует заявленному производителем. Ресанта 190К выдает Uхх ниже заявленного значения, но все-же в допустимых пределах.

Сварочные токи и форма ВАХ

Рассмотрим вольт-амперные характеристики аппаратов и сделаем выводы о их рабочих свойствах.

ХарактеристикиСАИ 160КСАИ 190КСАИ 220КСАИ 250К
Максимальный сварочный

ток, А

120

(заявл. 160)

138

(заявл. 190)

162

(заявл.220)

 

183

(заявл.250)

 

Ток короткого замыкания на макс. токе, А160164235233

Подводя итог можно сказать, что ни один из участников теста не выдержал проверки. Можете сами подсчитать, сколько ампер по номинальному току не добирает каждый из инверторов. То есть в цену сварочных источников питания заложен чистый китайский воздух, который составляет от 25 до 35% цены аппаратов. Что касается формы ВАХ, можно предположить, что процесс поджига и стабильность горения дуги должны быть на приемлемом уровне.

Проверка ПН

Поскольку токовые характеристики всех инверторов завышены, ПН, указанный на шильдах инверторов, также не соответствует действительности. Чтобы представить, какой продолжительностью нагрузки обладают источники, рассчитаем их приблизительный режим работы. Для этого все аппараты будут нагружены их реальным максимальным током и помещены в термокамеру (при температуре 40 градусов). Исходя из времени, которое каждый источник сможет продержаться в тепловом контуре не отключаясь, сделаем выводы о реальном ПН.

Приходя в магазин за новым сварочным инвертором, сварщик-профессионал обращает внимание на ток длительной нагрузки, который указан на шильде. Цифры, указанные там, обозначают пороговые значения тока, которые сварщик может выставить на источнике не опасаясь отключения аппарата по перегреву независимо от времени работы. Неверные данные, обозначенные в графе ПН100% могут ввести сварщика в заблуждение и привести к вынужденным простоям в работе.

Результаты испытаний, полученных в термокамере

ИнверторIмакс, А

(максимальный ток инвертора в термокамере)

 

 

Время нахождения в камере до включения индикатора перегреваРеальное значение

ПН, % на макс. токе

 

Заявленное значение ПН, % на макс. токеРеальный ПН 100%

(ток длительной нагрузки), А

Заявленное ПН100%, (Ток длительной нагрузки), А
САИ160К1202 мин 36 сек26

 

70

 

61

 

100
САИ 190К1402 мин 14 сек227065

 

120
САИ 220К1601 мин 56 сек1970

 

70140
САИ 250К1833 мин 13 сек3270101160

Работа при низком напряжении в электросети

Все аппараты серии «К» выдерживают просадку до 160В, кроме модели САИ160К ( при сварке рутиловыми электродами ок46.00). Поджиг у САИ 160К становится неудовлетворительным, а сварочная дуга часто рвется.

Доп. Функционал

В инструкции сказано, что все СварАппы оснащены функциями «анти-стик, «хот-старт» и «форсаж дуги».

Фактическое наличие

Модельанти-залипаниеХот-стартФорсаж-дугиVRD
Инверторы серии «К»ДаНетНетНет

Практическая сварка

Все аппараты хорошо справляются со сваркой стальных пластин (встык) толщиной 4 мм электродами ОК46.00, УОНИИ 13/55 диаметром 2,5 мм. Поджиг уверенный, дуга стабильная и эластичная.  Что касается электродов диаметром 4 мм, на моделях 160К и 190К ощутима нехватка тока, регуляторы приходится выставлять на максимальные значения, два других инвертора со сваркой четырехмиллиметровым электродом справляются нормально (процесс достаточно комфортен).

Заключение

Большинство характеристик аппаратов Ресанта серии «К» не соответствует заявленным. Расхождение обещанного и реального функционала касается как максимальных сварочных токов и ПН инвертора, так и отсутствия дополнительных функций форсажа дуги и горячего старта.

Источник: Aurora Online Channel

Руководство по процессу ручной дуговой сварки

Что такое процесс ручной дуговой сварки?

Используемые термины

MMA – ручная дуговая сварка металлическим электродом SMAW – дуговая сварка металлическим электродом Ручная сварка

MMA (Процесс ручной дуговой сварки металлическим электродом был впервые разработан в России в 1888 году и включал в себя сварочный стержень без покрытия. В начале 1900-х годов был представлен электрод с покрытием, когда в Швеции был изобретен процесс Кьельберга, а в Великобритании – квазидуговой метод.Использование электрода с покрытием происходило медленно из-за высоких производственных затрат, но потребность в сварных швах с более высокой степенью целостности привела к тому, что этот процесс стал использоваться все чаще.

Материал соединяется, когда между электродом и заготовкой возникает дуга, плавящая заготовку и электрод с образованием сварочной ванны. В то же время электрод имеет внешнее покрытие, которое иногда называют электродным флюсом, которое также плавится и создает экран над сварочной ванной, чтобы предотвратить загрязнение расплавленной ванны и способствовать возникновению дуги.

Он охлаждается и образует твердый шлак на сварном шве, который затем необходимо отколоть от сварного шва по завершении или перед добавлением другого сварного шва. Процесс позволяет производить только короткие отрезки сварного шва из-за длины электрода, прежде чем новый электрод необходимо будет вставить
в держатель. Качество наплавленного металла во многом зависит от квалификации сварщика.
Источник питания обеспечивает выход постоянного тока (CC) и может быть AC (переменный ток) или DC (постоянный ток).


Конструкция инвертора для ручной дуговой сварки такова, что оператор, увеличивающий длину дуги, снижает сварочный ток, а сокращение длины дуги (уменьшение напряжения дуги) делает обратное, то есть увеличивает ток. В качестве ориентира напряжение регулирует высоту и ширину сварного шва, в то время как ток контролирует проплавление, поэтому сварщик манипулирует электродом для достижения удовлетворительного качества сварки.

Мощность, потребляемая в сварочной цепи, определяется напряжением и током дуги.
Напряжение (В) определяется диаметром электрода и расстоянием между электродом и заготовкой. Ток в цепи зависит от диаметра электрода, толщины свариваемых материалов и положения сварного шва. Большая часть информации об электродах будет содержать подробную информацию об используемых типах тока и оптимальном диапазоне тока.

Источники питания для сварки MMA, которые могут использоваться для сварки TIG, часто называют источниками питания с падающими характеристиками. Как правило, это блоки базового селекторного типа, устройства управления магнитным усилителем или устройства с приводом от двигателя с прочной конструкцией, поскольку они часто требуются для работы в экстремальных условиях.
Характеристика выходной формы породила термин «капля».

Однако современные сварочные инверторные источники питания могут преодолеть эти проблемы и обеспечить отличные характеристики и производительность, поскольку кривую можно контролировать электронным способом для каждого процесса.

Небольшие относительно дешевые комплекты переменного тока обычно используются для самостоятельного ремонта или небольших ремонтных работ, а некоторые более крупные комплекты переменного тока, часто охлаждаемые маслом, могут использоваться в более тяжелой промышленности, но выходы постоянного тока в настоящее время являются наиболее распространенными.

Производство электродов означает, что не все электроды постоянного тока могут работать от источников переменного тока, но электроды переменного тока могут работать как с переменным, так и с постоянным током. Постоянный ток (DC) – наиболее часто используемый режим. Блоки переменного тока обычно управляются с помощью подвижного стального сердечника или переключаемых трансформаторов.

Источники выходной мощности

постоянного тока могут использоваться для многих типов материалов и могут быть получены в широком диапазоне токов. Элементы управления этих устройств варьируются от управления с подвижным железным сердечником до новейших конструкций инверторов.Конструкция инвертора принесла много преимуществ:

• Очень легкий и портативный по сравнению со своими предшественниками
• Очень энергоэффективный источник питания и экономия затрат на электроэнергию

• Обеспечивает более высокие выходы для более низких входов
• Высокие уровни контроля и производительности

Обычно предпочтительнее выполнять сварку в плоском или горизонтальном положении. Когда требуется сварка в таком положении, как вертикальное или потолочное, полезно уменьшить сварочный ток по сравнению с горизонтальным положением.Для достижения наилучших результатов во всех положениях с поддержанием короткой дуги требуется равномерное движение и скорость перемещения в дополнение к постоянной подаче электрода.

Что составляет систему MMA (Stick)?

Сварочный инверторный источник питания

Выбранный сварочный инверторный источник питания должен иметь достаточную мощность для плавления электрода и свариваемого материала с достаточной мощностью для поддержания напряжения дуги.

Для сварки MMA (Stick) обычно требуется большой ток (50–350 А) при относительно низком напряжении (10–50 В).Сварочные электроды MMA предназначены для работы с различными типами выходной мощности и напряжения, и вам всегда следует читать данные производителя.

Все сварочные электроды можно использовать на постоянном токе (DC), но не все на переменном (AC). Некоторые электроды переменного тока также имеют определенные требования к напряжению. При использовании в режиме постоянного тока провод электрода должен быть подключен с полярностью, рекомендованной производителем электродов, в большинстве случаев это будет положительная полярность электрода, но есть электроды, использующие отрицательную полярность.Источник питания работает в режиме «холостого хода» или «напряжения холостого хода», когда не зажигается сварочная дуга. Это номинальное напряжение без нагрузки определено в стандарте EN 60974-12012 (EN 60974) в соответствии со сварочной средой или риском поражения электрическим током. Источник питания может иметь устройство понижения напряжения (VRD), установленное внутри или снаружи.

Держатель электрода и сварочные кабели

Держатель электрода и сварочные кабели

Электрододержатель зажимает конец электрода токопроводящими зажимами, встроенными в его головку.Эти зажимы работают либо за счет скручивания, либо за счет подпружиненного зажима (типа «крокодил»).

Зажимной механизм позволяет быстро отсоединить оставшийся неиспользованный конец электрода (заглушку).

Для обеспечения максимальной эффективности сварки электрод должен быть надежно зажат в держателе, в противном случае плохой электрический контакт может вызвать нестабильность дуги из-за колебаний напряжения и перегрева держателя.

Сварочный кабель присоединяется к держателю механически, обжимается или припаивается.

Держатели электродов должны соответствовать IEC 60974-11.

Диаметр сварочного кабеля обычно выбирается в зависимости от уровня сварочного тока. Чем выше ток и рабочий цикл,
, тем больше диаметр кабеля, чтобы он не перегревался (см. Соответствующий стандарт). Если сварка проводится на некотором расстоянии от источника питания, может потребоваться увеличить диаметр кабеля, чтобы уменьшить падение напряжения.

Сварочный электрод состоит из основного материала типа материала i.е. сталь или нержавеющая сталь и т. д., которые служат присадочным металлом сварного шва. Он покрыт внешним покрытием, называемым флюсом, который помогает в создании дуги и защищает дугу от загрязнения так называемым шлаком.

На стабильность дуги, глубину проплавления, скорость осаждения металла и особенности положения существенно влияет химический состав флюсового покрытия на электроде. Электроды можно разделить на три основных типа:

• Основной
• Целлюлозный

• Рутил

Основные сварочные электроды содержат большое количество карбоната кальция (известняк) и фторида кальция (плавиковый шпат) в покрытии.Это делает их шлаковое покрытие более текучим, чем рутиловое покрытие – оно также быстро замерзает, что способствует сварке в вертикальном и верхнем положении. Эти электроды используются для сварки изделий среднего и тяжелого сечения, где требуется более высокое качество сварки, хорошие механические свойства и устойчивость к растрескиванию (из-за высокой прочности).

Характеристики:

Когда эти электроды подвергаются воздействию влаги из воздуха, происходит быстрое накопление влаги. Из-за необходимости контроля содержания водорода эти электроды следует тщательно высушить в сушильном шкафу с регулируемой температурой.
Типичное время высыхания составляет один час при температуре приблизительно от 150 ° C до 300 ° C, но перед использованием всегда следует консультироваться с данными производителя.

После контролируемой сушки основной и основной / рутиловый электроды необходимо выдержать при температуре от 100 ° C до 150 ° C, чтобы защитить их от повторного поглощения влаги покрытием. Эти условия могут быть достигнуты путем переноса электродов из основной сушильной печи в раздаточную печь или нагретый колчан на рабочем месте.

Электроды из металлического порошка содержат добавку металлического порошка к флюсовому покрытию для увеличения максимально допустимого уровня сварочного тока. Таким образом, для данного размера электрода скорость осаждения металла и эффективность (процент нанесенного металла) увеличиваются по сравнению с электродом, не содержащим порошка железа в покрытии.

Шлак обычно легко удаляется. Электроды из железного порошка в основном используются в плоском и горизонтальном / вертикальном положениях, чтобы использовать преимущества более высоких скоростей наплавки.Эффективность 130-140% может быть достигнута для рутиловых и основных электродов без заметного ухудшения характеристик искрения, но дуга имеет тенденцию быть менее сильной, что снижает проникновение валика.

ПРИМЕЧАНИЕ. Качество сварного шва зависит от стабильной работы электрода. Покрытие из флюса не должно иметь сколов, трещин или, что более важно, намокать. Электроды изготавливаются с разными типами покрытия и требуют разного обращения.

Целлюлозные сварочные электроды

Целлюлозные сварочные электроды содержат большое количество целлюлозы в покрытии и характеризуются глубоко проникающей дугой и быстрым выгоранием, что обеспечивает высокую скорость сварки.Наплавленный наплавленный металл может быть крупным, а удаление шлака жидким шлаком может быть затруднено. Эти электроды просты в использовании в любом положении и известны тем, что используются в технике сварки «дымоход».

Характеристики:

• Глубокий провар во всех положениях
• Пригодность для сварки снизу вверх
• Достаточно хорошие механические свойства
• Высокий уровень образования водорода – риск растрескивания в зоне термического влияния (HAZ)

Эти электродные покрытия предназначены для работы с определенным количеством влаги в покрытии.Покрытие менее чувствительно к впитыванию влаги и обычно не требует операции сушки. Однако сушка может потребоваться в тех случаях, когда относительная влажность окружающей среды, в которой хранились электроды, была очень высокой.

Рутиловые сварочные электроды

Рутиловые сварочные электроды содержат высокую долю оксида титана (рутила) в покрытии. Оксид титана способствует легкому зажиганию дуги, плавному срабатыванию дуги и малому разбрызгиванию. Эти электроды представляют собой электроды общего назначения с хорошими сварочными свойствами.Их можно использовать с источниками питания переменного и постоянного тока и во всех положениях. Электроды особенно подходят для сварки угловых швов в горизонтальном / вертикальном (H / V) положении.

Характеристики:

• Умеренные механические свойства металла шва
• Хороший профиль валика за счет вязкого шлака
• Возможна позиционная сварка жидким шлаком (содержащим фторид)

• Легко удаляемый шлак

Покрытия из рутила могут выдерживать ограниченное количество влаги, и покрытия могут испортиться, если они пересушены.Перед использованием всегда сверяйтесь с данными производителя.

Электроды для твердоизнашивающейся / наплавочной сварки

Электроды для твердой наплавки или износостойкие электроды используются в основном для нанесения твердой поверхности на более мягкий основной материал. Существует широкий спектр этих типов продуктов, и общая область их использования – ремонт изнашиваемых поверхностей, таких как зубы, на землеройном и горнодобывающем оборудовании.

Сварочные электроды постоянного тока с медным покрытием

Это наиболее распространенный тип из-за сравнительно длительного срока службы электродов.Эти электроды изготавливаются путем смешивания и обжига углерода, графита и связующего вещества и покрытия их медью. Они обеспечивают стабильные характеристики дуги и однородные канавки.

Они сконструированы так же, как и электроды постоянного тока с медным покрытием, но без медного покрытия. При использовании они расходуются быстрее, чем покрытые медью.

Эти электроды сконструированы путем смешивания и спекания углерода, графита и специального связующего с добавленными редкоземельными материалами для стабилизации дуги.
Они покрыты медью.
В процессе используется сжатый воздух под давлением 80-100 фунтов на квадратный дюйм на держателе электрода.

Повышение давления воздуха не приводит к более эффективному удалению металла.

Хранение сварочных электродов

Электроды всегда следует хранить в сухом и хорошо вентилируемом помещении. Рекомендуется укладывать пакеты электродов на деревянные поддоны или стеллажи на достаточном расстоянии от пола. Кроме того, все неиспользованные электроды, подлежащие возврату, следует хранить так, чтобы они не подвергались воздействию влаги, чтобы восстановить влагу.

Хорошие условия хранения: на 10 ° C выше температуры наружного воздуха. Поскольку условия хранения должны предотвращать конденсацию влаги на электродах, запасы электродов должны быть сухими.

В этих условиях и в оригинальной упаковке срок хранения электродов практически неограничен. Современные электроды теперь доступны в герметичных упаковках, что исключает необходимость сушки. Однако при необходимости неиспользованные электроды необходимо повторно высушить в соответствии с инструкциями производителя.

Сушка обычно выполняется в соответствии с рекомендациями производителя, и требования будут определяться типом электрода.
Многие электроды теперь доступны в герметичных контейнерах. Эти вакуумные упаковки избавляют от необходимости сушить электроды непосредственно перед использованием. Однако, если контейнер был открыт или поврежден, необходимо повторно высушить электроды в соответствии с инструкциями производителя.

Выбор диаметра электрода зависит от толщины заготовки, положения сварки, формы соединения, сварочного слоя и т. Д.


Уровень сварочного тока определяется размером электрода – нормальный рабочий диапазон и ток рекомендуются производителями.Типичные рабочие диапазоны для выбора размеров сварочных электродов показаны в таблице.

  • В процессе сварки дуга не должна быть слишком длинной; в противном случае это вызовет нестабильное горение дуги, большое количество брызг, проникновение света, поднутрение, образование пузырей и т. д. Если дуга слишком короткая, это приведет к прилипанию электрода к заготовке.

Регуляторы инвертора, используемые при сварке стержневым электродом (стержневой сваркой)

Регулятор сварочного тока (A)

Регулятор тока регулирует величину тока на выходе сварочного инвертора и, следовательно, скорость наплавки в зависимости от диаметра электрода.


На более современных электронных сварочных инверторах часто можно управлять током с помощью пульта дистанционного управления.

В начале сварки горячий старт обеспечивает повышенный ток, позволяющий электроду зажигать дугу, не прилипая к заготовке. Некоторые машины имеют автоматический ток горячего старта с заданным временем и уровнем, другие имеют регулируемое управление горячим пуском, которое может выбрать оператор.

Во время сварки напряжение дуги обычно находится в районе 20 В.Часто ситуация может потребовать более короткой дуги, что приводит к более низкому напряжению, и электрод склонен «прилипать к заготовке», поскольку дуга фактически погасла. Регулировка силы дуги решает эту проблему за счет увеличения тока при падении напряжения дуги, чтобы обеспечить перенос металла электрода и предотвратить прилипание электрода. В некоторых машинах есть автоматическая регулировка силы дуги, в других – регулируемое управление силой дуги, чтобы оператор мог выбрать требуемый уровень.

Проблемы при сварке стержневым электродом (стержневой сваркой)

Характеристики источника питания – TWI

Основная задача источника питания для дуговой сварки – подавать регулируемый сварочный ток при напряжении, требуемом для процесса сварки.К процессам дуговой сварки предъявляются различные требования в отношении средств управления, необходимых для обеспечения требуемых условий сварки, которые, в свою очередь, влияют на конструкцию источника питания. Чтобы понять, как требования процессов влияют на конструкцию источника питания, необходимо понимать взаимодействие источника питания и характеристик дуги.

Если зависимость напряжения сварочной дуги при различной длине дуги от сварочного тока, то кривые, показанные на рис.1. Наибольшее напряжение – это напряжение холостого хода источника питания. После зажигания дуги напряжение быстро падает, поскольку газы в дуговом промежутке становятся ионизированными и становятся электропроводными, электрод нагревается и размер столба дуги увеличивается. Сварочный ток увеличивается по мере падения напряжения, пока не будет достигнута точка, в которой соотношение напряжение / ток становится линейным и начинает соответствовать закону Ома. Из рисунка 1 важно отметить, что при изменении длины дуги изменяются и напряжение, и сварочный ток – более длинная дуга дает более высокое напряжение, но с соответствующим падением сварочного тока и наоборот.Эта характеристика сварочной дуги влияет на конструкцию источника питания, поскольку большие изменения сварочного тока при ручной металлической дуге (MMA) и сварке TIG нежелательны, но необходимы для процессов сварки MIG / MAG и порошковой дугой.

Поэтому источники питания

MMA, TIG и дуговой сварки под флюсом разработаны с так называемой статической характеристикой падающего выхода или постоянного тока, источники питания MIG / MAG и FCAW с плоской статической характеристикой или статической характеристикой постоянного напряжения. На большинстве источников питания наклон характеристики можно изменить, чтобы сгладить или сделать более крутыми кривые, показанные на рис. 2 и рис.3

На рис. 2 показаны статические характеристики падающего или постоянного тока источника питания, такие как те, которые будут использоваться для процесса MMA или TIG, наложенные на характеристические кривые дуги. При ручной сварке длина дуги постоянно меняется, поскольку сварщик не может поддерживать постоянную длину дуги. При использовании источника постоянного тока, когда длина дуги изменяется из-за того, что сварщик манипулирует сварочной горелкой, происходит лишь небольшое изменение сварочного тока – чем круче кривая, тем меньше изменение тока, поэтому не будет скачков тока и достигается стабильное состояние сварки.Поскольку в первую очередь сварочный ток определяет такие характеристики, как проплавление и расход электрода, это означает, что длина дуги менее критична, что упрощает задачу сварщика по получению прочных бездефектных сварных швов. Как правило, изменение на ± 5 вольт приводит к изменению примерно на ± 8 ампер при сварочном токе 150 ампер.

В некоторых ситуациях – например, при сварке в верхнем положении или когда сварщик сталкивается с переменными корневыми зазорами – это преимущество, если сварщик имеет гораздо больший контроль над скоростью наплавки, позволяя ему изменять скорость, изменяя длину дуги. .В такой ситуации будет полезна более плоская характеристика источника питания.

Для дуговой сварки под флюсом также используется источник питания с падающей характеристикой, в котором сварочный ток и скорость подачи электрода согласованы со скоростью, с которой проволока плавится и переносится через дугу в сварочную ванну – «скорость выгорания». Это согласование параметров осуществляется системой мониторинга, которая использует напряжение дуги для управления скоростью подачи электрода – если длина дуги / напряжение увеличивается, скорость подачи проволоки увеличивается для восстановления равновесия.Характеристика источника питания с постоянным напряжением проиллюстрирована на рис. 3. Это показывает, что по мере изменения длины дуги и, следовательно, напряжения, происходит большое изменение сварочного тока – по мере того, как дуга удлиняется, сварочный ток падает, поскольку дуга укорачивает ток. увеличивается.

В источниках питания MIG / MAG и FCAW сварочный ток регулируется скоростью подачи проволоки, сварочный ток определяет скорость, с которой сварочная проволока плавится и передается через дугу в сварочную ванну – «прогорание». темп.Следовательно, по мере уменьшения тока скорость выгорания также падает, меньше проволоки плавится и кончик проволоки приближается к сварочной ванне. При этом снижается напряжение, увеличивается сварочный ток и, следовательно, скорость выгорания. Поскольку скорость подачи проволоки постоянна, возникает избыток выгорания при подаче проволоки, так что требуемые длина дуги, напряжение и ток восстанавливаются. Также происходит обратное: уменьшение длины дуги вызывает снижение напряжения, ток увеличивается, скорость догорания увеличивается, в результате чего дуга удлиняется, напряжение увеличивается, а сварочный ток падает до тех пор, пока не будут установлены предварительно заданные условия сварки. восстановлены.Опять же, типичное значение изменения сварочного тока для источника питания постоянного напряжения будет в диапазоне ± 40 ампер при изменении длины дуги на ± 5 вольт. Эта функция дает нам так называемую «саморегулирующуюся дугу», при которой изменения длины дуги, напряжения и тока автоматически возвращаются к требуемым значениям, обеспечивая стабильные условия сварки. Это несколько упрощает задачу сварщика по сравнению со сваркой MMA или TIG. Хотя в принципе можно использовать источник питания с постоянной характеристикой напряжения для сварки MMA, сварщику гораздо труднее оценить скорость выгорания, чем длину дуги, поэтому возникает нестабильность дуги, и этот метод нецелесообразен.

В дополнение к этому регулированию напряжения сварочной дуги важна скорость, с которой источник питания реагирует на короткое замыкание – это известно как динамическая характеристика источника питания. Короткие замыкания возникают при зажигании дуги и при сварке MIG / MAG при переносе погружением. Когда напряжение падает до нуля, при коротком замыкании ток возрастает. Если это увеличение тока происходит быстро и неконтролируемо, то кончик электрода перегорает, как электрический предохранитель, что приводит к чрезмерному разбрызгиванию – слишком медленный подъем, и электрод может врезаться в сварочную ванну и погасить дугу.Это не слишком важно при использовании процесса MMA, поскольку максимальный ток при нулевом напряжении контролируется наклоном статической характеристической кривой, и сварщик может легко установить дуговый зазор. Однако это важно в процессе MIG / MAG, когда используется источник питания с плоской статической характеристикой, и ток может возрасти до чрезвычайно высокого значения, в частности, при сварке в режиме погружения или короткого замыкания.

Таким образом, в электрическую цепь источника питания вводится электрический компонент, называемый индуктором.Это устройство противодействует изменениям сварочного тока и, следовательно, снижает скорость увеличения тока во время короткого замыкания. Индуктивность является переменной и может регулироваться для обеспечения стабильного состояния, как показано на рис. 4. Индуктивность в сварочной цепи также приводит к меньшему количеству коротких замыканий в секунду и увеличению времени горения дуги – это дает более гладкий сварной шов лучшей формы. Однако слишком большая индуктивность может привести к такому медленному нарастанию сварочного тока, что у дуги будет недостаточно времени для восстановления и расплавления кончика проволоки, так что сварочная проволока затем попадет в сварочную ванну.Индуктивность во время переноса распылением также способствует лучшему и менее резкому зажиганию дуги.

Эту статью написал Джин Мазерс.

Характеристики источника сварочного тока

Прочитав эту статью, вы узнаете о характеристиках источника сварочного тока: – 1. Вольт-амперные характеристики источника сварочного тока 2. Внешние статические вольт-амперные характеристики источника сварочного тока 3. Характеристики постоянного тока 4. Постоянный ток Характеристики напряжения 5.Динамические вольт-амперные характеристики.

Вольт-амперные характеристики источника сварочного тока:

Все источники сварочного тока имеют два типа рабочих характеристик, а именно статическую характеристику и динамическую характеристику. Статическую выходную характеристику можно легко определить, измерив установившееся выходное напряжение и ток обычным методом нагрузки с помощью переменных резисторов. Таким образом, кривая, показывающая выходной ток в зависимости от выходного напряжения для данного источника питания, составляет его статическую характеристику.

Динамическая характеристика источника питания для дуговой сварки определяется путем регистрации переходных изменений сварочного тока и напряжения дуги, возникающих в течение короткого интервала времени. Таким образом, он описывает мгновенные изменения, происходящие в течение короткого промежутка времени, скажем, миллисекунды. Стабильность дуги определяется комбинированным взаимодействием статических и динамических вольт-амперных (V-I) характеристик источника сварочного тока.

Внутренний переходный характер сварочной дуги является основной причиной большого значения динамических характеристик источника питания для дуговой сварки.Большинство сварочных дуг имеют постоянно меняющиеся условия, которые в основном связаны с зажиганием дуги, переносом металла от электрода в сварочную ванну, а также гашением и повторным зажиганием дуги в течение каждого полупериода сварки на переменном токе. Переходный характер сварочной дуги также связан с изменением длины дуги, температуры дуги и характеристиками электронной эмиссии катода.

Скорость изменения напряжения и тока в процессах дуговой сварки настолько высока, что статическая вольт-амперная характеристика источника питания вряд ли может иметь какое-либо значение для прогнозирования динамических характеристик сварочной дуги.

Однако производитель предоставляет только статические вольт-амперные характеристики источника сварочного тока. Хотя они не могут описать характер поведения источника энергии в отношении его динамического отклика, они имеют большое значение для определения общего отклика при управлении параметрами процесса.

Внешние статические вольт-амперные характеристики источника сварочного тока:

Очень важной характеристикой любого источника питания для дуговой сварки является его внешняя статическая вольт-амперная характеристика.Это кривая, связывающая напряжение источника со сварочным током. Вольт-амперная характеристика источника сварочного тока получается путем измерения выходного напряжения и тока при статической нагрузке на него чисто резистивной нагрузкой, которая изменяется от минимальной или нулевой нагрузки до максимальных условий или условий короткого замыкания. Внешняя статическая характеристика источника сварочного тока зависит от области применения, для которой он предназначен.

На рис. 4.1 показаны различные типы вольт-амперных характеристик, используемых для источников сварочного тока.Как правило, все эти характеристики VI классифицируются по четырем категориям, а именно: круто падающие, постепенно падающие, плоские и восходящие характеристики, которые используются соответственно для ручной дуговой сварки, дуговой сварки под флюсом, полуавтоматической газовой дуговой сварки и автоматической газовой дуговой сварки металлическим электродом. сварочные процессы.

Рис. 4.1 Статические вольт-амперные характеристики различных типов источников сварочного тока

К этим четырем типам также относятся и другие процессы дуговой сварки.Тем не менее, довольно часто источники сварочного тока с падающими характеристиками V-I рассматриваются как обычные машины или машины постоянного тока, а источники сварочного тока с плоскими или почти плоскими характеристиками V-I – как машины с постоянным напряжением или постоянным потенциалом.

Дальнейшее их обсуждение следует под этими двумя заголовками:

Характеристики постоянного тока источника сварочного тока:

Обычный источник питания для дуговой сварки известен как аппарат постоянного тока (CC).Он имеет падающую вольт-амперную характеристику и широко используется при дуговой сварке экранированного металла.

Кривая постоянного тока показывает, что источник сварочного тока выдает максимальное выходное напряжение без нагрузки, а по мере увеличения нагрузки выходное напряжение уменьшается. Максимальное напряжение холостого хода или холостого хода обычно составляет 100 вольт.

Источник питания постоянного тока может иметь выход постоянного или переменного тока. Помимо SMAW, он используется для дуговой сварки углем, газовой вольфрамовой дуги, плазменной сварки и приварки шпилек.Его также можно использовать для непрерывных процессов с использованием проволоки относительно большого диаметра, например, для дуговой сварки под флюсом.

Источники сварочного тока постоянного тока могут также использоваться для некоторых автоматических сварочных процессов. Это требует использования механизма подачи проволоки и элементов управления для дублирования движений сварочного аппарата для инициирования и поддержания дуги, что обычно достигается с помощью сложной системы обратной связи для контроля напряжения дуги для контроля длины дуги.

До недавнего времени источники постоянного тока редко использовались для сварки проволокой очень малого диаметра.Однако в настоящее время разработаны источники питания для дуговой сварки с истинной вольт-амперной статической характеристикой постоянного тока, как показано на рис. 4.2, которые могут использоваться с проволокой малого диаметра в пределах обычно используемого диапазона напряжения дуги.

Сварщик, использующий этот тип аппарата, практически не может контролировать сварочный ток путем изменения длины дуги, поскольку это изменение не влияет на него. Это является хорошим преимуществом для дуговой сварки вольфрамовым электродом, поскольку изменение длины дуги в этом процессе ограничено.Он также широко используется при дуговой сварке металлическим электродом в газе, где он используется для обеспечения распылительного режима переноса металла с низким средним током.

Это осуществляется источником питания, который может быть запрограммирован на переключение с низкого или фонового тока на пиковый или импульсный ток, чтобы влиять на отделение капель за счет увеличения скорости плавления в сочетании с усиленным пинч-эффектом. Это называется импульсной сваркой.

При сварке импульсным током два уровня тока, как показано на рис. 4.3, с желаемыми периодами времени, которые могут быть установлены для достижения необходимого среднего сварочного тока Сварка импульсным током становится все более популярной как при сварке вольфрамовой дугой, так и при газовой дуговой сварке металлическим электродом.

Характеристики постоянного напряжения источника сварочного тока :

Источник сварочного тока с постоянным напряжением (CV) имеет по существу плоскую вольт-амперную характеристику, хотя обычно с небольшим спадом. Кривая может быть сдвинута вверх или вниз для изменения напряжения, как показано на рис. 4.4. Напряжение, однако, никогда не поднимется до уровня OCV, как в источнике сварочного тока на постоянном токе.

Рис. 4-4 Различные вольт-амперные кривые источников питания постоянного напряжения

Это одна из причин, по которой источник сварочного тока с постоянным напряжением не используется для ручной дуговой сварки металлическим электродом с покрытием электродами, поскольку для зажигания дуги требуется более высокий OCV.Источники сварочного тока с вольт-амперными характеристиками постоянного напряжения фактически используются только для непрерывной сварки электродной проволокой, такой как газовая дуговая сварка.

Вольт-амперная характеристика источника питания постоянного тока рассчитана на получение почти одинакового напряжения без нагрузки и при номинальной или полной нагрузке. Он имеет V-I характеристику, как у стандартного промышленного генератора электроэнергии. Если нагрузка в цепи изменяется, источник питания автоматически регулирует свой выходной ток в соответствии с требованиями и поддерживает практически такое же напряжение на выходных клеммах.Таким образом, эта система обеспечивает саморегулирующуюся дугу на основе предварительно заданной скорости подачи проволоки и источника питания постоянного напряжения.

Упрощенные элементы управления устраняют сложную схему и реверсирование двигателя привода подачи проволоки для инициирования или поддержания стабильной сварочной дуги.

Источник сварочного тока с постоянным напряжением обеспечивает необходимый ток, так что скорость плавления электрода равна скорости подачи проволоки. Длина дуги предварительно устанавливается путем настройки напряжения на источнике питания, а сварочный ток регулируется путем регулировки скорости подачи проволоки.

Вольт-амперная характеристика источника сварочного тока должна быть спроектирована таким образом, чтобы обеспечить стабильную дугу для GMAW с использованием проволоки разного диаметра и металла в сочетании с разными защитными газами. Большинство источников сварочного тока с постоянным напряжением снабжены средствами регулировки наклона кривой V-I.

Было обнаружено, что кривые V-I с крутизной от 1-5 до 2 вольт / 1004 лучше всего подходят для GMAW цветных металлов, дуговой сварки под флюсом и для дуговой сварки порошковой проволокой с использованием электродной проволоки большего диаметра.Кривая со средним наклоном от 2 до 3 вольт / 100 А является предпочтительной для CO 2 , дуговой сварки металлическим электродом в защитных газах и для порошковой электродной проволоки малого диаметра. Более крутой наклон от 3 до 4 В / 100 А полезен для короткого замыкания. Эти три типа наклонов показаны на рис. 4.5. При одинаковом изменении напряжения дуги, чем пологие кривая, тем больше изменение сварочного тока.

Рис. 4-5 Различные наклоны, используемые в источниках сварочного тока с постоянным напряжением

Необходимо тщательно спланировать динамическую характеристику источника питания постоянного напряжения.Из-за резкого изменения напряжения при коротком замыкании ток имеет тенденцию быстро увеличиваться до очень высокого значения. Это преимущество при зажигании дуги, но может вызвать нежелательное разбрызгивание.

Тем не менее, им можно управлять, добавляя в цепь реактивное сопротивление или индуктивность. Это приводит к изменению временного фактора или времени отклика и приводит к стабильной дуге. В большинстве источников сварочного тока в цепь включена разная величина индуктивности для разных углов наклона. Для этого в системе предусмотрен реактор переменного тока.

Сварочная система с постоянным напряжением имеет наибольшее преимущество, когда плотность тока электродной проволоки высока. Принцип постоянного напряжения сварки обычно не используется с переменным током. Хотя его можно использовать для дуговой сварки под флюсом и электрошлаковой сварки, но он не пользуется популярностью в этих процессах. Его не следует использовать для дуговой сварки в среде защитного металла, так как это может привести к перегрузке и повреждению источника питания из-за слишком длительного потребления слишком большого тока.

Выбор статической вольт-амперной характеристики для процесса сварки:

В основном существует четыре типа статических вольт-амперных характеристик, которые могут быть включены в источник сварочного тока, в зависимости от процесса, для которого они будут использоваться.

Эти четыре типа характеристик V-I:

1. Тип круто понижения,

2. Постепенно поникающий тип,

3. Fiat или типа постоянного напряжения и

4. Тип повышенного напряжения.

Характеристики всех этих типов источников питания с наложенными на них вольт-амперными характеристиками сварочной дуги показаны на рис. 4.6.

Рис. 4.6 Вольт-амперные характеристики различных источников сварочного тока и сварочной дуги

1.Круто падающая V-I характеристика:

Сварочный источник питания с круто падающей вольт-амперной характеристикой имеет высокое напряжение холостого хода и низкий ток короткого замыкания, как показано кривой 1 на рис. 4.6. Очевидно, что при изменении длины дуги от L – δ L до L + δ L изменение тока очень мало.

Этот тип вольт-амперной характеристики лучше всего подходит для SMAW, то есть ручной дуговой сварки металла покрытыми электродами, поскольку небольшое изменение длины дуги из-за собственного движения руки человека во время операции сварки не повлияет на скорость плавления электрода. .Кроме того, высокое напряжение холостого хода обеспечивает легкое зажигание и поддержание сварочной дуги.

2. Постепенно опускающийся V-I Характеристика:

Источник питания с постепенно падающей статической вольт-амперной характеристикой, как показано кривой 2 на рис. 4.6, может обеспечивать высокий ток короткого замыкания, необходимый для дуговой сварки под флюсом толстыми электродами, особенно для электродов диаметром более 3,5 мин. Источник питания с таким типом вольт-амперной характеристики требует некоторой техники зажигания дуги, аналогичной методам прикосновения и вытягивания, используемым для SMAW, или, в качестве альтернативы, может использоваться стальная вата для обеспечения кратковременного короткого замыкания между электродом и заготовкой.

Напряжение холостого хода может быть немного ниже, чем в случае крутого спада ВАХ. Эта особенность помогает обеспечить своего рода саморегулирование длины дуги во время сварки, поскольку при одинаковом изменении длины дуги изменение тока дуги значительно больше, чем в случае круто падающей вольт-амперной характеристики.

3. Плоский V-I Характеристика:

В источнике сварочного тока с постоянным напряжением при небольшом изменении длины дуги наблюдается большое изменение сварочного тока, что делает его довольно чувствительным и, следовательно, помогает поддерживать постоянную длину дуги с, как следствие, постоянным качеством сварных швов.Это обычно называется саморегулированием длины дуги и является важным требованием для успешной дуговой сварки металлическим газом.

Изменение длины дуги неизбежно, особенно при полуавтоматической сварке GMAW, поэтому статическая вольт-амперная характеристика постоянного напряжения очень полезна для процессов сварки тонкой проволокой. Однако плоская ВАХ, показанная кривой 3 на рис. 4.6, не является действительно плоской, а обычно падает при 1-3 вольтах на 100 ампер. Все источники сварочного тока с плоскими характеристиками V-I почти всегда относятся к типу трансформатор-выпрямитель, а полярность положительного электрода (ep) обычно используется.

4. Восходящая V-образная характеристика :

В источнике сварочного тока с нарастающей вольт-амперной характеристикой наблюдается увеличение тока с увеличением напряжения, как показано кривой 4 на рис. 4.6. Эта характеристика V-I основана на небольшом изменении характеристики постоянного напряжения. Преимущество нарастающей ВАХ по сравнению с плоской характеристикой состоит в том, что по мере увеличения скорости подачи проволоки требования к силе тока возрастают, а также автоматически увеличивается напряжение.Эта функция помогает поддерживать постоянную длину дуги даже при коротком замыкании. Возрастающая характеристика V-I адаптируется в основном к полностью автоматическим процессам.

Динамические вольт-амперные характеристики источника сварочного тока :

Динамическая характеристика источника сварочного тока – это соотношение между напряжением дуги и соответствующим сварочным током при их изменении от одного момента к другому, как показано на рис. 4.7.

Крайне важно знать характер динамических характеристик, чтобы определить скорость нарастания тока после короткого замыкания, которая влияет на скорость плавления электрода и сварочные брызги.

Динамические характеристики V-I получаются путем регистрации вольт-амперных переходных процессов во время фактической работы источника питания. По динамическим ВАХ можно определить режим переноса металла для заданного набора параметров сварки.

Задача 1:

Характеристика длины дуги-напряжения дуги постоянного тока определяется уравнением V = 24 + 41, где V – напряжение дуги, а I – длина дуги в мм. Статическая вольт-амперная характеристика источника питания аппроксимируется прямой линией при напряжении холостого хода 80 вольт и токе короткого замыкания 600 ампер. Определите оптимальную длину дуги для максимальной мощности.

Решение :

Задача 2:

Статическая вольт-амперная характеристика источника сварочного тока определяется параболическим уравнением

I 2 = – 500 (В – 80)

, а характеристика дуги представлена ​​уравнением прямой линии

I = 23 (В-18).

Определить,

(а) мощность стабильной дуги,

(b) Если длина дуги (I) и напряжение дуги (V) связаны выражением V = 20 + 4-5, я определяю оптимальную длину дуги для максимальной мощности.

(c) Если конвективные и радиационные потери для дуги в (b) составляют 15% мощности дуги, тогда определите, будет ли выгодно иметь длину дуги 4 мм, при этом эти потери составляют только 20% от потерь для дуги. дуга в (б). Кратко прокомментируйте эти два случая.

Раствор:

(a) Для дуги:

(b) Для дуги:

Из сравнения (v) и (vi) очевидно, что полезная мощность при длине дуги 4 мм будет выше, чем при длине дуги 7-4 мм. Следовательно, следует предпочесть I = 4 мм.

Задача 3:

Определите изменение сварочного тока при изменении длины дуги от 4 мм до 5 мм для источников питания со следующими статическими вольт-амперными характеристиками:

(i) I 2 = – 400 (В – 100)

(ii) I 2 = – 8000 (V – 80)

(iii) V = 48 – (I 1.05 /50)

(iv) V = 30 + (l 1,05 /50)

Предположим, что длина дуги (l) и напряжение дуги (V) связаны выражением V = 20 + 4l.

Решение :

Сварочный аппарат, Производители сварочного оборудования, Сварочный аппарат MIG

Характеристики сварочного аппарата V-I

Средства для разных сварочных установок с разными V-I характеристиками.Он показывает взаимосвязь между напряжением дуги и током дуги. Во время сварки длина дуги между концом электрода и деталью определяет сопротивление дуги и, следовательно, падение потенциала на дуге. Другим способом, длина дуги определяет напряжение дуги, больше длина дуги, чем напряжение дуги, и именно это напряжение позволяет определенному протеканию тока в соответствии с характеристиками сварочной установки (агрегата).

Существует три основных типа характеристик:

  1. Амортизационные характеристики (или постоянный ток)
  2. Плоское (или постоянное напряжение)
  3. Тип повышения напряжения

Все наши усилия будут сосредоточены только на характеристиках падающего типа, так как он в основном используется в установках для дуговой сварки, как переменного, так и постоянного тока.

1. Тип спада (постоянный ток): Спадающие характеристики V-I используются на сварочном аппарате с постоянным током. Когда зажигается дуга в аппарате для дуговой сварки (сварочный аппарат GMAW), электрод по существу находится в состоянии короткого замыкания, что немедленно потребовало бы резкого скачка тока, в противном случае аппарат спроектирован таким образом, чтобы это предотвратить. Машина постоянного тока разработана таким образом, чтобы свести к минимуму эти внезапные скачки напряжения.

Как известно, установки для ручной дуговой сварки металла имеют падающие V-I характеристики.Спад означает, что напряжение на клеммах сварочного аппарата уменьшается с увеличением сварочного тока. В аппарате для дуговой сварки (MMA Welding) длина дуги (зазор между заготовкой и электродом), длина от более короткой дуги B до более длинной дуги A, имеет заметное изменение (K) в напряжении, но соответствующее изменение (c) в ток очень маленький.

Характеристика падения

применима как для сварочного аппарата переменного, так и для постоянного тока, который используется для сварочного аппарата SMAW, аппарата для сварки TIG, аппарата для дуговой сварки под флюсом (аппарата для сварки под флюсом), аппарата плазменно-дуговой сварки и аппарата для ручной дуговой сварки металлов. , напряжение во время сварки составляет ориентировочно 30-40 В.

2 . Плоское или постоянное напряжение Характеристики типа используются с полуавтоматическими сварочными аппаратами MIG и другими автоматическими сварочными аппаратами.

3 . Характеристики типа повышающегося напряжения используются с полностью автоматическим сварочным аппаратом.

a) Напряжение холостого хода обычно находится в диапазоне от 70 до 80 вольт.

b) Система для регулировки сварочного тока обычно находится в секции переменного тока машины до того, как управление током выпрямителей основано на принципе переменной индуктивности или импеданса. Различные методы изменения импеданса для контроля тока следующие:

а) Подвижный шунт

б) Реактор с отводом

c) Подвижная катушка

г) Насыщаемый реактор

e) Подвижная активная зона реактора

В сварочной цепи протекание тока регулируется индуктором между электродом и трансформатором, ток может изменяться путем изменения индуктивности.Для регулирования тока во время сварки необходимы средства изменения этой индуктивности.

а) Реактор с втулкой

б) Реактор с подвижной активной зоной

в) Реактор насыщающегося типа

Сводка

Название изделия

Вольт-амперные характеристики сварочного аппарата

Автор

Рамакант Шарма

Описание

VI характеристики сварочного аппарата имеют большое влияние на процесс сварки, так как различные сварочные процессы используют сварочные установки с различная VI характеристика.

Урок 1 – Основы дуговой сварки

Урок 1 – Основы дуговой сварки © АВТОРСКИЕ ПРАВА 1999 УРОК ГРУППЫ ЭСАБ, ИНК. I, ЧАСТЬ B 1.9 ПОСТОЯННАЯ ТОК ИЛИ ПОСТОЯННОЕ НАПРЯЖЕНИЕ Сварка Источники питания бывают разных размеров и форм. Они могут поставлять либо AC или DC, или оба, и они могут иметь различные средства контроля их напряжения и силы тока выход. Причина в том, что источник питания должен обеспечение надлежащих характеристик дуги для используемого сварочного процесса.Источник питания который дает удовлетворительную дугу при сварке покрытыми электродами, будет меньше чем удовлетворительно для сварки с сплошные и порошковые проволоки. 1.9.1 Постоянный Текущие характеристики – Используются источники постоянного тока в основном с электродами с покрытием. Этот Тип источника питания имеет относительно небольшое изменение силы тока и мощность дуги для соответствующего относительно большого изменения напряжения дуги или дуги длина, отсюда и название постоянного тока.Характеристики этого источника питания лучше всего проиллюстрированы наблюдая за графиком, показывающим вольтампер изгиб. Как видно на рисунке 20, кривая машины постоянного тока падает вниз довольно резко и по этой причине данный тип машин часто называют «капельницей». 1.9.1.1 При сварке покрытыми электродами выходной ток или сила тока устанавливается оператором, пока напряжение рассчитано на блок. Оператор может несколько изменить напряжение дуги, увеличив или уменьшение длины дуги.Небольшое увеличение по длине дуги вызовет увеличение напряжения дуги и небольшое уменьшение силы тока. Небольшое снижение по длине дуги вызовет снижение напряжения дуги и небольшое увеличение силы тока. 1.9.2 Постоянный Характеристики напряжения – Источники питания постоянного напряжения, а также известны как постоянный потенциал, используются при сварке сплошными и порошковыми электродами, а также Из названия следует, что выходное напряжение остается относительно постоянным.На этом тип источника питания, напряжение устанавливается на машине, а сила тока определяется скоростью, которая проволока подается к сварочному пистолету. Увеличение скорости подачи проволоки увеличивает силу тока. При уменьшении скорости подачи проволоки уменьшается сила тока. 1.9.2.1 Длина дуги играет важную роль при сварке сплошными и порошковыми электродами просто как это происходит при сварке покрытым электродом. Однако при использовании константы напряжение питания источник и механизм подачи проволоки, который подает проволоку с постоянной скоростью, длина дуги вызвано ошибкой оператора, неровностями пластины, и движение лужи автоматически 34V – 290 А 32В – 300 А 30В – 308 А ВОЛЬТ / ПОСТОЯННАЯ АМПЕРНОЙ КРИВОЙ ТЕКУЩИЙ 100 200 300 ПОСТОЯННАЯ АМПЕР ТОК, НАПРЯЖЕНИЕ / АМПЕРНАЯ КРИВАЯ 20 80 70 60 50 40 30 20 10 В О L Т С

Источники сварочного тока Консультанты по сварке сварочных инверторов, источников сварочного тока, сварочных аппаратов и других сварочных и режущих систем

ИСТОЧНИКИ СВАРОЧНОГО ПИТАНИЯ
Напа.Рави
Arcraft Plasma Equipments (I) Pvt Ltd.

РЕФЕРАТ

Введение в источники сварочного тока, различные типы, применения, полезные определения, относительные преимущества, недостатки, что такое инвертор в целом, различные силовые полупроводники, используемые в инверторах, различные топологии конструкции, сварочные инверторы Arcraft и сравнение затрат.

1.ВВЕДЕНИЕ

  • W полировка – это процесс соединения двух металлов. Чтобы соединить два металла, требуется огромное количество тепла. Это тепло создается в виде электрической дуги. Для создания этой дуги требуется источник питания.
  • E Вер. С тех пор, как процесс сварки вошел в область машиностроения, в области источников сварочного тока постоянно появляются инновации.
  • T Выбор источника сварочного тока зависит от процесса сварки.
  • T Вот два типа источников сварочного тока.
    1. источники постоянного тока.
    2. источники питания постоянного напряжения.
  • Источник постоянного тока используется в процессах сварки MMAW и TIG.
  • MMAW – это ручная дуговая сварка металлом.
  • TIG – сварка вольфрамовым электродом в среде защитного газа.
  • Источник постоянного напряжения используется в процессах сварки MIG / MAG и SUBARC.
    1. MIG – сварка металла в среде защитного газа.
    2. MAG – сварка металла активным газом.
    3. SUBARC означает сварку под флюсом.
  • O В нашем обсуждении будут рассмотрены источники питания, которые используются в процессах сварки MMAW и TIG
  • Мы можем понять, что сварка может выполняться с использованием
    1. источник питания переменного тока.
    2.Источник питания постоянного тока.
  • Ниже приведены типы источников сварочного тока, которые можно дифференцировать на основе параметров, основанных на значениях.

2. РАЗЛИЧНЫЕ ВИДЫ ИСТОЧНИКОВ СВАРОЧНОГО ПИТАНИЯ.

2.A. Источники питания переменного тока

А1. Трансформатор сварочный фиксированный.

А2. Сварочный трансформатор переменного тока (шунтирующий магнитный).
а) Утюг
б) Подвижная катушка

2.B. Источники питания постоянного тока.

В1.Источник сварочного тока (сварочный выпрямитель) с преобразователем.

B2. Выпрямитель сварочный тиристорный.

B3.Источник сварочного тока на основе чоппера.

B4. Инверторный источник сварочного тока.

3. НЕКОТОРЫЕ ПОЛЕЗНЫЕ ОПРЕДЕЛЕНИЯ

1. Коэффициент мощности: это соотношение между активной мощностью и суммой активной и реактивной мощности. Следует отметить, что это векторная сумма, а не алгебраическая сумма.
2. Входная кВА: это произведение приложенного напряжения и тока, потребляемого от входного источника питания.
3. Однофазный вход, кВА: входное напряжение X входной ток
4.Вход, кВА, трехфазный:% 3 X Вход напряжения X Входной ток
5. Входная мощность:% 3 X Входное напряжение X Входной ток X коэффициент мощности
6. Выходная мощность: выходное напряжение X выходной ток
7. Выходная мощность: входная мощность X КПД
8. Напряжение холостого хода: это напряжение, доступное на выходных клеммах источника сварочного тока, когда сварка не выполняется.
9.Напряжение нагрузки: это напряжение, доступное на выходных клеммах источника сварочного тока во время сварки, выраженное в вольтах.
10. Сварочный ток: это ток на выходе источника сварочного тока, выраженный в амперах.
11. Входной ток без нагрузки: это ток, потребляемый от входного источника питания, когда сварка не выполняется.
12. Скорость осаждения: это вес осажденного материала в единицу времени, выраженный в кг / час или кг / мин при заданном наборе условий.Это также зависит от источника питания. Уменьшается из-за брызг и паров. В типичном тесте при использовании сварочных инверторов он увеличивается примерно на 15–20%.
13. Скорость плавления / выгорания: это скорость, с которой электрод определенного размера плавится заданным током, и выражается в см / мин. Он быстро увеличивается по мере увеличения тока, особенно для электродов малого диаметра.

4. ОБСУЖДЕНИЕ РАЗЛИЧНЫХ ТИПОВ

4.А1. Сварочный трансформатор фиксированного тока.



Преимущества:
1.Очень низкие начальные вложения
2. Простота использования и обслуживания.

Недостатки:
1. Очень высокий ток без нагрузки.
2. Нет контроля тока. Ток фиксированный, он также зависит от электрода и входного напряжения.
3. Очень неэффективно.
4. Очень низкий коэффициент мощности.
5. Из-за того, что 1 и 2 потребляют очень большой ток от электросети. (см. таблицу).
6. Из-за 3-х эксплуатационных расходов высоки.
7. Низкое качество сварного шва.
8. Грубая сила тока.
9. Сварка на малых токах невозможна.
10. Громоздкое оборудование, при этом занимает большую площадь.
11. Плохая переносимость.
12. Сварка TIG / аргоном невозможна.
13. Сварка цветных металлов невозможна.
14. Более низкая скорость осаждения и эффективность осаждения.

4.A2. Сварочный трансформатор переменного тока (шунтирующий магнитный).


Подвижный стержень
или
Движущийся Утюг

Преимущества:
1.Очень низкие начальные вложения
2. прост в использовании и обслуживании

Недостатки:
1. Очень высокий ток без нагрузки.
2. Очень неэффективно.
3. Очень низкий коэффициент мощности.
4. Из-за 1 и 2 потребляет очень большой ток от предприятия электроснабжения. (см. таблицу).
5. Из-за 3-х эксплуатационных расходов высоки.
6.Низкое качество сварного шва.
7. Лучшее управление током по сравнению с предыдущим типом, но неудовлетворительное.
8. Крупногабаритное оборудование, таким образом, занимает большую площадь.
9. Невозможна сварка TIG / аргоном.
10. Сварка на малых токах невозможна.
11. Низкая производительность и эффективность наплавки

4.B2. Тиристорный сварочный выпрямитель.



Преимущества:
1.Умеренные первоначальные вложения
2. прост в использовании.
3. Умеренные навыки, необходимые для обслуживания оборудования.

Недостатки:
1. высокий ток без нагрузки.
2. Эффективность лучше, чем в предыдущих случаях, но невысока.
3. Низкий коэффициент мощности.
4. Из-за 1 и 2 потребляет большой ток от предприятия электроснабжения.
5.Из-за 3-х эксплуатационная стоимость высока.
6. Низкая скорость управления.
7. Лучшее качество сварного шва по сравнению с предыдущими типами.
8. Лучшее управление током по сравнению с предыдущими типами.
9. Крупногабаритное оборудование, поэтому занимает большую площадь.
10. Плохая переносимость.
11. Средняя скорость наплавки и эффективность.

5. ЧТО ТАКОЕ ИНВЕРТОР?
Инвертор, используемый в сварочном приложении, работает, как показано ниже.

  • AC Напряжение сети используется как входное для сварочного оборудования.
  • Он имеет соответствующую фильтрацию и выпрямление RFI / EMI.
  • Это выпрямленное напряжение фильтруется, чтобы сделать его чистым постоянным током.
  • Это постоянное напряжение подается на переключающее устройство через высокочастотный силовой трансформатор.
  • Поскольку эта частота переключения очень высока, размер этого трансформатора становится очень маленьким по сравнению с его противоположными частями.
  • Выход трансформатора понижен соответствующим образом.
  • Это пониженное переменное напряжение снова выпрямляется с помощью диодов с быстрым восстановлением.
  • Этот выход используется для сварки.
  • Используются подходящие методы управления и обратной связи.

6. ХАРАКТЕРИСТИКИ СИЛОВЫХ ПОЛУПРОВОДНИКОВ, ИСПОЛЬЗУЕМЫХ В ИНВЕРТОРАХ

6а.Тиристеры / тиристоры (выпрямители с кремниевым управлением)

  • Доступны устройства очень большой емкости, которые очень прочные.
  • Очень низкая частота срабатывания, которая находится в пределах звукового диапазона.
  • Привод ворот прост и эффективен.
  • Значит, габариты и вес оборудования большие.
  • Поскольку рабочая частота хорошо попадает в звуковой диапазон, сварка очень шумная.
  • Поскольку коммутация принудительная, большое и большее количество компонентов.
  • Скорость регулирования тока низкая, поэтому очень низкий сварочный ток невозможен.
  • Большие начальные импульсные токи.
  • Сильное разбрызгивание и испарения. Низкое качество сварного шва.
  • Большой внутренний нагрев из-за большого циркулирующего тока.

6б.БЮТ (биполярные переходные транзисторы)

  • Все вышеперечисленные недостатки устранены, но требуется громоздкий и неэффективный базовый привод, что сложно и не подходит для больших мощностей.
  • Транзисторы большой мощности чрезвычайно дороги.
  • Поскольку технология совершенствуется с использованием IGBT и MOSFET, эти устройства не используются при сварке.

6с.МОП-транзисторы (полевые транзисторы на основе оксидов металлов и полупроводников)

  • В этом устройстве цоколь заменен на калитку.
    Привод ворот прост и чрезвычайно эффективен.
    Очень высокая скорость переключения, следовательно, размер трансформатора становится маленьким.
    Легко возможна работа до 100 кГц.
  • При больших рабочих циклах и более высоких мощностях необходимо выбрать размер сердечника трансформатора, чтобы он соответствовал медному проводнику соответствующего размера.
  • Устройства большой емкости не пользуются популярностью из-за их стоимости и доступности.
  • Следовательно, используется в источниках энергии малой и средней мощности.

6д. IGBT (биполярные транзисторы с изолированным затвором).

  • Это комбинация BJT и MOSFET.
  • Очень простой и эффективный привод ворот.
  • Устройства большой емкости доступны по разумной цене.
  • Сокращает время сборки и обслуживания.
    Возможна работа намного выше звукового диапазона и, следовательно, бесшумная работа.
  • Доступно только устройство для источников питания большой мощности. Потери мощности сопоставимы с полевыми МОП-транзисторами при малых мощностях и меньше при средних и более высоких мощностях.
  • И, следовательно, можно применять концепции проектирования строительных блоков.

7.ТОПОЛОГИИ ДИЗАЙНА.

а. Резонансные источники питания.
б. Источник питания ШИМ. (Широтно-импульсная модуляция)


7.a. Резонансные источники питания обладают недостатком в виде большого циркулирующего тока, большого размера из-за коммутирующих цепей. Следовательно, они менее эффективны. Они предлагают меньшую полосу пропускания и, следовательно, широкие вариации тока невозможны. Они производят меньше электромагнитных помех.Следовательно, они относятся к старому поколению для сварки. Они используются на очень высоких частотах, обычно от 400 кГц до 1000 кГц в области связи, где электромагнитные помехи вызывают серьезную озабоченность.

7.b. Источники питания PWM – это выбор дня, так как они предлагают большой и быстрый контроль. Проблема EMI снижается с помощью фильтров. Они обеспечивают широкий контроль тока, обычно от 3 до 400 А, что является очень широким диапазоном. Они предоставляют прекрасную возможность включить больше функций.Скорость коррекции исключительно важна для контроля скачков тока, которые необходимы при сварке TIG. Метод ШИМ обеспечивает плавное регулирование тока короткого замыкания и очень хорошую способность к повторному зажиганию дуги. Следовательно, это новейший и лучший выбор для сварочных работ.

7. КАК ОБОРУДОВАНИЕ ARCRAFT ЛУЧШЕ, ЧЕМ ДРУГИЕ?

1. Предназначен для более широких колебаний входного напряжения.

2. Предназначен для более широких колебаний температуры окружающей среды.

3. Защищено от пониженного и перенапряжения, однофазного тока и перегрева.

4. Предоставляется столько функций, сколько требуется клиенту.

5. Нет скачка тока, начинается от установленного значения тока.

6. Очень большое количество моделей на выбор.

7. Пытался и проверил качество.

8. Безупречный дизайн и, следовательно, простота обслуживания.

9. Обученный персонал для оказания услуг на пороге.

10. Очень малое время простоя, так как все запчасти легко доступны.

11. Благодаря высокой рабочей частоте инвертора, очень низкие пульсации, благодаря чему сварочный ток является плавным и стабильным. Обеспечивается отличное качество сварных швов.

12. Равномерные сварные швы, малое разбрызгивание и меньшее количество дыма.

13. Очень высокая производительность и эффективность наплавки.

14. Последняя технология ШИМ с использованием IGBT.

СРАВНЕНИЕ

  • Возьмем, используется электрод для дуговой сварки 4мм
  • Требуется сварочный ток 160 А при напряжении около 24 В
  • Выходная мощность = 160 А X 24 В = 3840 Вт или 3.840 кВт
  • Входное напряжение составляет 230 В переменного тока в случае однофазного источника питания и 415 В переменного тока в случае трехфазного входного источника питания. При сравнении в реальных измерениях входное и выходное напряжение должны быть точно измерены.
Параметр Сварочный трансформатор Сварочный выпрямитель Сварочный инвертор
Ток холостого хода от 4 до 5 А от 4 до 5 А 0.От 3 до 0,5 А
Коэффициент мощности без нагрузки 0,2 0,2 0,99
Мощность без нагрузки от 400 до 500 Вт от 400 до 500 Вт от 50 до 100 Вт
Выходная мощность 3.84кВт 3,84 кВт 3,84 кВт
КПД 0,6 0.6 0,9
Входная мощность 6.4 кВт 6.4 кВт 4.27 кВт
Коэффициент входной мощности от 0,5 до 0,6 0,6 0,95
Входная кВА 12.От 8 до 10,66 при 230 В, 1 фаза 10,66 при 415 В, 3 ф. 4,5 при 415 В, 3 ф.
Входной ток от 55 А до 46 А 14.8 А 6,3 А
Энергопотребление в течение 8 часов в день 51,2 кВтч 51,2 кВтч 34.16 кВт / ч
Энергопотребление за 250 дней в году 12,800 кВтч 12,800 кВт / ч 8540 кВт / ч
Стоимость электроэнергии – 5 рупий за кВтч 64000 рупий 64000 рупий 42,700 рупий
Превышение стоимости по сравнению с инвертором 21300 рупий 21300 рупий
Превышение входного тока от источника питания 48 А 8.5 А
Экономия на эксплуатационных расходах, как указано выше 21,300 рупий
Экономия входного тока 8.От 5А до 48А
Экономия установленной мощности 6.От 1 кВА до
11,0 кВА


Следовательно, есть экономия 21 300 рупий в год, если машина используется в течение одного года в течение 250 дней по 8 часов в день, то есть 2000 часов в год. Мы можем рассчитать то же самое для данного количества используемых машин и часов, что существенно снизит расходы.

Также мы можем рассчитать экономию установленной мощности, что также позволит сэкономить на счетах за электроэнергию.

Этот расчет сделан для электрода 4 мм, и для электродов большего размера экономия еще больше возрастет.

% PDF-1.5 % 177 0 объект> эндобдж xref 177 79 0000000016 00000 н. 0000002261 00000 н. 0000001876 00000 н. 0000002343 00000 п. 0000002471 00000 н. 0000002661 00000 н. 0000003296 00000 н. 0000003373 00000 н. 0000003638 00000 н. 0000003919 00000 н. 0000003965 00000 н. 0000004011 00000 н. 0000004058 00000 н. 0000004105 00000 н. 0000004152 00000 п. 0000004199 00000 н. 0000004246 00000 н. 0000004293 00000 н. 0000004340 00000 н. 0000004915 00000 н. 0000005751 00000 п. 0000005883 00000 н. 0000005919 00000 н. 0000005964 00000 н. 0000006009 00000 н. 0000006055 00000 н. 0000006102 00000 п. 0000006149 00000 н. 0000006196 00000 н. 0000006243 00000 н. 0000007001 00000 н. 0000007554 00000 н. 0000007825 00000 н. 0000008719 00000 п. 0000009820 00000 н. 0000011036 00000 п. 0000012122 00000 п. 0000013259 00000 п. 0000014324 00000 п. 0000015281 00000 п. 0000050325 00000 п. 0000102330 00000 н. 0000139048 00000 н. 0000141718 00000 н. 0000141771 00000 н. 0000141846 00000 н. 0000142177 00000 н. 0000142697 00000 н. 0000143493 00000 н. 0000144247 00000 н. 0000145079 00000 п. 0000145674 00000 н. 0000146170 00000 п. 0000146630 00000 н. 0000147330 00000 н. 0000147937 00000 п. 0000148721 00000 н. 0000149499 00000 н. 0000149662 00000 н. 0000149749 00000 н. 0000163070 00000 н. 0000163315 00000 н. 0000163498 00000 н. 0000163785 00000 н. 0000163968 00000 н. 0000164181 00000 н. 0000164579 00000 н. 0000165313 00000 н. 0000166862 00000 н. 0000168344 00000 н. 0000170438 00000 п. 0000171436 00000 н. 0000172010 00000 н. 0000172551 00000 н. 0000173369 00000 н. 0000174088 00000 н. 0000175352 00000 н. 0000176355 00000 н. 0000176609 00000 н. трейлер ] >> startxref 0 %% EOF 179 0 obj> поток xb“a“_zAX, x ޴60, xru ^ ݘ € 0 (+ / & q8HOAТ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *