Как назначить термообработку для стали – Термическая обработка стали: режимы, виды, назначение

alexxlab | 05.08.2020 | 0 | Разное

Назначение режима Термической обработки стали.

На аллотропных превращениях сплавов основана термическая обработка металлов. Термической обработкой металлов называется процесс, состоящий из нагрева металла до определенной температуры, выдержки при этой температуре и охлаждении с определенной скоростью. Температуры нагрева берут с диаграмм состояния сплавов. При термической обработке изменяется структура стали, что ведет к изменению ее свойств. Термическая обработка стали основана на свойстве железа изменять строение кристаллической решетки при изменении температуры, а также различной растворимости углерода в кристаллических решетках разного строения. Существуют различные виды термической обработки: закалка, отпуск, отжиг, нормализация, цементация.

Закалка стали – это процесс нагрева до температуры Тзкр+(30…50оС), выдержки и резкого охлаждения стали от температуры 723-9100С до нормальной. Закалке могут быть подвергнуты лишь стали, содержащие свыше 0,25% углерода. При резком охлаждении стали в воде при температуре 723

0С произойдет перекристаллизация гранецентрированной кристаллической решетки железа в объемно-центрированную, но структура перлита не образуется, т.к. атомы углерода, из-за быстрого повышения вязкости стали, не успевают выделяться из кристаллической решетки. Полученный пересыщенный раствор углерода в объемно-центрированной кристаллической решетке называется мартенситом. Эта структура неустойчивая, неравновесная, т.к. углерод стремится выделиться из кристаллической решетки и деформирует решетку, повышая при этом прочность и твердость стали и одновременно снижая ее пластичность и ударную вязкость.

Сталь, закаленная в воде (на мартенсит), обладает твердостью НВ=450-560 при нулевой ударной вязкости. Закалку на мартенсит производят для повышения твердости стали, применяемой в измерительных и режущих инструментах.

При более медленном охлаждении стали от состояния аустенита, например в масле, после перекристаллизации атомы углерода успевают выделиться из объемно-центрированной кристаллической решетки железа и образовать цементит с размером зерен 10

-7-10-8см. Смесь феррита с зернами цементита размером 10-7-10-8см называется троститом. Сталь со структурой тростита имеет твердость НВ=250-450. Сталь, закаленную на тростит, применяют для режущих и ударных инструментов.

Отпуск заключается в нагреве предварительно закаленной на мартенсит стали до определенной температуры, выдерживании при этой температуре и последующем охлаждении с заданной скоростью. В результате отпуска сталь приобретает более высокую пластичность и ударную вязкость, чем сталь с той же структурой, полученной закалкой. Различают низкий, средний и высокий отпуск.

Низкий отпуск производят нагревом закаленной на мартенсит стали до 180-2500С. При таком нагреве в стали, без изменения ее структуры, исчезают напряжения, возникшие при закалке на мартенсит. Отпуск, не снижая твердости, повышает ударную вязкость стали.

Средний отпуск осуществляются нагревом закаленной на мартенсит стали до температуры 250-4000С. В результате нагрева вязкость стали повышается, и избыточный углерод выделяется из объемно-центрированной кристаллической решетки железа. Происходит распад мартенсита. Сталь приобретает структуру тростита со всеми характерными для него свойствами. Особенностью структуры тростита, полученного в результате отпуска, является форма цементита в виде шаров-глобул. Сталь, в структуре которой цементит имеет глобулярную форму, обладает более высокой ударной вязкостью и пластичностью, чем сталь с цементитом, имеющим пластинчатую форму, которая образуется при закалке и медленном охлаждении стали.

Высокий отпуск заключается в нагреве закаленной на мартенсит стали до температуры 500-6500С. Образующиеся при этом зерна цементита размером 10-5-10-4см имеют форму глобул.

Полученная структура стали сорбита – отпуска обладает более высокой прочностью, твердостью и пластичностью, чем сталь, полученная при медленном охлаждении после плавки или проката. Поэтому высокий отпуск называют иногда улучшением стали и применяют при термическом упрочнении арматурной стали.

Отжиг заключается в нагреве стали до температуры, на 500С выше 724-910

0С, с последующим медленным охлаждением в печах. Существует отжиг на равновесное состояние, на мелкое зерно и т.д. Отжиг на равновесное состояние заключается в следующем: сталь с неравновесной структурой, полученной при закалке или отпуске, нагревают до температуры выше 724-9100С и затем медленно охлаждают. Все свойства, полученные сталью при закалке или отпуске, после отжига снимаются. Отжиг на мелкое зерно заключается в следующем. Структура стали, полученной литьем или после горячей обработки, например ковки, имеет крупнозернистую структуру, которая характеризуется пониженными механическими свойствами. При нагреве стали с крупным зерном до температуры 724-9100С и последующим медленным охлаждением происходит размельчение зерна.

Нормализация заключается в охлаждении стали от температуры 710-7230С на воздухе. Строительная сталь после нормализации обладает большей прочностью и ударной вязкостью, чем при медленном охлаждении. Это объясняется тем, что по границам зерен феррита не образуются сетки из хрупкого цементита.

Цементация заключается в насыщении поверхностного слоя стали углеродом и последующей закалке. Цементацию применяют для повышения твердости поверхности инструментов и деталей, к которым предъявляют высокие требования по ударной вязкости. Изделия из стали с содержанием углерода менее 0,25% нагревают до температуры 900-950

оС в среде, содержащей углерод. Наиболее современный способ цементации – газовая цементация – предусматривает нагрев детали в смеси газа метана СН4 и окиси углерода СО. При нагреве из окиси углерода и метана выделяется углерод, который проникает в поверхностный слой детали на глубину 1-2см. Содержание углерода в поверхностных слоях стали достигает 0,8-1,2%, а основная часть деталей будет содержать углерод менее 0,25%. Закаляя затем деталь, в поверхностных слоях ее получают структуру закаленной стали, а внутренние слои со структурой мягкой стали закалки не принимают. Таким образом, деталь будет иметь поверхность с повышенной твердостью и в то же время за счет высокой пластичности основного металла хорошо воспринимать ударные нагрузки.

studfiles.net

Назначение режима Термической обработки стали.

На аллотропных превращениях сплавов основана термическая обработка металлов. Термической обработкой металлов называется процесс, состоящий из нагрева металла до определенной температуры, выдержки при этой температуре и охлаждении с определенной скоростью. Температуры нагрева берут с диаграмм состояния сплавов. При термической обработке изменяется структура стали, что ведет к изменению ее свойств. Термическая обработка стали основана на свойстве железа изменять строение кристаллической решетки при изменении температуры, а также различной растворимости углерода в кристаллических решетках разного строения. Существуют различные виды термической обработки: закалка, отпуск, отжиг, нормализация, цементация.

Закалка стали – это процесс нагрева до температуры Тзкр+(30…50оС), выдержки и резкого охлаждения стали от температуры 723-9100С до нормальной. Закалке могут быть подвергнуты лишь стали, содержащие свыше 0,25% углерода. При резком охлаждении стали в воде при температуре 723

0С произойдет перекристаллизация гранецентрированной кристаллической решетки железа в объемно-центрированную, но структура перлита не образуется, т.к. атомы углерода, из-за быстрого повышения вязкости стали, не успевают выделяться из кристаллической решетки. Полученный пересыщенный раствор углерода в объемно-центрированной кристаллической решетке называется мартенситом. Эта структура неустойчивая, неравновесная, т.к. углерод стремится выделиться из кристаллической решетки и деформирует решетку, повышая при этом прочность и твердость стали и одновременно снижая ее пластичность и ударную вязкость.

Сталь, закаленная в воде (на мартенсит), обладает твердостью НВ=450-560 при нулевой ударной вязкости. Закалку на мартенсит производят для повышения твердости стали, применяемой в измерительных и режущих инструментах.

При более медленном охлаждении стали от состояния аустенита, например в масле, после перекристаллизации атомы углерода успевают выделиться из объемно-центрированной кристаллической решетки железа и образовать цементит с размером зерен 10

-7-10-8см. Смесь феррита с зернами цементита размером 10-7-10-8см называется троститом. Сталь со структурой тростита имеет твердость НВ=250-450. Сталь, закаленную на тростит, применяют для режущих и ударных инструментов.

Отпуск заключается в нагреве предварительно закаленной на мартенсит стали до определенной температуры, выдерживании при этой температуре и последующем охлаждении с заданной скоростью. В результате отпуска сталь приобретает более высокую пластичность и ударную вязкость, чем сталь с той же структурой, полученной закалкой. Различают низкий, средний и высокий отпуск.

Низкий отпуск производят нагревом закаленной на мартенсит стали до 180-2500С. При таком нагреве в стали, без изменения ее структуры, исчезают напряжения, возникшие при закалке на мартенсит. Отпуск, не снижая твердости, повышает ударную вязкость стали.

Средний отпуск осуществляются нагревом закаленной на мартенсит стали до температуры 250-4000С. В результате нагрева вязкость стали повышается, и избыточный углерод выделяется из объемно-центрированной кристаллической решетки железа. Происходит распад мартенсита. Сталь приобретает структуру тростита со всеми характерными для него свойствами. Особенностью структуры тростита, полученного в результате отпуска, является форма цементита в виде шаров-глобул. Сталь, в структуре которой цементит имеет глобулярную форму, обладает более высокой ударной вязкостью и пластичностью, чем сталь с цементитом, имеющим пластинчатую форму, которая образуется при закалке и медленном охлаждении стали.

Высокий отпуск заключается в нагреве закаленной на мартенсит стали до температуры 500-6500С. Образующиеся при этом зерна цементита размером 10-5-10-4см имеют форму глобул.

Полученная структура стали сорбита – отпуска обладает более высокой прочностью, твердостью и пластичностью, чем сталь, полученная при медленном охлаждении после плавки или проката. Поэтому высокий отпуск называют иногда улучшением стали и применяют при термическом упрочнении арматурной стали.

Отжиг заключается в нагреве стали до температуры, на 500С выше 724-9100С, с последующим медленным охлаждением в печах. Существует отжиг на равновесное состояние, на мелкое зерно и т.д. Отжиг на равновесное состояние заключается в следующем: сталь с неравновесной структурой, полученной при закалке или отпуске, нагревают до температуры выше 724-910

0С и затем медленно охлаждают. Все свойства, полученные сталью при закалке или отпуске, после отжига снимаются. Отжиг на мелкое зерно заключается в следующем. Структура стали, полученной литьем или после горячей обработки, например ковки, имеет крупнозернистую структуру, которая характеризуется пониженными механическими свойствами. При нагреве стали с крупным зерном до температуры 724-9100С и последующим медленным охлаждением происходит размельчение зерна.

Нормализация заключается в охлаждении стали от температуры 710-7230С на воздухе. Строительная сталь после нормализации обладает большей прочностью и ударной вязкостью, чем при медленном охлаждении. Это объясняется тем, что по границам зерен феррита не образуются сетки из хрупкого цементита.

Цементация заключается в насыщении поверхностного слоя стали углеродом и последующей закалке. Цементацию применяют для повышения твердости поверхности инструментов и деталей, к которым предъявляют высокие требования по ударной вязкости. Изделия из стали с содержанием углерода менее 0,25% нагревают до температуры 900-950

оС в среде, содержащей углерод. Наиболее современный способ цементации – газовая цементация – предусматривает нагрев детали в смеси газа метана СН4 и окиси углерода СО. При нагреве из окиси углерода и метана выделяется углерод, который проникает в поверхностный слой детали на глубину 1-2см. Содержание углерода в поверхностных слоях стали достигает 0,8-1,2%, а основная часть деталей будет содержать углерод менее 0,25%. Закаляя затем деталь, в поверхностных слоях ее получают структуру закаленной стали, а внутренние слои со структурой мягкой стали закалки не принимают. Таким образом, деталь будет иметь поверхность с повышенной твердостью и в то же время за счет высокой пластичности основного металла хорошо воспринимать ударные нагрузки.

studfiles.net

Термическая обработка сплавов. Виды термообработки

Термообработка сплавов является неотъемлемой частью производственного процесса чёрной и цветной металлургии. В результате такой процедуры металлы способны изменить свои характеристики до необходимых значений. В данной статье мы рассмотрим основные виды термообработки, применяемые в современной промышленности.

Сущность термической обработки

В процессе производства полуфабрикаты, металлические детали подвергаются термической обработке для придания им нужных свойств (прочности, устойчивость к коррозии и износу и т. д.). Термическая обработка сплавов – это совокупность искусственно созданных процессов, в ходе которых в сплавах под действием высоких температур происходят структурные и физико-механические изменения, но сохраняется химический состав вещества.

Назначение термообработки

Металлические изделия, которые используются ежедневно в любых отраслях народного хозяйства, должны отвечать высоким требованиям устойчивости к износу. Металл, как сырьё, нуждается в усилении нужных эксплуатационных свойств, которых можно добиться воздействием на него высокими температурами. Термическая обработка сплавов высокими температурами изменяет изначальную структуру вещества, перераспределяет составляющие его компоненты, преобразует размер и форму кристаллов. Всё это приводит к минимизации внутреннего напряжения металла и таким образом повышает его физико-механические свойства.

Виды термической обработки

Термообработка металлических сплавов сводится к трём незатейливым процессам: нагреву сырья (полуфабриката) до нужной температуры, выдерживанию его в заданных условиях необходимое время и быстрому охлаждению. В современном производстве используется несколько видов термообработки, отличающихся между собой некоторыми технологическими особенностями, но алгоритм процесса в общем везде остаётся одинаковым.

По способу совершения термическая обработка бывает следующих видов:

  • Термическая (закалка, отпуск, отжиг, старение, криогенная обработка).
  • Термо-механическая включает обработку высокими температурами в сочетании с механическим воздействием на сплав.
  • Химико-термическая подразумевает термическую обработку металла с последующим обогащением поверхности изделия химическими элементами (углеродом, азотом, хромом и др.).

Отжиг

Отжиг – производственный процесс, при котором металлы и сплавы подвергаются нагреванию до заданного значения температуры, а затем вместе с печью, в которой происходила процедура, очень медленно естественным путём остывают. В результате отжига удаётся устранить неоднородности химического состава вещества, снять внутренне напряжение, добиться зернистой структуры и улучшить её как таковую, а также снизить твёрдость сплава для облегчения его дальнейшей переработки. Различают два вида отжига: отжиг первого и второго рода.

Отжиг первого рода подразумевает термическую обработку, в результате которой изменения фазового состояния сплава незначительны или отсутствуют вовсе. У него также есть свои разновидности: гомогенизированный – температура отжига составляет 1100-1200 , в таких условиях сплавы выдерживают в течение 8-15 часов, рекристаллизационный (при t 100-200 ) отжиг применяется для клёпаной стали, то есть деформированной уже будучи холодной.

Отжиг второго рода приводит к значимым фазовым изменениям сплава. Он также имеет несколько разновидностей:

  • Полный отжиг – нагрев сплава на 30-50 выше критической температурной отметки, характерной для данного вещества и охлаждения с указанной скоростью (200 /час – углеродистые стали, 100 /час и 50 /час – низколегированные и высоколегированные стали соответственно).
  • Неполный – нагрев до критической точки и медленное охлаждение.
  • Диффузионный – температура отжига 1100-1200.
  • Изотермический – нагрев происходит так же, как при полном отжиге, однако после этого проводят быстрое охлаждение до температуры несколько ниже критической и оставляют остывать на воздухе.
  • Нормализованный – полный отжиг с последующим остыванием металла на воздухе, а не в печи.

Закалка

Закалка – это манипуляция со сплавом, целью которой является достижение мартенситного превращения металл, обеспечивающее понижение пластичности изделия и повышение его прочности. Закалка, равно как и отжиг, предполагает нагрев металла в печи выше критической температуры до температуры закалки, отличие состоит в большей скорости охлаждения, которое происходит в ванне с жидкостью. В зависимости от металла и даже его формы применяют разные виды закалки:

  • Закалка в одной среде, то есть в одной ванне с жидкостью (вода – для крупных деталей, масло – для мелких деталей).
  • Прерывистая закалка – охлаждение проходит два последовательных этапа: сперва в жидкости (более резком охладителе) до температуры приблизительно 300 , затем на воздухе либо в другой ванне с маслом.
  • Ступенчатая – по достижению изделием температуры закалки, его охлаждают какое-то время в расплавленных солях с последующим охлаждением на воздухе.
  • Изотермическая – по технологии очень похожа на ступенчатую закалку, отличается только временем выдержки изделия при температуре мартенситного превращения.
  • Закалка с самоотпуском отличается от других видов тем, что нагретый метал охлаждают не полностью, оставив в середине детали тёплый участок. В результате такой манипуляции изделие приобретает свойства повышенной прочности на поверхности и высокой вязкости в середине. Такое сочетание крайне необходимо для ударных инструментов (молотки, зубила и др.)

Отпуск

Отпуск – это завершающий этап термической обработки сплавов, определяющий конечную структуру металла. Основная цель отпуска является снижение хрупкости металлического изделия. Принцип заключается в нагреве детали до температуры ниже критической и охлаждении. Поскольку режимы термической обработки и скорость охлаждения металлических изделий различного назначения могут отличаться, то выделяют три вида отпуска:

  • Высокий - температура нагрева от 350-600 до значения ниже критической. Данная процедура чаще всего используется для металлических конструкций.
  • Средний – термообработка при t 350-500, распространена для пружинных изделий и рессор.
  • Низкий - температура нагрева изделия не выше 250 позволяет достичь высокой прочности и износостойкости деталей.

Старение

Старение – это термическая обработка сплавов, обуславливающая процессы распада пересыщенного металла после закалки. Результатом старения является увеличение пределов твёрдости, текучести и прочности готового изделия. Старению подвергаются не только чугун, но и цветные металлы, в том числе и легко деформируемые алюминиевые сплавы. Если металлическое изделие, подвергнутое закалке выдержать при нормальной температуре, в нём происходят процессы, приводящие к самопроизвольному увеличению прочности и уменьшению пластичности. Это называется естественное старение металла. Если эту же манипуляцию проделать в условиях повышенной температуры, она будет называться искусственным старением.

Криогенная обработка

Изменения структуры сплавов, а значит, и их свойств можно добиться не только высокими, но и крайне низкими температурами. Термическая обработка сплавов при t ниже нуля получила название криогенной. Данная технология широко используется в самых разных отраслях народного хозяйства в качестве дополнения к термообработкам с высокими температурами, поскольку позволяет существенно снизить расходы на процессы термического упрочнение изделий.

Криогенная обработка сплавов проводится при t -196 в специальном криогенном процессоре. Данная технология позволяет существенно увеличить срок службы обработанной детали и антикоррозионные свойства, а также исключить необходимость повторных обработок.

Термомеханическая обработка

Новый метод обработки сплавов сочетает в себе обработку металлов при высоких температурах с механической деформацией изделий, находящихся в пластичном состоянии. Термомеханическая обработка (ТМО) по способу совершения может быть трёх видов:

  • Низкотемпературная ТМО состоит из двух этапов: пластической деформации с последующим закалкой и отпуском детали. Главное отличие от других видов ТМО – температура нагрева до аустенитного состояния сплава.
  • Высокотемпературная ТМО подразумевает нагрев сплава до мартенситного состояния в сочетании с пластической деформацией.
  • Предварительная – деформация производится при t 20 с последующей закалкой и отпуском металла.

Химико-термическая обработка

Изменить структуру и свойства сплавов возможно и с помощью химико-термической обработки, которая сочетает в себе термическое и химическое воздействие на металлы. Конечной целью данной процедуры помимо придания повышенной прочности, твёрдости, износостойкости изделия является и придание детали кислотоустойчивости и огнестойкости. К данной группе относятся следующие виды термообработки:

  • Цементация проводится для придания поверхности изделия дополнительной прочности. Суть процедуры заключается в насыщении металла углеродом. Цементация может быть выполнена двумя способами: твёрдая и газовая цементация. В первом случае обрабатываемый материал вместе с углём и его активатором помещают в печь и нагревают до определённой температуры с последующей выдержкой его в данной среде и охлаждением. В случае с газовой цементацией изделие нагревается в печи до 900 под непрерывной струёй углеродосодержащего газа.
  • Азотирование – это химико-термическая обработка металлических изделий путём насыщения их поверхности в азотных средах. Результатом данной процедуры становится повышение предела прочности детали и увеличение его коррозионной устойчивости.
  • Цианирование – насыщение металла одновременно и азотом и углеродом. Среда может быть жидкой (расплавленные углерод- и азотсодержащие соли) и газообразной.
  • Диффузионная металлизация представляет собой современный метод придания металлическим изделиям жаростойкости, кислотоустойчивости и износостойкости. Поверхность таких сплавов насыщают различными металлами (алюминий, хром) и металлоидами (кремний, бор).

Особенности термической обработки чугуна

Литейные сплавы чугуна повергаются термической обработке по несколько иной технологии, чем сплавы цветных металлов. Чугун (серый, высокопрочный, легированный) проходит следующие виды термообработки: отжиг (при t 500-650 ­), нормализация, закалка (непрерывная, изотермическая, поверхностная), отпуск, азотирование (серые чугуны), алитирование (перлитные чугуны), хромирование. Все эти процедуры в результате значительно улучшают свойства конечных изделий чугуна: увеличивают эксплуатационный срок, исключают вероятность возникновения трещин при использовании изделия, повышают прочность и жаростойкость чугуна.

Термообработка цветных сплавов

Цветные металлы и сплавы обладают отличными друг от друга свойствами, поэтому обрабатываются разными методами. Так, медные сплавы для выравнивания химического состава подвергаются рекристаллизационному отжигу. Для латуни предусмотрена технология низкотемпературного отжига (200-300 ), поскольку этот сплав склонен при влажной среде к самопроизвольному растрескиванию. Бронза подвергается гомогенизации и отжигу при t до 550 . Магний отжигают, закаляют и подвергают искусственному старению (естественное старение для закалённого магния не происходит). Алюминий, равно как и магний, подвергается трём методам термообработки: отжигу, закалке и старению, после которых деформируемые алюминиевые сплавы значительно повышают свою прочность. Обработка титановых сплавов включает: рекристаллизационный отжиг, закалку, старение, азотирование и цементацию.

Резюме

Термическая обработка металлов и сплавов является основным технологическим процессом, как в чёрной, так и в цветной металлургии. Современные технологии располагают множеством методов термообработки, позволяющих добиться нужных свойств каждого вида обрабатываемых сплавов. Для каждого металла свойственна своя критическая температура, а это значит, что термообработка должна производиться с учётом структурных и физико-химических особенностей вещества. В конечном итоге это позволит не только достичь нужных результатов, но и в значительной степени рационализировать производственные процессы.

fb.ru

Назначение и виды термической обработки — Режущий инструмент

Назначение и виды термической обработки

Термическая обработка формирует физико-механические свойства инструмента: теплостойкость, прочность, твердость, износостойкость. Для изготовления инструмента используют такие виды термической обработки, как отжиг, закалка, отпуск, химико-термическая обработка. При неправильно выбранных или при нарушении заданных режимов термической обработки инструмент может оказаться вообще неработоспособным. Поэтому высокая культура термической обработки, особенно закалки и отпуска, предопределяет высокое качество инструмента.

Отжиг.

Отжиг осуществляют для снятия внутренних напряжений и понижения твердости после горячей обработки давлением (прокатка, ковка, штамповка) и сварки заготовок. Перед повторной закалкой инструментов, если первичная выполнена неправильно, инструменты также отжигают. Для этого заготовку или инструмент нагревают до температуры 830—850 °С, выдерживают при этой температуре 3—4 часа, а затем охлаждают с различными скоростями. Приблизительный режим отжига быстрорежущей стали представлен диаграммой рис. 3.18. Более предпочтительный — изотермический отжиг по диаграмме рис. 3.19.

Повышение температуры отжига и увеличение выдержки при этой температуре способствуют более полному растворению карбидов в аустените. После закалки и отпуска получается более легированный мартенсит, что повышает красностойкость инструмента. Однако увеличивается опасность окисления и обезуглероживания поверхностных слоев заготовки или инструмента. Поэтому обычно стремятся сокращать время нагрева стали при высоких температурах.   Для повышения пластичности быстрорежущей стали перед холодной обработкой давлением (волочение, редуцирование, ротационное обжатие, прокат тонких листов, рубка, штамповка) рекомендуют термическую обработку, занимающую промежуточное место между отжигом и неполной закалкой. Сталь нагревают до 720—780 °С, выдерживают при этой температуре один час, после чего охлаждают в масле или на воздухе.     Закалка.

Цель закалки — увеличить твердость инструмента, превратив исходную перлитную структуру быстрорежущей стали в мартенсит. Для этого необходимо исходный перлит превратить в аустенит, нагревая сталь до температуры аустенитных превращений. Затем сталь быстро охлаждают в масле до температуры мартенситных превращений, чтобы аустенит не превратился в промежуточные структуры. После этого охлаждение должно быть медленным, чтобы обеспечить более полный распад аустенита.

Нагрев. Быстрорежущая сталь обладает пониженной теплопроводностью. Поэтому нагрев до закалочной температуры 1200—1300 °С необходимо осуществлять медленно, для того чтобы избежать появления закалочных трещин — следствия высоких внутренних растягивающих напряжений в сердцевине инструмента от разности объемов горячих поверхностных слоев инструмента и относительно холодной сердцевины. Инструмент сначала медленно подпревают до температуры 780—840 °С, а затем быстро нагревают до окончательной температуры. Быстрый нагрев уменьшает рост зерна стали и обезуглероживание поверхностных слоев инструмента. Крупногабаритные и фасонные инструменты подогревают дважды, сначала до 400—500 °С, а затем до 780—840 °С.

Температура окончательного нагрева, продолжительность подогрева и окончательного нагрева зависят от целого ряда факторов:

а)   требуемых физико-механических свойств инструмента;

б)   химсостава стали;

в)    теплоемкости и теплопроводности стали,

г)   продолжительности фазовых превращений и процессов растворения карбидов в аустените;

д)   физических свойств нагревающей среды;

е)    конфигурации и размера нагреваемого инструмента.

Поэтому режим термической обработки назначают и экспериментально проверяют не только для конкретного инструмента из стали данной марки, но и для каждого номера плавки стали этой же марки, и даже для каждого проката стали той же плавки. Установленный таким образом режим нагрева строго контролируется и поддерживается. Например, отклонение температуры нагрева допускается в пределах ± 10°С. Время выдержки при окончательном нагреве быстрорежущей стали в хлорбариевых ваннах 6—7 с на каждый миллиметр сечения инструмента, а в печах с газовой средой 10—12 с. Температура окончательного нагрева, в зависимости от марки стали, колеблется в пределах 1200—1300 °С. Уточненные значения температуры и времени выдержки при нагреве под закалку можно найти в специальной литературе, например, [14; 170]. Инженеру-механику важно знать, что повышение температуры окончательного нагрева и увеличение времени выдержки при этой температуре способствует более полному растворению карбидов. В результате после закалки и отпуска получаем более легированный мартенсит, что повышает твердость и теплостойкость инструмента. Однако при этом увеличивается опасность окисления и обезуглероживания поверхности инструмента, структура металла становится крупнозернистой, появляется ледобу- ритная сетка, что понижает прочность инструмента. Кроме того, уменьшение содержания свободных карбидов в стали вследствие их более полного растворения понижает износостойкость инструмента. Поэтому повышенные температуры нагрева и увеличенные выдержки можно рекомендовать лишь для простых инструментов, работающих с высокими скоростями, например, для резцов общего назначения. Дня сложнорежущих и мелкопрофильных инструментов, протяжек, зуборезных, резьбонарезных и других подобных инструментов такой нагрев неприемлем.

Охлаждение. Выбор метода охлаждения и охлаждающих сред зависит от состава стали, сложности инструмента и требуемых свойств.

Охлаждение до температуры мартенситного превращения следует вести быстро, чтобы аустенит не превратился в промежуточные структуры. Для каждой марки стали существует своя постоянная скорость охлаждения, а стало быть, и своя охлаждающая среда.

Охлаждение в интервале температур мартенситного превращения (300—200 °С) следует вести более медленно, так как при быстрых структурных превращениях объем металла изменяется быстро, что может явиться причиной появления трещин. Поэтому для разных марок сталей и форм инструмента чаще всего применяется комбинированное охлаждение: сначала в одной среде, а затем в другой.

Охлаждающими средами могут быть: вода, масло, расплавы и растворы солей, щелочей, воздух.

Инструменты из углеродистой стали сложной конфигурации сначала охлаждают в воде до температуры 300—250 °С, а затем в масле. Простые инструменты охлаждают только в воде.

Быстрорежущие инструменты простой формы охлаждают в масле, а небольшого поперечника (3—5 мм) даже на спокойном воздухе или под вентилятором.

Инструменты сложной формы, фасонные, подвергают ступенчатой закалке, т.е. комбинированному охлаждению, с целью снижения деформаций и возможности появления трещин. Сначала инструмент охлаждают в расплавленной калиевой селитре (хуже — в натриевой, разъедает инструмент) до температуры 500—450 °С с выдержкой при этой температуре 2—5 мин, в зависимости от сечения инструмента. Это область температур наибольшей устойчивости аустенита. Затем инструмент охлаждают на воздухе.

Для инструментов особо сложной формы, а также крупных размеров и большой длины рекомендуется изотермическая закачка, значительно уменьшающая внутренние напряжения и деформацию. При этом инструмент сначала охлаждают в соли с температурой 250—300 °С, выдерживают 40—60 мин., а затем на воздухе. Если температура соли 200—250 °С, то выдержка при этой темперагуре 30—40 мин, дальнейшее охлаждение на воздухе. Охлаждающая среда — смесь едких щелочей NaOH и КОН в различной пропорции в зависимости от требуемой температуры. Можно использовать смесь селитр KN03 (56 %) и NaN03 (44 %).

Светлая закалка. Нагрев инструмента обычный, в соляных ваннах, а охлаждение в растворе щелочей: 80 % КОН + 20 % NaOH + + 6 частей воды на 100 частей щелочей. Чтобы поверхность инструмента не была пятнистой, перед нагревом его обезжиривают в горячем растворе следующего состава: на 1 л воды 250 г NaOH и 15 г Na3PG4. Затем инструмент высушивают при температуре 400—500 °С и только после этого переносят в ванну для нагрева под закалку, так как попадание влаги в соляную ванну может вызвать взрыв и выплескивание солей. После охлаждения инструмент промывают в горячей воде для удаления солей и высушивают или сразу же отпускают. Такая промывка с просушкой предохраняет инструмент от коррозии.

 

Отпуск.

Нормальный отпуск. После закалки быстрорежущей стали в ее структуре остается около 20 % аустенита. В результате — пониженная твердость инструмента. Кроме того, во время работы инструмента под воздействием температуры резания аустенит как бы самопроизвольно распадается, превращаясь в мартенсит. Казалось бы, это неплохо. Но беда в том, что при таких структурных превращениях изменяется объем стали, причем только в отдельных частях инструмента. Возникают внутренние напряжения, которые, складываясь с напряжениями от действия сил резания, могут привести к поломке инструмента. Таким образом, прочность инструмента понижена. Понижена также и износостойкость, так как аустенит мягкий и быстро размазывается по детали. Поэтому оставшийся после закалки аустенит необходимо перевести в мартенсит. Этой цели служит отпуск. Закаленные инструменты загружают в печь, нагревают до 525—575 °С, выдерживают 1,0—1,5 часа и выгружают для остывания на воздухе. Так повторяют два-три раза, т.е. делают двух-, трехкратный отпуск. В это время происходит превращение остаточного аустенита в мартенсит и выделение мелкодисперсных, устойчивых против коагуляции карбидов, что вызывает дисперсионное твердение, называемое вторичной твердостью. В результате остается 2—3 % аустенита, повышается твердость инструмента на 2—3 единицы HRC3. Во время последнего отпуска окончательно снимаются внутренние напряжения, что является второй задачей отпуска. Первая задача — перевод остаточного аустенита в мартенсит.

Обработка холодом. Сразу после закалки инструмент можно обработать холодом в жидком азоте (-197 °С) или в твердой углекислоте, растворенной в бензине (-80… -100 °С). После такой обработки в стали практически не остается аустенита и можно обойтись только одним отпуском для снятия внутренних напряжений. Кроме того, обработка в жидком азоте даже готового инструмента повышает его стойкость тем значительнее, чем больше нарушен режим термообработки инструмента.

Высокий отпуск. Задние поверхности многих инструментов после закалки и отпуска не шлифуют, как, например, у стандартных фасонных фрез, резьбонарезных гребенчатых фрез, резьбонарезных плашек. Не шлифуют фасонные поверхности инструментов, если в инструментальном цехе конкретного завода по той или иной причине сделать это невозможно. Тем не менее шероховатость таких поверхностей должна быть минимальной, и ее надо обеспечить лезвийной обработкой. Для этой цели делают неполную закалку инструмента с последующим высоким отпуском, нагрев до 920—950 °С, охлаждение на воздухе или в масле и высокий отпуск при температуре 700—720 °С. После отпуска сталь имеет твердость 260—270 НВ, несколько труднее обрабатывается, но обеспечивает меньшую шероховатость обработанной поверхности.

Такой закалке с высоким отпуском подвергают также протяжки перед чистовой лезвийной обработкой, хотя после последующей нормальной закалки и отпуска их шлифуют.

Высокий отпуск делают лапкам конусов инструментов и ушкам ножовочных полотен для понижения их твердости.

Низкий отпуск. Его проводят при температурах 200—250 °С для ответственных режущих инструментов, например, внутренних протяжек, чтобы исключить их поводку во время эксплуатации под действием остаточных внутренних напряжений. Такому отпуску подвергают уже готовые инструменты или инструменты перед чистовым шлифованием.

Смотрите также

rezh-instrument.ru

Технология термообработки штампов горячего деформирования

Штампы отличаются большим разнообразием.

Штамповый инструмент для горячего деформирования работает в условиях одновременного циклического воздействия высоких температур и высоких давлений при динамическом характере нагружения. В наиболее тяжелых условиях работает штамповый инструмент при прессовании, высадке, точной штамповке. Для этих условий характерны: значительные нагрузки, уровни которых приближаются к пределам текучести штамповых сталей; высокие температуры нагрева; циклическое воздействие напряжений, определяемые условиями нагрева и охлаждения штампов; химическим взаимодействием (в процессе прессования и жидкой штамповки).

Прессовые инструменты работают при сравнительно медленном нагружении, молотовые штампы - в условиях ударного нагружения. При высокоскоростной штамповке инструмент работает при высоких удельных давлениях в условиях относительно кратковременного теплового и силового воздействия.

Стали должны обладать высокой твердостью, износостойкостью, прочностью, вязкостью (чтобы воспринимать ударные нагрузки), сопротивлением пластическим деформациям, теплостойкостью, сопротивлением термической усталости (разгаростойкостью), окалиностойкостью и сопротивлением коррозии, технологическими свойствами (минимальной деформируемостью при термообработке, устойчивостью против обезуглераживания, удовлетворительной обрабатываемостью резанием и шлифуемостью).

Для изготовления молотовых штампов применяют хромоникелевые среднеуглеродистые стали 5ХНМ, 5ХНВ, 4ХСМФ. Вольфрам и молибден добавляют для снижения склонности к отпускной хрупкости. После термической обработки, включающей закалку с температуры 760…820 oС и отпуск при 460…540 oС, сталь имеет структуру – сорбит или троостит и сорбит отпуска. Твердость 40…45 HRC.

Штампы горячего прессования работают в более тяжелых условиях. Для их изготовления применяются стали повышенной теплостойкости. Сталь 3Х2В8Ф сохраняет теплостойкость до 650 oС, но наличие карбидов вольфрама снижает вязкость. Сталь 4Х5В2ФС имеет высокую вязкость. Повышенное содержание хрома и кремния значительно увеличивает окалиностойкость стали.

Процесс изготовления штампового инструмента включает предварительную термообработку, механическую обработку, окончательную обработку, зачистку гравюры и шлифование по опорным и установочным поверхностям.

Предварительная термообработка предусматривает снижение твердости поковок для улучшения их обрабатываемости резанием, измельчение зерна, снижение остаточных напряжений и подготовку структуры к последующей закалке. Оптимальная структура- зернистый перлит.

Для штампов средних и крупных размеров и сложной формы рекомендуется полный или изотермический отжиг (для получения однородной структуры). При расположении поковок в один ряд выдержка при нагреве определяется из расчета :

а) при нагреве до температуры отжига 1ч+ (1,2-1,5) мин на 1 мм толщины поковки;

б) при изотермической выдержке 1ч+ (1,5-2,0) мин на 1 мм толщины поковки.

Металл из печи выгружается при температуре не более 400 0С.

Для штампов малых размеров (для инструмента простой формы, имеющих после ковки бейнитную или мартенситную структуру), целесообразно выполнять высокий отпуск при температурах, близких к Ас1.

Для предварительной термообработки применяют универсальные камерные или проходные электрические и газовые печи с автоматическим регулированием температуры.

Для поковок проводится следующий контроль качества: внешний осмотр (наличие трещин, волосовин, закатов, плен), внутренние дефекты (УЗИ- контроль), глубина обезуглероженного слоя, макроструктура (по излому). твердость (НВ), микроструктура, карбидная неоднородность.

Окончательная термообработка

Цель окончательной термообработки- получение оптимального сочетания твердости, прочности, износостойкости (обеспечивающих высокое сопротивление смятию и истиранию гравюры штампа), вязкости ( для предотвращения преждевременного аварийного разрушения штампа) и теплостойкости.

Наиболее распространенный технологический процесс для штампов горячего деформирования- закалка и отпуск.

Нагрев при закалке крупных штампов (размером более 400 мм) для предотвращения трещин и уменьшения коробления выполняют с одно- или двуступенчатым подогревом. Более мелкие штампы можно загружать в печь, нагретую до температуры закалки.

Продолжительность нагрева устанавливают из необходимости прогрева штампов и достаточной насыщенности аустенита углеродом и легирующими элементами. Недостаточная выдержка не обеспечивает требуемой прокаливаемости и теплостойкости, излишне длительная- вызывает рост зерна и дополнительное обезуглероживание. При посадке в печь с температурой 500-650 0С длительность нагрева молотовых штампов под закалку может быть ориентировочно определена из расчета 1ч. на 25 мм наименьшего размера сечения штампа с последующей выдержкой около 20% от времени нагрева.

При посадке штампов в печь, нагретую до температуры закалки, регламентируют время выдержки штампов, начиная с момента выхода печи на заданную температуру.

Охлаждение

Основной закалочной средой для штампов является минеральное масло с температурой 40-70 0С.

Штампы с поддонами выгружают из печи, снимают с поддона, очищают поверхность от карбюризатора, закрепляют штампы на подъемном устройстве и погружают в масло, сначала покачивая, а затем оставляя висеть в таком положении, чтобы гравюра омылась потом циркулирующего масла. Общее время выдержки штампа в закалочном баке составляет 13-17 мин на 100 мм наименьшего размера штампа.

Для исключения дополнительного отпуска хвостовика и повышения сопротивления штампа хрупкому разрушению иногда применяют одностороннюю закалку с помощью короба, который надевают на горячий штамп сразу или после подстуживания до 700-750 0С.

Для крупных штампов иногда применяют закалку водо-воздушной смесью, с предварительным охлаждением в воде, а затем в масле. Во всех случаях штамп извлекается из закалочного бака или приспособления при температурах 150-200 0С.

Штампы из сталей 5ХНМ, 5ХНВ подвергают изотермической закалке в расплаве соли в течение 2-2,5 ч, затем охлаждают на воздухе. После изотермической закалки отпуск не требуется.

Отпуск

Отпуск штампов проводят сразу после завершения закалки (не позднее чем через 2ч после закалки). Чаще применяют двойной отпуск: сначала штамп опускают до получения заданной твердости гравюры, затем в специальных печах дополнительно опускают хвостовик при более высокой температуре. Крупные штампы горячей штамповки и пресс-формы сложной конфигурации отпускают на твердость HRC 45-46.

Для штампов, выходящих из строя из-за истирания используют дифференциальный отпуск. Нагрев проводят в специальных печах с приспособлениями для подачи сжатого воздуха. За счет обдувки воздухом в течение всего процесса отпуска температура нагрева гравюры поддерживается более низкой, чем хвостовика и, таким образом, получается различная твердость по сечению штампа, дополнительный отпуск не проводится.

Время выдержки при отпуске обычно принимают из расчета 1 мин на 1 мм наименьшего размера сечения штампа. К рассчитанному времени добавляют еще два часа. Охлаждение после отпуска- на воздухе.

Контроль качества термообработки

После термообработки визуально проверяют на штампе отсутствие трещин, вмятин и окалины, измеряют твердость гравюры и хвостовика. Твердость проверяют на специально зачищенных участках с помощью стационарного прибора Бринелля, оснащенного рольгангом и подъемным столом с червячным механизмом.

Для неответственных штампов твердость может быть оценена по методу Польди с помощью переносных приборов (нагружение пружиной или ударом молотка, отсчет твердости- по эталону) или по методу Шора (по величине отскока индентора). Применяют переносные приборы ТПП-2 для измерения твердости по методу Виккерса, имеющие магнитный захват.

ХТО штампов горячего деформирования

Применяя азотирование, цианирование, диффузионное хромирование, можно добиться повышения стойкости штампов горячего деформирования, выходящих из строя вследствие износа или разгара.

Азотирование штамповых сталей выполняют в качестве окончательной операции (после отпуска и шлифования) или перед закалкой. Азотирование, применяемое как окончательная операция, в 1,5-2 раза увеличивает стойкость пресс-форм для литья под давлением, а также штампов, подвергающихся резкому охлаждению. Толщину слоя и режимы азотирования выбирают в зависимости от исходного уровня пластичности ударной вязкости стали.

Для сокращения длительности процесса применяют двухступенчатый нагрев режим азотирования: сначала при 510-530 0С в течение 8-10ч, а затем на второй ступени повышают температуру до 550-570 0С (4-6ч).

Азотирование перед закалкой применимо для сталей с малыми объемными изменениями, нагреваемыми под закалку до температуры не выше 1000 0С.

Низкотемпературное цианирование применимо после закалки и отпуска для теплостойких штамповых сталей горячего деформирования (4Х5МФС, 4Х4ВМФС и т.д.) и его проводят при 550-580 0С с получением слоя толщиной 0,10-0,20 мм.

Возможно применение жидкостного цианирования (выдержка 10-30 мин), газового (выдержка 1,5-3 ч) и наименее медленного твердого цианирования в смеси 60-70% древесного угля и 30-40% желтой кровяной соли (выдержка 4-5ч).

Диффузионное хромирование применимо для теплостойких штамповых сталей, температуры аустенитизации которых совпадают с температурами хромирования (1000-1100 0С). Выполняется в порошкообразных смесях из 70-75% низкоуглеродистого феррохрома (или хрома), 20-27% окиси алюминия и 1-3% хлористого аммония в течение 4-10 ч. Толщина хромированного слоя составляет 0,01-0,03 мм, твердость на поверхности HV 1200-1800.

studfiles.net

Понятие о термической обработке металлов, ее назначение. Основные виды термической обработки стали

Физико-механические свойства стали и чугуна можно улучшить, изменив химический состав этих сплавов или их струк­туру.

Изменение химического состава железоуглеродистых сплавов за счет введения легирующих химических требует использования дорогих и редких элементов. Экономически выгоднее улучшать в определенных пределах физико-механические свойства стали и чугуна за счет изменения их структуры. Тогда можно будет для тех же целей применять сплавы более простого состава. Достигается это термической обработкой.

При формировании свойств готового изделия первоочередную роль играет термическая обработка. В принципе, правильно подобранной и точно выполненной термической обработкой можно добиться высокого комплекса свойств даже для изделий из такой стали, которая содержит малые количества недорогих легирующих присадок.

Термическая обработка представляет собой совокупность операций нагрева, выдержки и охлаждения, выполняемых в определенной последовательности при определенных режимах, с целью изменения внутреннего строения сплава и получения нужных свойств.

При термической обработке перекристаллизация сплавов проис­ходит в твердом состоянии.

Основные виды термической обработки стали и чугуна: отжиг, нормализация, закалка и отпуск.

Отжиг – нагрев стали до заданной температуры, выдержка при такой температуре до полного прогрева металла и последующее очень медленное охлаждение (вместе с охлаждаемой печью).

Отжиг стали производится в тех случаях, когда необходимо уменьшить твердость, повысить пластичность и вязкость, ликвидировать последствия перегрева, получить равновесное состояние, улучшить обрабатываемость при резании.

Отжиг, снижая твердость и повышая пластичность и вязкость за счет получения равновесной мелкозернистой структуры, позволяет:

  • улучшить обрабатываемость заготовок давлением и резанием;
  • исправить структуру сварных швов, перегретой при обработке давлением и литье стали;
  • подготовить структуру к последующей термической обработке.

Разновидностями отжига сталей является нормализация.



Нормализация - вид термической обработки стали, за­ключающийся в нагреве до определённой температуры, вы­держке и охлаждении на спокойном воздухе.

Нормализация применяется в тех случаях, когда необходимо получить мелкозернистую однородную структуру с более высокой твердостью и прочностью, но с несколько меньшей пластичностью, чем после отжига.

В результате нормализации уменьшаются внутренние напряжения, устраняются пороки, полученные в процессе предшествующей обработки.

Основная цель нормализации – повышение механических свойств стали.

Нормализация более производительный и экономичный процесс, чем отжиг.

Закалка - нагрев стали до заданной температуры, выдержка при достигнутой температуре до полного прогрева металла и последующее очень быстрое его охлаждение (в воде, масле, солевых растворах).

Основной целью закалки инструментальных сталей является придание им высокой твёрдости. Детали машин закаливают для повышения их упругости и прочности, твёрдости и износоустойчивости.

Стали, подвергающиеся закалке, характеризуются закаливаемостью и прокаливаемостью.

Закаливаемость – способность стали приобретать высокую твердость при закалке. Закаливаемость определяется содержанием углерода. Стали с содержанием углерода менее 0,20 % не закаливаются.

Прокаливаемость – способность получать закаленный слой, обладающей высокой твердостью, на определенную глубину.

В тех случаях, когда требуются высокая твердость и повышенная износостойкость поверхности при сохранении вязкой и достаточно прочной сердцевины изделия, применяется поверхностная закалка, то есть закалка не на полную глубину. Выбор оптимальной толщины упрочняемого слоя определяется условиями работы детали и составляет от 1,5 до 15 мм (и выше). В практике наиболее часто используют поверхностную закалку с индукционным нагревом током высокой частоты (ТВЧ).

В результате закалки сталь становится хрупкой, в ней появляются значительные внутренние напряжения. С целью снижения закалочной хрупкости и уменьшения внутренних напряжений после закалки производится отпуск.

Отпуск - термическая обработка, включающая нагрев закаленной стали до температуры ниже критических точек, выдержка при этой температуре и охлаждение.

Отпуск является окончательной термической обработкой.

Целью отпуска является повышение вязкости и пластичности, снижение твердости и уменьшение внутренних напряжений закаленных сталей.

С повышением температуры нагрева прочность обычно снижается, а пластичность и вязкость растут. Температуру отпуска выбирают, исходя из требуемой прочности конкретной детали.

Различают три вида отпуска:

1) Низкий отпуск с температурой нагрева Тн = 150…300oС.

В результате его проведения частично снимаются закалочные напряжения – проводят для инструментальных сталей.

2) Средний отпуск с температурой нагрева Тн = 300…450oС.

Получают структуру, сочетающую высокую твердость с хорошей упругостью и вязкостью.

Используется для изделий типа пружин, рессор.

3) Высокий отпуск с температурой нагрева Тн = 450…650oС..

Получают структуру, сочетающую достаточно высокую твердость и повышенную ударную вязкость (оптимальное сочетание свойств). Используется для деталей машин, испытывающих ударные нагрузки. Комплекс термической обработки, включающий закалку и высокий отпуск, называется улучшением.

Конструкционные стали подвергают закалке и отпуску для повышения прочности и твердости, получения высокой пластичности, вязкости и высокой износостойкости, а инструментальные – для повышения твердости и износостойкости.

megaobuchalka.ru

Способы и виды термической обработки стали

Термическая обработка стали проводится с целью придания материала определенного набора свойств путем изменения его внутренней структуры на молекулярном уровне. Метод подразумевает нагрев или охлаждение металла до определенного температурного уровня с его последующим возвращением к нормальному состоянию. Иногда применяется многофазная термообработка, которая позволяет производить наиболее закаленные марки сталей.

 

 

Процедура протекает в специальных печах или холодильных установках, которые дают возможность четко контролировать температуру на каждом этапе технологического процесса. Это очень важное условия успешной закалки, так как несоблюдение технологии может наоборот придать металлу негативные свойства. Режимы термообработки стали зависят от структурного состава материала. Все они были установлены опытным путем в результате многократных испытаний, поэтому современные способы закалки при соблюдении всех условий позволяют получать материалы высокого качества с большим запасом прочности. Термообработка сталей должна подготовить их к эксплуатации в агрессивной среде под воздействием разрушающих факторов.


Выделяют следующие виды термообработки сталей: закалка, отпуск, отжиг, нормализация, воздействие холодом и химико-термическая обработка. 

 

Закалка стали

 

Закалка подразумевает прогрев металла до установленной температуры и поддержание достигнутого уровня в течение определенного периода времени. Временной интервал определяется скоростью превращения внутренней структуры сплава устойчивое вещество. После этого сталь быстро охлаждают в воде или масле, так как постепенное остывание может привести к нарушению достигнутой структуры кристаллической решетки.

 

Закалка придает материалу твердости, но снижает его ударную вязкость, что делает сталь более хрупкой. Такой обработке подвергают детали, которые предназначены для эксплуатации под воздействием статической нагрузки без влияния динамических колебаний. Отпуску подвергаются некоторые детали после закалки. Его суть состоит в повторном нагревании металла до температуры ниже, чем температура закалки. Это позволит снова нарушить достигнутые межмолекулярные связи и приведет к их перестроению.

 

 

После нагрева металл вытаскивают из печи и дают остыть естественным путем без применения охладителей. Такая процедура несколько снижает твердость, но при этом повышает ударную вязкость и ковкость. Так что после закалки с последующим отпуском сталь будет тверже и пластичнее, чем необработанный сплав. Отжиг проводится по схеме нагрева металла с последующим медленным остыванием прямо в печи без использования специальных средств. Это убирает неоднородность распределения элементов в сплаве и позволяет создать устойчивое соединение железа с углеродом на межмолекулярном уровне.

 

Отжиг

 

После отжига значительно уменьшается твердость стали, но возрастает ее пластичность и ковкость. Такой обработке подвергается материал, предназначенный для последующей штамповки или раскатки. Нормализация технологически повторяет процесс отжига, только после нагрева сплав остывает не непосредственно в печи, а на открытом воздухе. Это позволяет добиться хороших показателей ковкости и пластичности без существенного снижения твердости.

 

 

Воздействие холодом

 

Воздействие холодом необходимо для завершения превращения аустенита в мартенсит. Он придает металлу дополнительную упругость и препятствует образованию рваных трещин при воздействии избыточного давления на деталь. Такой материал хорошо подходит для эксплуатации под влиянием высоких динамических нагрузок. Необходимой твердости ему обычно добавляют с помощью соответствующих присадок.

 

Химико-термическая обработка

 

Химико-термическая обработка подразумевает насыщение верхних слоев стали каким-либо элементом под воздействием высокой температуры. Различают несколько видов данной процедуры. Цементация означает пропуск через сталь углерода при температуре 950 градусов по Цельсию. Это придает поверхности дополнительной твердости, не затрагивая при этом внутренние слои материала.

 

 

 

Азотирование позволяет насытить верхний слой стали азотом для повышения его коррозийной стойкости, прочности и предела устойчивости. Проводится процедура путем нагревания сплава до 700 градусов в аммиачной среде. Хромирование позволит придать поверхности материала повышенную устойчивость к пресной и соленой воде и некоторым видам кислотных и оксидных сред. Это позволяет подготовить сталь к эксплуатации в неблагоприятных условиях. Цианирование совмещает в себе одновременное насыщение верхних слоев стали углеродом и азотом. Это позволяет одним махом увеличить твердость материала и защитить его от воздействия коррозии.

 

Термообработка разных видов стали

 

Термообработка легированной стали должна производиться с медленным прогревом до необходимой температуры, а затем с медленным остыванием заготовки. В результате добавления легирующих присадок стали данной марки имеют низкую теплопроводность, поэтому резкое изменение температуры может привести к короблению или образованию трещин. Также очень важно, чтобы нагревание происходило равномерно по всей площади детали.

 

Термообработка нержавеющей стали тоже содержит свои нюансы.После отжига ее необходимо оставить в печи до полного остывания, а затем провести процедуру отпуска, чтобы получить материал оптимального качества. Резкое изменение температур также нежелательно, так как может негативно отразиться на эксплуатационных свойствах.

 

 

Термообработка аустенитных сталей проводится в печах при равномерном нагреве заготовки до температуры 1000-1150 градусов по Цельсию. После этого следует быстрое охлаждение в жидкости, что позволяет получить материал с устойчивой ферритной внутренней структурой. Эти стали применяются для изготовления конструкционных материалов, поэтому должны получить повышенную прочность при закалке.

 

Термообработка быстрорежущей стали является трудоемким процессом. Она относится к классу высоколегированных сплавов, поэтому не переносит резких перепадов температур. Закалка данного материала производится на высокоточном оборудовании, позволяющем четко регулировать каждую фазу технологического процесса. Эта марка используется для производства инструментов для резки, которые даже при нагреве до 600 градусов не теряют своей первоначальной твердости.


Термообработка углеродистой стали сводится к получению устойчивой связи между атомами железа и углерода в кристаллической решетке. Метод зависит от необходимости получения конкретного вещества по завершению процесса.

 

 

promplace.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о