Как рассчитать прогиб балки: Расчет балки на прогиб и прочность

alexxlab | 24.05.2023 | 0 | Разное

Расчет балки на прогиб

вернуться в раздел РАСЧЕТЫ КМ И КЖ

Здесь представлены формулы расчета для нахождения значений изгибающих моментов и прогибов для различных балок.

Однопролетные балки на двух шарнирных опорах
1 Расчет балки на двух шарнирных опорах при одной сосредоточенной нагрузке Смотреть расчет
2 Расчет балки на двух шарнирных опорах при двух сосредоточенных нагрузках Смотреть расчет
3 Расчет балки на двух шарнирных опорах при одной равномерно-распределенной нагрузке Смотреть расчет
4 Расчет балки на двух шарнирных опорах при одной неравномерно-распределенной нагрузке Смотреть расчет
5 Расчет балки на двух шарнирных опорах при действии изгибающего момента Смотреть расчет
Балки с жестким защемлением на двух опорах
6 Расчет балки с жестким защемлением на опорах при одной сосредоточенной нагрузке Смотреть расчет
7 Расчет балки с жестким защемлением на опорах при двух сосредоточенных нагрузках Смотреть расчет
8 Расчет балки с жестким защемлением на опорах при одной равномерно-распределенной нагрузке Смотреть расчет
9 Расчет балки с жестким защемлением на опорах при одной неравномерно-распределенной нагрузке Смотреть расчет
10 Расчет балки с жестким защемлением на опорах при действии изгибающего момента Смотреть расчет
Балки с жестким защемлением на одной опоре (консольные)
11
Расчет однопролетной балки с жестким защемлением на одной опоре при одной сосредоточенной нагрузке
Смотреть расчет
12 Расчет однопролетной балки с жестким защемлением на одной опоре при одной равномерно-распределенной нагрузке Смотреть расчет
13 Расчет однопролетной балки с жестким защемлением на одной опоре при одной неравномерно-распределенной нагрузке Смотреть расчет
14 Расчет однопролетной балки с жестким защемлением на одной опоре при действии изгибающего момента Смотреть расчет
Балки двухпролетные
15 Расчет двухпролетной с шарнирными опорами при одной сосредоточенной нагрузке Смотреть
16 Расчет двухпролетной с шарнирными опорами при двух сосредоточенных нагрузках
Смотреть
17 Расчет двухпролетной с шарнирными опорами при одной равномерно-распределенной нагрузке Смотреть
18 Расчет двухпролетной с шарнирными опорами при одной неравномерно-распределенной нагрузке Смотреть
19 Расчет двухпролетной с шарнирными опорами при одной неравномерно-распределенной нагрузке Смотреть

 

 

 

Расчет балки на прогиб – онлайн калькулятор

Онлайн калькулятор по определению прогиба балки.
Для расчета вам необходимо:
1. Выбрать форму поперечного сечения
2. Выбрать материал (при использовании металлических балок – можно использовать сортамент)
3. Выбрать необходимую расчетную схему
4. Выбрать вид нагрузки (распределенная по длине балки либо сосредоточенная)
5. Указать геометрические размеры, указанные на картинках

6. Задать нагрузку (нагрузку можно рассчитать онлайн здесь)

Материал: СтальДеревоЖелезобетонАлюминийМедьСтеклоЗадать …

Схема: Шарнир-ШарнирЗаделка-ШарнирЗаделка-ЗаделкаСвободный конец

Нагрузка РаспределеннаяСосредоточенная

Диаметр d мм

Пролет L мм

Смотреть строку Итого в кг/м за вычетом собственного веса балки. Он уже учитывается в программе.”>Нагрузка q кг/м

Из возможных поперечных сечений в данном онлайн калькуляторе выбраны само часто встречающиеся сечения: круг, труба, двутавр, швеллер, уголок, прямоугольник, квадрат и профильная труба.
В расчет входят такие материалы как дерево, сталь, железобетон, алюминий, медь и стекло.
Также есть возможность выбора расчетной схемы: шарнир-шарнир, заделка-шарнир, заделка-заделка и заделка-свободный конец.
После того, как прогиб балки рассчитается – появится кнопка Подробнее, нажав на которую, можно узнать площадь сечения рассчитываемого элемента, его массу, распределенную нагрузку от собственного веса и момент инерции заданного сечения).
Зная значение длины пролета балки по СП 20.13330.2016 “Нагрузки и воздействия” для таких конструкций как балка, ферма, ригель, прогон, плита, настил покрытий и перекрытий, рассчитывается предельный прогиб, который можно сравнить с получившимся прогибом и принять решение о сечении вашей конструкции (для уменьшения прогиба в 1-ую очередь надо увеличивать высоту сечения).

При расчете балки программа уже учитывает собственный вес.

Помимо того, что Вы рассчитаете балку на прогиб, нужно ее проверить и на прочность здесь .

Если данный калькулятор оказался Вам полезен – не забывайте делиться им с друзьями и коллегами ссылкой в соц.сети, а также посмотреть другие строительные калькуляторы онлайн, они простые, но здорово облегчают жизнь строителям и тем, кто решил сам строить свой дом с нуля.

Последние изменения:
– Добавлен расчет предельного прогиба балки
– Добавлена возможность загружения балки сосредоточенной силой
– Исправлены графические замечания с расположением швеллера

– Добавлен расчет таврого сечения
– Исправлено положение прямоугольного сечения
– Добавлена возможность поворота швеллера
– Добавлена возможность ввода своих значений модуля упругости и плотности материала
– Исправлено отображение толщины стенки и полки швеллера

Калькулятор прогиба балки

Создано Николасом Суонсоном и Кеннетом Аламбра

Отредактировано Богной Шик и Стивеном Вудингом

Последнее обновление: 22 марта 2023 г.

Содержание:
  • Что такое прогиб и изгиб балки?
  • Как рассчитать максимальный прогиб балки
  • Метод наложения
  • Жесткость балки
  • Понимание формул прогиба балки
  • Пример расчета прогиба балки
  • Часто задаваемые вопросы

Этот калькулятор прогиба балки поможет вам определить максимальный прогиб просто опертых и консольных балок, несущих простые конфигурации нагрузки .

Вы можете выбрать любой тип нагрузки, который может воздействовать на балку любой длины. Величина и расположение этих нагрузок влияют на то, насколько сильно изгибается балка.

В этом калькуляторе отклонения балки вы узнаете о различных формулах отклонения балки используется для расчета прогибов свободнонесущих и консольных балок. Вы также узнаете, как модуль упругости балки и ее момент инерции поперечного сечения влияют на рассчитанный максимальный прогиб балки.

Прогиб балки является важной частью анализа балки, но другой важной частью является анализ напряжения. Модуль упругости — это мощный инструмент для изучения напряжений изгиба балки, которые можно рассчитать с помощью нашего калькулятора модуля упругости.

Что такое прогиб и изгиб балки?

В строительстве зданий мы обычно используем каркасные конструкции , удерживаемые фундаментом в земле. Эти каркасные конструкции подобны каркасам зданий, домов и даже мостов. В каркасе мы называем вертикальный каркас колоннами , а горизонтальные балками . Балки — это расширенные элементы конструкции, которые несут нагрузки, создаваемые горизонтальными плитами конструкций, такими как сплошные бетонные полы, деревянные балочные системы полов и крыши.

Когда балки несут слишком тяжелые для них нагрузки, они начинают гнуться. Мы называем величину изгиба балки прогибом балки . Прогиб балки — это вертикальное смещение точки вдоль центра тяжести балки. Мы также можем рассматривать поверхность балки в качестве нашей точки отсчета, если во время изгиба не происходит изменений высоты или глубины балки.

Как рассчитать максимальный прогиб балки

Мы оснастили наш калькулятор прогиба балки формулами, которые инженеры и студенты-инженеры используют для быстрого определения максимального прогиба конкретной балки из-за нагрузки, которую она несет. Однако эти формулы могут решать только простые нагрузки и их комбинации. Мы свели для вас эти формулы в таблицу, как показано ниже:

Формулы прогиба свободно опертой балки

Формулы прогиба консольной балки

Метод суперпозиции

Для расчета максимального прогиба балки при сочетании нагрузок можно использовать метод суперпозиции . Метод суперпозиции утверждает, что мы можем аппроксимировать полное отклонение балки, суммируя все отклонения, вызванные каждой конфигурацией нагрузки. Однако этот метод дает нам только приблизительное значение фактического максимального отклонения. Расчет сложных нагрузок потребовал бы от нас использования так называемого метод двойного интегрирования .

Жесткость балки

Расчет прогиба балки требует знания жесткости балки и величины силы или нагрузки, которые могут повлиять на изгиб балки. Мы можем определить жесткость балки, умножив модуль упругости балки, E , на ее момент инерции, I .

Модуль упругости зависит от материала балки. Чем выше модуль упругости материала, тем больший изгиб может выдержать огромные нагрузки, прежде чем он достигнет предела прочности. Модуль упругости бетона составляет от 15 до 50 ГПа (гигапаскалей), в то время как у стали около 200 ГПа и выше. Эта разница в значениях модуля упругости показывает, что бетон может выдерживать только небольшое отклонение и растрескивается раньше, чем сталь.

Вы можете узнать больше о модуле упругости, воспользовавшись нашим калькулятором напряжения. С другой стороны, чтобы определить момент инерции для определенного поперечного сечения балки, вы можете посетить наш калькулятор момента инерции. Момент инерции представляет собой величину сопротивления материала вращательному движению. Момент инерции зависит от размеров поперечного сечения материала.

Момент инерции также меняется в зависимости от того, вдоль какой оси вращается материал. Чтобы лучше понять эту концепцию, давайте рассмотрим поперечное сечение прямоугольного бруса шириной 20 см и высотой 30 см. Используя формулы, которые вы также можете увидеть в нашем калькуляторе момента инерции, мы можем рассчитать значения момента инерции поперечного сечения этой балки следующим образом:

Iₓ = ширина × высота³ / 12
Iₓ = 20 × (30³)/12
Iₓ = 45 000 см⁴

× Iᵳ ширина³ 6
Iᵧ = 30 × (20³) /12
Iᵧ = 20 000 см⁴

Обратите внимание на два значения момента инерции. Это потому, что мы можем считать, что балка изгибается вертикально вдоль пролета балки (или испытывает изгибающий момент вокруг оси x) и сбоку вдоль пролета балки (или изгиба вокруг оси Y). Поскольку мы рассматриваем отклонение луча, когда он изгибает по вертикали или вокруг оси x, мы должны использовать Iₓ для наших вычислений.

Полученные нами значения момента инерции говорят нам о том, что балка труднее изгибается при вертикальной нагрузке и легче изгибается при горизонтальной поперечной нагрузке. Эта разница в значениях момента инерции является причиной того, что мы видим балки в такой конфигурации, где их высота больше, чем их ширина.

Понимание формул прогиба балки

Теперь, когда мы знаем понятия модуля упругости и момента инерции, мы теперь можем понять, почему эти переменные являются знаменателями в наших формулах прогиба балки. Из формул видно, что чем жестче балка, тем меньше будет ее прогиб . Однако, изучив наши формулы, мы также можем сказать, что длина балки также напрямую влияет на отклонение балки. Чем длиннее становится балка, тем больше она может изгибаться и тем больше отклонение.

Нагрузки, с другой стороны, влияют на прогиб балки двумя способами: направление прогиба и величина прогиба. Нагрузки, направленные вниз, имеют тенденцию отклонять балку вниз. Нагрузки могут быть в виде одноточечной нагрузки, линейного давления или мгновенной нагрузки. Формулы в этом калькуляторе ориентированы только на направление вниз или вверх для точечной нагрузки и распределенной нагрузки. Распределенные нагрузки аналогичны давлению, но учитывают только длину балки, а не ее ширину.

Формулы в этом калькуляторе также учитывают крутящий момент или крутящий момент нагрузки по часовой стрелке или против часовой стрелки. Просто сверьтесь с направлениями стрелок на соответствующем изображении формулы, чтобы выяснить, какие направления имеют положительное значение нагрузки.

Пример расчета прогиба балки

Для примера расчета прогиба балки рассмотрим простую деревянную скамейку с ножками на расстоянии 1,5 метра друг от друга на расстоянии в их центрах. Допустим, у нас есть 4 см толщиной , 30 см шириной Восточная белая сосна, которая служит сиденьем для этой скамьи. Мы можем рассматривать это сиденье как балку, которая будет отклоняться всякий раз, когда кто-то садится на скамейку. Зная размеры этого сиденья, мы можем рассчитать его момент инерции, как в нашем примере выше. Поскольку нам нужно рассчитать л , его момент инерции будет:

л ₓ = ширина × высота³ / 12
л ₓ = 30 × (4³)/12
см ⁴ 1 или ⁴ = 160,0,0. ⁶ м⁴

Сосна белая восточная имеет модуль упругости 6800 МПа (6,8×10⁹ Па) , это значение, полученное нами из Справочника по дереву. Вы также можете легко получить значение модуля упругости для других материалов, таких как сталь и бетон, в Интернете или в местной библиотеке. Теперь, когда мы знаем эти значения, давайте рассмотрим нагрузку, которую будет нести эта скамья. Предположим, ребенок сидит в середине скамейки. Теперь мы можем рассчитать прогиб сиденья скамьи из-за точечной нагрузки в его центре:

δₘₐₓ = P × L³ / (48 × E × I)
δₘₐₓ = (400 Н) × (1,5 м)³ / (48 × 6,8×10⁹ Па × 1,6×10⁻⁶ м⁴)
δₘₐₓ = 0,002585 м = 2,5850 мм

Это означает, что многоместное сиденье будет провисать примерно на 2,6 миллиметра от своего исходного положения, когда ребенок будет сидеть посередине скамьи.

Если эта тема показалась вам интересной и вы хотели бы узнать больше о прочности материалов, вам также может понравиться наш калькулятор запаса прочности.

Часто задаваемые вопросы

Что такое отклонение в технике?

Отклонение в технике относится к перемещению балки относительно ее исходного положения. Это движение может исходить от инженерных сил , либо от самого элемента , либо от внешнего источника , такого как вес стен или крыши. Прогиб в инженерии — это измерение длины , потому что, когда вы вычисляете прогиб балки, вы получаете угол или расстояние , которое относится к расстоянию движения луча.

Какова общая формула отклонения балки?

Общие формулы для прогиба балки : PL³/(3EI) для консольной балки , и 5wL⁴/(384EI) для свободно опертой балки 90 6 точка , где 90 точка 90 025 л — длина балки, E — модуль упругости, а I — момент инерции. Однако многие другие формулы отклонения позволяют пользователям измерять различных типов балок и отклонений.

Как рассчитать прогиб балки?

Чтобы рассчитать прогиб балки , выполните следующие действия:

  1. Определите, является ли балка консольной или просто опертой балкой .
  2. Измерьте отклонение балки от деформации конструкции.
  3. Выберите соответствующую формулу отклонения балки для вашего типа балки.
  4. Введите свои данные , включая длину балки, момент инерции, модуль упругости и действующую силу.

Что вызывает прогиб балок?

Основными причинами отклонения являются вес, помещенный на вершину конструкции, момент инерции , размер поперечного сечения, длина неподдерживаемой конструкции и материал конструкции.

Каков центральный прогиб свободно опертой балки с пролетом 4 м?

3,47 мм , если длина (L) равна 4 м = 4 × 10³ мм , точечная нагрузка (P) равна 45 × 10³ Н , модуль упругости (Е) равен 2,4 × 10⁵ Н /мм² , а момент инерции (I) равен 72 × 10⁶ мм⁴ . Для расчета:

  1. Выберите формулу: PL³/(48EI) .
  2. Введите значения:
    45 × 10³ × (4 × 10³)³/(48 × 2,4 × 10⁵ × 72 × 10⁶) = 3,47 мм .

Николас Суонсон и Кеннет Аламбра

Тип балки

Тип нагрузки

Входные значения

Длина пролета (L)

Точечная нагрузка (P)

Модуль упругости (E)

Момент инерции 2 Жесткость балки , EIx

Выходное значение

Максимальный прогиб (δmax)

Ознакомьтесь с 20 калькуляторами спецификаций похожих материалов0001

Во многих случаях в подвижных приложениях линейная направляющая или привод не поддерживаются полностью по всей длине. В этих случаях прогиб (из-за собственного веса компонента и из-за приложенных нагрузок и усилий) может повлиять на ходовые качества подшипников и вызвать плохую работу в виде преждевременного износа и заедания.

Изделия, которые могут монтироваться только с концевыми опорами, такие как линейные валы или приводные узлы, или с консольной ориентацией, такие как телескопические подшипники, обычно имеют характеристики максимально допустимого отклонения. Важно проверить приложение и убедиться, что это максимальное отклонение не превышено. К счастью, большинство линейных направляющих и приводов можно смоделировать в виде балок, а их отклонение можно рассчитать с помощью обычных уравнений отклонения балки.

Материалы и особенности конструкции

При расчете прогиба необходимо знать свойства направляющей или привода и условия приложенной нагрузки. С точки зрения направляющей или привода важными критериями являются модуль упругости и плоский момент инерции компонента. Модуль упругости является мерой жесткости материала, и обычно его можно найти в каталоге продукции. Момент инерции описывает сопротивление объекта изгибу и иногда предоставляется производителем компонента. Если момент инерции не указан, его можно разумно аппроксимировать, используя уравнение момента инерции для сплошного или полого цилиндра (для линейного круглого вала) или прямоугольника (телескопический подшипник или линейный привод).


Модуль упругости, также известный как модуль Юнга или модуль упругости при растяжении, можно определить как отношение напряжения (силы на единицу площади) на оси к деформации (отношение деформации по длине) вдоль этой оси.

Плоский момент инерции (также называемый вторым моментом площади или моментом инерции площади) определяет, как точки площади распределяются относительно произвольной плоскости и, следовательно, ее сопротивление изгибу.


С точки зрения применения и конструкции критериями, влияющими на прогиб балки, являются тип опоры на концах направляющей или привода, приложенная нагрузка и неподдерживаемая длина. Когда компонент является консольным, его можно смоделировать как фиксированную балку, а когда он поддерживается с обоих концов, его обычно можно смоделировать как просто поддерживаемую балку. Для консольных балок максимальный прогиб будет иметь место, когда нагрузка будет находиться на свободном конце балки, а для свободно опертых балок максимальный прогиб произойдет, когда нагрузка будет находиться в центре балки.

При определении полного прогиба имейте в виду, что будут две нагрузки, вызывающие прогиб: вес самой направляющей или привода и приложенная нагрузка. Собственный вес компонента почти всегда можно смоделировать как равномерно распределенную нагрузку, а приложенную нагрузку оценить как точечную нагрузку в месте максимального прогиба (на свободном конце консольной балки или в центре свободно опертой балки). обычно обеспечивает наихудший сценарий полного отклонения.

Отклонение консольных балок

Телескопические подшипники часто являются консольными, а некоторые конфигурации декартовых роботов приводят к консольному приводу по оси Y или Z. В этом случае вес балки, достаточно равномерный по ее длине, вызывает максимальный прогиб на конце балки.

Изображение предоставлено: wikipedia.org

Это отклонение рассчитывается как:

Где:

q = усилие на единицу длины (Н/м, фунт-сила/дюйм)

L = длина без опоры (м, дюйм)

E = модуль упругости (Н/м 2 , фунт-сила/дюйм 2 )

2

2 90 373 4 , in 4 )

Чтобы сгенерировать наихудший сценарий прогиба, мы рассматриваем приложенную нагрузку как точечную нагрузку (F) на конце балки, и результирующий прогиб можно рассчитать как:  

Суммируя прогиб из-за равномерной нагрузки и прогиб из-за приложенной (точечной) нагрузки, получаем общий прогиб на конце балки:

Прогиб свободно опертых балок

Линейные валы и приводы часто закрепляются на концах, оставляя их длину неподдерживаемой, как у свободно опертой балки. Равномерная нагрузка на балку (собственный вес вала или привода) вызовет максимальное отклонение в центре балки, которое можно рассчитать как:

моделируется как точечная нагрузка в центре балки для наихудшего сценария.

Изображение предоставлено: wikipedia.org

Прогиб из-за приложенной нагрузки в этом состоянии рассчитывается как:

Общий прогиб в центре балки:

Прогиб валов с двумя подшипниками

0 При использовании двух подшипников на свободно опертой балке, как это обычно бывает с направляющими круглого вала, приложенная нагрузка распределяется между двумя подшипниками, и максимальный прогиб происходит в двух местах: в месте каждый подшипник , когда узел подшипника (иногда называемый кареткой или столом) находится в середине вала.

Изображение предоставлено: Thomson Linear

Расчет прогиба балки для этого условия:

Опять же, мы должны добавить прогиб из-за собственного веса балки плюс прогиб из-за приложенной нагрузки, чтобы получить общий прогиб из:


Существуют дополнительные сценарии монтажа и нагрузки, которые могут встречаться в некоторых приложениях, например, в приводе с фиксированной опорой на обоих концах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *