Как закалить бронзу: Можно ли закалить бронзу, как закалить и сделать твёрже бронзу?

alexxlab | 15.05.1977 | 0 | Разное

Содержание

Термическая обработка цветных сплавов :: Технология металлов

ТЕРМИЧЕСКАЯ ОБРАБОТКА МЕДИ И ЛАТУНИ

 

Медь.

Это наиболее распространенный в технике и промышлен­ности цветной металл, обладающий высокой пластичностью, теп­лопроводностью и электропроводимостью. На основе меди образо­вывают технические сплавы — латунь и бронзу.

Медь применяют для производства листов, ленты, проволоки методом холодной деформации. В процессе деформации она теря­ет пластичность и приобретает упругость. Потеря пластичности затрудняет прокалку, протяжку и волочение, а в некоторых слу­чаях делает невозможной дальнейшую обработку металла.

Для снятия иагартовки или наклепа и восстановления пласти­ческих свойств меди проводят рекристаллизационный отжиг по режиму: нагрев до температуры 450—500° С со скоростью 200—220° С/ч, выдержка в зависимости от конфигурации и массы изделия от 0,5 до 1,5 ч, охлаждение на спокойном воздухе. Струк­тура металла после отжига состоит из равноосных кристаллов, прочность σв=190 МПа, относительное удлинение δ = 22%.

 

Латунь.

Сплав меди с цинком называют латунью. Различают двухкомпонентные (простые) латуни, состоящие только из меди, цинка и некоторых примесей, и многокомпонентные (специальные) латуни, в которые вводят еще один или несколько легирующих элементов (свинец, кремний, олово) для придания сплаву тех или иных свойств.

Двухкомпонентныелатуни в зависимости от способа обработки подразделяют на деформируемые и литейные.

деформируемые двухкомпонентные латуни (Л96, Л90, Л80, Л63 и др.) обладают высокой пластичностью и хорошо обрабаты­ваются давлением, их используют для изготовления листов, лен­ты, полос, труб, проволоки и прутков разного профиля.

Литейные латуни применяют для отливки фасонных деталей. В процессе холодной обработки давлением двухкомпонентные ла­туни, как и медь, получают наклеп, вследствие которого возраста­ет прочность и падает пластичность. Поэтому такие латуни под­вергают термической обработке — рекристаллизационному отжигу по режиму: нагрев до 450—650° С, со скоростью 180—200° С/ч, выдержка 1,5—2,0 ч и охлаждение на спокойном воздухе. Проч­ность латуни после отжига σ

Β = 240-320 МПа, относительное уд­линение δ = 49-52%·

Латунные изделия с большим внутренним напряжением в ме­талле подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, изделия перед длительным хранением под­вергают низкотемпературному отжигу при 250—300° С.

Наличие в многокомпонентных (специальных) латунях легирующих элементов (марганца, олова, никеля, свин­ца и кремния) придает им повышенную прочность, твердость и высокую коррозионную стойкость в атмосферных условиях и мор­ской воде. Наиболее высокой устойчивостью в морской воде обла­дают латуни, легированные оловом, например ЛО70-1, ЛА77-2 и ЛАН59-3-2, получившие название морской латуни, их применяют в основном для изготовления деталей морских судов.

По способу обработки специальные латуни подразделяют на деформируемые и литейные. Деформируемые латуни используют для получения полуфабрикатов (листов, труб, ленты), пружин, деталей часов и приборов. Литейные многокомпонентные латуни применяют для изготовления полуфабрикатов и фасонных деталей методом литья (гребные винты, лопасти, детали арматуры  и т.п.). Требуемые механические свойства специальной латуни обеспечи­вают термической обработкой их, режимы которой приведены в таблице. Для получения мелкого зерна перед глубокой вытяжкой деформируемые латуни для листов, лент, полос подвергают от­жигу при температуре 450—500° С.

 

Таблица

 

Режимы термической обработки специальных латуней *

 

Марка сплава

Назначение обработки

Вид обработки

Темпера ту­ра нагрева, °С

Выдерж­ка, ч

Деформируемые латуни

ЛА77-2

Снятие наклепа

Рекристаллизацион-

ный отжиг

600-650

2-3

ЛО90-1

То же

То же

600-650

2-3

ЛО80-4

Снятие напряжений

Низкий отжиг

350—400

1-2

Литейные латуни

ЛА67-2,5

Снятие напряжений

Рекристаллизацион-

лый отжиг

300-400

2-3

ЛКС80-3-3

То же

То же

250—300

1,5-2

ЛС59-1Л

»

»

250—300

1-2

* Охлаждающая среда — воздух.

 

 

ТЕРМИЧЕСКОЕ  УПРОЧНЕНИЕ  БРОНЗЫ

 

Бронза — сплав меди с оловом, свинцом, кремнием, алюмини­ем, бериллием и другими элементами. По основному легирующему элементу бронзы разделяют на оловянные и безоловянные (спе­циальные), по механическим свойствам — на деформируемые и литейные.

 

Деформируемые оловянные бронзы

марок Бр.ОФ8-0,3, Бр.ОЦ4-3, Бр.ОЦС4-4-2,5 выпускают в виде прутков, лент, проволоки для пружин. Структура этих бронз состоит из α-твердого раствора. Основным видом термической обработки бронз является высокий отжиг по режиму: нагрев до 600—650° С, выдержка при этой температуре в течение 1—2 ч и быстрое охлаж­дение. Прочность после отжига σв — 350-450 МПа, относительное удлинение б= 18—22%, твердость НВ 70—90.

 

Литейные оловянные бронзы марок Бр.ОЦ5-5-5, Бр.ОСНЗ-7-5-1, Бр.ОЦСЗ,5-7-5 используют для изготовления анти­фрикционных деталей (втулок, подшипников, вкладышей и др.). Литейные оловянные бронзы подвергают отжигу при 540—550° С в течение 60—90 мин.

 

Безоловянные бронзы Бр.5, Бр.7, Бр.АМц9-2, Бр.КН1-3  идругие марки имеют высокую прочность, хорошие антикоррози­онные и антифрикционные свойства. Из этих бронз изготовляют шестерни, втулки, мембраны и другие детали. Для облегчения обработки давлением бронзы подвергают гомогенизации при 700—750° С с последующим быстрым охлаждением. Отливки, име­ющие внутренние напряжения, отжигают при 550° С с выдержкой 90—120 мин.

 

Наиболее часто в промышленности применяют двойные -алюминиевые бронзы марок Бр.А5, Бр.А7 и бронзы, до­бавочно легированные никелем, марганцем, железом и другими элементами, например Бр.АЖН10-4-4. Эти бронзы используют для различных втулок, фланцев, направляющих седел, шестерен и других небольших деталей, испытывающих большие нагрузки.

Двойные алюминиевые бронзы подвергают закалке и отпуску по режиму: нагрев под закалку до 880—900° С со скоростью 180—200° С/ч, выдержка при этой температуре 1,5—2 ч, охлажде­ние в воде; отпуск при 400—450° С в течение 90—120 мин. Струк­тура сплава после закалки состоит из мартенсита, после отпус­ка—из тонкой механической смеси; прочность бронзы σ

в = 550МПа, δ = 5%, твердость НВ 380—400.

 

Бериллиевая бронза Бр.Б2 — сплав меди с бериллием. Уникальные свойства — высокая прочность и упругость при одно­временной химической стойкости, немагнитность и способность к термическому упрочнению — все это делает бериллиевую бронзу незаменимым материалом для изготовления пружин часов и при­боров, мембран, пружинистых контактов и других деталей. Высо­кая твердость и немагнитность позволяют использовать бронзу в качестве ударного инструмента (молотки, зубила), не образующе­го искр при ударе о камень и металл. Такой инструмент применя­ют при работах во взрывоопасных средах. Бронзу Бр.Б2 закали­вают при 800—820° С с охлаждением в воде, а затем подвергают искусственному старению при 300—350° С. При этом прочность сплава σ

Β=1300 МПа, твердость HRC37—40.

 

ТЕРМИЧЕСКОЕ УПРОЧНЕНИЕ АЛЮМИНИЕВЫХ СПЛАВОВ

 

Деформируемые алюминиевые сплавы  разделяют на неупрочняемые термической обработкой и упрочняемые. Кнеупрочняемым алюминиевым сплавам относят сплавы марки АМц2, АМг2, АМгЗ, имеющие невысокую прочность и высокую пластич­ность; их применяют для изделий, получаемых глубокой вытяж­кой, упрочняют холодной обработкой давлением (нагартовкой).

 

Наиболее распространены сплавы, упрочняемые термической обработкой. К ним относят дюралюминий марок Д1, Д16, Д3П, в состав которых входят алюминий, медь, магний и марганец. Ос­новными видами термического упрочнения дюралюминия являют­ся закалка и старение. Закалку проводят при 505—515° С с после­дующим охлаждением в холодной воде. Старение применяют как естественное, так и искусственное. При естественном старении сплав выдерживают в течение 4—5 сут, при искусственном — 0,8—2,0 ч; температура старения — не ниже 100—150°С; проч­ность после обработки σ

Β = 490 МПа, 6=14%. Сплавы Д1 и Д16 применяют для изготовления деталей и элементов строительных конструкций, а также изделий для летательных аппаратов.

Авиаль (АВ, АВТ, АВТ1)—это деформируемый сплав, обла­дающий более высокой пластичностью, свариваемостью и корро­зионной стойкостью, чем дюралюминиевые; подвергают закалке в воде при 515—525° С и старению: сплавы АВ и АВТ — естествен­ному, сплав АВТ1 — искусственному при 160° С с выдержкой 12—18 ч. Применяют авиаль для производства листов, труб, ло­пастей винтов вертолетов и т. п.

Высокопрочные (σв=550-700 МПа) алюминиевые сплавы В95 и В96 имеют меньшую пластичность, чем дюралюминий. Термиче­ская обработка этих сплавов заключается в закалке при 465—475° С с охлаждением в холодной или горячей воде и искус­ственном старении при 135—145° С в течение 14—16 ч. Применяют сплавы в самолетостроении для нагруженных конструкций, работающих длительное время при 100—200° С.

Ковочные алюминиевые сплавы марок АК1, АК6, АК8 подвер­гают закалке при 500—575° С с охлаждением в проточной воде и искусственному старению при 150—165° С с выдержкой 6—15 ч; прочность сплава σΒ = 380-460 МПа, относительное удлинение δ = 7-10%.

 

Литейные алюминиевые сплавы называют силуми­нами. Наиболее распространены термически упрочняемые сплавы марок АЛ4, АЛ6 и АЛ20 Отливки из сплавов АЛ4 и АЛ6 зака­ливают при 535—545° С с охлаждением в горячей (60—80° С) воде и подвергают искусственному старению при 175° С в течение 2—3 ч; после термической обработки σв=260 МПа, δ = 4-6%, твердость НВ 75—80. Для снятия внутренних напряжений отливки из этих сплавов отжигают при 300° С в течение 5—Ю ч с охлаж­дением на воздухе. Жаропрочные сплавы марок АЛ 11 и АЛ20, идущие для изготовления поршней, головок цилиндров, топок кот­лов, работающих при 200—300° С, подвергают закалке (нагрев до 535—545° С, выдержка при этой температуре в течение 3—6 ч и охлаждение в проточной воде), а также стабилизирующему отпус­ку при 175—180° С в течение 5—10 ч; после термической обработ­ки σв=300-350 МПа, δ=3-5%.

 

ТЕРМИЧЕСКАЯ  ОБРАБОТКА  МАГНИЕВЫХ  И  ТИТАНОВЫХ  СПЛАВОВ

 

Магниевые сплавы.

Основными элементами в магниевых спла­вах (кроме магния) являются алюминий, цинк, марганец и цир­коний. Магниевые сплавы делят на деформируемые и литейные.

Деформируемые магниевые сплавы марок МА1, МА8, МА14 подвергают термическому упрочнению по режиму: на­грев под закалку до 410—415° С, выдержка 15—18 ч, охлаждение на воздухе и искусственное старение при 175° С в течение 15—16 ч; после термообработки σΒ = 320~430 МПа, δ = 6-14%. Сплавы МА2, МАЗ и МА5 термической обработке не подвергают; их при­меняют для изготовления листов, плит, профилей и поковок.

Химический состав литейных магниевых сплавов(МЛ4, МЛ5, МЛ12 и др.) близок к составу деформируемых, но пластичность и прочность литейных сплавов значительно ниже. Это связано с грубой литейной структурой сплавов Термическая обработка отливок с последующим старением способствует раство­рению избыточных фаз, сконцентрированных по границам зерен и повышению пластичности и прочности сплава.

Особенностью магниевых сплавов является малая скорость диффузионных процессов (фазовые превращения протекают мед­ленно), что требует большой выдержки под закалку и старение. По этой причине закалка сплавов возможна только на воздухе. Старение литейных магниевых сплавов проводят при 200—300° С; под закалку их нагревают до 380—420° С; после закалки и старе­ния   σв = 250-270 МПа.

Магниевые сплавы можно применять, как жаропрочные, спо­собные работать при температурах до 400° С. Вследствие высокой удельной прочности магниевые сплавы широко применяют в авиа­ции, ракетостроении, автомобильной и электротехнической про­мышленности. Большим недостатком магниевых сплавов является низкая стойкость против коррозии во влажной атмосфере.

 

Титановые сплавы.

Титан является одним изважнейших совре­менных конструкционных материалов; обладает высокой проч­ностью, повышенной температурой плавления (1665° С), малой плотностью (4500 кг/м3) и высокой коррозионной стойкостью даже в морской воде. На основе титана образовывают сплавы повышен­ной прочности, широко применяемые в авиации и ракетостроении, энергомашиностроении, судостроении, химической промышленности и других областях промышленности. Основными добавками в ти­тановых сплавах являются алюминий, молибден, ванадий, марга­нец, хром, олово и железо.

Титановые сплавы марок ВТ5, ВТ6-С, ВТ9 и ВТ16 подвергают отжигу, закалке и старению. Полуфабрикаты (прутки, поковки, трубы) из сплава, дополнительно легированного оловом (ВТ5-1), проходят рекристаллизационный отжиг при 700—800° С в целях снятия наклепа. Листовые титановые сплавы отжигают при 600—650° С. Длительность отжига поковок, прутков и труб состав­ляет 25—30 мин, алистов — 50—70 мин.

Высоконагруженные детали из сплава ВТ14, работающие при температуре 400° С, закаливают с последующим старением по ре­жиму: температура закалки 820—840° С, охлаждение в воде, ста­рение при 480—500° С в течение 12—16 ч; после закалки и старе­ния: σв=1150-1400 МПа, 6 = 6—10%, твердость HRC56—60. 

Источник:
Николаев Е.Н., Коротин И.М. Термическая обработка металлов токами высокой частоты М.: Высшая школа, 1984.

Отжиг, закалка и термическая обработка бронзы от поставщика Авек Глобал

Вас интересует отжиг, закалка и термическая обработка бронзы? Поставщик Авек Глобал предлагает купить бронзу отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.

Основные операции термообработки

Гомогенизация, закалка, отжиг и отпуск.

Гомогенизация

Гомогенизация применяется для снижения сегрегации и коррозии, обнаруженной в некоторых литых и горячих обработанных бронзовых заготовках, главным образом в тех, которые содержат повышенный процент олова. Диффузия и гомогенизация медленнее и труднее протекают в оловянных и кремниевых, поэтому эти сплавы обычно подвергаются длительным гомогенизирующим обработкам перед операциями горячей или холодной обработки. Бронзы (содержащие более 8% Sn) отличаются экстремальной сегрегацией. Поэтому перед обработкой сначала разрушают хрупкую сегрегированную оловянную фазу, тем самым увеличивая прочность и пластичность, и уменьшая твердость перед прокаткой. Эти цели достигаются путем гомогенизации при температуре около 760° С. Гораздо реже используют обработку холодом.

Отжиг

Заготовку нагревают до температуры, которая вызывает рекристаллизацию, и, если желательно максимальное размягчение, нагревают выше температуры рекристаллизации, чтобы вызвать рост зерна. На процесс отжига влияют многие взаимодействующие переменные. Важным является скорость нагрева, конструкция печи, атмосфера печи и форма заготовки. Для бронзовых сплавов критерием оценки качества рекристаллизационного отжига является размер зерна.

Температура отжига

  • легкий отжиг, который выполняется при температуре, слегка превышающей температуру рекристаллизации;
  • мягкий отжиг, температура отжига чуть ниже точки, в которой начинается быстрый рост зерна.

Поставщик Авек Глобал предлагает купить бронзу отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная.

Отпуск

Снятие напряжения в бронзовых заготовках направлено на уменьшение или устранение остаточного напряжения, тем самым уменьшая вероятность того, что деталь не сработает при растрескивании или усталости от коррозии при работе. Ряд бронз, в частности, алюминиевые и кремниевые бронзы, могут растрескиваться под критическим напряжением. Отпуск для снятия напряжений выполняется при температуре ниже нормального диапазона отжига, которые не вызывают перекристаллизации и последующего размягчения металла.

Закалка

Высокая прочность в большинстве марок бронзовых сплавов достигается за счет холодной обработки. Закалка используется для повышения механической прочности выше уровней, обычно получаемых при холодной пластической деформации. Примеры осаждающих упрочняющих медных сплавов включают бериллиевые и кремниевые бронзы, а также бронзы с повышенным содержанием фосфора и кремния.

Купить. Поставщик, цена

Вас интересует отжиг, закалка и термическая обработка бронзы? Поставщик Авек Глобал предлагает купить бронзу отечественного и зарубежного производства по доступной цене в широком ассортименте. Обеспечим доставку продукции в любую точку континента. Цена оптимальная. Приглашаем к партнёрскому сотрудничеству.

Контроль твёрдости изделий из бериллиевой бронзы

Автор статьи: Кадышкин Б.А.
октябрь 2013 г.Санкт-Петербург 

Бериллиевая бронза БрБ2 дисперсионно-твердеющий сплав, в закаленном состоянии мягкий и высокопластичный.

После искусственного старения бронза приобретает высокую твердость, высокий предел упругости, усталостной прочности и высокой износостойкости.

Химический состав бронзы БрБ2 (ГОСТ 493-54):
  Be  Ni  Al  Cu Примеси, не более
Si Pb Fe
% 1,9-2,2 0,2-0,5 0,15 ост. 0,15 0,005 0,15

 

Твердость бронзы, поставляемой в виде полосы различной толщины, в различном состоянии имеет следующие значения (ГОСТ 1189-70):

  • после закалки – HV ≤ 130
  • после закалки и наклепа – HV ≥ 170
  • после закалки и старения – HV ≥ 320
  • после закалки, наклепа и старения – HV ≥ 360

Закалка изделий из БрБ2 производится с температуры 110-190 °С в воду.

Нагрев под закалку тонкостенных изделий толщиной ≤ 0,5 проводится в заневоленном состоянии (специальная технологическая оснастка).

Перегрев при закалке изделий из бронзы БрБ2 приводит к снижению их упругости и прочностных свойств, повышению хрупкости материала из-за увеличения размера зерна, и оплавление границ зерен. Недогрев при закалки изделий из бронзы приводит к недостаточной концентрации бериллия в α-растворе, что после старения снижает предел упругости и твердости.

Упрочнение бронзы при старении происходит за счет выделения в ее структуре мелкодисперсионной фазы (Cu, Be) из неравновесного твердого раствора α-фазы.

Старение изделий из бронзы БрБ2 при температуре более высокой (˃ 340-360 °С) приводит к коагуляции частиц -фазы, что приводит к снижению механических свойств материалов.

Контроль качества т/обр (старение) изделий из бериллиевой бронзы БрБ2 производится измерением твердости (HV) этих изделий.

Контроль твердости изделий толщиной ≥ 2 мм производится либо на стационарных твердомерах измерения HV при нагрузке 5 кг, либо на портативных ультразвуковых твердомерах. Следует отметить, что этот контроль можно производить по измерению электропроводности изделий.

При контроле твердости изделий толщиной ≤ 0,2 мм необходимо исключить затраты энергии вдавливаемого индентора на линейную деформацию контролируемого участка, которая функционально не связана с твердостью контролируемого материала и определяется только его размерами (толщиной, профилем, массой) и величиной прилагаемой нагрузки.

Для исключения дополнительных потерь механической энергии индентора на линейную деформацию контролируемого участка (стационарным твердомером, ультразвуковым твердомером) необходимо использовать под контролируемым участком изделия подложку с высокой твердостью (HRC ≥ 55 или HV ≥ 750).

При измерении электропроводности контролируемого изделия необходимо выполнить следующие требования: температура контролируемого изделия должна соответствовать температуре контролируемых образцов по электропроводности (прилагаются к прибору), тонкостенные изделия (контрольные образцы) при измерении их электропроводности укладываются на изоляционную подложку, для контролируемого участка малых размеров для исключения краевого эффекта необходимо обеспечить строгое позиционирование датчика прибора относительно контролируемого участка (разработка и изготовление технологических насадок на датчик прибора, изготавливается из непроводящего материала – текстолит, эбонит и т.п.)

Для примера на рис.1 приведены зависимости электропроводности и сигнала датчика УЗ твердомера образцов бериллиевой бронзы (∅ 25, h = 3 мм) от времени их старения при оптимальной температуре.

Видно, что изменение электропроводности бронзы БрБ2 более надежно и объективно отслеживает время старения образцов БрБ2.

На рис.2 приведена зависимость сигнала датчика ультразвукового твердомера ТКМ-459 от твердости образцов из бронзы БрБ2 толщиной 0,15-0,2 мм. Наблюдается высокозначимая зависимость (R2 …), при этом для толщин 0,15-0,2 мм можно практически пренебречь разницей в толщине этих образцов.

На рис.3 приведены зависимости электропроводности МСим∙м (в отн. ед.) от твердости образцов бронзы толщиной 0,15-0,2 мм.

Наблюдается существенная разница этих зависимостей от толщин контролируемого образца, что связано с большой глубиной проникновения вихревых токов датчика прибора ВЭ27НЦ (δ ≈ 1,2-1,5 мм).

Однако, даже в этом случае четко различаются образцы с твердостью (HV) HV ≤ 250 от образцов с твердостью HB ≥ 200.

Выводы:

    1. Отработана методика контроля твердости (HV) изделий из БрБ2 толщиной 0,15-0,2 мм с помощью ультразвуковых портативных твердомеров.
    2. Установлена принципиальная возможность использования вихретокового метода измерения электропроводности для контроля качества т/об (старения) с оценкой твердости (HV) изделий из бериллиевой бронзы БрБ2.
По вопросам и предложениям обращайтесь по телефону +7 (812) 640-40-13

Как закалить медь – flagman-ug.ru

Всё о цветных металлах и сплавах (бронза, медь, латунь и др)

Бронза | Латунь | Марки БрАЖ БрОФ ОЦС Л63 ЛС59 | Характеристики | Применение | Расшифровка | Латунный лист | Втулка | Бронзовая труба | Пруток | ГОСТ | Продажа | Блог | Применение | Втулки | Трубы

Термическая обработка металлов. Отжиг

Отжиг меди

Термической обработке подвергают и медь. При этом медь можно сделать либо более мягкой, либо более твердой. Однако в отличие от стали закалка меди происходит при медленном остывании на воздухе, а мягкость медь приобретает при быстром охлаждении в воде. Если мед­ную проволоку или трубку нагреть докрасна (600° С) на огне и затем быстро погрузить в воду, то медь станет очень мягкой. После придания нужной формы изделие вновь можно нагреть на огне до 400° С и дать ему остыть на воздухе. Проволока или трубка после этого станет твердой. Если необходимо выгнуть трубку, ее плотно заполняют песком, чтобы избежать сплющивания и образования трещин.

Отжиг латуни позволяет повысить ее пластичность. После отжига латунь становится мягкой, легко гнется, выколачивается и хорошо вытягивается. Для отжига ее нагревают до 600° С и дают, остыть на воздухе при комнатной температуре.

Отжиг и закаливание дюралюминия

Отжиг дюралюминия производят для снижения его твердости. Деталь или заготовку нагревают примерно до 360°С, как и при закалке, выдержи­вают некоторое время, после чего охлаждают на воздухе. Твердость отожженного дюралюминия почти вдвое ниже, чем закаленного.

Приближенно температуру нагрева дюралюминиевой детали можно определить так: При температуре 350—360°С деревянная лучина, которой проводят по раскаленной поверхности детали, обугливается и оставляет темный след. Достаточно точно температуру детали можно определить с помощью небольшого (со спичечную головку) кусочка медной фольги, который кладут на ее поверхность. При температуре 400°С над фольгой появляется небольшое зеленоватое пламя.

Отожженный дюралюминий обладает небольшой твердостью, его можно штамповать и изгибать вдвое, не опасаясь появления трещин.

Закаливание. Дюралюминий можно подвергать закаливанию. При закаливании детали из этого металла нагревают до 360—400°С, выдерживают некоторое время, затем погружают в воду комнатной температуры и оставляют там до полного охлаждения. Сразу после этого дюралюминий становится мягким и пластичным, легко гнется и куется. Повышенную же твердость он приобретает спустя три-четыре дня. Его твердость (и одновременно хрупкость) увеличивается настолько, что он не выдерживает изгиба на небольшой угол.

Наивысшую прочность дюралюминий приобретает после старения. Старение при комнатных температурах называют естественным, а при повышенных температурах — искусственным. Прочность и твердость све­жезакаленного дюралюминия, оставленного при комнатной температуре, с течением времени повышается, достигая наивысшего уровня через пять — семь суток. Этот процесс называется старением дюралюминия.

Отжиг стальных деталей

Чтобы облегчить механическую или пластическую обработку сталь­ной детали, уменьшают ее твердость путем отжига. Так называемый полный отжиг заключается в том, что деталь или заготовку нагревают до температуры 900°С, выдерживают при этой температуре некоторое время, необходимое для прогрева ее по всему объему, а затем медленно (обычно вместе с печью) охлаждают до комнатной температуры.

Внутренние напряжения, возникшие в детали при механической обработке, снимают низкотемпературным отжигом, при котором деталь нагревают до температуры 500—600°С, а затем охлаждают вместе с печью. Для снятия внутренних напряжений и некоторого уменьшения твердости стали применяют неполный отжиг — нагрев до 750—760°С и последующее медленное (также вместе с печью) охлаждение.

Отжиг используется также при неудачной закалке или при необходи­мости перекаливания инструмента для обработки другого металла (например, если сверло для меди нужно перекалить для сверления чугуна). При отжиге деталь нагревают до температуры несколько ниже температуры, необходимой для закалки, и затем постепенно охлаждают на воздухе. В результате закаленная деталь вновь становится мягкой, поддающейся механической обработке.

Термическая обработка цветных металлов

Виды термической обработки цветных металлов

Под термической обработкой цветного металла понимается нагрев до определенной температуры, после чего следует охлаждение с определенной скоростью. Общая эффективность термической обработки цветного металла зависит от его предшествующей обработки, от температуры и скорости нагрева, продолжительности выдержки при этой температуре и скорости охлаждения

Процессы термической обработки цветных металлов можно разделить на две основные группы: термическая обработка, целью которой является получение структуры, максимально приближающейся к равновесному состоянию, и термическая обработка, целью которой, наоборот, является достижение неравновесного состояния. В некоторых случаях обе упомянутые группы процессов взаимно перекрываются

К первой группе относятся рекристаллизационный отжиг деформированного материала, далее отжиг для снятия внутренних напряжений и, наконец, гомогенизационный отжиг отливок. Ко второй группе, которая считается иногда термической обработкой в узком смысле слова, относится термическая обработка с получением неравновесного состояния, т. е. так называемое дисперсионное отверждение

Мягкий или рекристаллизационный отжиг

Мягкий отжиг это термическая обработка заготовок, подвергшихся холодной обработке давлением. Он производится путем нагрева изделия до определенной температуры, выдержки при этой температуре в течение определенного времени и, как правило, медленного последующего охлаждения. Уровень температуры, продолжительность выдержки так же, как и скорости нагрева и охлаждения, зависят как от способа предшествующей обработки, так и от требуемых свойств изделия. Следовательно, процесс этого отжига характеризуется степенью предшествующего обжатия, температурой и продолжительностью отжига и требуемой структурой изделия. Кратко можно пояснить сказанное следующими примерами

Металл, получивший наклеп в результате обработки давлением, претерпевает во время нагрева несколько взаимно перекрывающихся изменений. Сначала происходит так называемое «восстановление», характеризующееся снятием внутренних напряжений, т. е. устранением нарушений кристаллической решетки, вызванных в материале обработкой давлением. В этой области механические свойства изменяются очень мало, хотя на некоторых физических свойствах уже наблюдаются изменения. При дальнейшем нагреве начинают образовываться зародыши новообразующей структуры, и происходит рост этих зародышей. В совокупности эти два процесса называют рекристаллизацией. Механические и физические свойства, приобретенные материалом в результате обработки давлением, утрачиваются им при рекристаллизации, и материал приобретает свойства, которые он имел перед наклепом. Затем следует стадия роста зерна, при которой кристаллы сливаются; при этом некоторые кристаллы растут за счет соседних кристаллов, и кристаллическая структура укрупняется

Процесс изменения механических свойств меди, не содержащей кислорода при наклепе и рекристаллизационном отжиге поясняется на нижележащих графиках


Зависимость механических свойств при наклепе от степени обжатия

Зависимость механических свойств при рекристаллизационном отжиге от температуры

Кривые твердости в зависимости от предшествующей степени обжатия и температуры, а также рост зерна в зависимости от температуры после рекристаллизации

Отжиг для снятия внутренних напряжений

Такой отжиг называется стабилизацией, а применительно к деформированным заготовкам — отпуском. Отжиг состоит в нагреве до невысокой температуры и кратковременной выдержке при этой температуре до полного прогрева изделия, после чего следует медленное охлаждение. Для заготовок, обработанных давлением, это — температура из области восстановления, т. е. ниже температуры рекристаллизации. Этим отжигом устраняются внутренние напряжения, вызванные, например, в отливках неравномерным остыванием и термической обработкой, а в поковках — обработкой давлением на холоде, термической обработкой или обработкой резанием при больших сечениях стружки. Прежняя кристаллизация при этом нагреве сохраняется. Механические свойства также существенно не изменяются, в том числе и после длительного хранения

У изделий, особенно сложной конфигурации, этим процессом обеспечивается стабильность размеров. Пример температур отпуска некоторых деформируемых сплавов алюминия и меди приведен в табл.1

Температуры отпуска для снятия внутренних напряжений в некоторых деформируемых металлах и сплавах

Гомогенизационный отжиг

Гомогенизационный отжиг — это термическая обработка, состоящая из нагрева до высокой температуры и выдержки при этой температуре в течение определенного времени, пока не будут достигнуты равномерный состав и равномерная структура. Затем следует, как правило, медленное охлаждение. В литых сплавах встречается неравномерность (гетерогенность) двоякого рода. Это — ликвация примесей, накапливающихся в тех частях отливки, которые отвердевают последними, и расслоение (слоистость) каждого отдельного кристалла твердого раствора. Неравномерности внутри кристалла легко выравниваются диффузией, если она протекает при достаточно высокой температуре и достаточно долго. Напротив, примеси, накопленные в отдельных местах отливки, рассеиваются отжигом значительно хуже. Они способны к диффузии лишь в том случае, если растворяются в основном металле при высоких температурах. Но и в этом случае процесс гомогенизации затруднен ввиду большого пути, который должны проходить отдельные частицы

Гомогенизационному отжигу можно подвергать и деформированные металлы, если требуется улучшить некоторые их механические свойства, особенно вязкость и химическую стойкость сплава. Путем нагрева до высокой температуры определенные легирующие элементы переводятся в твердый раствор до тех пор, пока сплав не станет гомогенным, а затем быстрым охлаждением подавляется ликвация. Однако этот процесс уже переходит в область термической обработки для получения неравновесных состояний

Дисперсионное отверждение

Для дисперсионного отверждения сплава обязательным условием является то, чтобы в основных кристаллах находилась частично растворимая фаза, растворимость которой уменьшается с понижением температуры. При медленном охлаждении происходит ликвация, в результате которой может выделиться, в зависимости от формы диаграммы, чистый металл, твердый раствор соединений или какая — либо другая фаза. Быстрым охлаждением из области твердого раствора можно во многих случаях подавить ликвацию, и закаленный таким образом сплав привести в неравновесное состояние пересыщенного твердого раствора. При дальнейшем умеренном нагреве или нормальной температуре сплав проявляет тенденцию прийти в стабильное состояние. Этот сложный процесс пока еще не вполне выяснен, хотя практически в технике уже применяют целый ряд отверждаемых сплавов. Процесс протекает по-разному у разных отверждаемых сплавов, а во многих случаях — неодинаково даже у одного и того же сплава. Поэтому ограничимся лишь краткой характеристикой этого процесса

Отверждение состоит в основном из трех этапов. Сначала сплав нагревается до соответствующей температуры. Эта температура находится в пределах между линией солидуса и линией растворимости в твердом состоянии по возможности ближе к температуре солидуса. Лучше всего эту температуру, учитывая ее узкий диапазон, особенно у алюминиевых сплавов (490—535° С), поддерживать в соляном растворе, и поэтому именно такие растворы и применяют чаще всего. Целью отжига этого вида является получение богатого твердого раствора. Выдержка при данной температуре зависит от типа сплава и вида заготовки. Затем следует быстрое охлаждение (закалка в масле или в воде). Сплав проходит через разные стадии, приближающиеся к равновесному состоянию, причем атомы пересыщенного твердого раствора каждый раз располагаются по-разному. Этот процесс проводится при нормальной или повышенной температуре; иногда его называют старением. В некоторых случаях между закалкой и старением производят холодную обработку давлением. Старение при нормальной температуре называется естественным, а при повышенной температуре — искусственным

При отверждении изменяются механические свойства. После закалки прочность несколько уменьшается с увеличением вязкости, а при старении прочность снова повышается, а вязкость и пластичность немного уменьшаются. Эти изменения при старении подчиняются определенным закономерностям, зависящим от температуры, продолжительности старения и вида сплава. По достижении максимума прочность сплава при дальнейшем нагревании его снова уменьшается. В результате такого «перестарения» сплав переходит из нестабильного отвержденного состояния в равновесное, и материал приобретает прежние механические свойства. Разумеется, прочность в отвержденном состоянии всегда больше той, которая может быть получена у того же сплава нагартовкой, и вообще отверждаемые сплавы обладают наибольшей прочностью по сравнению с прочими металлами этой группы. В процессе отверждения изменяются и некоторые физические свойства

На рис.5 показано влияние температуры и продолжительности искусственного старения на механические свойства деформируемого сплава AlMgSi.

Общая схема зависимости температуры и продолжительности отжига при различных способах термической обработки деформируемого сплава AlMgSi приведена на рис.6

У некоторых сплавов цветных металлов при термической обработке на неравновесное состояние процессы перекристаллизации протекают так же, как у стали. Например, в некоторых алюминиевых бронзах происходят так называемые фазовые превращения γ — α, в связи с чем весь процесс, состоящий из закалки и отпуска, можно назвать термическим улучшением. Изменения механических свойств при улучшении отличаются от тех, которые сопровождают отверждение: после закалки прочность увеличивается с одновременным уменьшением вязкости, а при отпуске прочность снова уменьшается, тогда как вязкость немного повышается

Отжиг меди и латуни

«Достаточно точно температуру можно определить с помощью небольшого (со спичечную головку) кусочка медной фольги, который кладут на поверхность разогреваемой детали. При температуре 400 ?С над фольгой появляется зеленоватое пламя.

Закалка предварительно разогретой детали из меди происходит при медленном остывании на воздухе. Для отжига разогретую деталь быстро охлаждают в воде. При отжиге медь нагревают до красного каления (600?С), при закалке — до 400?С, определяя температуру также с помощью кусочка медной фольги.

Для того чтобы латунь стала мягкой, легко гнулась, ковалась и хорошо вытягивалась, ее отжигают путем нагрева до 500 ?С и медленного охлаждения на воздухе при комнатной температуре».

Интересно, что отжиг меди и латуни происходит противоположно — там при быстром охлаждении, там при медленном.
При формовке гильз рекомендуется отжигать после 2 операций.

После каких 2 операций?

Операций формовки гильз. Например переобжима на другой размер — делается прогоном через матрицы.

formiroval 7.65 argentinskii mauser iz 30-06 i iz .270.pri ispolzovanii winchesterovskix gilz obichnoi smazki bilo dopstatochno.pri syrplase nagrval plechiki 30-06 go gazovoi gopelkoi do krasnoti i progomial cherez rcbs matrizy

А, откуда взята информация? Стиль написания не похож на техническую литературу, ближе к домохозяечно-бытовому ?

Производители пуль рекомендуют:
Взять газопенобтонный кирпичь насверлить в нем отверстий под твой калибр, глубиной на одну треть изделия, вставилть в отверстия доннышком вверх заготовку, и газовой горелкой или феном нагреть изделие до легкого свечиния и сбросить изделие в воду или остужать до комнатной температуры в кондукторе (кирпиче).

А если просто напихать гильзы в держатель, поставить держатель в ванночку с водой, которой должно быть налито пониже ската, и выступающие дульца горелкой погреть ?
Гильзы естественно без капсюлей, чтобы вода внутрь затекла.
Дульце отожжется, а остальное останется нетронутым
И кирпичей сверлить не надо ?

Пара будет, как в бане ?.

Попробуй. Нам раскажешь.

Нечем. Нет горелки. А феном не разогреть.
Пробовал на обычной газовой конфорке. Обмотал мокрой тряпкой, и в огонь. Вроде нормально. Только огонь слабый.

Machete
Пара будет, как в бане ?.

Пара быть не должно. Вот если бы нагрел и опустил, то да, парилочку получил бы.
Но ведь в этом случае нагрелось бы все, а не одно дульце.

Когда говоришь «должно» — постучи по дереву (народная поговорка племени майя) ?.

Machete
Когда говоришь «должно» — постучи по дереву (народная поговорка племени майя) ?.

Тогда скажем так — не было, когда в мокрой тряпке держал на газу.
Если по-хорошему отжигать, то надо чтобы гильза вращалась вокруг оси. Иначе нагревается бок, а остальное осталось непрогретым. Видно по следу побежалости.

Мне что-то вариант Геннадия Михайлыча больше нравится. Хотя наш интерес сугубо гастрономический — пока.

Нравится сверлить дырки в кирпичах? ?
Не знаю что из себя представляет тот кирпич, но металл нужно охлаждать, кроме места нагрева.

Сергей, а по технологии, ты отпиши производителю пуль.
А кирпичик то тот ножичком режется.

Водой гильзу при одновременном нагреве дульца не шибко-то и охладишь — она ж латунная, теплопроводность зашибись.

Machete
Водой гильзу при одновременном нагреве дульца не шибко-то и охладишь — она ж латунная, теплопроводность зашибись.

Затра не получится попробовать (беготня по делам), потом испытаю латунь в воде.
Хотя металл и теплопроводен, но он не может разогреться ниже уровня воды. Нас ведь интересует только отожженое дульце.

Хотя металл и теплопроводен, но он не может разогреться ниже уровня воды.

Не совсем прохавал. Что имеется в виду ?

Если гильза запихана в что-то пористое, то будет слабый теплоотвод. И нагревая дульце одновременно будет нагреваться остальное. До половины гильза точно должна прогреться и почернеть, а то и больше прогреет.
Вода отбирает тепло, и прогреется больше та часть, что дальше от воды.
В прошлый раз завернул гильзу в тряпку и намочил ее, чтобы вода стекала. Потом в огонь сунул. Мокрая тряпка не позволила раскалиться телу гильзы. Разогрелось дульце и скат.

В следущий раз попробую нагрев торчащей из воды гильзы. О результате напишу. Сейчас нет под рукой газовой горелки

Так это проточная вода нужна, по типу охлаждения змеевика в самогонном аппарате, иначе кина не будет.

Вообщем, проверил версию.
В принципе работает. Но мощи газового паяльника не хватает на разогрев, так как вода забирает тепло. Зато гильза не отжигается ниже воды. Никакого шипения или бурления нет. Не та температура, чтобы моментально прогреть всю воду.
Попробовал без воды, пустую. Разогрело быстро, но за счет передачи тепла половина гильзы успела прогреться.
Если вид не напрягает, что ниже ската, то и без воды пойдет. Но крутить все же необходимо. Иначе с одной стороны пятно выжигает, а с другой нагрев слабее

А, откуда взята информация? Стиль написания не похож на техническую литературу, ближе к домохозяечно-бытовому ?

Вам шашечки или ехать?
Техническая литература описывает, как делать в заводских или лабораторных условиях, они у Вас имеются?

Вам шашечки или ехать?
Техническая литература описывает, как делать в заводских или лабораторных условиях, они у Вас имеются?

С одной стороны Вы правы. Но со времен обучения помня, что термообработка не самая простая вещь, я бы непременно посоветовался с термистом или глянул в соответствующий справочник. Ведь, если с медью все может быть более менее однозначно, то латунь-то бывает весьма разная по химсоставу и, соответственно, пригодностью к термообработке.
Например температура отжига для латуни:

Латунь Л96: 540 — 600 градусов;
Латунь Л90 — Л62: 600 — 700 градусов;

Раз уж здесь собрались люди считающие каждую порошинку, то все должно быть точно ?

глухарь
Производители пуль рекомендуют:
Взять газопенобтонный кирпичь насверлить в нем отверстий под твой калибр, глубиной на одну треть изделия, вставилть в отверстия доннышком вверх заготовку, и газовой горелкой или феном нагреть изделие до легкого свечиния и сбросить изделие в воду или остужать до комнатной температуры в кондукторе (кирпиче).

Имеется ввиду обычный строительный кирпич или что-то специальное типа шамота?

Да на каждой строительной ярмарке продают
газопенобтонный кирпичь купил блок и напилил себе каких угодно кирпичей.
Для отжига пользую газовую горнелку.
Тож продают, заправляется из балончиков для зажигалок.

С одной стороны Вы правы. Но со времен обучения помня, что термообработка не самая простая вещь, я бы непременно посоветовался с термистом или глянул в соответствующий справочник. Ведь, если с медью все может быть более менее однозначно, то латунь-то бывает весьма разная по химсоставу и, соответственно, пригодностью к термообработке.
Например температура отжига для латуни:

Латунь Л96: 540 — 600 градусов;
Латунь Л90 — Л62: 600 — 700 градусов;

Раз уж здесь собрались люди считающие каждую порошинку, то все должно быть точно ?

————
Угу. скока гильз на анализ мне таскали — все больше Л63 была.
Л96 и Л90 — даже по цвету — МЕДНАЯ. на гильзы все больше Л63 и Л65 вроде шла всегда.

Дык, в Л96 меди 95-97% потому и по цвету медная. В Л63 62-65%

ингридиенты: нагановские револьверные гильзы
инструменты: плоскогубцы, тряпка, газовая горелка на плитке

тряпку мочим и отжимаем, заворачиваем ручки плоскогубцев, плоскогубцами берем гильзу за ж..пу и под углом 45 греем в пламени ( лучще в сумерках — чтобы видно было свечение металла) греем горлышко до тускло красности, после чего откладываем гильзу в сторону чтобы остыла. При нагреве массивные плоскогубцы отводят тепло от основания гильзы — что четко видно по тому как металл прогревается

на выходе получаются качественные гильзы, которые не трескаются при неоднократном перезаряде и завальцовке/развальцовке наганной

Как осуществляется обработка меди

Медь проходит несколько этапов обработки перед тем как ее можно использовать в производстве

После получения металла из медной руды, он формируется в слитки различной формы и для дальнейшего производства изделий из таких заготовок необходима предварительная обработка меди. В зависимости о требуемого состояния металла, обработка осуществляется различными способами:

Когда применяют термообработку меди

Термообработка — это нагрев сырья или готово изделия

Если необходимо повысить прочность изделий, упругость, износоустойчивость или, наоборот, получить более мягкий металл, поддающийся дальнейшему механическому воздействию, используют термическую обработку меди. Этот процесс может осуществляться различными способами — закалкой и отжигом, они различаются температурой нагрева и способом остывания. Для того чтобы изделию из меди придать твердость и прочность ее следует нагреть до температуры 600 о С и остудить на воздухе, это так называемое медленное остывание. Если нужен мягкий металл, то сырье следует нагреть до 600 о С и подвергнуть быстрому остужению в воде, далее придать форму изделию, снова нагреть, на этот раз до 400 о С и оставить медленно остывать в итоге получится мягкое изделие. Для того чтобы изогнуть медную трубу ее сначала наполняют песком, это позволит избежать сплющивания в процессе термической обработки, а затем нагревают и придают нужную форму. С помощью термической обработки меди осуществляется процесс снятия наклепа и окалины, для этого металл нагревают до 500 о С и охлаждают в воде.

Как осуществляют механическую обработку

После процесса отжига металлу необходимо придать форму, блеск, рисунок, для этого применяют механические способы обработки. Для начала изделия необходимо очистить от масла, оксидов, накала и прочих загрязнений, осуществлять процессы можно только на сухой поверхности. Холодная или механическая обработка меди выполняется несколькими способами:

Для товарного вида медные изделия подвергают механической обработке

  • прокатка;
  • протяжка;
  • шлифовка;
  • полировка.

Процесс прокатки металла осуществляется с помощью механической или автоматической установки, оснащенной вальцами, между которыми пропускается лист медной заготовки. Толщина готового изделия регулируется в зависимости от потребности. Вальца смазываются маслом или специальной эмульсией, которые оставляют тонкий слой пленки на готовом изделии.

Протяжка меди осуществляется при изготовлении проволоки, жил для проводов и кабелей. Выполняется с помощью экструдерного механизма, регулировка диаметра выполняется автоматически по заранее заданным параметрам.

Шлифование медных изделий

Шлифование медных изделий происходит с помощью дисков и лент, на которые нанесено абразивное покрытие. Для шлифовки обычно используют абразивные материалы с зернистостью порядка 180 – 200 мкм, для изделий, которые прошли ковку достаточно будет 80 – 100 мкм.

Полирование осуществляется с использованием тканевых или войлочных дисков, пемзой, трепела, а также с применением оксида железа и венской извести. Этот процесс выполняется на полировочных машинах, для меди достаточно скорости в 20 – 40 м/с, увеличение ведет к более глубокому снятию верхнего слоя. Для предотвращения обесцвечивания применяют слабый раствор органической кислоты, например, щавелевой или винной. Эффективно обрабатывать полируемую поверхность растворами, содержащими ингибитор коррозии, они препятствуют окислению и дольше сохраняют цвет.

Токарный способ обработки

Распространенным способом обработки медных заготовок является токарный, с использованием специальных станков, оснащенных резцами. Благодаря этому методу обработки можно изготавливать большое разнообразие форм и деталей цилиндрической, сферической, конической формы. Механизм работы токарных станков заключается в воздействии режущего механизма на деталь, он врезается в заготовку и снимает лишний слой, который превращается в стружку. Скорость движения режущего механизма имеет большое значение в обработке различных видов металла. Поскольку медь является мягким материалом, для нее будет достаточно 40 — 50 м/с. С помощью токарной обработки меди можно получить следующие виды изделий:

Токарная обработка позволяет получить деталь любой формы

  • шайбы;
  • втулки;
  • фланцы;
  • шпильки;
  • штуцеры.

Предприятия, осуществляющие токарную обработку металлов, могут выполнять большое разнообразие видов изделий по индивидуальным заказам. Станки настраиваются под параметры, каждой детали. С помощью токарного оборудования на медные заготовки наносится резьба, осуществляется выточка фасок, сверление отверстий, геометрическая обрезка. Использование автоматизированных станков позволяет выполнять сложнейшую отделку заготовок с максимальной точностью, при этом снижается процент брака и минимизируются отходы.

Видео: Обработка меди

Как закалить медь

Всё о цветных металлах и сплавах (бронза, медь, латунь и др)

Бронза | Латунь | Марки БрАЖ БрОФ ОЦС Л63 ЛС59 | Характеристики | Применение | Расшифровка | Латунный лист | Втулка | Бронзовая труба | Пруток | ГОСТ | Продажа | Блог | Применение | Втулки | Трубы

Термическая обработка металлов. Отжиг

Отжиг меди

Термической обработке подвергают и медь. При этом медь можно сделать либо более мягкой, либо более твердой. Однако в отличие от стали закалка меди происходит при медленном остывании на воздухе, а мягкость медь приобретает при быстром охлаждении в воде. Если мед­ную проволоку или трубку нагреть докрасна (600° С) на огне и затем быстро погрузить в воду, то медь станет очень мягкой. После придания нужной формы изделие вновь можно нагреть на огне до 400° С и дать ему остыть на воздухе. Проволока или трубка после этого станет твердой. Если необходимо выгнуть трубку, ее плотно заполняют песком, чтобы избежать сплющивания и образования трещин.

Отжиг латуни позволяет повысить ее пластичность. После отжига латунь становится мягкой, легко гнется, выколачивается и хорошо вытягивается. Для отжига ее нагревают до 600° С и дают, остыть на воздухе при комнатной температуре.

Отжиг и закаливание дюралюминия

Отжиг дюралюминия производят для снижения его твердости. Деталь или заготовку нагревают примерно до 360°С, как и при закалке, выдержи­вают некоторое время, после чего охлаждают на воздухе. Твердость отожженного дюралюминия почти вдвое ниже, чем закаленного.

Приближенно температуру нагрева дюралюминиевой детали можно определить так: При температуре 350—360°С деревянная лучина, которой проводят по раскаленной поверхности детали, обугливается и оставляет темный след. Достаточно точно температуру детали можно определить с помощью небольшого (со спичечную головку) кусочка медной фольги, который кладут на ее поверхность. При температуре 400°С над фольгой появляется небольшое зеленоватое пламя.

Отожженный дюралюминий обладает небольшой твердостью, его можно штамповать и изгибать вдвое, не опасаясь появления трещин.

Закаливание. Дюралюминий можно подвергать закаливанию. При закаливании детали из этого металла нагревают до 360—400°С, выдерживают некоторое время, затем погружают в воду комнатной температуры и оставляют там до полного охлаждения. Сразу после этого дюралюминий становится мягким и пластичным, легко гнется и куется. Повышенную же твердость он приобретает спустя три-четыре дня. Его твердость (и одновременно хрупкость) увеличивается настолько, что он не выдерживает изгиба на небольшой угол.

Наивысшую прочность дюралюминий приобретает после старения. Старение при комнатных температурах называют естественным, а при повышенных температурах — искусственным. Прочность и твердость све­жезакаленного дюралюминия, оставленного при комнатной температуре, с течением времени повышается, достигая наивысшего уровня через пять — семь суток. Этот процесс называется старением дюралюминия.

Отжиг стальных деталей

Чтобы облегчить механическую или пластическую обработку сталь­ной детали, уменьшают ее твердость путем отжига. Так называемый полный отжиг заключается в том, что деталь или заготовку нагревают до температуры 900°С, выдерживают при этой температуре некоторое время, необходимое для прогрева ее по всему объему, а затем медленно (обычно вместе с печью) охлаждают до комнатной температуры.

Внутренние напряжения, возникшие в детали при механической обработке, снимают низкотемпературным отжигом, при котором деталь нагревают до температуры 500—600°С, а затем охлаждают вместе с печью. Для снятия внутренних напряжений и некоторого уменьшения твердости стали применяют неполный отжиг — нагрев до 750—760°С и последующее медленное (также вместе с печью) охлаждение.

Отжиг используется также при неудачной закалке или при необходи­мости перекаливания инструмента для обработки другого металла (например, если сверло для меди нужно перекалить для сверления чугуна). При отжиге деталь нагревают до температуры несколько ниже температуры, необходимой для закалки, и затем постепенно охлаждают на воздухе. В результате закаленная деталь вновь становится мягкой, поддающейся механической обработке.

Принципы закалки металла в домашних условиях

При изготовлении металлические изделия подвергают дополнительной термообработке. После нагревания изменяются характеристики материала, улучшается структура. Для этого не нужно покупать дорогое оборудование, можно сделать закалку металла в домашних условиях. Чтобы не допустить ошибок, необходимо знать нюансы процедуры, разбираться в технологическом процессе.

Что такое закалка металлов и ее виды?

Закалка — популярный способ улучшения характеристик материала. Термообработка позволяет изменить структуру металла. Результатом воздействия высокой температуры является увеличение показателя твердости. После нагрева происходит быстрое охлаждение детали. Для этого она погружается в ёмкость, заполненную маслом или водой.

Чаще всего в домашних условиях выполняется закалка нержавейки, проволоки из разных видов стали и ножей. Но после структурных изменений, сталь становится хрупкой. Если речь идет о цветных металлах, то изменения структуры не происходит. Например, после проведения закалки меди невозможно достигнуть хорошего показателя твердости. Однако при отсутствии структурных изменений материал не становится излишне хрупким

Чтобы снизить показатель хрупкости стали после проведения термической обработки, выполняют отпуск заготовки. Это дополнительная обработка теплом. Сначала изделие нагревается, а затем медленно охлаждается.

Особенности закалки стали

Главным материалом, который подвергается нагреву, быстрому охлаждению является нержавеющая сталь, сплавы на ее основе. Чтобы улучшить характеристики изделия, необходимо выполнить дополнительный разогрев, а затем медленное охлаждение. Это позволит снять внутреннее напряжение. Особенности обработки для разных видов стали:

  • Закалка стали 45. После проведения нагрева, быстрого охлаждения прочность повышается в 3 раза.
  • Проведение процедуры со сталью 40X. Нагревается до температуры 860 градусов по Цельсию.

Существуют специальные справочники, которые содержат информацию о правильных температурных режимах обработки различных видов стали.

Преимущества

Преимущества термообработки металла:

  • Изменение структуры материала. Зерна становятся равномерными.
  • Отсутствие деформации.
  • Простота проведения процедуры.
  • Повышение твердости, увеличение прочности.

Оборудование и особенности проводимого процесса

Чтобы провести технологический процесс обработки материала, необходимо использовать определенное оборудование. Для нагрева применяют специальные печи. Они могут работать от электричества, на газу, твердом топливе. Помимо нагревательной конструкции нужно подготовить ёмкость, заполненную водой или маслом. Она нужна для быстрого охлаждения заготовки.

Как изготовить камеру для закаливания металла?

Для того чтобы закаливать металл дома, нужно собрать муфельную печь. Этапы сборки:

  • Нарисовать чертеж нагревательной камеры. Можно взять готовый рисунок с размерами, обозначением основных элементов.
  • Выложить из шамотного кирпича основную конструкцию.
  • Снаружи обмазать камеру огнеупорной глиной.
  • Подвести к самодельной конструкции провода, на внутренней поверхности закрепить нихромовые нити. Это нагревательные элементы.
  • Вырезать выемки для размещения нихромовой проволоки, сделать отверстие для её подключения.

Камеру укрепляют уголками, которые закрепляют к контуру с помощью сварочного аппарата. Перед работой с самодельной конструкцией проводят подготовительный обжиг. Для этого она нагревается до 900 градусов по Цельсию. Для нагрева используют газовую горелку.

Закалка стали в домашних условиях

Для того чтобы закалить металл в домашних условиях можно использовать самодельную печь, горн, открытое пламя. На нагретую поверхность нужно положить металлическую заготовку. Дальше она разогревается до определенной температуры, с помощью кузнечных щипцов погружается в охлаждающую жидкость.

Чтобы правильно провести технологическую операцию, нужно точно соблюдать температурный режим. Для этого используется пирометр. Кузнецы советуют проверять температуру с помощью магнита. Если он не прилипает к материалу, деталь нагрета до 760 градусов. Затем заготовку нужно охладить.

Закалка металла может проводиться в домашних условиях. Это позволяет любому человеку улучшить характеристики материала. Собрать нагревательную камеру можно по готовым чертежам.

Поддержите канал, просто читайте наши статьи, а мы будем размещать для Вас полезную информацию о металлах! Так же заходите на наш сайт , там Вы найдете множество информации о металлах, сплава и их обработке.

бронзы, баббиты. Влияние термообработки на степень упрочнения сплавов

Использование операций термической обработки сталей и сплавов существенно повышает степень фрикционного упрочнения и долговечность работы в условиях трения и износа. В таблице 2 приведены составы литейных бронз, применяемые для антифрикционных деталей. ( одержание фосфора в бронзе Бр08Ф — 0,25…0,35 %, а в бронзе БрОбФ — 0.1…0,15%.

Влияние термообработки на степень упрочнения сплавов

СплавВид термической обработкиСтепень

фрикционного

упрочнения

Алюминиевый сплав АК7Т5 — закалка и старение1,2…1,3
Цинковый сплав ЦАМ 10-5Состояние поставки1,3…1,6
Сталь 30ХГСАИзотермическая закалка2,9…3,6
Бронза БрОЮФ1Литое состояние2,1…2,6
Серый чугун СЧ 20 (0,1 % Р)Без термообработки3,1…3,6
Сталь 45Л, 40JIПосле закалки и отпуска4,0…4,6
Сталь 40ХФЛПосле закалки и отпуска4,8…5,3
Медь MlПосле отжига2,6…2,9
Ковкие чугуны КЧ 60-5,Нормализация3,9…4,1
КЧ 45-7
Высокопрочные чугуныПосле отжига2,4…3,5
АЧВ-1, АЧВ-3Литое состояние3,4…4,4
АЧВ-2, АЧВ-4Нормализация4,5…5,2
СвинецСостояние поставки1,0…1,1
Графитизированная стальПосле отжига и нормали­зации4,9…5,7
Чугун ВЧ 100Изотермическая закалка и отпуск5,1…5,8
Чугун ВЧ 70Нормализация4,2…4,8

Составы и свойства бронз для антифрикционных деталей

МаркаСостав, % (Си — остальное)Предел

прочности,

МПа

Относи-Твердость
SnZnPbА1FeMnNiудлинение, %НВ
Бр08Ф7…8
БрОбФ6…7250…3502о

оо

о

Бр04Ц4С23…53…51,5…3,535015…2060
Бр04Ц4С 173…52…514…20
БрА10М2Ц9… 111,5…2,550012120
БрА9Ж48…103,5…5,550010100
БрА10Ж4Н49…113,5…5,53,5…5,56005170

 

Применение смазочного материала в узле трения может повлечь за собой необходимость замены материала по крайней мере одной из тру­щихся деталей, что связано с изменением вида изнашивания и, как след­ствие, с иным расположением пар трения по износостойкости. В аморти­зационных устройствах шасси самолетов в качестве рабочей жидкости применяли спиртоглицериновую смесь, при использовании которой в качестве смазочного материала буксы из бронзы БрАЖМц в паре со стальной поверхностью быстро изнашивались. Бронза интенсивно обо­гащалась медью, налипала на стальную поверхность, наращивалась на ней толстым слоем и отлушивалась, частично при этом налипая на по­верхность буксы.

Бронзы других марок вследствие избирательного переноса при тре­нии во много раз более износостойки. Переход на бронзу типа БрОФ яв­ляется целесообразным, однако существенной разницы в износостойко­сти безоловянной бронзы БрАЖМц и бронзы БрОФ при трении по стали и смазывании АМГ-10 не установлено. Для букс амортизаторов, рабо­тающих на этой жидкости, рентабельнее использовать бронзу БрАЖМц.

Бронзы и латуни применяют для сложных нажимных винтов, венцов червячных колес, сепараторов подшипников и деталей судо- и авиа­строения при литье в кокиль, под давлением, в песчано-глинистые фор­мы, жидкой штамповкой и др. Значительное развитие получили методы точного литья, применение которых позволяет получать детали по безот­ходной технологии, не требующие дальнейшей механической обработки.

Бронзы и латуни выплавляют, как правило, в индукционных тигель­ных (при производстве оловянных бронз) и индукционных канальных (при производстве безоловянных бронз и латуней) печах. Для снижения содержания примесей в медных сплавах используются методы обработки флюсами, фильтрации и раскисления, обеспечивающих снижение газов и неметаллических включений в литых изделиях.

Для улучшения прирабатываемости в бронзу вводят свинец, кото­рый снижает ее твердость и увеличивает пластичность. Оловянно-цинко­во-свинцовую бронзу Бр04Ц4С17 применяют в виде холоднокатаных лент для изготовления тонкостенных втулок. Бронзы типа БрАЖН имеют повышенную твердость и применяются для деталей, работающих при высоких температурах (например, из них изготовляют направляющие выпускных клапанов двигателей внутреннего сгорания). Направляющие впускных клапанов изготовляют из бронзы типа БрАЖ твердостью 70… 100 НВ.

Свинец в свинцовых бронзах находится в виде отдельных включений равномерно распределенных в матрице. Эти бронзы имеют хорошие анти­фрикционные свойства и применяются в подшипниках с высокими нагруз­ками и скоростями скольжения. Для лучшей прирабатываемости такие подшипники электролитически покрывают тонким слоем свинца; для уст­ранения возможной коррозии подшипников из свинцовой бронзы в смазочное масло вводят противоокислительные присадки. Толщина заливки вкладышей подшипников бронзой 0,5…0,8 мм. Рабочую поверхность под­шипников растачивают алмазным или твердосплавным резцом.

Подшипниковые материалы из мягких металлов Sn, Pb, Cd, Sb, Zn, характеризующиеся наличием твердых структурных составляющих в пластичной матрице, называют баббитами. Их заливают на подогретые вкладыши (250 °С) при температуре сплава 450…480 °С. Чаще применя­ют центробежную заливку. Заливают в кокиль и под давлением; толщина отливки в подшипниках 1…3 мм. Баббиты имеют высокие антифрикцион­ные свойства, хорошо прирабатываются, имеют низкий коэффициент тре­ния при граничной смазке, способны работать при попадании небольшого количества абразивных частиц в зазор подшипника. Твердость вала при работе с баббитовыми подшипниками должна быть 25…35 HRC. Для по- лучения долговечности подшипников твердость валов увеличивают до М)…55 HRC.

Из подшипниковых сплавов хорошо изучены и широко применяют ся высокооловянистые баббиты, структура которых подчиняется прин­ципу Шарпи: в мягкой матрице (в-Sn) распространены твердые частицы (Pb, Sn, CuSn). Такая структура способствует повышению антифрикци­онных свойств сплава. Однако классические подшипниковые сплавы,

структура которых удовлетворяют принципу Шарпи, оказались непри­годными для биметаллических подшипников с тонким слоем заливки баббита. В то же время отметим, что принцип Шарпи, сформулирован­ный применительно к цветным сплавам, в дальнейшем был распростра­нен на износостойкие чугуны и стали.

Недостатком баббитов является их малое сопротивление усталости, особенно при повышении температуры более 100 °С. С уменьшением толщины заливки подшипника и повышением жесткости системы вкла- дыш постель вкладыша сопротивление усталости увеличивается. Минимальная  толщина заливки баббита допускается 0,25…0,4 мм.

Для экономии олова разработаны низкооловянные баббиты, которые имеют несколько худшие антифрикционные свойства по сравнению с высокооловянными. В таблице 3 приведены составы и свойства оловянных и свииицовых баббитов.

Составы и свойства баббитов

Марка

баббита

Состав, %Твер­-Плот­-Предел прочности, МПаОтноси­тельное удлине­ние, %
SnSbСиРЬСаAsCdNaА1дость

НВ

ность,

г/см3

при

растяже­

нии

при

сжа­

тии

Б8382…

84

10…

12

5,5…

6,5

0,3307,39011560
Б1615…

17

15…

17

1,5…

2,0

64…

68

309,5801202
БС65…65…60,1…

0,3

88…90

88…90

166810012
БН9…1113…

15

1,5…

2,0

70…

75

1,2…

1,7

0,5…

0,9

0,1…

0,7

309,57013017
БКА98…

99

0,9…

1,2

0,6…

0,9

0,1…

0,2

3010580…100120…

150

25…30

Высокие антифрикционные свойства позволяют получить техноло­гические процессы облучения цветных сплавов и литья биме­таллических и многослойных изделий.

Применение биметаллических и многослойных изделий, в которых достигается сочетание требуемых свойств, дифференцированных по объ­ему и поверхности — одно из перспективных направлений рационального использования материалов в различных отраслях промышленности. Ос­новной причиной, сдерживающей более широкое применение биметал­лов, является получение качественного соединения компонентов по всей поверхности.

Авторами предложен принципиально новый способ получения биметаллических заготовок, в котором соединение компонентов в заготовках происходит в жидкофазном состоянии без перемешивания. Полу­чены образцы биметаллов Al-Sn, Al-Pb, Pb-Sn, Sn-Zn, Al-Pb. Металло- графические исследования показали наличие четкой волнообразной гра­ницы раздела в биметаллических образцах Al-Sn, Al-Zn, Al-Pb, Pb-Sn и размытой в образце Sn-Zn. В обоих случаях достигнуты высокая плот­ность и сплошность соединения компонентов. Методом дюрометриче- ского анализа биметаллических образцов обнаружено наличие диффузи­онной зоны в Al-Sn шириной 0,2…0,3 мм; в Al-Zn — 0,5…0,6 мм. В об­разцах Аl-Рb и Pb-Zn диффузионная зона не выявлена. В образцах Zn-Sn ярко выраженной поверхности раздела нет. Результаты рентгеноструктурного анализа и ультразвукового зондирования подтвер­дили наличие диффузионной зоны в образцах Аl—Sn, Al-Zn и ее отсутстние у Рb-Аl. Полученные результаты позволяют перейти к теоретическим и экспериментальным исследованиям по литью биметаллических загото­вок цилиндрического профиля для деталей типа втулок, валов и т.п.

Для исследования свойств композитов предложен новый метод ульт­развукового зондирования, позволяющий возбуждать в исследуемом звукопроводе как объемную, так и приповерхностную акустические волны.

Разработанное устройство является преобразователем торцового типа. Пьезоэлектрическая пластина с напаянным на нее электродом крепилась на торце прямоугольной призмы исследуемого образца биметалла, параллельно поверхности контакта металлов. Как показали исследования, для нормальной работы преобразователя необходимо, чтобы электрод пьезопластины располагался напротив одного из ребер образца, а его ши­рина стремилась к нулю.

В описанном устройстве использовался преобразователь из ка­лийнатриевого ниобата, связанный при помощи эпоксидного компаунда. Этот пьезоэлектрический материал интересен тем, что обладает высокой.

диэлектрической проницаемостью. Длина электрода выбиралась порядка 20Х, где X — длина волны; устройство работало на центральной частоте 60 МГц; акустический импульс имел ширину 0,1 мм.

Режимы эксплуатации литых композитов и многослойных изделий, работающих в условиях трения и изнашивания, чрезмерно многообразны, а прогнозирование их износостойкости представляется весьма сложной задачей в связи с многочисленностью определяющих ее факторов. Важ­нейшими из них являются: удельные нагрузки, условия смазки, условия теплоотвода, скорость и характер взаимодействия материалов пары меж­ду собой, со средой и продуктами износа; структура и свойства изнаши­ваемого материала.

Широкое применение серого износостойкого чугуна в машино­строении обусловлено его многими ценными качествами: высокими ли­тейными, антифрикционными и прочностными свойствами, хорошей об­рабатываемостью, высокой стойкостью, способностью поглощать вибра­ции благодаря высокой циклической вязкости и усталостной прочностью. При этом требования к качеству серого чугуна, его прочностным, техно­логическим и служебным свойствам с каждым годом ужесточаются. По­стоянно повышаются требования к структуре металлической матрицы и учитывается температура эвтектического превращения чугуна при его микролегировании. На рисунке показаны изменения температуры эвтек­тических превращений чугуна в зависимости от его микролегирования РЗМ.

Влияние микролегирования РЗМ на температуру эвтектического превращения (проба 0 20 мм) в фосфористых чугунах:

1 — 0,08 % Р, без РЗМ; 2 — 0,08 % Р и 0,03 % РЗМ; 3 — 0,08 % Р и 0,07 % РЗМ; 4 — 0,07 % Р и 0,16 % РЗМ; 5 — 0,16 % Р, без РЗМ; б — 0,16 % Р и 0,03 % РЗМ; 7 — 0,16 % Р и 0,08 % РЗМ; 5-0,16 % Р и 0,16 % РЗМ

В качестве комплексной характеристики многокомпонентного хи­мического состава чугуна наибольшее распространение получила степень эвтектичности (Sc), которой многие исследователи придают определяю­щую роль при установлении зависимости состав-свойства. Однако объ­ективное представление о структуре чугуна может быть получено только при совместном рассмотрении всех процессов ее формирования, прежде всего кристаллизации и перекристаллизации. Поэтому для производства высококачественных чугунов важен контроль не только химического состава, но и количественного соотношения первичного аустенита, гра­фита, эвтектики, неметаллических включений и примесей, так как имен­но эти параметры позволяют установить пока еще неизвестные соотно­шения между составом, структурой и свойствами. При этом необходимо отметить, что фазовый состав и их структурные составляющие опреде- ляют физико-механические свойства серого износостойкого чугуна в значительно большей степени, чем, например, химический состав. Значи­тельное распространение износостойких чугунов объясняется тем, что особенности их структуры позволяют в широких пределах регулировать надежность, долговечность и эксплуатационные свойства в литых изделиях. В таблице приведен средний износ образцов из различных литей­ных сплавов, используемых в промышленности, в зависимости от харак­тера трения и структуры.

Средний износ образцов из литейных сплавов

МатериалТвер­

дость

НВ

СтруктураСредний износ образцов, г
Трение без смаз­киТрение со смазкой
Чугун с шаровид­ным графитом, нормализованный236Сорбитизирован- ный перлит, фер­рит (20 %)0,053…

0,067

0,0015…

0,0345

Чугун с шаровид­ным графитом, после закалки257Троостит, феррит (30 %),

аустенит (15 %)

0,020,0011
Чугун с шаровид­ным графитом, после закалки с отпуском263Троостит, сорбит, феррит (20%)0,03290,00205

 

Твер­Средний износ образцов, г
Материалдость

НВ

СтруктураТрение без смаз­киТрение со смазкой
Чугун с шаровид­ным графитом, после изотермиче­ской закалки241Троостит, феррит (30 %), аустенит (30 %)0,0120,0006
Латунь ЛЦ40С Бронза БрОЮФ1

75

90

а+в

а+в

2,975

2,86

0,00114

0,00105

Ковкий чугун с зернистым перли­том163…

187

Зернистый перлит и углерод отжига0,04…

0,2

0,002…

0,029

Термоулучшен­ный высокопроч­ный ковкий чугун285Бейнит, зернистый перлит (20 %)0,030,007

Литейные сплавы, приведенные в таблице при испытании в усло­виях интенсивного абразивного изнашивания в соответствии с методом по ГОСТ 17367-88 и в условиях гидроабразивного изнашивания показали низкую износостойкость. Высокую износостойкость в таких условиях имели легированные белые чугуны.

Загрузка…

Оружейная сталь – как изготавливают мечи, ножи, клинки

Знаете, как иберийские оружейники во II веке до нашей эры проверяли качество своих мечей – серповидных клинков? Древнегреческий инженер и математик Филон Византийский описал один из процессов испытания. Оружие клали плашмя человеку на голову и сгибали на обе стороны до тех пор, пока те не касались плеч. После руки отводили и клинок, если, конечно же, сталь была безупречной, принимал свою прежнюю форму. Невероятной гибкостью меча и его прочностью восхищались даже самые умелые мастера. 

Ковали такие клинки или, как их еще называли, фалькаты в единичных экземплярах. Все из-за сложности процесса изготовления. Достигали гибкости металла путем изменения содержания углерода. Исследователи утверждают, что в районе лезвия, где сталь должна быть высокой твердости, содержание углерода было наибольшим – 0,4%, а в центре клинка – 0%. Именно это и позволяло мечу оставаться одновременно твердым и эластичным. Но к такому мастерству обработки стали для холодного оружия пришли не сразу.

Закалка стали в средние века: от меди к железу

Изначально металлом для изготовления мечей и ножей была медь. Это достаточно мягкий металл: плохо держит форму и остроту лезвия. Поэтому медь вскоре вытеснил более прочный сплав меди и олова – бронза. Но и такое оружие было несовершенным, к тому же дорогостоящим. Поэтому кузнецы искали новые решения.

Железо научились обрабатывать позже. Почему? Во-первых, медь и бронза хорошо поддаются холодной ковке, а железо нужно было ковать в раскаленном состоянии. Во-вторых, где взять сырье? В Японии, к примеру, железный век начался только в VII столетии новой эры: земля была бедна металлами. В Европе – гораздо раньше. Еще до нашей эры тут нашли залежи железной руды. Впервые железо стали использовать для изготовления оружия в Азии, в XII веке до нашей эры.

Как делали мечи из железа

Что же такое сталь? Это сплав железа с углеродом. Благодаря последнему ее можно закаливать.

Сталь для меча куют при температуре от 850°С до 1300°C. Но если сейчас производство позволяет автоматически контролировать температурный режим и выдерживать время закалки, то как с этим справлялись в древности, чтобы ковать мечи? Не поверите, температуру определяли на глаз – по цвету накала металла.

К примеру, вишневый оттенок означает, что температура плавления стали достигает 800°С, темно-желтый – свыше 1000°С, ослепительно белый – более 1250°С.

Мастера следили и за температурой отпуска металла. Здесь также есть свои нюансы и цветовая градация. Состав оружейной стали в разные времена был разным. 

Позже в сталь для изготовления сабли и меча начали добавлять различные добавки – хром, молибден, ванадий, кобальт, вольфрам, никель… Они улучшают свойства готового материала и текстуру оружейной стали, и изделия становятся более прочными и твердыми.

Хром делает сталь устойчивой к коррозии, молибден препятствует ломкости, вольфрам повышает твердость, ванадий усиливает прочность, а кобальт – режущие свойства. Главная задача при изготовлении сплава – найти оптимальное сочетание элементов. Эти знания нам доступны сегодня, а мастера кузнечного дела добивались выплавки идеального оружия методом проб и ошибок.

Они следили за тем, как сталь реагирует на изменение температуры во время ковки клинка. Если ее разогреть и охладить медленно, – металл получится мягким. Охладить быстро, погрузив в холодную воду, – приобретет небывалую твердость. Недокалить – сломается. Сложно? Еще бы!

Дамаск и булат: история изготовления клинка

Наверняка вы слышали о дамасской стали, о булатных мечах. Об этом оружии веками слагали легенды, а технологию ковки клинка держали в тайне. Но вопрос в другом. Как вообще первым металлургам без современных знаний пришла мысль соединить воедино слои мягкой и твердой стали для изготовления этих клинков? Что получили? Такой себе «бутерброд» – многослойную заготовку. Металл для ножей проковывали, складывали, вновь проковывали, повторяли эти действия до тех пор, пока количество слоев металла не достигало одной тысячи, а то и выше. В итоге оружие становилось твердым и упругим одновременно. Далее металл для клинков полировали, и на нем проступали характерные для дамасской стали разводы – результат многослойности. Красиво? Очень.

Булат получали иначе – за основу брали высокоуглеродистую сталь. Это был практически чугун, который сохранял способность к ковке. При плавке в него добавляли частицы низкоуглеродистого металла, которые, охлаждаясь, придавали оружию отличные режущие свойства.

Оружейная сталь: настоящие дни

Тысячелетиями в мире производили из металла оружие: мечи, клинки, ножи… Технологии совершенствовались, и ныне металлурги уже пришли к так называемой порошковой высокоуглеродистой легированной стали. В основном эту сталь используют для изготовления армейских, рыбацких либо охотничьих ножей. Они пользуются спросом, поскольку максимально остры и хорошо держат заточку. Плюс такой технологии – металл для оружия легко обрабатывать, и не остается отходов: остатки всегда можно переработать в порошок и возобновить цикл. 

К слову, именно к безотходности стремится вся современная металлургия. А еще – к чистоте производства. Итак, в оружии нет волшебной силы, скорее наоборот… Его сила убийственна, но при этом нельзя рассматривать меч, клинок либо нож исключительно в этом контексте. Эволюция оружия неразрывно связана с прогрессом в металлургии. С чего начинали? С пластичной меди, из которой благодаря одной ковке получали тонкие и острые лезвия. К чему пришли? К химическим элементам в качестве добавок… к порошковой стали, а еще – к оптимизации и автоматизации производства. Что будет дальше? Поверьте, металлурги смогут нас удивить. И вопрос не в скорости, а в направлении.
 

Бериллиевая бронза БрБ2

БрБ2 — это безоловянная бериллиевая бронза, обрабатываемая давлением. Химический состав сплава БрБ2 описан в ГОСТ 18175-78 и включает в себя следующие компоненты: медь 96,9-98,0 %, бериллий 1,8-2,1 %, никель 0,2-0,5 % и до 0,5 % примесей.
Сплав выделяется среди прочих бронз высокой износостойкостью и стойкостью к коррозионной усталости. Наряду с другими бронзами БрБ2 обладает хорошими антифрикционными и пружинящими свойствами, а также средними тепло и электропроводностью, что обуславливает применение ленты и проволоки БрБ2. Кроме того можно улучшить механические качества этого сплава, если подвергнуть его процедурам закалки и старения. Так, например, широко используют пруток БрБ2Т.

Свойства БрБ2

Рассмотрим свойства бериллиевой бронзы марки БрБ2 – химические, технологические, механические, физические.


Химический состав БрБ2


Химсостав сплава БрБ2 по ГОСТ 18175 – 78
Fe Si Ni Al Cu Pb Be Примесей
до   0.15 до   0.15 0.2 – 0.5 до   0.15 96.9 – 98 до   0.005 1.8 – 2.1 всего 0.5

Примечание: Cu – основа; процентное содержание Cu дано приблизительно


 
Литейно-технологические свойства бронзы БрБ2
Температура плавления БрБ2 955 °C
Температура горячей обработки БрБ2: 750 – 800 °C
Температура отжига БрБ2: 530 – 650 °C

Механические свойства БрБ2
Сортамент Предел кратковременной прочности sв Предел пропорциональности (предел текучести дляостаточной деформации) sT Относительное удлинение при разрыве d5
МПа МПа %
Проволока мягк., ГОСТ15834 – 77 343-686   15-60
Проволока тверд.,ГОСТ 15834 – 77 735-1372    
Полоса мягк., ГОСТ1789-70 390-590   20-30
Полоса твердая, ГОСТ1789-70 590-930   2.5
Сплав мягкий , ГОСТ1789-70 400-600 196-344 40-50
Сплав твердый, ГОСТ1789-70 600-950 588-930 2-4

Твердость прутков из БрБ2 прописана в ГОСТ 15835-2013 (взамен ГОСТ 15835-70)

Твердость БрБ2
Твердость БрБ2, Пруток мягкий ГОСТ 15835-2013 HB 10 -1= 100 – 150 МПа
Твердость БрБ2, Пруток твердый ГОСТ 15835-2013 HB 10 -1= 150 МПа

HB – Твердость по Бринеллю бериллиевой бронзы


Физические свойства БрБ2 (бронзы бериллиевой)
Температура T Модуль упругости первого рода E 10-5 Коэффициент температурного (линейного) расширения a10 6 Теплоемкость l Плотность Удельная теплоемкость C Удельное электросопротивление R 109
Град МПа 1/Град Вт/(м·град) кг/м3 Дж/(кг·град) Ом·м
20 1.31   84 8200   70
100   16.6     419  

    
Аналоги БрБ2
США Германия Япония
  DIN,WNr JIS
                                                                                                                                                             

 

Применение бериллиевой бронзы БрБ2

Прутки из бронзы БрБ2 применяются в приборостроении и автомобилестроении. Ленты БрБ2 также применяются в приборостроении и производстве упругих и пружинящих деталей. Аналогичное применение нашла проволока в машиностроении и приборостроении. Бронза БрБ2 используется в различных областях производства. Из неё изготавливают антифрикционные детали и пружинящие детали: пружинящие детали и пружины. Из неё изготавливают детали ответственного назначения. Также из неё изготавливают неискрящие инструменты.

Технологические характеристики позволяют изготавливать из бериллиевых бронз сложные отливки высокого качества, но обычно детали из них производят из заготовок, подвергнутых предварительной пластической деформации (листы и полосы, проволока, ленты и др). Широкое применение сплавов бериллиевой группы обусловлено еще и тем, что они хорошо поддаются различным видам обработки, а для соединения деталей из них можно использовать все известные способы (сварка и пайка).

Пайка и сварка БрБ2

Пайку бериллиевых бронз следует выполнять сразу же, как была выполнена тщательная механическая зачистка соединяемых элементов. В качестве припоя при выполнении такой технологической операции используются сплавы на основе серебра, а в защитном флюсе, использование которого необходимо, должны в обязательном порядке содержаться фтористые соли. Высокое качество пайки деталей из данных сплавов обеспечивает технология, предполагающая выполнение соединения в вакууме и использование слоя защитного флюса.

Детали из бериллиевых бронз не соединяют при помощи электродуговой сварки, для этого успешно используют другие технологии: точечную, шовную, роликовую и сварку в среде инертных газов. Такое ограничение в применении электродуговой сварки обусловлено тем, что сплавы данной группы обладают большим температурным интервалом кристаллизации. Кроме этого, сварку бронз бериллиевой группы нельзя выполнять после термической обработки, что обусловлено их особыми механическими свойствами.

Износостойкость и коррозионной устойчивость бронзы БрБ2

Детали из бериллиевой бронзы не истираются и в то же время бережно воздействуют на сопрягаемые механизмы, хорошо сопрягаются с друг другом, полируются и идеальным образом взаимодействуют в механизмах при заданных параметрах. Но даже если условия эксплуатации нарушены, детали из БрБ2 способны выдерживать большие нагрузки трения и других механических воздействий. При работе механизмов в ходе изнашивания БрБ2 не откалывается большими кусками, а истирается постепенно, давая очень мелкую стружку.

Коррозионная усталость – это один из показателей коррозионной стойкости металлов. Когда детали работают под воздействием большой массы, циклических динамических нагрузок в коррозионной среде, велика вероятность выхода из строя конструкций, в которых они используются. Сплав БрБ2 хорошо проявляет себя в различных коррозионных средах и может быть использован для изготовления ответственных деталей, так как коррозия проявляется достаточно медленно и не оказывает значительного воздействия на механические и физические свойства деталей из этого материала долгое время. Однако, под действием влажных паров аммиака и воздуха бериллиевые бронзы склонны к межкристаллизационной коррозии и растрескиванию. В газовой среде, насыщенной галогенами (фтором, бромом, хлором и йодом), на их поверхности образуются галогениды бериллия, из-за чего происходят уменьшение его концентрации в сплаве. Особенно активно процесс взаимодействия с галогенами происходит при повышенных температурах. В связи с этим, бериллиевую бронзу БрБ2 не рекомендуют использовать для изготовления деталей, эксплуатируемых в указанных газах.

Облагораживание и закалка БрБ2

Путём облагораживания изделия из БрБ2 получаются более твёрдыми и более пластичными. Соответственно выпускаются полуфабрикаты в мягком (М) и твёрдом (Т) состоянии. В ходе процедуры закалки металл нагревают до некоторой температуры, после чего остужают в воде. В результате пластичные свойства металла повышаются и его применяют для изготовления деталей путём прокатки, ковки, вытяжки и гибки в холодном состоянии. Также выпускаются полуфабрикаты из БрБ2 с закалкой и холодной деформацией. БрБ2 закаливают при температуре 750-790 °C, после чего сплав отпускают при температуре в пределах 300-350 °C. После холодной деформации механические качества твёрдости, прочности и текучести улучшаются. БрБ2 Т выделяется среди прочих бронз самым высоким показателем прочности на растяжение. Медно-бериллиевый сплав БрБ2, подвергаемый термическому закаливанию, становится более прочным, упругим и пластичным. Первоначально его приводят в мягкое состояние, нагревая до 760-780°С, а затем подвергают старению в воде при температуре 310-330°С в течение 3 часов. При нагревании и последующем охлаждении сплава до комнатной температуры бериллий растворяется в меди с образованием насыщенного твердого раствора. Последующая закалка приводит к его осаждению, в результате чего бронза БрБ2 приобретает высокую твердость до 350 – 400 НВ.

 

материалов – Как закалить цветной металл

материалов – Как отпустить цветной металл – Chemistry Stack Exchange
Сеть обмена стеков

Сеть Stack Exchange состоит из 178 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.

Посетить Stack Exchange
  1. 0
  2. +0
  3. Авторизоваться Подписаться

Chemistry Stack Exchange – это сайт вопросов и ответов для ученых, преподавателей, преподавателей и студентов в области химии.Регистрация займет всего минуту.

Зарегистрируйтесь, чтобы присоединиться к этому сообществу

Кто угодно может задать вопрос

Кто угодно может ответить

Лучшие ответы голосуются и поднимаются наверх

Спросил

Просмотрено 4к раз

$ \ begingroup $

Можно ли закалить (сделать более твердыми) цветные металлы / сплавы (медь, латунь, бронза) только регулированием температуры, как черные металлы? Я понимаю, что отжигать медь, латунь и т. Д. Просто., просто сделав их достаточно горячими.

Мне интересно, можно ли закаливать цветные металлы без необходимости их механической обработки или струйной обработки (по сути, механического упрочнения).

Jonsca

2,92677 золотых знаков3030 серебряных знаков5555 бронзовых знаков

Создан 11 окт.

$ \ endgroup $ 2 $ \ begingroup $

Большинство цветных сплавов нагревают до образования раствора.

методов:

Отжиг:

Большинство цветных сплавов, которые поддаются термообработке, также подвергаются отжигу для уменьшения твердости при холодной обработке. Их можно медленно охлаждать для полного осаждения компонентов и получения улучшенной микроструктуры.

Различные методы отжига цветных сплавов, такие как рекристаллизационный отжиг, частичный отжиг, полный отжиг и окончательный отжиг.

Закалка

Закалка – это процесс быстрого охлаждения металла.Чаще всего это делается для мартенситного превращения. В черных сплавах это часто дает более твердый металл, в то время как цветные сплавы обычно становятся мягче, чем обычно.


Ссылка: Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *