Индукционный нагреватель кузнечный: Индукционные кузнечные нагреватели
alexxlab | 19.01.2023 | 0 | Разное
Индукционные кузнечные нагреватели
Индукционные кузнечные нагреватели (ИКН) предназначены для нагрева металлических заготовок перед горячей штамповкой, гибкой, ковкой и высадкой.
Индукционный нагрев для объемной деформации имеет ряд преимуществ в сравнении с любыми другими видами нагрева, такими как газовый нагрев и электрический в промышленных печах.
Преимущества индукционных кузнечных нагревателей:
- Значительно снижаются энергозатраты, что особенно важно в условиях постоянного роста тарифов на электроэнергию.
- Снижает время нагрева заготовок, что резко повышает производительность производства.
- За счет автоматизации подачи заготовок, улучшается точность их нагрева до заданной температуры.
- Уменьшается количество окалины, что в свою очередь значительно повышает стойкость штамповой оснастки.
- Улучшаются условия труда, это поймет каждый, кто хоть раз стоял у жерла открытой печи с большим количеством заготовок.
- Освобождаются дополнительные площади в цеху, за счет меньших габаритов индукционного оборудования.
Во многом эти преимущества индукционных кузнечных нагревателей достигаются за счет проникновения индукционного нагрева в глубину заготовки. От нескольких мм – до нескольких см в зависимости от рабочей частоты и температуры поверхности. В итоге максимальная температура нагрева создается на определенной глубине от поверхности заготовки. Естественно, нагрев изнутри способствует лучшей теплопередаче в глубину заготовки, обусловленной теплопроводностью металла.
Индукционные кузнечные нагреватели с успехом используются для нагрева различных магнитных и немагнитных металлов. Как цветных: сплавов на основе меди и алюминия. Так и черных металлов: стали, в том числе нержавеющей и легированной, а так же чугуна.
Различают высокотемпературный нагрев для горячей штамповки и высадки стали 1200°С и низкотемпературный 850°С.
Технология штамповки может предусматривать и промежуточную температуру между этими значениями. Медь для горячей штамповки нагревают обычно до 700º С, а алюминий до 500º С.Существуют технологически обоснованные требования по максимальной разнице температур по всему объему заготовки для обеспечения требуемой пластичности и однородности металлов. Для углеродистой стали максимальная разница температур составляет 100°С. Для других металлов и особых случаев разница может составлять 50°С. Подробнее читайте в статье здесь >>>
При заказе ИКН следует иметь ввиду, что его нельзя будет использовать для универсального нагрева большой номенклатуры деталей с различными диаметрами. Дело в том, что индукционные кузнечные нагреватели, предназначенные для нагрева заготовок весом в несколько килограмм, будут неэффективно нагревать заготовки весом в несколько сотен грамм. Даже при условии смены футерованных индукционных катушек. А в одной и той же индукционной катушке нежелательно нагревать заготовки с разницей в диаметре более чем в 1,5 раза.
Индукционные кузнечные нагреватели с ручной и автоматической подачей
В зависимости от того как подается заготовка для индукционного нагрева, различают ручные и автоматические ИКН. Ручная подача является самым дешевым вариантом организации индукционного кузнечного нагрева, но вместе с тем и довольно опасным. Из-за поражения рабочих рассеянным индукционным полем.
Автоматическая подача значительно более предпочтительна, она менее вредна для здоровья и обеспечивает более равномерных нагрев заготовок. Подача заготовок осуществляется последовательно, с помощью автоматического толкателя, на пневматической, механической или гидравлической тяге. Именно автоматическая подача позволяет реализовать все преимущества индукционного кузнечного нагрева.
Последовательные индукционные кузнечные нагреватели
С помощью автоматического толкателя последняя заготовка передвигает предыдущую, до тех пор, пока первая не выйдет из индукционной катушки. Движение заготовок происходит по направляющим, расположенным на дне футерованной индукционной катушки. направляющие могут быть выполнены без охлаждения из нихрома и нержавеющей стали. На мощных ИКН направляющие делают на основе водоохлаждаемой трубки из нержавеющей стали. Нержавеющая сталь применяется по причине ее слабого нагрева из-за отсутствия ферромагнитных свойств. Любые водоохлаждаемые направляющие “съедают” не менее 5% мощности нагревателя. На выходе индуктора легкие заготовки самостоятельно падают в короб, а тяжелые заготовки вытягиваются с помощью цепных транспортеров для исключения повреждения края футеровки индукционной катушки.
Параллельные индукционные кузнечные нагреватели
Данные ИКН применяются при нагреве массивных, длинных, круглых заготовок. Индукционная катушка имеет ширину более длины заготовки. Заготовки с помощью гидравлического толкателя закатываются для нагрева боком. Равномерность нагрева достигается за счет перекатывания заготовки в индукторе с боку на бок. Учитывая большой вес заготовок все операции по их подаче и уборке осуществляются автоматически.
Торцевые индукционные кузнечные нагреватели
Применяются тогда, когда нужно произвести объемную деформацию части заготовки. В зависимости от зоны нагрева данные ИКН могут выполнять индукционный нагрев как на краю, так и в середине заготовки. Если нагрев делается только по краю, индукционные катушки футеруются как тупиковые, они лучше держат тепло. Если нагревать нужно середину, индукционную катушку делают сквозной конструкции.
Линейные индукционные кузнечные нагреватели
Этот тип индукционных нагревателей применяют для нагрева либо очень длинных либо вовсе сплошных заготовок. Если диаметр заготовки не велик обходятся одной индукционной катушкой. В линиях по производству предварительно напряженной арматуры нагревателей ставят до десятка. Если требуется большая производительность при большой массе, применят много последовательных индукционных катушек шириной около метра. В этом случае между индукционными катушками ставят водоохлаждаемые ролики, т.к. длинные, массивные заготовки “снесут” любые неподвижные направляющие.
Карусельные и конвейерные индукционные кузнечные нагреватели
Практически любой из вышеперечисленных ИКН может быть укомплектован различными транзисторными и тиристорными преобразователями. Однако учтите, что транзисторные преобразователи рекомендуются для индукционных кузнечных нагревателей мощностью до 1500 кВт. В диапазоне мощностей 1500-8000 кВт мы рекомендуем применять тиристорные преобразователи, как наиболее традиционные и надежные.
Компания “Мосиндуктор” уже поставила и обслуживает в СНГ десятки индукционных кузнечных нагревателей мощностью от 70 до 1300 кВт. И это далеко не предел! Мы поддерживаем торговые отношения с лучшими китайскими производителями и готовы подобрать и разработать для вас любой индукционный кузнечный нагреватель из представленной ниже номенклатуры! Поставьте на вооружение своего предприятия наш опыт и лучшее соотношение цена/качество на рынке СНГ.
Индукционные кузнечные нагреватели с транзисторным преобразователем частоты и параллельным колебательным контуром
Индукционный кузнечный нагреватель | Транзисторный индукционный нагреватель* | Диаметр заготовки мм | Производительность по нагреву** | ||
Стали до 1200º С, кг/час | Меди до 700º С, кг/час | Алюминия до 500º С, кг/час | |||
ИКН-35 | СЧВ-35 | 16-20 | 60-70 | 105 | 87 |
ИКН-45 | СЧВ-45 | 20-30 | 80-90 | 140 | 112 |
ИКН-70 | СЧВ-70 | 20-35 | 125-140 | 210 | 175 |
ИКН-90 | СЧВ-90 | 20-40 | 165-180 | 280 | 225 |
ИКН-110 | СЧВ-110 | 20-45 | 200-220 | 350 | 275 |
ИКН-160 | СЧВ-160 | 20-50 | 290-320 | 515 | 400 |
ИКН-200 | СЧВ-200 | 40-80 | 360-400 | 645 | 500 |
* В составе индукционного кузнечного нагревателя.
* Производительность зависит от диаметра и длины заготовки.
Фотографии товара:
Высокоэкономичные индукционные кузнечные нагреватели с транзисторным преобразователем частоты и последовательным колебательным контуром
Высокоэкономичный индукционный кузнечный нагреватель | Мощность транзисторного преобразователя, кВт | Частотный диапазон, кГц | Производительность по нагреву стали до 1200º С, кг/час |
ИКНЭ-100 | 100 | 0,5-10 | 220-312 |
ИКНЭ-200 | 200 | 0,5-10 | 440-625 |
ИКНЭ-300 | 300 | 0,5-10 | 670-937 |
ИКНЭ-400 | 400 | 0,5-8 | 890-1250 |
ИКНЭ-600 | 600 | 0,5-8 | 1340-1870 |
ИКНЭ-800 | 800 | 0,5-6 | 1780-2500 |
ИКНЭ-1200 | 1200 | 0,2-4 | 2670-3750 |
ИКНЭ-1500 | 1500 | 0,2-4 | 3330-4680 |
Фотографии товара:
Индукционные кузнечные нагреватели с тиристорным преобразователем частоты и параллельным колебательным контуром
Индукционный кузнечный нагреватель | Мощность тиристорного преобразователя, кВт | Частотный диапазон, кГц | Производительность по нагреву стали до 1200ºС, кг/час |
ИКНТ-100 | 100 | 1-8 | 180 |
ИКНТ-200 | 200 | 1-8 | 360 |
ИКНТ-300 | 300 | 1-8 | 550 |
ИКНТ-400 | 400 | 1-6 | 730 |
ИКНТ-500 | 500 | 1-4 | 910 |
ИКНТ-600 | 600 | 1-4 | 1090 |
ИКНТ-700 | 700 | 1-4 | 1270 |
ИКНТ-800 | 800 | 0,5-2,5 | 1460 |
ИКНТ-900 | 900 | 0,5-2,5 | 1640 |
ИКНТ-1000 | 1000 | 0,5-2,5 | 1820 |
ИКНТ-1500 | 1500 | 0,2-1 | 2730 |
ИКНТ-2000 | 2000 | 0,2-1 | 3640 |
ИКНТ-2500 | 2500 | 0,2-1 | 4550 |
ИКНТ-3000 | 3000 | 0,2-1 | 5460 |
ИКНТ-4000 | 4000 | 0,2-0,5 | 7280 |
ИКНТ-5000 | 5000 | 0,2-0,4 | 9100 |
ИКНТ-6000 | 6000 | 0,2-0,4 | 11000 |
ИКНТ-8000 | 8000 | 0,2 | 14550 |
Фотографии товара:
Видео:
youtube.com/embed/LwgAkjh_sAM?wmode=transparent&showinfo=0″ frameborder=”0″ allowfullscreen=”” wmode=”opaque”/> | ||
Индукционный кузнечный |
Горячая штамповка |
Экономичный индукционный |
Сопутствующие товары
Двухконтурные градирни ДКГ |
Чиллеры ЧВ |
Многолопастные насосы Grundfos |
Свойства товара:
Индукционные кузнечные нагреватели предназначены для нагрева перед горячей штамповкой заготовок из стали, чугуна, меди, бронзы, латуни и алюминия. Прекрасное соотношение цена/качество. Персонал легко обучается работе на установке. Установки малогабаритные и легкие. Легко установить в свободное пространство около любого пресса и штампа. Заготовка быстро нагревается до рабочей температуры, что уменьшает окисление, поднимает качество выпускаемой продукции, снижает износ штампов и прессов. Большой диапазон рабочих частот. Могут работать непрерывно в три смены. Ручная, пневматическая, механическая, гидравлическая подача заготовок. Высокая производительность. Энергосберегающая технология. С помощью замены индукционной катушки перенастраивается на различные диаметры заготовок. Применяются тиристорные и транзисторные преобразователи. Футерованные индукционные катушки служат до года.
Индукционный кузнечный нагреватель МИКРОША-15-8-ВЧ от производителя
Кузнечный
индукционный нагреватель металла МИКРОША-15-8-ВЧ предназначен для нагрева
металла перед ковкой и гибкой, горячей штамповкой, закалкой, для напайки резцов,
сварки и пайки деталей и множества других подобных работ с металлом,
промышленной или художественной обработки. Питание от однофазной сети 220-240 В
50 Гц предполагает его использование в небольших цехах, частных гаражных
мастерских и кузнях. Индукционный нагрев заготовок магнитным полем сделает вашу
работу более комфортной и безопасной, по сравнению с газовым или угольным
горном, кроме того, индукционный горн значительно сокращает время нагрева
металла до нужной температуры, составляя лишь десятки секунд. Температура нагрева стальных изделий при этом
может достигать более 1300 град. С, вплоть до оплавления.
Кузнечный нагреватель МИКРОША-15-8-ВЧ имеет максимальную полную потребляемую мощность 8 кВА, что полностью соответствует широко распространенным азиатским моделям типа HF-15, JL-15, LSW-16KW, UM-15AB, GHF-15-(7kW) и т.п. Все эти модели при питании от сети 230 вольт потребляют максимальный ток до 35 ампер, что равно 230*35 = 8 кВА. Данная нагрузка достаточно приемлема для хорошей бытовой или гаражной электросети и МИКРОША-15-8 вполне вписывается в линейку этих аппаратов индукционного нагрева как по полной потребляемой мощности, так и по эффективности нагрева металла. При умеренной цене и мощности, равной выше названным аппаратам, индукционный нагреватель МИКРОША-15-8-ВЧ имеет скромные габариты и массу всего 7,2 кГ, что значительно, в 3,5 раза, меньше аналогов, потому и называется «МИКРОША».
Индукционный нагреватель МИКРОША-15-8-ВЧ имеет воздушное охлаждение радиаторов транзисторов, резонансных конденсаторов и силового трансформатора, которое обеспечивается двумя вентиляторами. Водяное охлаждение подводится только к сменным индукторам. Таким образом, со временем, при зарастании трубок индукторов накипью, не потребуется капитальный ремонт всего аппарата, достаточно только сделать новый индуктор, не разбирая сам аппарат. Для достижения небольшого нагрева трансформатора, в качестве обмоток применен высокочастотный провод-литцендрат ЛЭЛД-155, сложенный вдвое и состоящий из 1075 изолированных лаком жилок диаметром 0,071мм, скрученных в косички. Стоимость такого провода соответствующая. Сердечник трансформатора – нанокристаллический и состоит из нескольких сложенных вместе колец. В качестве модуля индикации мы применили в микроше готовый вольтметр-амперметр-ваттметр производства КНР. Этот приборчик не влияет на работу схемы и выводит на дисплей показания напряжения сети, тока, коэффициент мощности, потребляемой активной мощности, которая из всей полной потребляемой собственно и идет в нагрев, а так же выступает в роли электросчетчика, показывая сколько киловатт-час за смену накрутил аппарат. Кроме того, он имеет приятный дизайн и приемлемую точность показаний. Управление нагревом возможно как переключателем на передней панели, так и с помощью ножной педали. Естественно, что все необходимые защиты в микроше имеются: и от перегрева, и от КЗ витков индуктора, и т.п. Мощности кузнечного индукционного нагревателя МИКРОША-15-8-ВЧ достаточно для нагрева до оплавления прутка Ф=16 мм в индукторе диаметром Ф=20 мм; болванки Ф=25 мм в индукторе диаметром Ф=30 мм. Медные трубки, помещенные в индукторы, нагреваются до размягчения, но мощность, поглощаемая медными и алюминиевыми заготовками незначительна. По поводу мощности, необходимо понимать тот факт, что максимальная мощность выделяется в металле вихревыми токами только в первые секунды нагрева, пока температура не достигла точки Кюри ( 750 град.С). При дальнейшем разогреве заготовки потребляемая мощность падает из-за потери металлом магнитных свойств, что можно видеть на дисплее аппарата, но это не препятствует достижению температуры более 1300 град.С. При этом колебательная мощность в самом индукторе не изменяется. Изменяется степень отбора этой мощности нагреваемым предметом. Чем больше отбирается мощности на нагрев, тем больше идет подкачка в резонансный контур транзисторами генератора из источника питания – то есть из сети. Диапазон рабочих частот нагревателя МИКРОША-15-8-ВЧ составляет 20-60 кГц. Аппараты в этом диапазоне частот работают с короткими индукторами с небольшой индуктивностью и малым числом витков для обеспечения высокой плотности мощности на квадратный сантиметр поверхности. Это хорошо подходит для быстрого разогрева поверхности металла под закалку концов валов, шестерен, с градиентом температуры нагрева по глубине. Для закалки длинных валов необходимо организовать механизм подачи, например из старого токарного станка и разомкнутый спреер, расположенный сразу же за индуктором.
Для сквозного прогрева длинных заготовок и в качестве плавильных печей используются длинные многовитковые индукторы, с индуктивностью в 10 и более раз большей. Поэтому для этих целей применяют среднечастотные аппараты. В нашей линейке моделей это МИКРОША-15-8-СЧ, который работает в диапазоне частот 8-30 кГц.
Купить индукционный нагреватель МИКРОША-15-8 вы можете как в стандартной комплектации, так и под заказ. При заказе необходимо определить задачи, под которые вам требуется данное оборудование, чтобы мы изготовили индукторы, которые вам максимально подойдут для работы.
Комплект поставки:
– индукционный нагреватель (аппарат с сетевым шнуром 3 метра),
– индуктор диаметром 20 мм,
– индуктор диаметром 30 мм,
– индуктор диаметром 40 мм,
– индуктор прямоугольный 50х15 мм,
– индуктор открытого типа «ковш» 15 мм,
– педаль управления,
– паспорт.
В качестве системы охлаждения можно применить насос системы бытового отопления для горячей воды и любую подходящую емкость с водой – например бочку.
Страна производства – РОССИЯ.
Производитель – разработано и произведено компанией «НАША ЭЛЕКТРОНИКА».
ВНИМАНИЕ ! ОРИГИНАЛЬНОЕ СХЕМОТЕХНИЧЕСКОЕ РЕШЕНИЕ ЗАПАТЕНТОВАНО. КОПИРОВАНИЕ И КЛОНИРОВАНИЕ С ЦЕЛЬЮ ПРОДАЖИ ПРЕСЛЕДУЕТСЯ ПО ЗАКОНУ.
Полное руководство по индукционной ковке
Индукционная ковка — это процесс, при котором система индукционного нагрева предварительно нагревает металлы и придает им форму с помощью молотка или пресса. Области применения индукционной ковки сильно различаются, но прежде чем вы начнете оценивать свои приложения, полезно иметь хорошее представление о процессе. Итак, приступим.
Дополнительные указания по применению индукционной ковки
Основной процесс
Во-первых, важно понимать, что индукционный нагрев — это0010 бесконтактный процесс , в котором используются основные принципы электромагнитной индукции для эффективного производства тепла. Электрический ток может течь через материал, если он помещен в сильное переменное магнитное поле; это вызывает джоулев нагрев. В магнитных материалах избыточное тепло выделяется ниже точки Кюри — точка Кюри — это температура, при которой некоторые магнитные материалы претерпевают резкое изменение своих магнитных свойств. Точка Кюри железа, например, составляет 1418 градусов по Фаренгейту (770 градусов по Цельсию).
Глубина генерируемого тока определяется как частотой переменного поля, так и проницаемостью материала. Материалы с высокой проницаемостью (100–500) легче нагревать с помощью индукционного нагрева. Железо и его сплавы хорошо поддаются индукционному нагреву благодаря своей ферромагнитной природе.
Потребляемая мощность
Прежде чем приступить к работе с собственными приложениями для индукционной ковки, необходимо понять, какая мощность для этого требуется. Источники питания, необходимые для индукционной ковки, могут сильно различаться: от нескольких киловатт до нескольких мегаватт. Геометрия компонента также может определять частоту источника питания, которая может варьироваться от 50 Гц до 200 кГц. Имейте в виду, что в большинстве приложений для индукционной ковки используется диапазон от 1 кГц до 100 кГц.
Чтобы правильно выбрать мощность для индукционной ковки, необходимо рассчитать тепловую энергию, необходимую для нагрева выбранного материала до необходимой температуры в отведенное время. После того, как это измерение будет определено, вам нужно будет учесть другие компоненты, такие как потери на излучение, потери в катушках и другие потери в системе. (И ЛАБОРАТОРИЯ в Амбрелле может помочь вам в этом, проведя бесплатное тестирование приложений.)
Выходная частота и источник питания
После определения потребляемой мощности, необходимой для индукционной ковки, вам нужно будет рассмотреть следующий основной параметр — выходную частоту источника питания. Хотя тепло в основном генерируется на поверхности компонента, очень важно выбрать частоту, обеспечивающую максимально глубокое и наиболее практичное проникновение в заготовку. Вы также должны иметь в виду, что для проникновения тепла к центру заготовки требуется время. Кроме того, если слишком быстро подается слишком много тепла или энергии, можно расплавить поверхность заготовки, пока сердцевина еще холодная.
Преимущества
Три главных преимущества индукционной ковки — быстрые циклы нагрева, точные схемы нагрева и стержни, которые остаются относительно холодными и стабильными. Однако индукционная ковка также может похвастаться многими преимуществами. Прежде всего, процесс очень просчитан, а значит, управляем. Традиционные системы нагрева, такие как газовые печи, требуют предварительного нагрева и отключения, в то время как приложения индукционной ковки этого не требуют. Кроме того, тепло доступно по запросу с быстрой доступностью. Если когда-либо произойдет перебой в производстве, питание можно легко отключить, предотвратив ненужные потери энергии.
Индукционная ковка также является энергосберегающим процессом. Это результат выделения тепла внутри компонента, а не вокруг него. Передача тепла и энергии становится намного более эффективной, поскольку система индукционного нагрева нагревает только заготовку, а не окружающую ее атмосферу.
В конечном счете, понимание процессов и преимуществ индукционного нагрева и ковки необходимо для определения того, что такое индукционная ковка и подходит ли это для вашего процесса.
Дополнительные преимущества
Мы уже обсуждали некоторые преимущества процесса индукционной ковки; в частности, его контролируемые процессы и энергоэффективность. Тем не менее, есть еще много преимуществ, о которых большинство людей не совсем осведомлены. Например, в отличие от других видов нагрева, индукционная ковка не создает никаких вредных или токсичных побочных продуктов, когда процесс завершен. Это абсолютно чистый процесс, который не способствует загрязнению окружающей среды. В результате индукционной ковки не образуется ни дыма, ни токсинов.
Кроме того, часть ответа на вопрос “Как работает ковка?” включает элемент согласованности с результатами. Когда все сказано и сделано, процесс легко контролируется, а это означает, что его можно легко и быстро повторять раз за разом практически без изменений результата. В индукционной ковке нет ничего неожиданного или удивительного, потому что здесь нет догадок. Такие однородные результаты помогают избежать необходимости постковочной обработки.
Кроме того, индукционная ковка вызывает сильное повышение температуры, гарантируя, что каждый компонент быстро и эффективно достигает необходимой температуры. Это уменьшает масштаб, а также возможность поверхностных дефектов материала после завершения.
Нагрев конца стержня
Нагрев конца стержня — это вид ковки, при котором куется только часть стержня. Эти приложения обычно включают горячий нагрев болтов и некоторых горнодобывающих инструментов. Например, конец стержня можно нагреть, а затем нагреть в горячем состоянии, чтобы создать большую застежку. Нагрев конца стержня очень похож на индукционную ковку.
В конечном счете, эффективность системы индукционного нагрева для конкретного применения зависит от четырех факторов: характеристик самой детали, конструкции катушки, мощности источника питания и степени изменения температуры, необходимой для нагрева. применение. Понимание подробных процессов индукционной ковки — лучший способ определить, может ли ваш бизнес извлечь выгоду из ковки с помощью оборудования для индукционного нагрева.
Индукционный кузнечный нагрев
Inductoforge® Системы индукционного кузнечного нагрева для заготовокИнновационная технология индукционного кузнечного нагрева для исключительной производительности
Inductoheat — технология индукционного кузнечного нагрева используется для нагрева прутков и заготовок различных диаметров. Источник питания Inductoforge ® , созданный для работы в агрессивных средах ковки, представляет собой последнее поколение проверенной в промышленности системы. Существующая надежная технология усовершенствована, чтобы обеспечить уникальные функции, особенно полезные для кузнечной промышленности.
Технология индукционного кузнечного нагрева
Достижения в наших технологиях кузнечного нагрева включают новые системы нагрева заготовок Inductoforge ® , в которых используется стандартизированная модульная конструкция, которая обеспечивает гибкость в источниках питания, механических приспособлениях, элементах управления и эксплуатации. Для модульной системы отопления Inductoforge ® доступна компьютерная программа моделирования температурного профиля IHAZ™. Программный пакет iHaz™ представляет собой технологию прогнозирующего численного моделирования, которая точно прогнозирует температуру по всему поперечному сечению прутка/заготовки, от поверхности до сердцевины. Эти системы очень эффективны и позволят больше фунтов. в час с использованием меньшего количества энергии по сравнению с обычными системами ковки. Использование программного обеспечения для моделирования iHaz позволяет оператору выбирать тип материала, размеры, производительность, желаемую температуру и другие параметры для расчета наилучшего возможного рецепта.
- Загрузить рецепт напрямую в индукционный нагреватель заготовок через Ethernet.
- Устранение предположений о рецепте
- Мощность распределяется по линии катушки, как определено в рецепте моделирования iHaz.
- Во время высокой производительности система Inductoforge увеличивает мощность первых модулей и снижает мощность последующих модулей.
- Для снижения производительности мощность может быть перераспределена на более поздние модули при сохранении непревзойденной однородности температуры.
- Используйте оценки мощности, полученные в результате расчета iHaz, для определения стоимости энергии для новых проектов.
Режим ожидания
- Позволяет ковочному агрегату останавливать и удерживать заготовки при температуре, пока устраняются проблемы в дальнейшем.
- Предотвращает попадание заготовок в бункер отбраковки, сокращая количество отходов.
Спецификации конструкции для тяжелых условий эксплуатации
- Установки созданы для работы в суровых условиях кузнечного цеха
- Высокопрочный закаленный цепной конвейер с регулируемыми боковыми направляющими для различных размеров заготовок
- Встроенная система рециркуляции воды с теплообменником
- Встроенные желоба для окалины
- Силовые модули аналогичны друг другу и имеют минимальное количество компонентов в каждом шкафу что упрощает устранение неполадок и обслуживание.