Искровой генератор своими руками: простой для повторения генератор высокого напряжения / Хабр
alexxlab | 29.05.2023 | 0 | Разное
простой для повторения генератор высокого напряжения / Хабр
Добрый день, уважаемые хабровчане.
Этот пост будет немного необычным.
В нём я расскажу, как сделать простой и достаточно мощный генератор высокого напряжения (280 000 вольт). За основу я взял схему Генератора Маркса. Особенность моей схемы в том, что я пересчитал её под доступные и недорогие детали. К тому же сама схема проста для повторения (у меня на её сборку ушло 15 минут), не требует настройки и запускается с первого раза. На мой взгляд намного проще чем трансформатор Теслы или умножитель напряжения Кокрофта-Уолтона.
Принцип работы
Сразу после включения начинают заряжаться конденсаторы. В моём случае до 35 киловольт. Как только напряжение достигнет порога пробоя одного из разрядников, конденсаторы через разрядник соединятся последовательно, что приведёт к удвоению напряжения на конденсаторах, подсоединённых к этому разряднику. Из-за этого практически мгновенно срабатывают остальные разрядники, и напряжение на конденсаторах складывается.
О деталях:
Сама схема простая, состоит из конденсаторов, резисторов и разрядников. Ещё потребуется источник питания. Так как все детали высоковольтные, возникает вопрос, где же их достать? Теперь обо всём по порядку:
1 — резисторы
Нужны резисторы на 100 кОм, 5 ватт, 50 000 вольт.
Я пробовал много заводских резисторов, но ни один не выдерживал такого напряжения — дуга пробивала поверх корпуса и ничего не работало. Тщательное загугливание дало неожиданный ответ: мастера, которые собирали генератор Маркса на напряжение более 100 000 вольт, использовали сложные жидкостные резисторы генератор Маркса на жидкостных резисторах, или же использовали очень много ступеней.
Отломал на улице две ровных веточки сырого древа (сухое ток не проводит) и включил первую ветку вместо группы резисторов справа от конденсаторов, вторую ветку вместо группы резисторов слева от конденсаторов. Получилось две веточки с множеством выводов через равные расстояния. Выводы я делал путём наматывания оголённого провода поверх веток. Как показывает опыт, такие резисторы выдерживают напряжение в десятки мегавольт (10 000 000 вольт)
2 — конденсаторы
Тут всё проще. Я взял конденсаторы, которые были самыми дешевыми на радио рынке — К15-4, 470 пкф, 30 кВ, (они же гриншиты). Их использовали в ламповых телевизорах, поэтому сейчас их можно купить на разборке или попросить бесплатно. Напряжение в 35 киловольт они выдерживают хорошо, ни один не пробило.
3 — источник питания
Собирать отдельную схему для питания моего генератора Маркса у меня просто не поднялась рука. Потому, что на днях мне соседка отдала старенький телевизор «Электрон ТЦ-451». На аноде кинескопа в цветных телевизорах используется постоянное напряжение около 27 000 вольт. Я отсоединил высоковольтный провод (присоску) с анода кинескопа и решил проверить, какая дуга получится от этого напряжения.
Вдоволь наигравшись с дугой, пришел к выводу, что схема в телевизоре достаточно стабильная, легко выдерживает перегрузки и в случае короткого замыкания срабатывает защита и ничего не сгорает. Схема в телевизоре имеет запас по мощности и мне удалось разогнать её с 27 до 35 киловольт. Для этого я покрутил подстроичник R2 в модуле питания телевизора так, что питание в строчной развертке поднялось с 125 до 150 вольт, что в свою очередь привело к повышению анодного напряжения до 35 киловольт. При попытке ещё больше увеличить напряжение, пробивает транзистор КТ838А в строчной развёртке телевизора, поэтому нужно не переборщить.
Процесс сборки
С помощью медной проволоки я прикрутил конденсаторы к веткам дерева. Между конденсаторами должно быть расстояние 37 мм, иначе может произойти нежелательный пробой. Свободные концы проволоки я загнул так, чтобы между ними получилось 30 мм — это будут разрядники.
Лучше один раз увидеть, чем 100 раз услышать. Смотрите видео, где я подробно показал процесс сборки и работу генератора:
Техника безопасности
Нужно соблюдать особую осторожность, так как схема работает на постоянном напряжении и разряд даже от одного конденсатора будет скорее всего смертельным. При включении схемы нужно находиться на достаточном удалении потому, что электричество пробивает через воздух 20 см и даже более. После каждого выключения нужно обязательно разряжать все конденсаторы (даже те, что стоят в телевизоре) хорошо заземлённым проводом.
Лучше из комнаты, где будут проводиться опыты, убрать всю электронику. Разряды создают мощные электромагнитные импульсы. Телефон, клавиатура и монитор, которые показаны у меня в видео, вышли из строя и ремонту больше не подлежат! Даже в соседней комнате у меня выключился газовый котёл.
Нужно беречь слух. Шум от разрядов похож на выстрелы, потом от него звенит в ушах.
Интересные наблюдения
Первое, что ощущаешь при включении — то, как электризуется воздух в комнате. Напряженность электрического поля настолько высока, что чувствуется каждым волоском тела.
Хорошо заметен коронный разряд. Красивое голубоватое свечение вокруг деталей и проводов.
Лампочки загораются сами по себе, без проводов.
Озоном пахнет по всему дому, как после грозы.
Заключение
Все детали обойдутся где-то в 50 грн (5$), это старый телевизор и конденсаторы. Сейчас я разрабатываю принципиально новую схему, с целью без особых затрат получать метровые разряды. Вы спросите: какое применение данной схемы? Отвечу, что применения есть, но обсуждать их нужно уже в другой теме.
На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением.
Два простых высоковольтных генератора своими руками / Хабр
Привет, Хабр! Опыты с высоким напряжением, наверное, никогда не выйдут из моды. Есть в них какая-то особенная романтика, увлекающая не только старшеклассников. Сегодня рассмотрим пару простых схем: электрозажигалку на блокинг-генераторе и музыкальный трансформатор Теслы на основе качера Бровина. Давайте соберём и испытаем оба устройства.
Прежде чем приступать к рассмотрению этих двух любительских конструкций, необходимо вспомнить технику безопасности. Высокие напряжения опасны для жизни людей, животных, и особенно сложной цифровой техники, такой, как компьютеры и телефоны.И вообще любой техники, содержащей полевые транзисторы. Также высоковольтный разряд способен вызвать пожар, а радиаторы высоковольтных игрушек очень сильно нагреваются.
Будем считать, что технику безопасности мы учли, и можно продолжать дальше. Обычно у меня нет времени и желания травить печатные платы (а ещё сверлить в них отверстия, обогащая атмосферу жилища вредной стеклотекстолитовой пылью). А импульсные схемы, в особенности преобразователи напряжения…
Само слово импульс, применительно к электрическому, предполагает наличие у этого импульса крутых фронтов. А значит, высоких частот в энергетическом спектре. А на высокочастотные токи сильно влияют паразитные индуктивности и ёмкости, даже совсем небольшие.
Потому импульсные схемы «не любят», когда их макетируют как попало. Они «предпочитают» печатную плату, избавляющую устройство от хаоса искажений и наводок.
К счастью, в местном киоске электротоваров продавались несколько наборов для сборки.
▍ Как работает лазерный принтер
Кстати, лазерные принтеры и копировальные аппараты, они же «ксероксы», тоже работают благодаря высокому напряжению. Именно оно притягивает тонер на незасвеченные участки селенового фотобарабана. А с засвеченных, лазером либо светом, отражённым от бумажного оригинала, электрический заряд, сообщённый поверхности фоточувствительного вала роликом предварительного заряда или коротроном, уходит на алюминиевый корпус фотобарабана.
Далее тонер, представляющий собой смесь пигмента, смолы и оксида железа (ржавчины), прилипает к заряженной от коротрона бумаге, и благодаря смоле, запекается на ней в печке. А оксид железа в тонере нужен затем, чтобы он притягивался к магнитному валу для равномерной дозированной подачи на фотобарабан.
Таинственный коротрон — это натянутая металлическая проволока, лезвие или пластина с зубцами, служащие для возникновения коронного разряда. И, соответственно, переноса нужного электрического заряда соответственно замыслу разработчиков прибора.
Так как при коронном разряде создаются электромагнитные помехи и выделяется озон, могущий оказывать разрушительное воздействие на различные материалы, организмы человека и животных, (как, впрочем, и на болезнетворные микроорганизмы и вирусы), в современной технике стараются применять меньше коротронов и больше роликов переноса заряда. К тому же ролики сильнее подвержены износу, чем коротроны, что выгодно производителям запчастей к принтерам и копирам.
Итак, первый набор самый простой. Он состоит из печатной платы, готового трансформатора с ферритовым сердечником и секционированной вторичной высоковольтной обмоткой, одного транзистора с радиатором и винтиком, клавишного выключателя, одного резистора 120 Ом и одного диода UF4007.
На плате медь и паяльная маска с одной стороны. Металлизация отверстий отсутствует, она для такой простой платы и не нужна. На другой стороне шелкография сообщает, что куда паять. Это особенно радует в свете отсутствия инструкции. Хотя она нашлась на Алиэкспресс, вместе со схемой и указанием напряжения питания — 3.7 вольта.
То есть, преобразователь предназначен для питания от одной литиевой ячейки. Если хотим питать от более высокого напряжения, но не выше 12 вольт, необходимо увеличить номинал единственного резистора, в диапазоне от 150 Ом до 1 килоома.
▍ Блокинг-генератор
Схемотехнически устройство представляет собой обычный блокинг-генератор с насыщающимся сердечником. Работает он следующим образом.
Биполярный транзистор структуры NPN включён по схеме с общим эмиттером. Его коллекторной нагрузкой является толстая, она же силовая обмотка. При подаче питания на базу через тонкую, управляющую обмотку, резистор и диод приходит напряжение прямого смещения эмиттерного перехода, вследствие чего появляется ток базы, и транзистор начинает открываться.
Постепенно увеличивается ток через силовую обмотку. Соответственно, растёт магнитный поток, и в управляющей обмотке появляется электродвижущая сила (ЭДС) взаимоиндукции, действующая в том же направлении, что и питающее напряжение. Она помогает транзистору открываться дальше.
Когда магнитопровод или транзистор входит в насыщение, рост тока в толстой обмотке прекращается, и далее ток начинает уменьшаться. ЭДС в управляющей обмотке меняет знак, противодействуя напряжению питания. Транзистор закрывается. Далее всё повторяется снова.
Отметим, что диод UF4007 со сверхбыстрым временем восстановления запертого состояния. Обычный выпрямительный 1N4007 в такой высокочастотной схеме работать не будет.
▍ Сборка
Теперь, когда мы поняли, что перед нами за генератор, и на каком принципе основана его работа, поговорим о нюансах сборки данной конструкции.
Насчёт радиатора. Лично мой и моих любящих электронику друзей опыт однозначно говорит, что если китайцы положили в набор радиатор, значит, транзистор или микросхема будут нагреваться сильно или очень сильно.
Потому категорически рекомендую перед установкой транзистора на радиатор намазать его теплоотводящую поверхность тонким слоем термопасты.
Это не сильно затруднит сборку, зато добавит шансов избежать разочарований и хлопот, возникающих при тепловом пробое полупроводниковых приборов. (Сгоревший транзистор ещё и немного коптит, и очень неприятно воняет).
Установить транзистор неправильно не получится, потому что он устанавливается после крепления к радиатору. Надеюсь, вы не прикрутили его задом наперёд, то есть, медной подложкой к головке винта, а не к радиатору, как должно быть.
Сверхбыстрый диод устанавливается на плате согласно катодной полоске, отмеченной на шелкографии.
Выводы обмоток паяются так: справа правый толстый, слева левый тонкий, посередине — два остальных.
И наконец, от PLS гребёнки отламываем половину, вытягиваем тонкогубцами или пинцетом среднюю ножку, а крайние изгибаем так, чтобы расстояние между их кончиками было меньше, чем между точками пайки проводов от вторичной высоковольтной обмотки.
Это приспособление из PLS вилки будет нашим высоковольтным разрядником, и является расходным материалом, так как при работе нагревается и обгорает.
Добавлю, что лично в моём экземпляре конструктора длина кабельной стяжки оказалась недостаточной (либо я что-то не так делаю), и вместо неё пришлось взять другую из запасов.
▍ Испытания
Зато заработал преобразователь сразу, и прекрасно поджигает не только бумагу и целлюлозную салфетку, но и туристическое сухое горючее (гексаметилентетрамин, прессованный с парафином). Если поместить плату в корпус, получим хорошую зажигалку, не нуждающуюся в газе или бензине.
Как всё это происходило, можно посмотреть на видео.
А здесь резервное видео, на случай неполадок с Ютубом.
▍ Поющая Тесла
Второй высоковольтный преобразователь чуть посложнее, и представляет собой резонансный трансформатор без магнитопровода, он же трансформатор Теслы.
На биполярном транзисторе BD243 собран так называемый качер, или качатель реактивностей Владимира Ильича. Нет, не Ленина, а Бровина.
Имена и творческое наследие Николы Теслы и Владимира Бровина, как и романтика самодеятельных высоковольтных экспериментов, окутаны ореолом мистики. Им посвящены сотни дискуссий на сотни страниц, привлекающие адептов теорий заговора, искателей бестопливной генерации энергии, рептилоидов, красной ртути, древнего атмосферного электричества и прочих интересных тем, где наука, история, опыт перемежаются с научной фантастикой и волшебными сказками.
Попутно успешно рекламируются и продаются активаторы воды и иных субстанций, гармонизаторы пространства и приборы физиотерапевтического назначения, устройства для фотографирования биополя и прочие интересные вещи. В ход идут натуральный камень, красивые катушки индуктивности, газоразрядные лампы и трубки. В чём-то из всего этого есть рациональное зерно и реальная польза, в чём-то сомнительно, но всё это очень занятно.
О том, почему качатель реактивностей всё же работает, хотя необходимые для генерации вынужденных колебаний обратные связи на схеме не нарисованы, существует множество мнений. Лично мне по душе простое материалистическое объяснение на уровне школьного курса физики.
На самом деле, качер Бровина работает благодаря шумам транзистора. Собственным тепловым, квантовым, обусловленным воздействием ионизирующего излучения, — сгодятся любые. Благодаря этим шумам, транзистор начинает что-то генерировать. Это что-то (а именно, усиленный транзистором шум) возбуждает колебания в контуре, образованном индуктивностью и межвитковой ёмкостью катушки, а также паразитными ёмкостями.
А так как колебательный контур имеет резонансную частоту, то и колебания устанавливаются на этой частоте. Учитывая, что все качеры довольно мощные или очень мощные, устанавливается и паразитная обратная связь, как раз на этой частоте. Что очень похоже на классическую авторскую конструкцию Теслы с искровым возбуждением.
В помощь шумам транзистора китайские разработчики данного промышленного образца установили ещё и светодиод LED1. Не все знают, но светодиод в прямом включении также генерирует некоторый ощутимый уровень шумов.
А на полевом транзисторе с изолированным затвором, он же MOSFET, собран модулятор, позволяющей изменять мощность высоковольтного генератора в такт амплитуде звукового сигнала. Так как температура плазмы в искре очень высока, модуляция мощности приводит к колебаниям нагрева воздуха. Который, следовательно, расширяется и сужается, тем самым генерируя звуковые волны. Так работает музыкальный трансформатор Теслы.
Сборка набора затруднений не вызвала, всё заработало с первого раза. Длинный конец вторичной обмотки должен быть сверху. Это разрядник, и со временем он обгорает. Подстройка резонанса осуществляется изменением геометрии первичной обмотки, представляющей собой кусок изолированного провода.
Наилучшие результаты у меня получились от источника питания паяльной станции, выдающего 24 вольта 5 ампер постоянного тока. При более низком питающем напряжении, музыки от электрического разряда не было слышно.
Возможно, я перепутала красный и синий светодиоды, имеющие разные падения напряжения в прямом включении, и, соответственно, влияющие на работу схемы. Какой из светодиодов должен быть красным, а какой синим, на схеме не написано. Тем не менее устройство работает и поёт, потому переделывать его не хочется.
Процесс сборки и испытания электронной игрушки для взрослых запечатлён на видео.
А музыкальная шкатулка, с которой брался звуковой сигнал, собиралась так.
▍ Выводы
Собирать разные электронные устройства легко и просто, в случае набора-конструктора с готовой печатной платой, и при наличии хорошего паяльника, припоя и доступа в интернет, где можно найти ответы на возникающие вопросы.
Спасибо за внимание! Напишите в комментариях, какие схемы и конструкции будет интересно рассмотреть и собрать в будущих статьях и видео. Расскажите о своём опыте радиолюбительских поделок.
Все, что вам нужно знать
Вы когда-нибудь хотели построить свой собственный искровой генератор ? Конечно, его легко купить в местном хозяйственном магазине. Но есть что-то особенное в том, чтобы сделать его своими руками. К счастью для вас, со сборкой печатной платы все не так сложно. В сегодняшней статье мы познакомим вас со всем, что вам нужно знать, чтобы успешно построить искровой генератор своими руками с нуля.
Давайте заинтересуем вас самодельным искровым генератором .
Что такое генератор искр?
Искровой генератор создает искру с помощью провода свечи зажигания, заземления электрического зажигания и заземляющей пластины, и вы можете использовать эти удобные устройства в различных приложениях.
Чаще используется для зажигания газовых горелок, самодельный генератор, генератор Маркса или катушка Тесла создает фантастические световые шоу в плазменных шарах. Вы также можете использовать их, чтобы просто продемонстрировать, как работают средства защиты от насекомых.
В плазменных шарах используются сложные искровые генераторы
Как работает искровой генератор?
Искровые генераторы основаны на модели с замкнутым контуром, которая завершается при активации переключателя. Обычно это означает, что вам нужно повернуть ручку или нажать кнопку, чтобы электричество от вашего источника питания прошло по проводам.
Искры воспламенение , когда вы поворачиваете ручку, чтобы активировать искровой генератор.
Когда это происходит, в искровом промежутке между электродным стержнем и заземляющей пластиной появляется одиночная искра, а если используется генератор с катушкой Тесла или генератором Маркса, то несколько искр.
Искра возникает в результате взаимодействия стержня с газом, плавающим вокруг искрового промежутка.
Как сделать простой искровой генератор на батарейках
Теперь, когда мы ответили на ваши вопросы об искровых генераторах, пришло время приступить к сборке самодельного искрового генератора.
Для начала вам потребуется следующее:
- Пленочный конденсатор 105 Дж
- Выходное напряжение 12В/220В, 3А Трансформатор SM
- BC547, транзисторы NPN
- Три 47pf
- 1 метр эмалированной медной проволоки
- Тумблер
- Два резистора по 1 кОм
- 3 1N4007 Диоды
- Батарея постоянного тока 4 В с зажимами
- Паяльник 45 Вт-65 Вт
- Проволока для пайки с флюсом
- Соединительные провода по мере необходимости
Конденсаторы
Когда все материалы разложены, организованы и готовы, самое время приступить к созданию простого электростартерного генератора, не выходя из дома.
Пожалуйста, добавьте принципиальную схему
Шаг первый: установка трансформатора
Первое, что нужно сделать, это надежно припаять трансформатор SM к плате Veroboard или картону. Убедитесь, что вы делаете это рядом с одним краем вашей доски, чтобы упростить управление и управление генератором дуги .
Далее вам необходимо припаять базу и клемму коллектора транзистора BC547 к первичным клеммам вашего трансформатора. Убедитесь, что ваш транзисторный коллектор подключен к правильным клеммам, иначе ваш проект может не работать.
Шаг второй: добавьте резисторы
Пришло время загрузить резисторы 1K. Не забудьте надежно припаять их на место.
Шаг третий. Разместите диоды и конденсаторы
После припайки резисторов можно припаять диоды и конденсаторы к плате. Убедитесь, что вы разместили их в аккуратные ряды по три штуки рядом. После этого вам нужно припаять пленочный конденсатор под последовательностью диода и конденсатора.
И, наконец, припаяйте светодиод к левой верхней части трансформатора.
Шаг четвертый: переключатель и батареи
Теперь пришло время припаять тумблер и батарею к Veroboard.
Шаг пятый: добавьте катушки
Теперь самое сложное: намотать эмалированный медный провод так, чтобы его концы были направлены друг к другу. Концы должны быть достаточно близко, чтобы казалось, что они почти соприкасаются.
После этого пришло время припаять катушки к вашей Veroboard.
Шаг шестой: включите и наслаждайтесь
После того, как все сделано и припаяно на место, пришло время включить искровой генератор своими руками и протестировать его. Если вы все сделали правильно, цепь должна завершиться без проблем, и вы увидите искру между катушками.
Приложения
- Научные проекты и развлечения
- Устройства для уничтожения насекомых и электрические устройства для борьбы с вредителями
- Розжиг газовой горелки
- Плазменные шары
- Световые шоу
- Электрошокеры
Тазеры являются одним из наиболее распространенных и очевидных проявлений дуговых генераторов.
Резюме
Итак, вы знаете, как собрать искровой генератор своими руками в домашних условиях за шесть простых шагов. Этот проект отлично подходит для создания миниатюрной копии простой катушки Тесла или для того, чтобы помочь новичкам понять, как работает схема генератора дуги.
Хотя это может показаться сложным, важно помнить, что подготовка, понимание того, что вы делаете, и внимательное отношение к деталям помогут вам создавать простые и даже сложные искровые генераторы в кратчайшие сроки.
Как создать плазменный искровой генератор с использованием батареи постоянного тока 4 В