Химия способы защиты металлов от коррозии: Основные способы защиты металлоизделий от коррозии

alexxlab | 07.03.2023 | 0 | Разное

Основные способы защиты металлоизделий от коррозии

05 Мар

Dasha2023-02-07T13:27:58+03:00

Комментарии к записи Основные способы защиты металлоизделий от коррозии отключены

Коррозия представляет собой процесс разрушения металлопроката из-за воздействия химических или электрохимических воздействий. Простыми словами, это ржавчина, которая возникает в процессе эксплуатации изделий по причине частого контакта металла с влагой, почвой или другой агрессивной средой. Согласно последним подсчетам развитые страны несут около 5 % ущерба от национального дохода в связи с возникновением коррозии, поэтому борьбе с ней уделяется весомое значение.

Защита металлов от возникновения ржавчины базируется на ряде принципов:

  • Изолирование поверхности от агрессивных факторов;
  • Улучшение химсопротивления материала;
  • Снижение агрессивности среды;
  • Электрохимическая защита.

Некоторые методы используются еще на этапе производства, другие же — в процессе эксплуатации.


Какие из них наиболее эффективны?

Проявляться коррозия на металлических изделиях, в том числе и на двутавровой балке, может по-разному — поверхностное или глубинное проникновение, ржавый слой, окисление компонентов. Метод борьбы с этой проблемой подбирается в зависимости от особенностей условий эксплуатации конструкции. Очень важно определить природу процесса. Это может быть контакт с кислородом, химически активными веществами, влагой, почвой.

Самыми надежными и эффективными защитными мерами с проявлениями ржавчины считаются следующие методы:

  • Защитные покрытия;
  • Легирование;
  • Металлизация;
  • Изменение состава материала.

Рассмотрим каждый из них подробнее.

Использование защитных покрытий

Поверхностная защита металлических балок может выполняться как нанесением специальных пленок, так и окрашиванием конструкций. В быту чаще всего для этих целей используется краска, содержащая в своем составе алюминий. Задача такого способа – перекрыть поступление кислорода к поверхности стали, тем самым защитить ее от разрушений. Вне зависимости от состава покрытий к ним предъявляется ряд требований: отличные адгезионные качества, возможность сохранять свои характеристики в агрессивной среде.

Главными достоинствами защитных покрытий является простота реализации и доступная цена. Но вот только долговечность их, к сожалению, невелика.

Химические покрытия металла

Основываются на покрытии металлических конструкций специальной пленкой, устойчивой к воздействию кислорода, влаги, перепаду температур. Речь идет о оксидировании, сульфидировании и т.п.

Процедура выполняться может в горячем и холодном состоянии и требует наличия специального оборудования. Есть у этого метода один недостаток — защитная пленка изменяет цвет изделия, что в некоторых ситуациях не совсем уместно.

Легирование

Выполняется на стадии производства изделий. При изготовлении детали, конструкции в металл вводятся специальные добавки. Чаще всего ими является марганец, хром, которые придают стали устойчивости к агрессивной среде.

Например, для возведения высоток используется исключительно легированная сталь для максимальной надежности и защиты от экстремальных климатических условий.

Металлизация

Заключается в покрытии поверхностного слоя деталей присадком расплавленного металла. Процедура выполняется с помощью пульверизатора.

Изменение состава атмосферы

Это может быть вакуумирование или среда инертных газов. Достаточно эффективные способы, но довольно дорогостоящие, так как требуют использования дополнительного оборудования.

Вывод: производители много сил и ресурсов тратят на то, чтобы изделия были устойчивы к коррозии и прослужили долгую службу. В связи с этим можно быть уверенным, что металлоизделия будут надежно защищены от ржавчины, обеспечена максимальная устойчивость и надежность конструкции, но только при условии приобретения ее у надежных поставщиков.


Типы поражения ржавчиной и способы защиты металлов от коррозии

Коррозия — процесс физико-химического разрушения, которому подвержены черные и цветные металлы, их сплавы. Причинами окисления выступает повышенная влажность, воздействие воздуха, кислой среды, газов, электролитов. Металлургическая и строительная промышленности испытывают убытки от разрушения несущих конструкций — несвоевременная антикоррозийная защита металла негативно сказывается на прочности, электропроводности, безопасности материалов. Читайте в статье, какие существуют способы защиты металлов в зависимости от видов коррозии.

Виды коррозии

Срок службы металлических конструкций учитывают при проектировании производственных мощностей, мостов, зданий. В некоторых химических производствах отдельные аппараты и их детали работают только несколько месяцев или недель.

В зависимости от причины разрушения выделяют 3 вида коррозии: атмосферная, почвенная, жидкостная. Рассмотрим их особенности.

  1. Атмосферная — проявляется под воздействием активных химических веществ в воздухе.
  2. Почвенная — происходит при взаимодействии металла с агрессивным составом грунтовых вод, почвы.
  3. Жидкостная — возникает при контакте с водной средой с высоким содержанием солей, которые ускоряют окисление.

Характерные типы поражения ржавчиной

Если коррозия локализуется на отдельных участках, но при этом остальные поверхности металла невредимы, такой вид разрушения называют

местной коррозией. Поврежденную область трудно обнаружить на начальном этапе поражения — визуально незаметные точки «проседают» вглубь структуры металла, обнаруживаются только уже после разрушения конструкции. Пример — образование повреждений точками на цистернах, химических установках, трубопроводах. При незначительной весовой потере аппарат или сооружение становятся полностью непригодными для эксплуатации.

Местная коррозия включает 5 подвидов:

  • точечная или питтинговая — разрушение локализуется в отдельных точках, которые не соединены между собой;
  • язвенная — разъедание локализовано на ограниченных участках в форме прожилок;
  • подповерхностная — поражение выходит на поверхность металла едва заметными пятнами, которые затем образуют расслоения;
  • растрескивающаяся
     — трещины распространяются по границам поражения, «разрезают» цельную структуру металла вглубь;
  • межкристаллитная — разрушение металла начинается по границам в виде кристаллитов, при такой коррозии металл может рассыпаться в порошок.

Сплошная коррозия — равномерное разрушение металлической поверхности, которое протекает медленнее, чем местный тип коррозии. Деление на виды условно, так как коррозия чаще всего комбинированная, включает несколько типов поражений поверхности.

Способы защиты от коррозии металла и сплавов

Инженеры и технологи разработали эффективные способы борьбы с коррозией, которые делят на два типа:

  • бытовые — «покрывают» хозяйственные нужды, справляются с небольшими пораженными участками;
  • промышленные — доступные методы обработки поверхностей, которые применяют на производствах, в строительстве, на пораженных габаритных участках.

Основные промышленные способы защиты металлов от коррозии включают:

  • термообработку — сводится к повышению жаропрочности поверхностей, сглаживает структуру, под действием чего сплав теряет напряжение;
  • обработку лакокрасочными материалами — образует сплошную пленку, которая препятствует агрессивному воздействию среды;
  • пассивацию — предусматривает использование легирующих добавок: молибден, никель, хром замедляют анодный процесс;
  • электрообработку — подходит для стальных деталей, электрохимические методы защиты металлов предотвращают образование коррозии на котлах, элементах водных видов транспорта, буровых платформах;
  • обработку ингибиторами — вещества замедляют химические процессы, распространение разъедания.

Защита металлов от коррозии лакокрасочными покрытиями — эффективный и распространенный метод, который позволяет окрасить конструкцию в желаемый цвет, надежно защитить поверхность. Конструкцию окрашивают эмалями, которые полностью перекрывают доступ воздуха к металлу. Происходит нейтрализация или обескисление коррозионных сред, ингибиторы в составе создают на поверхности адсорбционную пленку, которая тормозит электродные процессы, изменяет электрохимические параметры металла.

Простота и невысокая стоимость технологии — основные преимущество и причины распространенности метода. К минусам относятся недолговечность покрытия, необходимость периодически обновлять защитный слой.

На качество покрытия влияют тщательность подготовки и очистки металла, соблюдение технологии и толщины нанесения, которые заявлены производителем ЛКМ.

Краска для защиты металла: особенности и этапы нанесения

Химтраст производит краски, которые обеспечивают надежную защиту поверхности металла от коррозии.

«Эмаль ПФ-115» и «Грунт ГФ-021» рекомендуем использовать в комплексе для эффективного антикоррозионного действия, снижения расхода, прочного покрытия. Рассмотрим пошагово технологию нанесения.

  1. Поверхность тщательно очищаем от загрязнений, обезжириваем при необходимости.
  2. «Грунт ГФ-021» перемешиваем в течение 5 минут на скорости 300–450 об/мин миксером со спиралевидной насадкой, уделяем внимание области на дне, у стенок тары. Для обеспечения рабочей вязкости разбавляем состав уайт-спиритом, сольвентом или их смесью в пропорции 1:1.
  3. Наносим «Грунт ГФ-021» в два мокрых слоя по 25–35 мкм кистью, валиком, шпателем, аппаратом безвоздушного распыления. Время межслойной сушки — 2 часа при температуре 25 °С.
  4. Чтобы «Эмаль ПФ-115» выполнила функцию защиты металла от коррозии, обеспечиваем материалу рабочую температуру — 15–25 °С. Перемешиваем состав миксером со спиралевидной насадкой на скорости 300–450 об/мин. Разбавляем при необходимости до обеспечения рабочей вязкости уайт-спиритом, сольвентом или их смесью в соотношении 1:1 по массе.
  5. Наносим «Эмаль ПФ-115» в два мокрых слоя по 25–35 мкм кистью, валиком, шпателем, аппаратом безвоздушного распыления. Время межслойной сушки — 2 часа при температуре 25 °С.

Важно! Не используйте материал, если обнаружили, что упаковка негерметична, повреждена или истек срок годности состава.

Грунт-эмаль «Химтраст Антикор 3 в 1» — модифицированный состав, который не требует нанесения дополнительного грунтовочного слоя. Состав колеруется по стандартному каталогу RAL.

«Антикор 3 в 1» наносить можно безвоздушным и пневматическим распылением, кистью или валиком на заранее очищенную, обезжиренную поверхность металла в 2–3 слоя. Допустимо нанесение грунт-эмали на плотно сцепленные остатки ржавчины — до 70 мкм, остатки старого покрытия, плотно сцепленные с металлом.

Интервал межслойной выдержки — 1,5 часа при температуре (20±2) °С. Толщина готового покрытия после нанесения не должна превышать 120 мкм. При необходимости состав можно разбавить ксилолом или толуолом, но не более 10 % от массы грунт-эмали. Финишное покрытие после полимеризации — однородное полуглянцевое. Допустимый температурный диапазон эксплуатации от −40 °С до +140 °С.

Мы провели испытания методом А по ГОСТ 9.403–80 «Методы испытаний на стойкость к статическому воздействию жидкостей» для состава «Антикор 3 в 1», чтобы оценить стойкость к воздействию воды, раствора соли, масел. Время, в течение которого образцы подвергались испытаниям: 24 часа. Для погружения образцов подготовили 4 вида растворов:

  • вода дистиллированная по ГОСТ 6709–72;
  • натрий хлористый по ГОСТ 4233–77, 3%-й раствор;
  • минеральное масло по ГОСТ 20799–88;
  • трансформаторное масло.

Смотрите на видео результаты испытания и правильную технологию нанесения «Антикор 3 в 1».

При выборе материалов для защиты поверхности металла от коррозии ориентируйтесь на качественные характеристики состава:

  • коэффициенты твердости, эластичности и износостойкости;
  • показатели расхода, кг/м2;
  • балл адгезии, который определяет силу сцепления с поверхностью.

Современные лакокрасочные материалы — превентивная мера по защите металлов и сплавов от коррозии. Эффективность окрашивания зависит от качества материалов и подготовки поверхности — на субстрате металла должны отсутствовать дефекты, загрязнения в области сварочных швов, завернувшиеся корки, окалина.

Материалы поставляем в металлических ведрах 20 кг. Продукция всегда в наличии к заказу. Доставляем материалы во все регионы России и СНГ. Действует скидочная программа.

17.5: Коррозия и ее предотвращение

  1. Последнее обновление
  2. Сохранить как PDF
  • Идентификатор страницы
    44459
  •  Цели обучения
    • Понять процесс коррозии.

    Коррозия — это гальванический процесс, при котором металлы разрушаются в результате окисления — обычно, но не всегда, до их оксидов. Например, на воздухе железо ржавеет, серебро тускнеет, а медь и латунь приобретают голубовато-зеленую поверхность, называемую патиной. Из различных металлов, подверженных коррозии, железо является наиболее важным с коммерческой точки зрения. По оценкам, только в Соединенных Штатах ежегодно тратится 100 миллиардов долларов на замену железосодержащих объектов, разрушенных коррозией. Следовательно, разработка методов защиты металлических поверхностей от коррозии представляет собой весьма активное направление промышленных исследований. В этом разделе мы опишем некоторые химические и электрохимические процессы, ответственные за коррозию. Мы также изучаем химическую основу некоторых распространенных методов предотвращения коррозии и обработки корродированных металлов.

    Коррозия – это окислительно-восстановительный процесс.

    В условиях окружающей среды окисление большинства металлов термодинамически самопроизвольно, за исключением золота и платины. Поэтому на самом деле несколько удивительно, что какие-либо металлы вообще полезны во влажной, богатой кислородом атмосфере Земли. Однако некоторые металлы устойчивы к коррозии по кинетическим причинам. Например, алюминий в банках для безалкогольных напитков и в самолетах защищен тонким слоем оксида металла, который образуется на поверхности металла и действует как непроницаемый барьер, предотвращающий дальнейшее разрушение. Алюминиевые банки также имеют тонкий пластиковый слой для предотвращения реакции оксида с кислотой в безалкогольном напитке. Хром, магний и никель также образуют защитные оксидные пленки. Нержавеющие стали удивительно устойчивы к коррозии, поскольку они обычно содержат значительную долю хрома, никеля или того и другого.

    В отличие от этих металлов, железо при коррозии образует красно-коричневый гидратированный оксид металла (\(\ce{Fe2O3 \cdot xh3O}\)), известный как ржавчина, который не образует плотной защитной пленки ( Рисунок \(\PageIndex{1}\)). Вместо этого ржавчина постоянно отслаивается, обнажая свежую металлическую поверхность, уязвимую для реакции с кислородом и водой. Поскольку для образования ржавчины необходимы и кислород, и вода, железный гвоздь, погруженный в деоксигенированную воду, не заржавеет даже в течение нескольких недель. Точно так же гвоздь, погруженный в органический растворитель, такой как керосин или минеральное масло, не заржавеет из-за отсутствия воды, даже если растворитель насыщен кислородом.

    Рисунок \(\PageIndex{1}\): Ржавчина, результат коррозии металлического железа. Железо окисляется до Fe 2 + (водн.) на анодном участке на поверхности железа, который часто является примесью или дефектом решетки. Кислород восстанавливается до воды в другом месте на поверхности железа, которое действует как катод. Электроны переходят от анода к катоду через электропроводящий металл. Вода является растворителем для Fe 2 + , который производится изначально и действует как солевой мостик. Ржавчина (Fe 9o_{cell}\) для процесса коррозии (уравнение \(\ref{Eq3}\)) указывают на то, что существует сильная движущая сила для окисления железа с помощью O 2 в стандартных условиях (1 M H + ) . В нейтральных условиях движущая сила несколько меньше, но все же заметна (Е = 1,25 В при рН 7,0). Обычно реакция атмосферного CO 2 с водой с образованием H + и HCO 3 обеспечивает достаточно низкий pH для увеличения скорости реакции, как и кислотные дожди. Производители автомобилей тратят много времени и денег на разработку красок, которые плотно прилегают к металлической поверхности автомобиля, чтобы предотвратить контакт насыщенной кислородом воды, кислоты и соли с металлом под ним. К сожалению, даже самая лучшая краска подвержена царапинам или вмятинам, а электрохимическая природа процесса коррозии означает, что две царапины, относительно удаленные друг от друга, могут работать вместе как анод и катод, что приводит к внезапному механическому повреждению (рис. \(\PageIndex{ 2}\)).

    Рисунок \(\PageIndex{2}\): Небольшие царапины на защитном лакокрасочном покрытии могут привести к быстрой коррозии железа. Отверстия в защитном покрытии позволяют восстанавливать кислород на поверхности с большим воздействием воздуха (катод), в то время как металлическое железо окисляется до Fe 2 + (водн.) на менее открытом участке (анод). Ржавчина образуется, когда Fe 2 + (водн.) диффундирует в место, где он может реагировать с атмосферным кислородом, часто удаленным от анода. Электрохимическое взаимодействие между катодными и анодными участками может привести к образованию большой ямки под окрашенной поверхностью, что в конечном итоге приведет к внезапному отказу с небольшим видимым предупреждением о возникновении коррозии.

    Профилактическая защита

    Одним из наиболее распространенных методов предотвращения коррозии железа является нанесение защитного покрытия из другого металла, который труднее окисляется. Например, смесители и некоторые внешние детали автомобилей часто покрывают тонким слоем хрома с помощью электролитического процесса. Однако с увеличением использования полимерных материалов в автомобилях использование хромированной стали в последние годы сократилось. Точно так же «жестяные банки», в которых хранятся супы и другие продукты, на самом деле состоят из стального контейнера, покрытого тонким слоем олова. Хотя ни хром, ни металлы олова по своей природе не устойчивы к коррозии, они оба образуют защитные оксидные покрытия, которые препятствуют доступу кислорода и воды к основной стали (железному сплаву).

    Рисунок \(\PageIndex{3}\): Гальваническая коррозия. Если железо находится в контакте с более устойчивым к коррозии металлом, таким как олово, медь или свинец, другой металл может действовать как большой катод, который значительно увеличивает скорость восстановления кислорода. Поскольку восстановление кислорода связано с окислением железа, это может привести к резкому увеличению скорости окисления железа на аноде. Гальваническая коррозия, вероятно, возникает всякий раз, когда два разнородных металла соединяются напрямую, позволяя электронам передаваться от одного к другому. 9{2+}}\) (E° = -0,14 В) и Fe 2 + (E° = -0,45 В) в таблице P2 показывают, что \(\ce{Fe}\) легче окисляется, чем \(\ce{Sn}\). В результате более устойчивый к коррозии металл (в данном случае олово) ускоряет коррозию железа, действуя как катод и обеспечивая большую площадь поверхности для восстановления кислорода (рис. \(\PageIndex{3}\)) . Этот процесс наблюдается в некоторых старых домах, где медные и железные трубы были напрямую соединены друг с другом. Менее легко окисляемая медь действует как катод, вызывая быстрое растворение железа вблизи соединения, что иногда приводит к катастрофическому отказу водопровода. 9{2+}_{(водн.)} + 2H_2O_{(l)} }_{\text{общий}}\label{Eq7} \]

    Более активный металл вступает в реакцию с кислородом и в конечном итоге растворяется, «жертвуя» себя, чтобы защитить железный предмет. Катодная защита – это принцип, лежащий в основе оцинкованной стали, которая представляет собой сталь, защищенную тонким слоем цинка. Оцинкованная сталь используется в различных предметах, от гвоздей до мусорных баков.

    Кристаллическая поверхность горячеоцинкованной стальной поверхности. Это служило как профилактической защите (защита нижележащей стали от кислорода воздуха), так и катодной защите (после воздействия цинк окисляется раньше, чем нижележащая сталь).

    В аналогичной стратегии расходуемые электроды с использованием магния, например, используются для защиты подземных резервуаров или труб (рис. \(\PageIndex{4}\)). Замена жертвенных электродов более рентабельна, чем замена железных предметов, которые они защищают.

    Рисунок \(\PageIndex{4}\): Использование жертвенного электрода для защиты от коррозии. Присоединение магниевого стержня к подземному стальному трубопроводу защищает трубопровод от коррозии. Поскольку магний (E ° = -2,37 В) окисляется гораздо легче, чем железо (E ° = -0,45 В), стержень Mg действует как анод в гальваническом элементе. Таким образом, трубопровод вынужден действовать как катод, на котором восстанавливается кислород. Почва между анодом и катодом действует как солевой мост, который замыкает электрическую цепь и поддерживает электрическую нейтральность. Поскольку Mg(s) окисляется до Mg 2 + на аноде, анионы в почве, такие как нитраты, диффундируют к аноду, чтобы нейтрализовать положительный заряд. Одновременно катионы в почве, такие как H + или NH 4 + , диффундируют к катоду, где они восполняют протоны, потребляемые при восстановлении кислорода. Аналогичная стратегия использует многие мили несколько менее реактивной цинковой проволоки для защиты нефтепровода на Аляске.
    Пример \(\PageIndex{1}\)

    Предположим, старый деревянный парусник, скрепленный железными винтами, имеет бронзовый гребной винт (напомним, что бронза — это сплав меди, содержащий около 7–10 % олова). 9\circ_{\textrm{overall}} =\textrm{1,68 В}
    \end{align*} \nonumber \]

    Со временем железные винты растворятся, и лодка развалится.

    1. B Возможные способы предотвращения коррозии, в порядке снижения затрат и неудобств, следующие: разборка лодки и ее сборка с помощью бронзовых винтов; снятие лодки с воды и хранение ее в сухом месте; или прикрепление недорогого куска металлического цинка к гребному валу в качестве жертвенного электрода и замена его один или два раза в год. Поскольку цинк является более активным металлом, чем железо, он будет действовать как расходуемый анод в электрохимической ячейке и растворяться (уравнение \(\ref{Eq7}\)).
    Цинковый расходуемый анод (округлый предмет, привинченный к нижней части корпуса), используемый для предотвращения коррозии винта в лодке посредством катодной защиты. Изображение Реми Каупп и используется с разрешения.
    Упражнение \(\PageIndex{1}\)

    Предположим, что водопроводные трубы, ведущие в ваш дом, сделаны из свинца, а остальная сантехника в вашем доме – из железа. Чтобы исключить возможность отравления свинцом, вы вызываете сантехника для замены свинцовых труб. Он назовет вам очень низкую цену, если он сможет использовать свой существующий запас медных труб для выполнения этой работы.

    1. Вы принимаете его предложение?
    2. Что еще нужно сделать сантехнику в вашем доме?
    Ответить на

    Нет, если только вы не планируете продать дом в ближайшее время, потому что соединения труб \(\ce{Cu/Fe}\) приведут к быстрой коррозии.

    Ответ б

    Любые существующие соединения \(\ce{Pb/Fe}\) должны быть тщательно проверены на наличие коррозии железных труб из-за соединения \(\ce{Pb–Fe}\); менее активный \(\ce{Pb}\) будет служить катодом для восстановления \(\ce{O2}\), способствуя окислению более активного \(\ce{Fe}\) поблизости.

    Резюме

    Коррозия — это гальванический процесс, который можно предотвратить с помощью катодной защиты. Ухудшение металлов в результате окисления представляет собой гальванический процесс, называемый коррозией. Защитные покрытия состоят из второго металла, который труднее окисляется, чем защищаемый металл. В качестве альтернативы на металлическую поверхность можно нанести более легко окисляющийся металл, что обеспечит катодную защиту поверхности. Тонкий слой цинка защищает оцинкованную сталь. Жертвенные электроды также могут быть прикреплены к объекту для его защиты.


    1. Наверх
      • Была ли эта статья полезной?
      1. Тип изделия
        Раздел или Страница
        Лицензия
        CC BY-NC-SA
        Версия лицензии
        4,0
        Показать страницу TOC
        № на стр.
      2. Теги
          На этой странице нет тегов.

      Как защитить металлы — AMPP

      Коррозия — это естественный износ, возникающий в результате химической или электрохимической реакции металла или металлического сплава с окружающей средой. Подобно другим стихийным бедствиям — землетрясениям, торнадо, наводнениям — коррозия может нанести опасный и дорогостоящий ущерб всему, от транспортных средств, бытовой техники и систем водоснабжения/очистки до трубопроводов, мостов и общественных зданий. Коррозия отличается от других стихийных бедствий тем, что существуют проверенные временем методы, а также новые технологии, которые помогают контролировать и предотвращать коррозию, тем самым защищая людей, имущество и планету от ее негативного воздействия.

      Перед определением конкретной проблемы и/или решения по предотвращению и борьбе с коррозией необходимо учитывать множество факторов, включая, помимо прочего:

      • условия окружающей среды (удельное сопротивление почвы, влажность и воздействие соленой воды на различные типы материалов )
      • тип продукта, подлежащего обработке, обработке или транспортировке
      • требуемый срок службы конструкции или компонента
      • близость к явлениям, вызывающим коррозию

      Несмотря на это, казалось бы, сложное взаимодействие факторов и почти неизбежную ржавчину металлов, коррозия является управляемым процессом, когда такие широко используемые и эффективные методы выбора и проектирования материалов, защитных покрытий, измерений и контроля, катодной защиты, химических ингибиторов и управления коррозией которые считаются.

      Выбор материалов и проектирование

      Тщательное и реалистичное рассмотрение вопросов предотвращения и смягчения коррозии на этапе выбора материалов в процессе проектирования имеет решающее значение для предотвращения многих типов отказов.

      Факторы, которые могут повлиять на выбор материалов, включают коррозионную стойкость в окружающей среде, наличие проектных данных и данных испытаний, механические свойства, стоимость, доступность, ремонтопригодность, совместимость с другими компонентами системы, ожидаемый срок службы, надежность и внешний вид.

      Неотъемлемой частью выбора материалов является соответствующий проект системы, учитывающий параметры процесса и конструкции; геометрия для дренажа; предотвращение или электрическое разделение разнородных металлов; предотвращение или герметизация щелей; допуск на коррозию; срок эксплуатации; требования к техническому обслуживанию и осмотру.

      В то время как использование металлов и бетона является обычным выбором при проектировании, материаловедение предлагает инженерам-коррозионистам варианты борьбы с коррозией с использованием современных материалов. Инженерные свойства, созданные с помощью специализированных технологий обработки и синтеза, придают усовершенствованным материалам превосходные характеристики по сравнению с обычными материалами и включают керамику, металлы с высокой добавленной стоимостью, электронные материалы, композиты, полимеры и биоматериалы.

      Ресурсы по выбору материалов и проектированию AMPP


      Защитные покрытия

      Исследование коррозии, проведенное NACE International, теперь AMPP, показывает, что 50 % всех затрат на коррозию можно предотвратить, причем примерно 85 % из них относится к защитным покрытиям.

      Защитные покрытия, включая краски, представляют собой тонкие слои твердого материала, нанесенные на подложку, при этом покрытие действует как барьер для замедления или предотвращения коррозии, износа или воздействия воды. Каждая жидкая, разжижаемая или мастичная композиция после нанесения на поверхность превращается в твердую защитную, декоративную или функциональную клейкую пленку. Покрытия можно напылять, приваривать, гальванизировать или наносить с помощью ручных инструментов в зависимости от поверхности покрытия, окружающей среды и целей нанесения.

      Материалами, обычно используемыми в органических покрытиях, являются эпоксидные смолы, полиуретаны или другие полимеры, в то время как материалы, обычно используемые в неорганических металлических покрытиях, включают цинк, алюминий и хром.

      После подготовки поверхности покрытия наносятся в 3 этапа: сначала грунтовка, затем полное покрытие, а затем герметик.

      Учебный центр защитных покрытий | Ресурсы защитных покрытий AMPP


      Измерение и проверка

      Инспекции покрытий проверяют промышленное оборудование и объекты, а также коммерческую недвижимость и проекты, чтобы убедиться, что защитные покрытия были нанесены правильно, чтобы свести к минимуму риск коррозии.

      Контроль покрытия помогает укрепить всю отрасль защитных покрытий и позволяет сэкономить миллиарды долларов на затратах на коррозию.

      Ресурсы для измерения и проверки AMPP


      Катодная защита (CP)

      Катодная защита — это технология, используемая для контроля коррозии поверхности металла путем превращения ее в катод электрохимической ячейки. CP может быть достигнут путем подачи тока в структуру от внешнего электрода и поляризации металлической поверхности в электроотрицательном направлении. Это обеспечивает защиту поверхности и продлевает срок службы актива.

      Системы CP защищают широкий спектр металлических конструкций, в том числе наземные и морские трубопроводы, резервуары для хранения, сваи причалов, корпуса кораблей и лодок, морские нефтяные платформы и компоненты металлической арматуры в бетонных конструкциях. Другой метод CP для смягчения коррозии включает нанесение цинкового покрытия на компоненты из оцинкованной стали.

      Средства катодной защиты AMPP


      Химические ингибиторы

      Ингибитор коррозии снижает скорость коррозии металла, подвергающегося воздействию окружающей среды, путем замедления химической (коррозионной) реакции.

      Чтобы уменьшить интенсивность коррозии, они обычно добавляются в небольших количествах к кислотам, охлаждающей воде, пару и многим другим средам постоянно или периодически. При использовании в качестве покрытия ингибиторы коррозии обычно наносят на чистые поверхности и дают им проникнуть и высохнуть.

      Ингибирование может использоваться внутри труб и сосудов из углеродистой стали в качестве экономичной альтернативы защите от коррозии для нержавеющих сталей и сплавов, покрытий или неметаллических композитов, и часто может применяться без нарушения процесса. Ингибиторы также можно использовать для защиты от коррозии армированных стальных стержней (арматурных стержней) внутри бетона.

      Ресурсы химических ингибиторов AMPP


      Борьба с коррозией

      Для предотвращения коррозии и снижения связанных с ней затрат необходимы не только технологии; для этого требуется упреждающий план управления коррозией для улучшения проектирования, эксплуатации и технического обслуживания критически важных активов.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *