Какие передачи бывают в механике: Передачи, их виды: фрикционные, ременные, цепные, зубчатые, червячные
alexxlab | 19.05.2023 | 0 | Разное
Механические передачи. Виды передач. Расчет передаточных отношений
Похожие презентации:
Грузоподъемные машины. (Лекция 4.1.2)
Зубчатые передачи
Гидравлический домкрат в быту
Детали машин и основы конструирования
Газораспределительный механизм
Свайные фундаменты. Классификация. (Лекция 6)
Ременные передачи
Редукторы
Техническая механика. Червячные передачи
Фрезерные станки. (Тема 6)
1. Механические передачи
Виды передачРасчет передаточных
отношений
2. Механические передачи (механизм, служащий для передачи и преобразования механической энергии от энергетической машины к
Механические передачи(механизм, служащий для передачи и преобразования
механической энергии от энергетической машины к
исполнительному механизму)
• Зубчатая передача;
• Ременная передача;
• Червячная передача;
• Реечные передачи.
3. Зубчатая передача
ВедомаяВедущая
4.

Повышающая
Понижающая
Коническая
Зубчатая передача
под углом 90
градусов
5. Понижающая зубчатая передача :
ВедущаяВедомая
6. Повышающая зубчатая передача :
ВедомаяВедущая
7. Коническая зубчатая передача :
ВедомаяВедущая
8. Зубчатая передача под углом 90 градусов:
9. Зубчатые передачи бывают многоступенчатые
10. Ременная передача
Передачавращательного
движения (крутящего
момента) на
параллельные оси
с помощью ремня
и минимум
двух шкивов.
11. Ременная передача
12. Червячная передача
Передачавращательного
Движения (крутящего
момента) на
скрещивающиеся
оси с помощью
червяка и
зубчатого колеса.
13. Червячная передача
14. Реечная передача
• один извидов механических
передач,
преобразующий
вращательное
движение в
поступательное.
15.

16. Расчет передаточных отношений
Количество зубцов17. Расчет передаточных отношений
Количество зубцов18. Расчет передаточных отношений
Ведущая меньше ведомой –скорость уменьшается.
Мощность увеличивается.
Ведущая больше ведомой –
скорость увеличивается.
Мощность уменьшается.
19. Расчет передаточных отношений
ГЛАВНОЕ ПЕРЕДАТОЧНОЕОТНОШЕНИЕ =
(ВЕДОМАЯ ШЕСТЕРНЯ) /
(ВЕДУЩУЮ ШЕСТЕРНЮ )
I = Z2/Z1, где
I – передаточное отношение,
Z1 – количество зубцов на
ведущей шестерне,
Z2– количество зубцов на
ведомой шестерне.
20. Пример: Посчитайте передаточное отношение зубчатой передачи изображенной на рисунке.
I = Z2/Z1I-?
Z1 – количество зубцов на
ведущей шестерне,
Z2– количество зубцов на
ведомой шестерне.
Z1 =24
Z2=8
I = 8/24=1/3
1:3
При одном обороте ведущей
шестерни ведомая делает 3
оборота.
21. Примеры: Посчитайте передаточное отношение зубчатых передач изображенных на рисунках.

В
Б
Г
22. Многоступенчатые передачи Посчитайте передаточное отношение зубчатой передачи изображенной на рисунке.
I =I 1,2* I 3,4 = Z2/Z1* Z4/Z3I-?
Z1 =8
Z2=24
Z3 =8
Z4=24
I 1,2 = 24/8=3/1
I 3,4 = 24/8=3/1
I =3/1*3/1=9/1
9:1
23. Примеры: Посчитайте передаточное отношение зубчатых передач изображенных на рисунках.
АБ
24. Расчет передаточных отношений при ременной передачи
ПЕРЕДАТОЧНОЕОТНОШЕНИЕ =
(БОЛЬШИЙ ШКИВ) /
(МАЛЫЙ ШКИВ)
I = D2/D1, где
I – передаточное отношение,
D1 – диаметр ведущей
шестерни,
D2– диаметр ведомой
шестерни.
25. Пример: Посчитайте передаточное отношение ременной передачи изображенной на рисунке.
English Русский Правила
Коробка передач. Сравнение трансмиссий, плюсы и минусы
Что такое коробка передач (трансмиссия) и для чего она нужна.
Коробка переключения передач является неотъемлемой частью любого автомобиля с двигателем внутреннего сгорания. Назначение коробки передач – это передача и преобразование крутящего момента с двигателя на колеса, а так же осуществление отбора мощности на привода других агрегатов и дополнительного оборудования. Этот процесс позволяет обеспечить оптимальную силу тяги и скорость движения автомобиля, а так же движение задним ходом. Более того коробка помогает разъединять коленчатый вал двигателя от ведущих колес, что обеспечивает холостой ход автомобиля или его полную остановку.
Нужно отметить, что коробки передач получили распространение не только в транспортных средствах. Широко применяют коробки переключения в промышленных механизмах, станках на производстве.
С момента появления автомобилей на дорогах производители совершенствовали не только двигатели, но и коробки переключения передач. Развитие данного направления привело к появлению современных автомобилей с разными видами трансмиссий.
Виды трансмиссий
Более чем столетняя история развития автомобилестроения принесла в современный мир не только экологичные и мощные двигатели, но и усовершенствованные коробки переключения передач.
1. Механическая коробка переключения передач
2. Автоматическая коробка переключения передач
3. Роботизированная коробка переключения передач
4. Вариативная (бесступенчатая) коробка переключения передач
Разберем подробнее каждый тип коробки.
Механическая коробка передач (Механика, МКПП)
Особенность работы двигателя внутреннего сгорания в том, что рабочая мощность развивается только в небольшом диапазоне оборотов. По этой причине для изменения крутящего момента необходим дополнительный механизм.
История создания уходит более чем на сто лет назад, а изобретение принадлежит Карлу Бенцу. Конструктивно, устройство первой коробки было примитивным и крайне простым. Механизм коробки был реализован из пары шкивов разного диаметра, которые были расположены на ведущем валу, шкивы соединялись с валом двигателя при помощи ремня. В зависимости от условий движения ремень при помощи специально предусмотренного рычага переставлялся с одного шкива на другой. Это позволяло изменять крутящий момент, передающийся на ведущие колеса. Такой простой механизм нашел применение и в современном мире, передачи на велосипедах переключаются по тому же принципу.
Современные механические коробки значительно дальше шагнули от такого механизма. Конструктивно коробка состоит из набора шестерен, а изменение передаточного осуществляется путем введения шестерен в зацепление при помощи рычага.
Механические КПП могут оснащаться разным количеством ступеней. Самой популярной является пятиступенчатая коробка. В свою очередь коробки переключения передач механического типа подразделяются на двухвальные и трехвальные коробки.
Двухвальные механические коробки переключения передач устанавливаются на автомобили, оснащенные передним приводом. Трехвальные коробки переключения передач устанавливаются на легковые и грузовые автомобили, которые могут комплектоваться как передним так и задним приводом.
Плюсы МКПП:
· Простая и надежная конструкция
· Более легкое управление автомобилем в условиях бездорожья
· Движение в экономичном режиме
· Недорогое обслуживание
Минусы МКПП:
· Неудобство управления в сложном городском режиме
Автоматические коробки передач (Автомат, АКПП)
Идея комфортного управления автомобилем родилась практически сразу с появлением самого автомобиля. Такой комфорт могло бы обеспечить автоматическое переключение передач. Но реализовать данную идею смогли не сразу. В серию, автомобили с автоматической коробкой переключения передач попали только в 1947 году, АКПП стали комплектовать автомобили фирмы Buick.
Хотя на самом деле серийные автоматические коробки переключения передач появились немного раньше. АКПП оснащались городские автобусы в Швеции еще в 1928 году.
Нужно отметить что, к появлению гидромеханической коробки передач привели три независимые линии разработок, позже которые были объединены в ее конструкции. В основу АКПП встал гидротрансформатор, изобретение профессора Феттингера, патент на который им был получен еще в 1903 году. Два других элемента – это планетарный редуктор и гидравлическая система управления.
Современная автоматическая коробка переключения передач, в отличие от классической механики, работает в иных условиях и по другому принципу, хоть и основное назначение неизменно.
Гидротрансформатор или преобразователь крутящего момента, включает в себя насос, турбину и статор. Все детали гидротрансформатора заключены в общем корпусе. Гидротрансформатор заполнен специальным маслом, насос создает внутри гидротрансформатора поток масла, который вращает колесо статора и турбину. Тем самым передавая крутящий момент с двигателя.
Планетарная передача состоит из нескольких шестерен (они называются планетарными или сателлитами), вращающихся вокруг центральной шестерни. Планетарные шестерни фиксируются вместе с помощью водила. Кроме этого, дополнительная внешняя кольцевая шестерня имеет внутреннее зацепление с планетарными шестернями. Сателлиты, закрепленные на водиле, вращаются вокруг центральной шестерни, внешняя шестерня – вокруг сателлитов. Передаточные отношения достигаются путем фиксации различных деталей относительно друг друга. Для получения большего диапазона передаточных чисел в современных коробках используется несколько планетарных передач.
Гидравлика работает в полном симбиозе с остальными частями АКПП и ее работу можно сравнить с кровеносной системой. Жидкость, используемая в качестве рабочей, помимо создания давления в системе, обладает так же набором полезных функций. Таких как смазывание, отвод тепла и очищение внутренностей АКПП от загрязнений.
Плюсы АКПП:
· Комфорт и удобство управления
· Способность менять передачи при полной мощности двигателя
· Плавность хода во время переключения передач
· Защита деталей двигателя от перегрузок при выборе неверной передачи
Минусы АКПП:
· Стоимость и периодичность обслуживания
· Больший расход топлива
· Низкий КПД
· Меньшая динамика автомобиля
Роботизированные коробки передач (Роботы)
Роботизированная коробка передач – это логическое продолжение развития механической коробки. Робот это не что иное, как механическая КПП, в которой выжим сцепления и переключение передач выполняют два сервопривода (актуатора), управляемые электронным блоком.
Первый прототип робота появился в 1939 году, Адольф Кегресс создал трансмиссию с двойным сцеплением, но дальнейшее развитие этого перспективного изобретения остановилось на следующие 40 лет. Всему виной отсутствие финансирования проекта.
В серию роботизированные коробки передач попали очень нескоро, но обкатать технологию решились инженеры Porsche. Роботы внедрили на модели 956 и 962С, машины предназначались для кольцевых гонок. К сожалению, недоработка конструкции и значительный вес коробки не позволил технологии выйти за пределы трека.
Серийная роботизированная коробка появилась только в 2003 году. Отважилась на такой шаг компания Volkswagen, установив преселективную трансмиссию на спорт версию модели Golf 4 R32. Производителем коробки была компания BorgWarner. По сей день концерн VAG активно продвигает этот тип коробок на своих моделях.
Особенность такой коробки заключается в конструкции, а именно в наличии двух сцеплений. Принцип работы такой коробки состоит в том, что на одно сцепление завязаны четные передачи, а на второе нечетные. В процессе движения крутящий момент передается по одному сцеплению, т.е. диск сомкнут. В это же время диск второго сцепления разомкнут, но внутри самой коробки следующая передача уже сформирована и когда приходит время переключения, первый диск просто размыкается, а второй синхронно смыкается. Такая схема работы обеспечивает плавность переключения и отсутствие рывков.
В свою очередь, роботизированные коробки делятся на два типа:
· С мокрым сцеплением – используют на автомобилях с мощным двигателем, крутящий момент которых превышает 350 Нм.
· С сухим сцеплением – используют на автомобилях с маломощными двигателями до 250 Нм крутящего момента.
Плюсы Робота:
· Плавность переключения и хода
· Высокий КПД
· Экономичный расход топлива
· Высокая динамика
· Возможность выбора режима работы трансмиссии
Минусы Робота:
· Малая надежность, как самой конструкции, так и мехатроника
· Стоимость обслуживания и ремонта
· Чувствительность к тяжелым дорожным условиям
Вариаторные трансмиссии (Вариаторы)
Вариаторные трансмиссии (CVT) считаются прямыми последователями классических гидромеханических кпп. Есть устойчивое мнение, что за CVT – коробками будущее, опять таки, учитывая городскую эксплуатацию автомобилей. Особенный упор на трансмиссии CVT делают японские производители, такие как Nissan и Subaru. Первая вариаторная коробка серийно появилась на автомобиле марки DAF в 50-е годы XX-века. Этим автомобилем оказался не грузовик, как многие могли подумать, а маленький легковой автомобиль.
К сожалению, особой надежностью и длительным ресурсом конструкция не отличалась. Компания Volvo в свою очередь, долгие годы пыталась развить технологию, но все закончилось сворачиванием разработок. Неожиданное продолжение истории вариатора дала Япония.
Причиной возврата и доработки вариатора послужила необходимость адаптации автоматических коробок к условиям эксплуатации в режиме городских пробок. Работа переключений передач на АКПП напрямую завязана на обороты двигателя. Классический автомат в режиме городских пробок, на малом расстоянии и на малом ходу начинал переключать передачи с первую на вторую, когда этого совершенно не нужно. В другом случае, двигаясь «накатом», АКПП держала передачу, не уходя на пониженную, долгое время ожидая от водителя команды на разгон. Такое поведение коробки давало большую нагрузку на собственные узлы, что вело к увеличенному расходу топлива, повышенному износу и раннему выходу из строя. Все это привело к интенсивной доработке акпп, но результатом стал принципиально новый тип кпп – CVT.
Самое удивительное, что первый вариатор был придуман Леонардо да Винчи в 1490 году. На чертежах изобретателя можно увидеть схему из параллельных конусов и перекинутого между ними ремня, способного перемещаться поперек оси вращения конусов, что позволяло менять передаточное отношение пары.
Коробка типа CVT или Вариатор представляет собой бесступенчатую коробку передач. Основные детали коробки CVT – это гидротрансформатор и два раздвижных шкива, плюс, соединяющий их (шкивы) ремень. Сечение ремня имеет трапециедальную форму. Принцип работы заключается в следующем – сдвигающиеся половинки ведущего шкива выталкивают ремень наружу, что приводит к увеличению радиуса шкива, по которому работает ремень, это действие увеличивает передаточное отношение. Когда требуется снижение передаточного числа, ведомый шкив раздвигается, ремень перемещается на меньший радиус. Гидротрансформатор в этой конструкции обеспечивает трогание с места, после чего блокируется. Управление шкивами выполняет электроника.
Плюсы Вариатора:
· Переключение передач происходит незаметно, без рывков
· Экономичный расход топлива
· Высокая динамика
Минусы Вариатора:
· Несовместимость с мощными моторами
· Стоимость обслуживания и ремонта
· Большое количество датчиков влияющих на работу CVT
· Чувствительность к тяжелым дорожным условиям, буксировке
Итог.
Мы рассмотрели основные виды коробок переключения передач. Определили главные минусы и плюсы каждого типа. Но дать однозначный ответ, какой агрегат будет лучше всех, невозможно. Каждый хорош в своем диапазоне задач, и выбор агрегата, которым будет оснащен автомобиль, учитывая диапазон задач, уже ложится на плечи конструкторов автомобиля и потребителя.
Шестерни
Что такое шестерни
Шестерни — это механизмы, которые зацепляются друг с другом посредством зубьев и используются для передачи вращательного движения от одного вала к другому. Шестерни определяются двумя важными параметрами: радиусом и количеством зубьев. Обычно они монтируются или соединяются с другими частями через вал или основание.
Радиус: Радиус зубчатого колеса определяется по-разному в зависимости от конкретного участка обсуждаемого зубчатого колеса. Однако двумя наиболее важными измерениями являются радиус корня и радиус придатка. Радиус впадины — это расстояние от центра шестерни до основания зубьев, а дополнительный радиус (также называемый радиусом «тангажа») — это расстояние от центра шестерни до внешней стороны зубьев.
Зубья: Зубья — это часть шестерни, которая соприкасается с другой шестерней. Чтобы две шестерни вошли в зацепление, шаг должен быть одинаковым для всех сопряженных пар. Шаг зубчатого колеса — это расстояние между эквивалентными точками соседних зубьев. Когда зубья шестерен входят в зацепление правильно, они предотвращают проскальзывание и могут демонстрировать КПД до 98%.
Свяжитесь с нами Закрыть
Как работают шестерни
Шестерни могут служить эффективным средством для изменения направления движения, изменения скорости вращения или изменения оси, по которой происходит вращательное движение. Размеры шестерен обычно зависят от желаемого передаточного числа и вала, на котором будут сопрягаться шестерни.
Любые две шестерни, соприкасающиеся друг с другом, естественным образом создают равную и противоположную силу в другой шестерне. Например, когда меньшая шестерня, изображенная ниже, движется по часовой стрелке, большая шестерня, естественно, будет двигаться против часовой стрелки. Любой вал, прикрепленный к соответствующей шестерне, будет вращаться в направлении шестерни, к которой он прикреплен.
Скорость вращения регулируется с помощью «передаточного числа». Передаточное отношение – это отношение радиуса ведущей или «входной» шестерни (той, которая обеспечивает взаимодействие между двумя шестернями) к радиусу «выходной» шестерни. Его также можно определить как отношение количества зубьев на входной шестерне к количеству зубьев на выходной шестерне. Чем больше передаточное отношение, тем больше будет замедляться выходное вращение. Чем меньше передаточное отношение, тем больше будет увеличиваться угловая скорость выходного вращения. Передаточные отношения дальше от «1» означают, что несоответствие между размерами шестерен будет больше. Подробнее о передаточных числах читайте ниже.
При обсуждении пары шестерен меньшая шестерня считается шестерней, а большая – «шестерней». Когда две или более шестерни соединены вместе, это считается зубчатой передачей. Шестерня, вращаемая двигателем, называется «ведущей» шестерней, в то время как последняя шестерня, часто выходная шестерня, в системе называется «ведомой» шестерней. Любые дополнительные шестерни в трансмиссии являются «холостыми» шестернями.
Возможно, наиболее распространенной передачей для изменения оси вращения является коническая передача (см. ниже). Коническая шестерня обычно используется в дифференциалах транспортных средств для вращения движения, обеспечиваемого двигателем 9.0 градусов, чтобы колеса двигались вдоль их правильной оси.
Типы зубчатых колес
Цилиндрическое зубчатое колесо
Цилиндрическое зубчатое колесо Наиболее распространенным типом зубчатого колеса является цилиндрическое зубчатое колесо. Цилиндрические шестерни имеют зубья, выступающие наружу по периметру шестерни. Они установлены на параллельных осях и могут использоваться для создания широкого диапазона передаточных чисел. Одним из недостатков этого механизма является то, что столкновения между каждым зубом вызывают потенциально неприятный шум, поскольку каждый зуб сразу входит в зацепление.
Косозубые шестерни
Косозубые шестерни: Для снижения шума от прямозубых шестерен можно использовать косозубые шестерни. Зубья косозубых шестерен нарезаны под углом к торцу шестерни так, что зацепление зуба начинается с одного конца и постепенно переходит на остальную часть зуба по мере вращения шестерни. Такая конструкция приводит к снижению шума и делает систему в целом более плавной. Винтовой рисунок шестерен создает осевую нагрузку, так как зубья шестерен входят в контакт друг с другом под углом, не перпендикулярным оси вала. Подшипники часто включаются в механизмы с косозубыми передачами, чтобы выдерживать эту осевую нагрузку.
Конические шестерни
Конические шестерни: Конические шестерни могут использоваться в механизмах для изменения оси вращения. Хотя они могут быть предназначены для работы под другими углами, чаще всего они используются для изменения оси вращения на 90 градусов. Подобно цилиндрическим зубчатым колесам, конические зубчатые колеса также могут иметь прямые или косозубые зубья. Кроме того, можно использовать гипоидные конические передачи, когда оси входного и выходного валов не пересекаются.
Червячные передачи
Червячные передачи: В механизмах, где необходимы большие передаточные числа, можно использовать червячные передачи для достижения передаточного числа более 300:1, если это необходимо. Червячные передачи также обладают естественной функцией блокировки, заключающейся в том, что червяк может легко провернуть шестерню, но шестерня не может провернуть червяк из-за малого угла наклона червяка, вызывающего высокое трение между шестернями. Эти механизмы также изменяют ось вращения на 90 градусов, но иначе, чем конические шестерни. В отличие от других зубчатых колес, у которых зубья нарезаны параллельно, зубья червячного колеса нарезаны почти перпендикулярно оси вращения вала при сопряжении с более традиционным профилем зубчатого колеса.
Реечные шестерни
Реечные шестерни: Реечные шестерни используются для преобразования вращения в линейное движение. Круглая шестерня или шестерня входит в зацепление со рейкой, и вращение шестерни заставляет рейку перемещаться. Рулевой механизм в автомобилях использует реечную систему. Когда шестерня вращается, она заставляет рейку двигаться линейно. Поскольку длина стойки не бесконечна, эти механизмы не используются в приложениях с непрерывным вращением.
Планетарные шестерни
Планетарные шестерни: планетарные шестерни могут быть самым интересным механизмом в мире шестерен. Эти механизмы состоят из трех основных компонентов: солнечной шестерни, планетарной шестерни и водила, а также зубчатого венца. Каждый из этих компонентов может служить входом, выходом или может оставаться неподвижным. Функциональное назначение каждого компонента определяет передаточное отношение всей системы. Набор лент или муфт часто используется для блокировки различных частей устройства. Направление вращения можно даже изменить, если солнечная шестерня будет входной, кольцевая шестерня – выходной, а планетарные шестерни – неподвижными. Кроме того, блокировка любых двух компонентов механизмов заблокирует всю систему в передаточном отношении 1:1. Этот один набор шестерен может создавать несколько передаточных чисел, и наиболее распространенное применение этого механизма – трансмиссия автомобилей с автоматической коробкой передач.
Gear – Energy Education
Energy EducationМеню навигации
ИСТОЧНИКИ ЭНЕРГИИ
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ
ИНДЕКС
Поиск
Рисунок 1: Зубчатая передача [1]
Шестерня (также называемая зубчатым колесом ) представляет собой тип простого механизма, который используется для управления величиной или направлением силы. Зубчатые колеса используются в комбинации и соединяются друг с другом своими зубьями – это называется 9. 0077 шестерни – для формирования “зубчатой передачи” . Эти зубчатые передачи полезны для передачи энергии от одной части системы к другой. Системы, в которых используются шестерни и зубчатые передачи, включают велосипеды, автомобили, электрические отвертки и многие другие распространенные машины. [2]
Как они работают
Механизмы используют принцип механического преимущества, который представляет собой отношение выходной силы к входной силе в системе. Для шестерен механическое преимущество дает передаточное число , которое представляет собой отношение скорости конечной передачи к скорости начальной передачи в зубчатой передаче. [3] Передаточное число задается уравнением: [4]
Рисунок 2: Анимация зубчатой пары, видно, что меньшее колесо вращается быстрее, чтобы не отставать от большего числа зубьев на большей шестерне. [5]
- [math]N[/math] — количество зубьев на шестерне,
- [math]\omega[/math] — угловая скорость шестерни, а
- [math]r[/math] — радиус шестерни.
Таким образом, если механическое преимущество зубчатой передачи равно 3, это означает, что радиус последней передачи в цепочке в 3 раза больше радиуса первой передачи. При таком передаточном числе входная шестерня может вращаться с усилием, в 3 раза меньшим, чем выходная шестерня, но взамен она должна вращаться в 3 раза быстрее, чем конечная шестерня.
Это соотношение для зубчатых передач принципиально зависит от закона сохранения энергии. При анализе зубчатых передач эту концепцию легче понять, используя анализ сохраняемой мощности системы. Этот анализ связывает крутящие моменты шестерен с их угловыми скоростями. Полный анализ этого типа обмена можно посмотреть здесь ССЫЛКА БОРОТА .
Использование
Шестерни служат двум основным целям: увеличение скорости или увеличение сила . Для увеличения одного из них необходимо идти на компромиссы. Например, чтобы увеличить скорость вращения колес велосипеда, необходимо увеличить усилие, прикладываемое к педалям. Точно так же, чтобы увеличить усилие на колесах, педали нужно крутить быстрее. Эта техника используется, когда гонщик пытается подняться на холм на велосипеде. Все это связано с законами сохранения энергии и мощности.
Шестерни широко используются во многих системах, но их легче всего распознать в повседневной жизни в автомобилях, на которых мы ездим. Автомобили должны использовать шестерни, чтобы эффективно и безопасно передавать энергию от двигателя к колесам. Двигатель на холостом ходу работает со скоростью около 1000 об/мин. Если бы двигатель был подключен непосредственно к колесам, это означало бы, что автомобиль должен двигаться со скоростью примерно 120 км/ч. Это означает, что если двигатель автомобиля будет включен, он немедленно разгонится до этой скорости. Когда двигатель переходил в диапазоны с высокими оборотами – около 7000 – автомобиль двигался со скоростью 840 км/ч! Хотя это кажется очень забавным, это крайне непрактично. Это непрактично из-за того, что для движения автомобиля требуется большое количество энергии, поэтому двигатель, пытающийся разогнаться до полной скорости сразу после запуска, не будет генерировать достаточной силы для движения автомобиля. Поэтому в автомобиле используются шестерни в трансмиссии или, альтернативно, «коробка передач», которая начинается с использования более низких передач, которые генерируют большую силу, чтобы заставить автомобиль двигаться, и в конечном итоге переходит на более высокие передачи, ориентированные на скорость. [3]
Тот же принцип передач применим к велосипедам; для подъема в гору требуются более низкие передачи, чтобы обеспечить большую силу для противодействия силе тяжести, и как только гонщик снова окажется на ровной поверхности, он может переключиться на более высокие передачи, чтобы увеличить скорость своего велосипеда.
Для дополнительной информации
Для получения дополнительной информации см. соответствующие страницы ниже:
- Механическое преимущество
- Простая машина
- Наклонная плоскость
- Шкив
- Рычаг
- Колесо и ось
- Случайная страница
Ссылки
- ↑ Wikimedia Commons [Online], доступно: http://upload.