Какие классы точности бывают: Виды классов точности средств измерений
alexxlab | 04.02.1990 | 0 | Разное
Классы точности приборов измерения — Строй Обзор
Содержание
- Класс точности измерительного прибора
- Нормирование
- Виды маркирования
- Пределы
- Классы точности болтов
Конспект КСР1 (п. 8)
КЛАССЫ ТОЧНОСТИ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ
Класс точности измерительного прибора — это характеристика, определяемая нормированными предельными значениями погрешности средства измерений.
Способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ 8.401-80.
Способы нормирования допускаемых погрешностей:
— по абсолютной погрешности,
— по относительной погрешности,
— по приведенной погрешности – по длине или верхнему пределу шкалы прибора.
Обозначения классов точности измерительных приборов:
— арабскими цифрами без условных знаков — класс точности определяется пределами приведённой погрешности, в качестве нормирующего значения используется наибольший по модулю из пределов измерений.
— арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы.
По приведенной погрешности приборы делятся на классы: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.
Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными.
В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические).
Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.
— арабскими цифрами в кружке — класс точности определяется пределами относительной погрешности.
— латинскими буквами, то класс точности определяется пределами абсолютной погрешности.
Когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления. При считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.
Пример: вольтметр, диапазон измерений 0 — 30 В, класс точности 1,0 определяет, указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.
Относительная погрешность результата зависит от значения напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.
Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.
Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.
Класс точности измерительного прибора
Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.
Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:
- приборы;
- преобразователи;
- установки;
- системы;
- принадлежности;
- меры.
На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:
- делители напряжения;
- трансформаторы тока и напряжения;
- шунты.
Обозначение класса точности
Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.
Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.
Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.
Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.
Грузопоршневой манометр, класс точности 0,05
Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.
Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.
Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.
Нормирование
Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й
Нормирование осуществляется по:
Формулы расчета абсолютной погрешности по ГОСТ 8.401
Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.
Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.
Виды маркирования
Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.
Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.
Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.
Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.
Пределы
Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.
Базовый способ определения погрешности
При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.
Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.
Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.
Класс точности 2,5
Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.
Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.
Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.
Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.
Пример расчета погрешности
Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.
Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.
Классы точности болтов
Болты и другие крепежные изделия изготавливают нескольких классов:
Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.
Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.
Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.
Гайки шестигранные класса точности В
Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.
Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.
Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности . Под ними понимают предельные для данного типа средства измерений погрешности.
Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.
Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.
На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.
Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δ s =1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).
Это означает, что для данного измерительного прибора погрешность чувствительности δ s= d x/x — постоянная величина при любом значении х. Граница относительной погрешности δ (х) постоянна и при любом значении х просто равна значению δ s, а абсолютная погрешность результата измерений определяется как d x= δ sx
Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.
Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δ о=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля d x= d о=const, а δ о= d о/хн.
При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.
Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δ о увеличивается обратно пропорционально х, то есть относительная погрешность δ (х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ (х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.
На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака “угол”.
Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δ прк = ±0,02 %, а в нуле диапазона δ прк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае
δ (х) = δ к + δ н (хк/х — 1),
где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.
Класс точности электросчётчиков и его влияние на объём коммунального ресурса на содержание общего имущества
Многоквартирные дома должны быть оснащены индивидуальными и общедомовыми приборами учёта ресурсов. При этом требование к характеристикам ИПУ и ОДПУ различны. Рассказываем, как группа управляющих организаций пыталась в суде доказать, что дифференцированный подход к приборам учёта негативно влияет на объёмы КР на СОИ.
Требования к классу точности приборов учёта электроэнергии закреплены в ПП РФ № 442
Обязанность потребителей коммунальных ресурсов оснастить свои помещения индивидуальными приборами учёта прописана в нескольких нормативно-правовых актах РФ. Например, установить ИПУ собственники должны для исполнения требований к энергетической эффективности многоквартирного дома (ч. 9 ст. 11 № 261-ФЗ) и для определения объёма индивидуального потребления коммунальных ресурсов (п. 80 ПП РФ № 354).
В № 261-ФЗ и ПП РФ № 354 также закреплено, что многоквартирные дома при наличии технической возможности должны оснащаться общедомовыми приборами учёта коммунальных ресурсов (ч. 7 ст. 13 № 261-ФЗ, п. 80 ПП РФ № 354). Это требование относится к учёту всех коммунальных ресурсов, в том числе электроэнергии.
Требования к тому, какими должны быть установленные в МКД счётчики электрической энергии, изложены в ПП РФ № 442. Так, согласно п. 138 ПП РФ № 442, в помещениях собственников должны быть установлены приборы учёта классом точности не ниже 2.0.
При этом до вступления в силу ПП РФ № 442 общедомовые счётчики, установленные в многоквартирных домах, также могли быть с классом точности 2.0 и выше. Но, в соответствии с требованиями п. 138 ПП РФ № 442, с 12 июня 2012 года ОДПУ электроэнергии должны иметь класс 1.0 и выше.
Может ли УО взимать с жителей дополнительную плату за замену ОДПУ136696
20
Класс точности ИПУ и ОДПУ различаются
Класс точности прибора учёта электроэнергии – это максимальная погрешность, которая может возникнуть при измерении потребления электрической энергии. Класс точности выражается в процентах: при 1.0 он составляет ± 1%, при 2.0 – ± 2%. То есть при 1.0 измерения будут более точными, чем при погрешности в 2.0.
Класс точности ПУ обязательно указывается в его паспорте, а также на передней панели счётчика: обычно эта цифра указана в кружке.
При этом, как указано в п. 142 ПП РФ № 442, если у потребителя до мая 2012 года был установлен ИПУ с классом точности ниже 2.0 (чаще всего, это 2.5), то им можно пользоваться до момента истечения срока его поверки. Затем его необходимо заменить, установив новый прибор учёта, соответствующий требованиям п. 138 ПП РФ № 442.
Такие же требования предъявляются к ОДПУ электроэнергии: если до момента вступления в силу ПП РФ № 442 в доме был введён в эксплуатацию общедомовый счётчик с классом точности ниже 1.0, то заменить его нужно только при выходе из строя или истечении срока поверки.
В новых домах все установленные приборы учёта должны соответствовать требованиям ПП РФ № 442: ИПУ иметь класс точности 2.0 и выше, ОДПУ – не менее 1. 0.
Как ввести в эксплуатацию и опломбировать индивидуальный счётчик210567
14
УО посчитали различия в классах точности ИПУ и ОДПУ причиной роста объёмов КР на СОИ
С требованиями устанавливать в МКД приборы учёта с разными классами точности, то есть в погрешности измерений, не согласилась группа управляющих организаций. Они подали административный иск в Верховный суд РФ с требованием признать недействующим п. 138 ПП РФ № 442.
Управляющие организации указали, что данный пункт противоречит ч. 1 ст. 1 ГК РФ и ч. 1 ст. 1 ЖК РФ. Также он ставит участников отношений по приобретению и оплате фактически потреблённой электроэнергии в неравное положение. Поэтому нормы п. 138 ПП РФ № 442 нарушают принципы равенства участников гражданских правоотношений и равенства участников регулируемых жилищным законодательством отношений по владению, пользованию и распоряжению жилыми помещениями.
Различный механизм работы ИПУ и ОДПУ приводит к увеличению разницы между показаниями общедомового счётчика и показаниями индивидуальных приборов учёта. Объём ресурсов, потреблённых домом с целью содержания общего имущества, значительно превышает норматив и расходы по его оплате ложатся на плечи УО.
Из-за разной погрешности приборов учёта, показания которых учитываются при расчёте платы за электроэнергию для граждан и для лиц, оплачивающих КР на СОИ, возникает ситуация, когда за одинаковый объём ресурса плательщикам выставляются к оплате различные суммы. Все погрешности приборов учёта трактуются в пользу жителей дома, что нарушает принципы справедливости, добросовестности и равенства.
Из-за этого, как указали в иске управляющие организации, они вынуждены оплачивать завышенные суммы за электроэнергию, потреблённую на содержание общего имущества собственников в многоквартирных домах, что приводит к ухудшению их финансового положения и увеличению размера задолженности перед РСО.
Плюсы и минусы установки в многоквартирном доме «умных» счётчиков28957
5
Дифференциация ПУ по классам защищает потребителей от лишних расходов на электроэнергию
ВС РФ, проанализировав нормы оспариваемого п. 138 ПП РФ № 442, отметил, что требование использовать для учёта электрической энергии приборы учёта определённого класса точности соответствует действующему законодательству.
Так, согласно ч. 1 ст. 13 № 261-ФЗ, потребляемые энергетические ресурсы подлежат обязательному учёту с применением приборов учёта, а требования к их характеристикам определяются в соответствии с законодательством РФ.
К применению допускаются средства измерений утверждённого типа, прошедшие поверку, обеспечивающие соблюдение установленных требований, включая обязательные метрологические требования к измерениям, обязательные метрологические и технические требования к средствам измерений (ч. 1 ст. 9 № 102-ФЗ).
При этом классы точности приборов учёта определяются в соответствии с техническими регламентами и иными обязательными требованиями, установленными для классификации средств измерения.
Использование счётчиков классов точности 0.5, 1.0 и 2.0 для измерения объёмов потребляемой электроэнергии соответствует требованиям ГОСТ 31819.11-2012 (IEC 62053-11:2003).
Собственники помещений в многоквартирном доме и УО не являются сторонами одного договора, заключённого с ресурсоснабжающей организацией, и не обладают одинаковым правовым статусом:
- собственники помещений заключают с РСО договор энергоснабжения;
- УО заключает с РСО договор поставки ресурса на содержание общего имущества собственников в МКД.
На входе в МКД прибор учёта фиксирует большой объём электроэнергии: совокупный объём индивидуального потребления и КР на СОИ. Чем выше объём потребления ресурса, тем выше значение погрешности.
Поэтому класс точности общедомового прибора учёта выше, чем требования к такой характеристике ИПУ. Подобная дифференциация направлена на защиту интересов граждан, проживающих в МКД: они не должны нести дополнительные расходы, вызванные большей погрешностью в учёте коммунальных ресурсов.
ВС РФ пришёл к выводу, что п. 138 ПП РФ № 442 не нарушает принципов равенства гражданского оборота и участников отношений, регулируемых жилищным законодательством. Иск управляющих организаций был отклонён.
На заметку
Верховный суд РФ в решении по делу № АКПИ 18-1304 указал, что разница в погрешности измерений между ИПУ и ОДПУ вызвана разным количеством электроэнергии, которое фиксируют эти приборы. Чем выше объём КР, тем больше погрешность, следовательно, тем выше должен быть класс точности у прибора учёта, чтобы он фиксировал реально потреблённый объём ресурса.
Управляющие организации, отмечающие рост сверхнормативного объёма потребления ресурсов на содержание общего имущества собственников в многоквартирном доме, должны помнить о факторах, влияющих на этот показатель:
- непередача собственниками показаний ИПУ;
- неисправные ИПУ, в том числе те, в работу которых было произведено несанкционированное вмешательство;
- хищение коммунальных ресурсов в обход ИПУ;
- неэффективное использование ресурсов в местах общего пользования (например, весь день горит свет в подъезде).
Для борьбы с этими факторами УО совместно с РСО должны разработать стратегию по их устранению и привлечь к работе Совет МКД, активных собственников и жителей дома.
Ольга Шевлягина Главный редактор
Полезная статья?
Поделитесь с коллегами и друзьями
Подпишитесь на рассылку
Еженедельно получайте новости сферы ЖКХ, советы по управлению МКД и заполнению ГИС ЖКХ.
Выберите почту, на которую вам удобно получать рассылку, присоединяйтесь к 72 235 подписчикам
Получать на @Mail. ru Получать на @Yandex.ru Получать на @Gmail.com Получать на мою почту
Статьи по теме
Что нужно знать о проверке и замене приборов учёта электроэнергии
Точный учёт электроэнергии важен для управляющих и ресурсоснабжающих организаций, собственников помещений в МКД. Для ведения учёта потребляемой энергии используется специализированное учётное оборудов…
Как истребовать у
РСО показания индивидуальных приборов учётаНа онлайн-семинаре «3 месяца с прямыми договорами: как проходит привыкание» мы получили от вас более семидесяти вопросов и решили, что на самые интересные из них дадим развёрнутые ответы. Сегодня вы у…
Как составить акт о безучётном потреблении, чтоб его не оспорил суд
Управляющая организация при проверке счётчика может выявить факт вмешательства в его работу и составить акт о безучётном потреблении ресурса. На основании акта производится доначисление платы за ресур…
Вопросы по теме
Полное или частичное копирование материалов разрешено только при указании источника и добавлении прямой ссылки на сайт roskvartal.ru
Класс точности электросчетчика – что это такое и какой необходим?
Приборы учёта электрической энергии могут быть классифицированы в зависимости от типа измеряемых величин, способа подключения, а также конструкционных особенностей.
Класс точности электросчетчика – один из наиболее важных показателей, который в обязательном порядке должен быть учтён при выборе прибора перед самостоятельной установкой.
Что такое класс точности электросчетчика?
Современные электрические счётчики помимо простых измерений мощности электроэнергии, способны самостоятельно применять тарифы с учётом основных характеристик окружающей среды. Также такие приборы могут отслеживать качественные характеристики всей подаваемой энергии и делают возможным удаленный доступ к показателям.
По своей сути, класс точности является параметром, определяющим показатели степени погрешности устройства.
Такие показатели в обязательном порядке отображаются на передней панели устанавливаемого прибора учёта и отражают уровень погрешности всех выполняемых устройством замеров.
Правильно выбранный прибор позволяет определить наибольшую возможную относительную погрешность в процентном соотношении.
На сегодняшний день повсеместно осуществляется замена уже полностью устаревших, с технической точки зрения, электрических счетчиков более современными и качественными устройствами. В первую очередь такая массовая замена объясняется недостаточной точностью старых приборов учёта электроэнергии, а также значительно возросшими нагрузками на электрические сети.
В соответствии с указаниями, прописанными в Постановлении РФ, обязательной замене подлежат электрические счётчики, класс точности которых составляет 2,5. Разрешены к применению приборы учёта, имеющие показатели 1 и 2 класса точности.
Какие бывают классы точности?
В соответствии с установленными нормами и правилами, первичную поверку выполняет завод-изготовитель.
Класс точности прописывается в паспорте, который является сопроводительной документацией любого прибора учёта электроэнергии.
Именно с такой заводской отметки и отсчитывается стандартный временной интервал.
Дальнейшие проверки проводятся:
- для электрических счётчиков – 9-15 лет;
- для механических однофазных электрических счетчик – 16 лет;
- для электрических счётчиков с показателями класса точности 0,5 единиц – 5 лет;
- для трехфазного счетчика – 5-9 лет;
- для современных электрических счетчиков – 15 лет и более.
Поверка предполагает демонтаж прибора учёта электроэнергии и сдачу его в специальную лабораторию, имеющую аккредитацию для выполнения такого вида работ.
Указание класса точности на приборе учета
По результатам проверки выдаётся документ, который является свидетельством исправности прибора или отражает необходимость в обязательном порядке приобрести новый электросчётчик. В настоящее время есть пять классов точности: 0.2, 0.5, 1.0, 2.0 и 5.0, что является отображением процента погрешности, возможной при подсчёте электрической энергии прибором учёта.
Показатель 5.0 является полностью устаревшим, поэтому в индукционных электросчётчиках применяется класс точности 2.0, а в электронных приборах учёта – класс точности равен единице.
Какой класс точности должен быть у электросчетчика
Правильный выбор электрического счетчика для квартиры или частного домовладения является достаточно сложной задачей и предполагает учёт очень многих факторов, включая также класс точности.
При замене старого электрического счетчика, который устанавливается в квартиру, частный дом или гараж, очень важно ориентироваться не только на показатели мощности, но и класс точности, который обратно пропорционален указываемому производителем цифровому значению. Таким образом, нужно помнить, что чем меньше цифра обозначения на лицевой панели, тем выше уровень класса.
Электронные модели электросчетчиков постепенно вытесняют старые индукционные. Индукционный счетчик электроэнергии, тем не менее, все еще используется, к тому же имеет некоторые преимущества.
Что такое трансформатор тока и как он работает, читайте тут.
Расчет электроэнергии по однотарифному и многотарифному счетчикам различается. О том, как правильно снять показания, вы узнаете из этой информации.
Для квартиры
От показателей класса точности прибора учёта напрямую будут зависеть все колебания таких параметров, как процентное отклонение от настоящего количества всего потребляемого объёма электрической энергии.
Бытовое применение такого прибора в квартирных условиях предполагает приемлемый средний уровень класса точности в пределах двух процентов.
Например, реальное потребление электроэнергии в 100кВт предполагает наличие показателей на уровне от 98кВт до 102кВт. Чем меньшая цифра, указываемая с сопроводительной технической документации, обозначает класс точности, тем меньше будет погрешность. Следует отметить, что вариант электрических счётчиков с максимальной точностью отображения погрешностей, как правило, выше по стоимости, чем другие модели.
С целью правильного определения основных показателей квартирного счётчика при выборе модели очень важно получить разъяснения у специалистов организации, занимающейся энергетическим снабжением данного жилого помещения. Чаще всего, все нюансы обязательно прописываются в договоре, который заключается при поставке электрической энергии между организацией и потребителем.
Важно помнить, что в соответствии с Российским законодательством, в договорах, заключаемых между потребителями и сбытовой организацией, обозначается только нижний уровень класса точности. В выборе верхних показателей, потребители электроэнергии на законодательном уровне не ограничиваются.
В любых жилых многоквартирных домах в обязательном порядке устанавливаются вводные общедомовые приборы учёта электроэнергии с классом точности единица или выше.
Все общедомовые электрические счетчики с классом 2.0 подлежат замене при выходе из строя или в процессе выполнения очередной плановой поверки.
Для частного дома
Прежде чем приступить к самостоятельному выбору определенной модели прибора учёта расходуемого электричества, требуется уточнить основные технические характеристики устройства, а также выяснить все условия энергоснабжения частного домовладения.
При отсутствии необходимых данных в сопроводительной документации, целесообразно привлечь специалистов, которые помогут уточнить тип напряжения, а также учтут количество подключаемых бытовых приборов и энергозависимой техники.
Желательно заблаговременно позаботится о составлении грамотной схемы электрической проводки в частном доме.
Для бытового потребления используются электросчетчики, обладающие точностью измерений в 2.5% или более. Именно такие пределы установлены для приборов учёта индукционного или электромеханического типа. Для наиболее точных электронных и цифровых моделей характерным является измерение потребляемой электрической энергии с уровнем погрешности – 1. 0 или 1.5. Бытовые модели счетчиков, имеющие более высокие показатели класса точности, в настоящее время не производятся.
Для установки в условиях частного дома, безусловно, наилучшим вариантом являются приборы, обладающие классом точности на уровне 2.0% и имеющие функцию подсчёта электроэнергии в зависимости от ночного и дневного режима.
Как определить?
В большинстве квартир и частных домах установлены электрические счётчики с классом точности в 2.5%.
В настоящее время такие устаревшие приборы учёта относятся к категории нерасчётных, поэтому энергоснабжающие организации уполномочены отказывать в приёме показаний расхода электричества для выполнения расчёта.
Нерасчётные электросчётчики подлежат обязательной замене на более новые и современные приборы.
Самостоятельно определить класс точности достаточно просто при помощи обычного визуального осмотра приборной панели устройства.
На циферблате любой модели, в кружочке, есть две цифры, которые разделены запятой.
Одной из важных характеристик прибора учета является коэффициент трансформации счетчика электроэнергии. Рассмотрим данную величину подробно.
Как правильно опломбировать счетчик электроэнергии и кто это должен делать? Ответы на эти вопросы даны здесь.
Определение процента погрешности, а также установка факта превышения стандартных пределов осуществляется посредством технической поверки, в процессе которой обязательно выполняется сравнительный анализ показаний проверяемого электрического счетчика с образцовым прибором учёта.
Такой способ проверки является затратным, поэтому специалисты рекомендуют отдавать предпочтение приобретению новой модели и полной замене устаревшего прибора.
Видео на тему
Стандарты точностиCT — Continental Control Systems, LLC
Трансформаторы тока (ТТ) серии Accu-CT ® соответствуют требованиям к точности трех широко используемых стандартов:
- ANSI/IEEE C57.
13-2008
- МЭК 61869-2:2012
- МЭК 60044-1, издание 1.2 (отменено)
Эти стандарты точности ТТ описывают типичный вторичный выход трансформатора тока как 5 А или 1 А с внешней нагрузкой. Семейства Accu-CT ACTL-0750 и ACTL-1250 имеют встроенные нагрузочные резисторы и обеспечивают выходное напряжение (номинально 0,33333 В переменного тока, также доступно 1,00 В переменного тока). Поправочный коэффициент трансформатора (TCF), точность и пределы фазового угла этих стандартов точности ТТ могут быть применены к выходному напряжению продуктов Accu-CT.
C57.13
Стандарт C57.13 имеет разные классы точности: класс 1.2, класс 0.6 и класс 0.3. Каждый из этих классов точности определяет предел для TCF в процентах, поэтому класс 1.2 означает, что TCF TCF должен быть в пределах 1,2 % от идеального при 100 % номинального первичного тока.
Из-за способа определения TCF результирующие пределы усиления (точности) и пределы фазового угла при отображении на графике образуют параллелограмм, что позволяет допускать большие положительные ошибки фазового угла для значений положительного коэффициента коррекции отношения (RCF) и большие ошибки отрицательного фазового угла для отрицательных значений RCF. Логика этого заключается в том, чтобы ограничить наихудшую системную ошибку при использовании ТТ в системе измерения с индуктивной нагрузкой, имеющей коэффициент мощности 0,6.
Для серии Accu-CT мы предлагаем три сорта:
Класс 1.2 (стандартный)
Стандартный класс CT соответствует ограничениям класса точности 1.2 IEEE C57.13, а также более жестким ограничениям по точности и фазовому углу, не требуемым C57. .13.
- TCF: ±1,2 % при 100 % и 120 % номинального первичного тока
- TCF: ±2,4 % при 10 % номинального первичного тока
Расширенные пределы, не требуемые C57.13
- TCF: ±2,4 % при 1 % номинального первичного тока
- Точность: ±0,75 % от 1 % до 120 % номинального первичного тока
- Фазовый угол: ±0,50 градуса (30 минут) от 1% до 120% номинального тока
Класс 0,6
Более высокий класс точности «Опция C0,6» соответствует ограничениям класса точности 0,6 IEEE C57. 13, а также более жестким ограничениям точности и фазового угла, не требуемым C57.13.
- TCF: ±0,6 % при 100 % и 120 % номинального первичного тока
- TCF: ±1,2 % при 10 % номинального первичного тока
Расширенные пределы, не требуемые C57.13
- TCF: ±1,2% при 1% номинального первичного тока
- Точность: ±0,50 % от 1 % до 120 % номинального первичного тока
- Фазовый угол: ±0,25 градуса (15 минут) от 1% до 120% номинального тока
- (модели ACTL-0750) ±0,50 градуса (15 минут) ниже 0°C от 1% до 10% номинального тока
Класс 0.3
Более высокий класс точности «Опция C0.3» соответствует ограничениям класса точности 0.3 IEEE C57.13, а также более жестким ограничениям точности и фазового угла, не требуемым C57.13. Также соответствует или превосходит стандарты IEC 60044-1 и IEC 61869-2, класс 0,5S.
- TCF: ±0,3 % при 100 % и 120 % номинального первичного тока
- TCF: ±1,2 % при 10 % номинального первичного тока
Расширенные пределы, не требуемые C57.

- TCF: ±1,2 % при 1 % номинального первичного тока
- Точность: ±0,50 % от 1 % до 120 % номинального первичного тока
- Фазовый угол: ±0,25 градуса (15 минут) от 1% до 120% номинального тока
- (модели ACTL-0750) ±0,50 градуса (15 минут) ниже 0°C от 1% до 10% номинального тока
Поправочный коэффициент отношения (RCF)
Следующее определение дано в информационных целях, но CCS обычно не использует RCF, вместо этого описывая ту же концепцию, что и точность трансформатора тока. CCS не предоставляет значения RCF для наших ТТ, хотя RCF можно рассчитать на основе «измеренной точности», указанной в сертификате калибровки Accu-CT.
Поправочный коэффициент — это число (обычно близкое к 1,0), которое можно умножить на измеренное значение для получения скорректированного значения. Поправочный коэффициент отношения (RCF) определяется как коэффициент, который при умножении на выход трансформатора тока дает правильный результат:
Например, если предполагается, что ТТ должен быть ТТ 500:0,33333 В переменного тока (500 А на входе дает 0,33333 В переменного тока на выходе), тогда «отмеченное отношение» будет 500:0,33333. Если бы фактическое выходное напряжение на входе 500 А составляло 0,340 В переменного тока (высокое значение 2%), то RCF было бы:
Умножение выходного напряжения полной шкалы 0,340 В переменного тока на 0,98038 дает скорректированное выходное напряжение полной шкалы 0,33333 В переменного тока.
Поправочный коэффициент трансформатора (TCF)
Следующее определение дано в информационных целях, но CCS обычно не использует TCF, вместо этого описывая ошибки CT как ошибки точности и фазового угла. CCS предоставляет значения TCF в сертификате калибровки Accu-CT, но WattNode 9В счетчиках 0003 ® не используются поправочные коэффициенты TCF.
Поправочный коэффициент трансформатора (TCF) определяется для трансформаторов тока в стандарте IEEE C57.13 – 2008, стр. 13-14, следующим образом.
- RCF – поправочный коэффициент отношения
- — фазовый угол в минутах (положительный для вторичного сигнала, опережающего первичный ток)
Преобразование этого уравнения в градусы дает:
- фазовый угол в градусах (положительный для вторичного сигнала, предшествующего первичному току)
60044-1 и 61869-2
Пределы точности IEC 60044-1 и IEC 61869-2 проще, чем C57. 13, и определяют только допустимое отношение (точность) и ошибки фазового угла.
Для Accu-CT мы соответствуем трем классам IEC 60044-1/61869-2. Примечание: некоторые модели Accu-CT доступны в версиях для 50 Гц, оптимизированных для наилучшей работы при 50 Гц, поэтому проверьте техническое описание, чтобы определить, следует ли вам заказывать опцию «50 Гц» для приложений с частотой 50 Гц.
Класс 1.0 (Стандарт)
Accu-CT стандартного класса соответствует или превышает пределы класса точности 1.0.
- Точность: ±1,0 % при 100 % и 120 % номинального первичного тока
- Точность: ±1,5 % при 20 % номинального первичного тока
- Точность: ±3,0 % при 5 % номинального первичного тока
- Фазовый угол: ±1,0 градуса (60 минут) при 100 % и 120 % номинального тока
- Фазовый угол: ±1,5 градуса (90 минут) при 20% номинального тока
- Фазовый угол: ±3,0 градуса (180 минут) при 5% номинального тока
Расширенные пределы не требуются согласно 60044-1/61869-2
ТТ стандартного класса также соответствует нашим более строгим ограничениям, которые превышают требования класса 1. 0.
- Точность: ±0,75 % от 1 % до 120 % номинального первичного тока
- Фазовый угол: ±0,50 градуса (30 минут) от 1% до 120% номинального тока
Класс 0,5 и Класс 0,5S
ТТ более высокого класса точности «Опция C0.6» и «Опция C0.3» соответствуют ограничениям класса 0,5 и 0,5S (расширенный диапазон).
- Точность: ±0,50 % при 20, 100 % и 120 % номинального первичного тока
- Точность: ±0,75% при 5% номинального первичного тока
- Точность: ±1,50% при 1% номинального первичного тока
- Фазовый угол: ±0,50 градуса (30 минут) при 20%, 100% и 120% номинального тока
- Фазовый угол: ±0,75 градуса (45 минут) при 5% номинального тока
- Фазовый угол: ±1,50 градуса (90 минут) при 1% номинального тока
Расширенные пределы не требуются согласно 60044-1/61869-2
Трансформаторы тока класса «Опция C0.6» и «Опция C0. 3» соответствуют нашим более строгим ограничениям, которые превышают требования класса 0,5 и 0,5S.
- Точность: ±0,50 % от 1 % до 120 % номинального первичного тока
- Фазовый угол: ±0,25 градуса (15 минут) от 1% до 120% номинального тока;
- (модели ACTL-0750) ±0,50 градуса (15 минут) ниже 0°C от 1% до 10% номинального тока
Класс 0.2 и класс 0.2S
ТТ более высокого класса точности ACTL-1250 Opt C0.2 соответствуют ограничениям классов 0.2 и 0.2S (расширенный диапазон).
- Точность: ±0,20 % при 20, 100 % и 120 % номинального первичного тока
- Точность: ±0,35% при 5% номинального первичного тока
- Точность: ±0,75 % при 1 % номинального первичного тока
- Фазовый угол: ±0,167 градуса (10 минут) при 20 %, 100 % и 120 % номинального тока
- Фазовый угол: ±0,25 градуса (15 минут) при 5% номинального тока
- Фазовый угол: ±0,50 градуса (30 минут) при 1% номинального тока
Расширенные пределы не требуются согласно 60044-1/61869-2
Трансформаторы тока «Опция C0. 2» соответствуют нашим более строгим ограничениям, которые превышают требования для классов 0,2 и 0,2S.
- Точность: ±0,20 % от 10 % до 120 % номинального первичного тока
- Точность: ±0,30 % от 1 % до 9 % номинального первичного тока
- Фазовый угол: ±0,125 градуса (7,5 минут) от 10% до 120% номинального тока
- Фазовый угол: ±0,250 градуса (15 минут) от 1% до 9% номинального тока
Показатели точности
[источник]
Класс точности
tf.keras.metrics.Accuracy(name="accuracy", dtype=None)
Вычисляет, как часто предсказания совпадают с метками.
Эта метрика создает две локальные переменные: всего
и количество
, которые используются
чтобы вычислить частоту, с которой y_pred
соответствует y_true
. Этот
частота в конечном итоге возвращается как двоичная точность
: идемпотент
операция, которая просто делит всего
на счетчика
.
Если sample_weight
равно None
, веса по умолчанию равны 1.
Используйте sample_weight
из 0 для маскирования значений.
Аргументы
- имя : (Необязательно) строковое имя экземпляра метрики.
- dtype : (необязательно) тип данных результата метрики.
Автономное использование:
>>> m = tf.keras.metrics.Accuracy() >>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]]) >>> m.result().numpy() 0,75
>>> m.reset_state() >>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]], ... образец_вес=[1, 1, 0, 0]) >>> m.result().numpy() 0,5
Использование с compile()
API:
model.compile(optimizer='sgd', потеря = 'mse', metrics=[tf.keras.metrics.Accuracy()])
[источник]
BinaryAccuracy
классtf.keras.metrics.BinaryAccuracy( name="binary_accuracy", dtype=Нет, порог=0,5 )
Вычисляет, как часто предсказания совпадают с двоичными метками.
Эта метрика создает две локальные переменные, всего
и количество
которые используются
чтобы вычислить частоту, с которой y_pred
соответствует y_true
. Этот
частота в конечном итоге возвращается как двоичная точность
: идемпотент
операция, которая просто делит всего
на счетчика
.
Если sample_weight
равно None
, веса по умолчанию равны 1.
Используйте sample_weight
из 0 для маскирования значений.
Аргументы
- имя : (Необязательно) строковое имя экземпляра метрики.
- dtype : (необязательно) тип данных результата метрики.
- порог : (Необязательно) Число с плавающей запятой, представляющее порог для принятия решения
являются ли значения предсказания равными 1 или 0.
Автономное использование:
>>> m = tf.keras.metrics.BinaryAccuracy() >>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]]) >>> m.result().numpy() 0,75
>>> m.reset_state() >>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0,6]], ... образец_вес=[1, 0, 0, 1]) >>> m.result().numpy() 0,5
Использование с compile()
API:
model.compile(optimizer='sgd', потеря = 'mse', metrics=[tf.keras.metrics.BinaryAccuracy()])
[источник]
CategoricalAccuracy
classtf.keras.metrics.CategoricalAccuracy(name="categorical_accuracy", dtype=None)
Вычисляет, как часто прогнозы совпадают с однократными метками.
Вы можете указать логи классов как y_pred
, так как argmax
логиты и вероятности одинаковы.
Эта метрика создает две локальные переменные: всего
и количество
, которые используются
чтобы вычислить частоту, с которой y_pred
соответствует y_true
. Этот
частота в конечном итоге возвращается как
категориальная точность
: идемпотент
операция, которая просто делит всего
на счетчика
.
y_pred
и y_true
должны передаваться как векторы вероятностей,
а не как ярлыки. При необходимости используйте tf.one_hot
для расширения y_true
как
вектор.
Если sample_weight
равно None
, веса по умолчанию равны 1.
Используйте sample_weight
из 0 для маскирования значений.
Аргументы
- имя : (Необязательно) строковое имя экземпляра метрики.
- dtype : (необязательно) тип данных результата метрики.
Автономное использование:
>>> m = tf.keras.metrics.CategoricalAccuracy() >>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], ... [0,05, 0,95, 0]]) >>> m.result().numpy() 0,5
>>> m.reset_state() >>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], ... [0,05, 0,95, 0]], ... образец_вес=[0,7, 0,3]) >>> m.result().numpy() 0,3
Использование с compile()
API:
model.compile( оптимизатор = 'sgd', потеря = 'mse', metrics=[tf.keras.metrics.CategoricalAccuracy()])
[источник]
SparseCategoricalAccuracy
classtf.keras.metrics.SparseCategoricalAccuracy( имя = "sparse_categorical_accuracy", dtype = нет )
Вычисляет, как часто предсказания совпадают с целочисленными метками.
акк = np.dot (sample_weight, np.equal (y_true, np.argmax (y_pred, ось = 1))
Вы можете указать логиты классов как y_pred
, так как argmax
логиты и вероятности одинаковы.
Эта метрика создает две локальные переменные: всего
и количество
, которые используются
чтобы вычислить частоту, с которой y_pred
соответствует y_true
. Этот
частота в конечном итоге возвращается как
разреженная категориальная точность
:
идемпотентная операция, которая просто делит всего
на count
.
Если sample_weight
равно None
, веса по умолчанию равны 1.
Используйте sample_weight
из 0 для маскирования значений.
Аргументы
- имя : (Необязательно) строковое имя экземпляра метрики.
- dtype : (необязательно) тип данных результата метрики.
Автономное использование:
>>> m = tf.keras.metrics.SparseCategoricalAccuracy() >>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]]) >>> m.result().numpy() 0,5
>>> m.reset_state() >>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]], ... образец_вес=[0,7, 0,3]) >>> m.result().numpy() 0,3
Использование с compile()
API:
model.compile( оптимизатор = 'sgd', потеря = 'mse', metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
[источник]
TopKCategoricalAccuracy
классtf.keras.metrics.TopKCategoricalAccuracy( k=5, name="top_k_categorical_accuracy", dtype=Нет )
Вычисляет, как часто цели попадают в топ K
прогнозов.
Аргументы
- k : (Необязательно) Количество верхних элементов, на которые следует обращать внимание для точности вычислений. По умолчанию 5.
- name : (Необязательно) строковое имя экземпляра метрики.
- dtype : (необязательно) тип данных результата метрики.
Автономное использование:
>>> m = tf.keras.metrics.TopKCategoricalAccuracy(k=1) >>> m.update_state([[0, 0, 1], [0, 1, 0]], ... [[0,1, 0,9, 0,8], [0,05, 0,95, 0]]) >>> m.result().numpy() 0,5
>>> m.reset_state() >>> m.update_state([[0, 0, 1], [0, 1, 0]], ... [[0,1, 0,9, 0,8], [0,05, 0,95, 0]], ... образец_вес=[0,7, 0,3]) >>> m.result().numpy() 0,3
Использование с compile()
API:
model.compile(optimizer='sgd', потеря = 'mse', metrics=[tf.keras.metrics.TopKCategoricalAccuracy()])
[источник]
SparseTopKCategoricalAccuracy
classtf.keras.metrics.SparseTopKCategoricalAccuracy( k=5, name="sparse_top_k_categorical_accuracy", dtype=Нет )
Вычисляет, как часто целочисленные цели попадают в верхние K
прогнозов.
Аргументы
- k : (Необязательно) Количество верхних элементов, на которые следует обратить внимание для обеспечения точности вычислений. По умолчанию 5.
- name : (Необязательно) строковое имя экземпляра метрики.
- dtype : (необязательно) тип данных результата метрики.
Автономное использование:
>>> m = tf.keras.metrics.SparseTopKCategoricalAccuracy(k=1) >>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) >>> m.result().numpy() 0,5
>>> m.reset_state() >>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], ... образец_вес=[0,7, 0,3]) >>> m.result().numpy() 0,3
Использование с compile()
API:
model.compile( оптимизатор = 'sgd', потеря = 'mse', metrics=[tf.keras.metrics.SparseTopKCategoricalAccuracy()])
Что такое точность расходомера?
Насколько точны расходомеры?
Расходомеры измеряют объем или массу жидкости, газа или пара, движущихся по системе трубопроводов. Существует множество различных технологий расходомеров, и каждый тип обеспечивает точность, отличную от других типов технологий. Требования к точности расходомера во многом зависят от конкретного применения. Хотя может показаться, что тяготеть к типам технологий, которые обеспечивают чрезвычайно высокую точность, может быть выгодно, эти измерители могут иметь технологические принципы или другие ограничения, которые не работают с вашими потребностями.
Расходомеры сверхвысокой точности, такие как расходомеры Кориолиса, как правило, дороже любых других расходомеров. Расходомер с точностью 5 %, который стоит значительно меньше, чем другой расходомер с точностью 0,2 %, может дать адекватные результаты для правильной работы вашего процесса и обеспечить гораздо меньшие затраты. Точность по сравнению с соображениями бюджета и понимание точных потребностей вашего приложения в точности иногда могут сбивать с толку. Наши инженеры по продажам готовы бесплатно помочь вам найти лучшее решение для вашего приложения.
Может ли расходомер иметь идеальную точность?
Одним словом «нет». В идеальном мире показания расхода от ваших контрольно-измерительных приборов были бы абсолютно точными, без каких-либо отклонений. К сожалению, это не так, и погрешность, присущая измерениям, всегда должна быть определена, учтена и по возможности сведена к минимуму.
В чем разница между точностью, воспроизводимостью и разрешением расходомера?
Существует множество взаимозаменяемых и неправильных терминов, когда речь идет о том, насколько точны результаты вашего прибора. Некоторыми из них являются точность, воспроизводимость и разрешение. Давайте подробно рассмотрим каждый из них и разъясним уникальное значение каждого термина.
Что такое точность расходомера?
Точность — наиболее распространенный термин, который иногда используется неправильно. Точность — это то, насколько ваш инструмент приближается к тому, чтобы дать вам точное значение, которое существует в процессе в данный момент. Обычно он выражается как значение или предел погрешности выше или ниже показаний, которые показывает прибор.
Допустим, ваш магнитный расходомер показывает результат 1 гал/мин с точностью ± 10%. Точное значение расхода в измерителе, скорее всего, не точно 1 галлон в минуту из-за присущего ему отклонения. Более чем вероятно, что реальный расход находится где-то между 0,9галлонов в минуту и 1,1 галлона в минуту. Это точность. При учете по отношению к значению, выраженному счетчиком, он дает вам диапазон, между которым находится фактическое значение.
Что такое воспроизводимость расходомера?
Повторяемость — это когда после нескольких измерений получаются почти идентичные результаты, а условия для всех результатов не изменяются. По сути, это способность прибора «группировать» результаты, как при стрельбе по мишеням или дартс. Инструмент с высокой воспроизводимостью не обязательно означает, что он точен. Например, датчик температуры может постоянно показывать 5 градусов при каждом измерении. Но если она каждый раз отличается на 5 градусов, может вступить в действие калибровка, которая превратит прибор с высокой воспроизводимостью в высокоточный после того, как будет учтена идентифицированная и постоянная степень отклонения от фактической температуры.
Что такое разрешение расходомера?
Разрешение — это наименьшее приращение, которое может быть измерено прибором. В некотором смысле, это наименьшая часть используемой шкалы. Например, разрешение преобразователя давления может составлять 0,1 фунт/кв. дюйм или 1,0 фунт/кв. дюйм. Как это влияет на точность? Хотя важность разрешения может показаться не такой очевидной, как точность и воспроизводимость, она играет важную роль.
Представьте, что у вас есть процесс, который требует, чтобы вы знали до десятой доли PSI для правильной работы. Если вы установите прибор, который может давать показания только с точностью до 1 фунта/кв. . В некотором смысле прибор, обеспечивающий разрешение 1 PSI, не будет достаточно точным или ограниченным для вашего процесса, даже если он может быть точным в своих фактических показаниях.
Как измерить точность расходомера?
Когда вы покупаете расходомер, он обычно обеспечивает точность расходомера в пределах технических характеристик продукта. Чтобы убедиться, что расходомер работает в соответствии с заявленными заводскими характеристиками, вы можете сделать следующее.
- Отправьте его на завод или независимому поставщику для проверки точности. KOBOLD тестирует свои расходомеры на точность перед отправкой покупателю.
- Используйте или возьмите напрокат расходомер с заметно более высокой точностью, чем тот, который у вас есть, и сравните показания гораздо более точного расходомера. Накладные ультразвуковые расходомеры идеально подходят для этого применения, поскольку они просто привязываются к существующему трубопроводу, и нет необходимости отключать систему или врезаться в трубы. Для этой цели некоторые компании могут арендовать накладные ультразвуковые расходомеры.
Что такое класс точности расходомера?
Точность расходомера может быть указана разными способами, и иногда способ определения точности конкретного прибора определяется географическим районом, в котором он был произведен, и тем, как точность обычно указывается или классифицируется там. Определенные типы технологий расходомеров обеспечивают заявленную точность особым образом, который может отличаться от других технологий расходомеров.
Способы определения точности расходомера не всегда представляют собой сравнение яблок с яблоками, когда одно можно по существу преобразовать в другое. Суть того, как утверждается точность, может говорить вам о другом элементе присущей точности. При выборе расходомера полезно точно знать, какой уровень точности он обеспечит.
Иногда точность указывается отдельно как «класс точности». Например, расходомер с переменным сечением может быть указан как имеющий «класс точности 4 в соответствии с VDI». VDI специально применяется к расходомерам с переменным сечением и назначается директивой VDE/VDI 3512, где для каждого класса точности указан диапазон точности. Класс VDI 4 обычно указывается в США как от 2,5% до 4% от полной шкалы (FS), поскольку это фактический диапазон точности, присвоенный классу 4. Для справки: диапазоны точности для классов VDE/VDI приведены ниже. .
Что такое полномасштабная точность расходомеров?
Классы точности VDE/VDI — не единственный способ указать точность расходомера. Как упоминалось выше, «процент от полной шкалы» или часто сокращенно %FS, является часто используемым способом определения точности для многих расходомеров. Наиболее распространенными способами выражения точности расходомера являются следующие.
- Процент от полной шкалы (сокращенно %FS), который представляет собой фиксированную погрешность, основанную на значении полной шкалы, применяемом вне диапазона измерения.
- Процент расхода (сокращенно %R или RD), который представляет собой переменную погрешность фиксированного процента, применяемого к мгновенному расходу.
- Калиброванная шкала (сокращенно %CS)
- Верхний предел диапазона (сокращенно %URL)
- Процент от измеренного значения (% ИЗ)
Какой расходомер самый точный?
Наиболее точными расходомерами являются кориолисовые массовые расходомеры. Однако они не подходят для многих приложений, потому что они чрезвычайно дороги, обычно велики и являются излишними для большинства приложений.
Магнитные расходомеры, ультразвуковые расходомеры и расходомеры прямого вытеснения обычно обеспечивают более высокую точность, чем расходомеры, использующие более механические средства измерения, такие как расходомеры с переменным сечением.
Тем не менее, для конкретных целей применения простой расходомер с переменным сечением может обеспечить достаточную точность при значительной экономии средств. Магнитные и ультразвуковые расходомеры, как правило, дороже, чем расходомеры с переменным сечением, но обладают многими функциями, которых нет у расходомеров с переменным сечением. Их технологические типы не содержат движущихся частей, подверженных износу, что может означать меньшее техническое обслуживание и более длительный срок службы.
Сравнение точности расходомеров
Несмотря на то, что в пределах одного типа технологии расходомера могут быть различия в диапазоне точности, можно сделать некоторые общие обобщения относительно точности для каждого типа технологии расходомера. Также стоит отметить, что точность отдельного расходомера также зависит от того, измеряет ли расходомер жидкость или газ. Чтобы узнать больше о каждом типе технологии и о том, как они работают, посетите нашу статью «Что такое расходомер».
Какова точность кориолисовых расходомеров?
Точность кориолисовых расходомеров является одной из самых высоких среди технологий расходомеров. Он часто используется для проверки точности других расходомеров путем их одновременного запуска и сравнения измеренных значений между ними. Типичная точность расходомера Кориолиса находится в диапазоне от 0,1% до 0,5%. Их исключительная точность делает их идеальными для приложений, требующих точности, таких как коммерческий учет.
Какова точность ультразвуковых расходомеров?
Точность ультразвукового расходомера достаточно высока. Типичная точность ультразвукового расходомера колеблется от 0,7% до 1%.
Какова точность магнитных расходомеров?
Магнитные расходомеры обеспечивают высокую точность для проводящих жидкостей. Типичная точность магнитного расходомера составляет от 0,2% до 2%.
Какова точность вихревых расходомеров?
Вихревые расходомеры также могут обеспечивать высокую точность. Типичная точность вихревого расходомера колеблется от 0,7% до 2,5%.
Какова точность термодисперсионных расходомеров?
Точность теплового массового расходомера обычно не так высока, как у кориолисовых, магнитных, ультразвуковых и вихревых расходомеров, но все же обеспечивает точность выше средней, которая обычно находится в диапазоне от 1% до 3%.
Какова точность расходомеров с диафрагмой перепада давления?
Точность расходомеров с диафрагмой перепада давления, как правило, не так высока, как у некоторых других типов технологий, но обеспечивает значительные преимущества для конкретных областей применения. Обычно она составляет от 3% до 5%.
Какова точность ротаметрических расходомеров с переменным сечением?
Расходомеры с переменным сечением, также известные как ротаметры, обеспечивают широкий диапазон точности в зависимости от конкретного расходомера. Типичные диапазоны могут составлять от 1,6% до 5%.
Какова точность объемных расходомеров?
Точность поршневого расходомера может быть хорошей. Обычно она колеблется от 0,1% до 2,5%.
Какова точность крыльчатых расходомеров?
Точность расходомера с лопастным колесом несколько средняя, поскольку обычно она составляет от 2,5% до 5%. Расходомеры с крыльчатым колесом, которые представляют собой определенный тип расходомеров с лопастным колесом, обеспечивают более высокую точность, чем стандартные расходомеры с крыльчатым колесом, с типичным диапазоном от 1,5% до 3%.
Какова точность турбинных расходомеров?
Поскольку фактический принцип работы расходомеров этой категории может различаться, диапазон также шире, чем у некоторых других технологий. Типичный диапазон составляет от 1,5% до 5%.
Какова точность колебательных расходомеров?
Поскольку это уникальный и специализированный принцип работы, разработанный KOBOLD для приложений измерения газа, на самом деле не существует отраслевого стандарта для колебательных расходомеров. Наш осцилляторный расходомер DOG для газов обеспечивает точность 1,5%.
Как повысить точность расходомера?
Выберите правильный расходомер, который точно удовлетворит все потребности вашего профиля применения.
Существует множество элементов приложения, которые могут повлиять на то, обеспечивает ли расходомер заявленную на заводе точность. Например, если вы выберете расходомер, для правильной работы которого требуются полные трубы и отсутствие пузырьков, а вы запустите трубу наполовину, а в ней есть пузырьки и пена, он не будет обеспечивать точность, на которую он рассчитан. Может даже вообще не работать. Текущий расход, намного меньший, чем заявленный минимальный диапазон расхода для расходомера, также может привести к снижению точности расходомера или к тому, что расходомер вообще не будет работать. Чтобы трубы были заполнены для правильной работы, устанавливайте расходомер вертикально так, чтобы поток был направлен вверх.
Правильно установите расходомер.

Для некоторых расходомеров требуется, чтобы профиль потока в трубе был равномерным и нетурбулентным. Неспособность удовлетворить эти потребности может стоить вам значительной точности. Например, для некоторых расходомеров требуется прямой, непрерывный трубопровод без препятствий, изгибов или клапанов на таком большом расстоянии до и после расходомера. Несоблюдение этих требований приведет к снижению точности измерений, поскольку расходомер не сможет должным образом функционировать при таких условиях расхода.
Убедитесь, что ничего не сломано.
Для расходомеров с механическим измерением, если точность начинает страдать, убедитесь, что рабочие элементы расходомера не повреждены. Некоторые счетчики настолько просты, что их может легко отремонтировать конечный пользователь, в то время как другие должны быть отправлены обратно на завод для ремонта.
Откалибруйте расходомеры в соответствии с рекомендациями производителя.
Некоторые технологии расходомеров требуют калибровки чаще, чем другие, а некоторые могут вообще не требовать калибровки в течение срока их службы. Убедитесь, что вы осведомлены о потребностях в калибровке вашего измерителя и соблюдаете график технического обслуживания. Некоторые счетчики просты и могут быть откалиброваны в полевых условиях, а некоторые требуют удаления из системы, а затем отправляются в компанию, которая может выполнить необходимую калибровку и вернуть ее вам.
Точность при выборе расходомера
Хотя точность является ключевой характеристикой, которую следует учитывать при выборе расходомера, который будет адекватно отвечать вашим потребностям в измерениях, существует множество других факторов, которые определяют правильный расходомер для вашего приложения и вашего бюджета. . Определенные типы технологий не будут работать в определенных приложениях, а определенные типы технологий расходомеров могут оказаться излишними для вашего приложения и вашего бюджета.
Наша команда опытных инженеров готова предоставить вам бесплатную помощь в поиске наилучшего решения для вашей области применения. Позвоните нам сейчас, чтобы получить компетентную помощь, чтобы избежать головной боли в будущем из-за неправильного выбора расходомера.
Узнайте больше о том, почему вам следует сотрудничать с KOBOLD для вашего приложения.
Просмотреть продукты сейчас Расходомеры и переключатели
Магнитный Переменная площадь/ротаметры Положительное смещение Ультразвуковой Перепад давления Гребное колесо Турбина Вихрь Кориолис Термическая дисперсия Весло / закрылок / цель / лопасть колебание Индикаторы расхода Ограничители потока
Уровень
Контроль уровня Измерение уровня
Давление
Манометры Датчики давления Реле давления
Температура
Контроль температуры Измерение температуры
Аксессуары
Фитинги Устройства управления и реле
Рекомендуемые продукты
DOG
Осциллирующий расходомер
Уникальная технология | Похоже на: Вихревые счетчики | Специальная конструкция для влажных газов | Низкие эксплуатационные расходы | Высокая долговечность | До 3500 кубических футов в минуту | До 360 фунтов на квадратный дюйм | До 248 °F | Фланцы ANSI
View DOG
HPC
Компактный кориолисовый расходомер для малых расходов
Новая революционная технология | Высочайшая точность для малых расходов | Превосходная вибростойкость | Высокая термостойкость | Прочная конструкция из нержавеющей стали | До 5800 фунтов на квадратный дюйм
View HPC
MIM
Цельнометаллический магнитный расходомер
Инновационный| Экономичный | Полнофункциональный | Компактный | Измерение расхода и температуры | IO-ссылка | Высокий динамический диапазон | Двунаправленный | Переключатель, передача, пакет | 2 конфигурируемых выхода
Просмотр MIM Купить онлайн
TMU
Высокопроизводительный кориолисовый расходомер
Высокий расход | жидкости, газ или пар | измерение расхода, плотности и температуры | Прецизионное дозирование | Высокая точность | Соединения NPT или ANSI | Экзотические материалы
View TMU
VKG
Расходомер с компенсацией вязкости и переключатель
Сделано в США | Шкала масла прямого считывания | для высоковязких сред | Простая установка | До 175 фунтов на квадратный дюйм | До 212 °F | Резьба NPT | 0,03.