Какой газ для полуавтоматической сварки: Какие защитные газы и смеси применяются для сварки полуавтоматом (MIG/MAG)

alexxlab | 23.03.2023 | 0 | Разное

Содержание

какой нужен для полуавтомата, выбор защитной газовые смести, баллона

Хотите узнать какой газ используется для сварки полуавтоматом mig или mag, а может вам необходимо разобраться с газовой сваркой и с тем какие газы применяются. В статье мы подробно расскажем о том, где и какие газы используют и как их выбрать.

Содержание

  1. Какой газ нужен для сварки полуавтоматом
  2. Аргон
  3. Гелий
  4. Углекислый газ СО2
  5. Азот
  6. Кислород
  7. Сварочная смесь для полуавтомата
  8. Смесь аргона и кислорода
  9. Смесь аргона и гелия
  10. Смесь углекислого газа и кислорода
  11. Смесь аргона и углекислого газа
  12. Расход газа при сварке полуавтоматом
  13. Область применения
  14. Какой газ используют для сварки полуавтоматом — критерии выбора
  15. Какой газ нужен газовой сварки
  16.  Ацетилен
  17. Природные
  18. Водород
  19. Пиролизный
  20. Влияние на процесс
  21. Преимущества и недостатки газовой среды

Какой газ нужен для сварки полуавтоматом

Полуавтоматическая или механизированная сварка чаще всего выполняется сплошной проволокой, а сварочную дугу и расплавленный металл защищает газ. Газ подается в зону сварки через сопло горелки.

Подробно о процессе полуавтоматической сварки вы можете прочитать в нашей статье — Как работать сварочным полуавтоматом — Mig и Mag для начинающих.

Чаще всего для сварки черной стали используется СО2 (углекислый газ или как его называю углекислота). Реже используются газовые смеси в них входит СО2, Аргон, Гелий иногда Азот и кислород.

От использования газа определяется название сварки mig – сварка с применением инертного газа аргона или гелия. MAG (МАГ) – с использованием активного газа – углекислого. Остановимся поподробнее на каждом из газов.

Разработка сварочной документации, техкарт на сварку и контроль сварных соеднинений.

Аргон

Как мы уже говорили полуавтоматическая (механизированная сварка аргоном) называется — маг.
Этот защитный газ применяется для сварки полуавтоматом чаще всего для ответственных конструкций из стали или алюминия. Для сварки используется аргон первого сорта в котором примесей чуть больше чем в аргоне высшего сорта, а именно содержится до 0,005-0,009% азота и до 0,001-0,002 % кислорода.

Газ аргон очень хорошо защищает сварочную ванну, дугу и зону термического влияния (нагретый участок). Он не растворяется в металле шва и не насыщает нагретый участок в околошовной зоне. Газ тяжелее воздуха в 1.4-1.5 раза, не имеет ни запаха не вкуса. Ar не горючий и не ядовитый, хотя некоторые молодые сварщики боятся применять аргон говоря что но вреден для здоровья. Это не так, сам газ не вреден и не полезен.

Аргон высшего сорта используют для сварки цветных металлов и сплавов таких как сплавы алюминия, титана, хромоникелевые сплавы и т.д. Содержание примесей азота и кислорода в нем минимальны для N – в районе 0,0055 — 0,006%, для О2 – до 0,0006-0,0007 %. Газ высшего сорта стоит дороже и применять его нужно только в тех случаях, когда это обосновано.

Гелий

Этот газ для полуавтомата в чистом виде применяется достаточно редко, потому как стоимость на He неоправданно высокая. Так еще гелий легче воздуха и из-за этого его расход гораздо больше, чем того же аргона. Гелий как и аргон не имеет не цвета ни запаха и тоже бывает двух сортов только называются они по другому.

Первый это высокой чистоты с содержанием гелия до 99,984-99,985%, второй это гелий технический его чистота в районе 99,7-99,8 %. При использовании гелия увеличивается глубина проплавление металла, так как из-за высокой степени ионизации дуга горит с выделением большего количества энергии (эффективнее в 1,4-2 раза по сравнению со сваркой в аргоне).

Применяют гелий при сварке активных (таких как магний, например) или химически чистых металлов (к примеру сплавы на основе алюминия и меди). Применение гелия очень распространено в США и Германии, а вот в странах СНГ применяется редко. Чаше идет в смесях и с аргоном или углекислым газом.

Углекислый газ СО2

Этот газ фаворит для полуавтоматической сварки «черных» (низкоуглеродистых, низколегированных и т.д.) сталей. Это обусловлено тем, что СО2 дешевый и найти его можно даже в отдаленных населённых пунктах.

Углекислый газ имеет слабый, еле уловимый запах (конечно если это хорошо очищенный газ, без конденсата). У газа нет цвета и вкуса, он сильный окислитель. СО2 хорошо растворяется в воде (его также используют в пищевой промышленности для газирования напитков). Иногда и сварщики на производстве используя шланг и пластиковую бутылку делают газировку.

Газ тяжелее воздуха, что хорошо для сварки так как расход газа будет не большой в сравнении с гелием. Единственное нужно обеспечивать хорошее проветривание помещения при длительном проведении сварки, так как газ может скапливаться особенно в низменностях (разных приямках и т.д.). В идеале, конечно, чтобы была вытяжка, но такие системы как правило только на крупных производствах. Двуокись углерода (СО2) уже бывает трех сортов: первый, второй и высший.

Больше всего примесей во втором сорте до 1,2%. Первый сорт содержит примесей не больше 0,4-0,5%, а высший до 0,1-0,2% и применяется уже для ответственных конструкций из стали.

Диоксид углерода (углекислота) набирает в себя влагу, что негативно скажется при сварке. Рекомендуем перед сваркой за час полтора поставить баллон вентилем вниз. Перед сваркой не переворачивая баллон открыть вентиль и выпустить немного газа с влагой. Также можно использовать специальное оборудование для просушки газа – осушитель.

В углекислоте сваривают различные стали с низким и средним содержанием углерода, можно применять при сварке коррозионностойких сталей и чугунов.

Азот

Для сварочного полуавтомата Азот используется весьма ограничено, этот газ как правило применяют при сварки меди. Потому что именно по отношению к меди азота является инертным газом. Для большинства же других металлов азот активный газ который растворяется в расплавленном металле тем самым образуя многочисленные дефекты в виде газовых пор. Выпускается 4 сортов: высшего в котором примеси не более 0,1 %. Азот же 1 сорта может содержать примеси до 0,5%, 2 сорта  0,9— 1% принеси. Что касается азота 3-сорта он может содержать до 3% различных примесей. Азот не имеет цвета, ни запаха, ни вкуса он не ядовитый. Для сварки представляется в баллонах чаще всего имеющих объем 40 л. Эти баллоны имеют окрас чёрного цвета, как и баллон углекислоты, с надписью жёлтым «Азот».

Кислород

Кислород является очень активным газом. Сам он не горит, но очень активно поддерживает горение. Для сварки, кислород в чистом виде не применим. Как правило кислород используется лишь в смеси с инертными газами. Кислород не имеет ни запаха, ни вкуса, ни цвета. Выпускают кислород 3 сортов : 1-сорт с содержанием чистого кислорода 99,7-99,8%; 2 сорт — 99,4% — 99,5% и 3 сорт с содержанием примеси до 0,8%. Более подробное использование кислорода рассмотрим в разделе про смеси газов.

Полезная статья — А вы знаете сколько весит кислородный баллон и какой его объем.

Сварочная смесь для полуавтомата

Для полуавтоматической сварки чаще всего используются такие смеси газов как: смесь аргона и гелия, смесь аргона и углекислого газа, смесь аргона и кислорода, а также смесь аргона углекислоты и кислорода в различных процентных соотношениях.

Смесь аргона и кислорода

При содержании кислорода от 1% до 4% в смеси процесс сварки становятся очень стабильным, увеличивается текучесть металла, расплавленного в сварочной ванне. Перенос металла становится мелкокапельным, брызг становится очень мало, а шов получается ровным и красивым. При мелкокапельном переносе металла значительно сокращается расход сварочный проволоки, которая сильно тратиться на разбрызгивание.

Смесь аргона и гелия

Эту смесь используют для сварки активных, цветных металлов и сплавов таких как алюминия, титана и прочих. Данная смесь обеспечивает очень высокий уровень защиты расплавленного металла в сварочной ванне. Оптимальный состав для этой смеси 50% + 50%. Также можно встретить соотношение 60-65% гелия и 35— 40% аргона.

Смесь углекислого газа и кислорода

Подобные смеси на практике не очень часто используются. Оптимальный для них состав это 65-75% углекислого газа и 25-35 % кислорода. При использовании таких смесей, шов формируется несколько лучше чем если использовать чистую углекислоту. Применяется как правило подобной смеси для сварки чёрных стали (углеродистых конструкционных, а также некоторых легированных).

Смесь аргона и углекислого газа

Такая смесь чаще всего используется для сварки углеродистых, низко- и среднелегированных, стали аустенитного класса (нержавейки). Соотношение этой смеси 74— 80% аргона и 20— 26% СО2. При использовании этой смеси обеспечивается очень хорошая защита сварочный дуги и металла.

Также идет очень незначительное разбрызгивание металла. Сварочный шов получается мелкочешуйчатый, а процесс формирования шва стабильный. Эта смесь очень хорошо повышает производительность сварки так как наличие аргона увеличивает мощность сворачивай другие. Благодаря этому свойству процесс идет быстрее.

Полезная статья — Как правильно выбрать сварочный кабель для инверторного аппарата и не потерять деньги.

Расход газа при сварке полуавтоматом

Расход газа при полуавтоматической сварке зависит от нескольких факторов:

  1. наличие сквозняка;
  2. свойств газа;
  3. свойств свариваемого металл;
  4. тип соединения;
  5. толщины свариваемых деталей.

Наличие сквозняка— если в помещение есть сквозняк или работы ведутся на открытом воздухе, где есть ветер, газ будет сдувать. Чтобы предотвратить его сдувание нужно увеличивать расход газа. Именно поэтому при наличии сквозняков и работе на открытом воздухе расход газа значительно увеличивается.

Свойства газа— такие газы как гелий и его смеси который легче воздуха, улетучиваются и при их использовании расход достаточно высокий. Если необходимо сократить расход, то лучше выполнять сварку в среде гелия в закрытых камерах или с использованием козырьков.

Свойства свариваемого металла — для сварки цветных металлов, а также их сплавов для обеспечения качественной защиты, чтобы в сварочную ванну не попадали газы из атмосферы применяют параметры с высоким расходом газа.

Тип соединения— от типа сварного соединения напрямую зависит расход газа особенно это видно на соединениях, где необходимо подваливать корень шва или соединение с двусторонней разделкой кромок.

От толщины свариваемых деталей— чем больше толщина свариваемых деталей, тем больше сварочный ток и соответственно больше расход газа. Это необходимо чтобы защитить большую зону сварки, широкую ванну и сварочную дугу.

 

Область применения

Защитный газ используется как мы уже говорили в механизированной сварки для защиты сварочной дуги и расплава от попадания газов из воздуха. Он используется 80% случаев использования полуавтоматической сварки, 20% это сварка самозащитой порошковой проволокой.

Область применения весьма широка так как данный процесс несложен и очень производителен. Полуавтоматом варят как тонкий металл в автосервисах, потому что ручной сваркой тонкий металл варить очень проблематично. Его легко прожечь. Так и используют на производстве металлоконструкций и крупных изделий.

Там ситуация обратная, швы протяженные, а толщина металла большая. Она применяется там, потому что этот процесс очень производительный и варить длинные швы и толстый металл ручной сваркой получается дорого и долго.

По большей части отличие здесь будут лишь в использовании самих аппаратов. В автосервисе как правило используются дешевые модели, а на производстве применяются дорогостоящая профессиональное оборудование с синергетической системы управления обеспечивающие высокую производительность.

Какой газ используют для сварки полуавтоматом — критерии выбора

Поговорим о критериях выбора газа для полуавтоматической сварки более подробно. На выбор того или иного газа влияет несколько параметров таких как:

  • марка материала изделия;
  • ответственность соединения;
  • экономические показатели.

В большой части марка изделия и определяет использование тех или иных газов или их смесей.

Инертные газы подходит как правило для любых видов сталей, цветных металлов и их сплавов. Применение инертных газов для низкоуглеродистых и низколегированных сталей неоправданно, так эти газа стоят очень дорого.

Для углеродистых, низкоуглеродистой, конструкционных сталей используется углекислота (углекислый газ ), а также смеси СО2 с аргоном, СО2 + аргон +гелий.

При сварки нержавеющих сталей (сталей аустенитного класса), к примеру всем известная «медицинская» сталь – 12Х18Н10Т и близкие с ней свариваются в смеси углекислоты и аргона.

Для сварки цветных металлов таких как алюминий, титан, медь чаще всего используется аргон либо в чистом виде, либо смесь с Не. В чистом виде Не используется редко так как он очень дорогой.

Медь можно сваривать в среде азота. Для цветных металлов не используются смеси содержащей СО2 и кислород.

Ниже приведём таблицу, где наглядно покажем применение тех или иных газов и их смесей для различных видов металлов сплавов.

ГазСтали конструкционные (низкоуглеродистые)Легированные стали (низко-, средне-, высоко-)Титан, алюминий и их сплавы
Со2 (углекислый газ)ДаДа, с ограничениямиНет
Ar (Аргон)Да (нецелесообразно)ДаДа
Не (Гелий)Да (нецелесообразно)ДаДа
Аr + Со2ДаДаДа
Аr+О2ДаДа, с ограничениямиНет
Со2+О2ДаДа, с ограничениямиНет
Аr+Со2+О2ДаДа, с ограничениямиНет
Ar+НеДа (нецелесообразно)ДаДа

 

Какой газ нужен газовой сварки

Зачастую газовую сварку и газы которые в ней применяются путают с полуавтоматической и газами которые применяются для нее. Вкратце расскажем разницу. Газовая сварка выполняется за счёт сгорания горючего газа, а при полуавтоматической же газ используется для защиты, он не горит.

 Ацетилен

Чаще всего именно ацетилен используют как сварочный газ для газовой сварки. Этот газ легче воздуха он бесцветный имеет слабый запах. При горении температура пламени ацетилена бывает в районе 2950— 3120 Градусов Цельсия. Ацетилена очень легко воспламеняется даже от статического разряда, потому баллоны с этим газом заполнены пористым веществом который пропитывают ацетоном.

Также его применяют для газовой резки, но реже. Чаще для этой цели используют пиролизный или природные газы о них поговорим далее.

Природные

Природные газы для сварки применяются гораздо реже нежели ацетилен ввиду их низкой температурой горения, а вот для резки применяются очень часто потому что стоят они недорого по сравнению с тем же ацетиленом. Применение природных газов более безопасно в отличие от ацетилена потому как они менее огнеопасны. Температура их горения значительно ниже, где-то в районе 2100— 2300 Градусов Цельсия.

Водород

Водород является альтернативой ацетилена при газовой сварки . Этот газ не имеет ни цвета, ни вкуса, также не имеет запах, он легче воздуха. Также водород обладает высокой текучестью и взрывоопасность при смеси с воздухом. Для сварки водород используется не в баллонах, а получают в специальных аппаратах для водородной сварки из воды под действием электрического тока.

Применение водорода вместо ацетилена обеспечивает более качественные ровный сварочный шов. Но несмотря на это преимущество данный способ редко применяется на практике. Так как есть целый ряд сложностей, возникающих в процессе сварки. Одно из них это появление большого количества шлака в процессе сварки, что требует введение дополнительных компонентов в расплав металла.

Также для работы аппарат водородный сварки требуется электричество, лишая данный способ автономности присущий газовой сварке. Грубо говоря — Если есть электричество зачем получать газ, можно просто заварить ручной сваркой.

Полезная статья — 9 основных видов сварочных аппаратов применяемых повсеместно

Пиролизный

Получают этот газ на крупных нефтеперерабатывающих предприятиях как побочный продукт процессе нефтепереработки. После его получения газ требует определенную очистку и обработку для снижения его химической активности. Его свойства очень близки свойствам природных газов.

Используется для резки металлов, для сварки же достаточно редко ввиду опять же низкой температурой горение.

Влияние на процесс

Защитный газ применяемые для сварки оказывают огромное влияние как на сам процесс, так и на результат — качество сварного соединения. Неправильный выбор газов приведёт либо к многочисленным дефектом, либо к ненужному удорожанию процесса.

Приведём несколько примеров:

Применение аргона или гелия для сварки металлоконструкций из Ст3пс. Сварное соединение получится качественным, но затраты необоснованно высокими. Или же другой пример: сварка титанового сплава ВТ9 в среде углекислого газа. В этом случае финансовые затраты будут минимальны, но соединение будет однозначно бракованным и скорее всего даст трещину еще до того, как сварщик завершит работу.

Полезная статья — Все что нужно знать про клей поксипол, чтобы обойтись без сварки.

Преимуществами при использовании газовой защиты является удешевление процесса так как не требуется использование дополнительных флюсов с газообразующими компонентами. Также это защищает соединение попадание шлаковых включений.

Основными недостатками является наличие громоздкого и не дешевого газового оборудования:

  • газовый баллон;
  • шланги;
  • редукторы и ротаметры;
  • смесители;
  • газовый подогреватели и осушители

Применять его в условиях монтажа достаточно проблематично. Также условиях монтажа использование газовой защиты осложняется тем, что ее сдувает порывами ветра или сквозняком. А из-за этого образуются дефекты, и дуга горит нестабильно.

Какой газ используется для сварки полуавтоматом: разновидности

главная » ОБОРУДОВАНИЕ » Полуавтомат

Полуавтомат

На чтение 3 мин

Содержание

  1. Разновидности используемых газов с характеристиками
  2. Критерии выбора смеси для аппарата
  3. Технология газовой сварки
  4. Преимущества и недостатки газовой среды

В полуавтоматической сварке используют специальную проволоку, которая выступает материалом для формирования шва. Чтобы соединение получилось герметичным, в сварочную ванну подают газ непрерывным потоком, который защищает его от губительного воздействия кислорода воздуха. Однако прежде всего важно понять, какой газ используется для сварки полуавтоматом.

Разновидности используемых газов с характеристиками

Чаще всего применяют следующие газы для полуавтоматической сварки:

  1. Аргон.
    Тяжелее воздуха. Имеет низкую теплопроводность. Эффективно защищает сварочную ванну и поддерживает стабильность дуги. Чаще всего аргон используется для работы с изделиями из цветных металлов.
  2. Углекислый газ.
    Также тяжелее воздуха. При температурах сварочной дуги распадается на составляющие — кислород и угарный газ. Чтобы первый не подействовал на шов, используют специальную присадочную проволоку, в составе которой есть кремний и марганец.
  3. Гелий.
    Легче воздуха. Этим объясняются некоторые трудности, которые могут возникнуть при его использовании в сварке полуавтоматом. Имеет такой же показатель теплопроводности, как и аргон. Однако в чистом виде гелий используется редко, его применяют в качестве одного из компонентов газовых смесей.
  4. Кислород.
    Эффективно поддерживает стабильность дуги, снижая при этом поверхностное натяжение расплавленного металла. Это увеличивает текучесть сварочной ванны, что положительно сказывается на результате.

Критерии выбора смеси для аппарата

Выбор защитного газа для сварки зависит от следующих факторов:

  • температуры горения;
  • расхода газа;
  • уровня защиты сварного шва;
  • тепла, выделяющегося на месте соединения заготовок.

Чтобы понять, какой газ нужен, необходимо определить материал сварных заготовок.

МеталлСостав смесиОсобенности процесса
Углеродистая стальУглекислый газ и аргон в соотношении 1:3Высокая скорость сварки, отсутствие деформации заготовок. Подходит для работы с металлами толщиной до 3 мм
Нержавеющая стальУглекислота (2,5%), аргон (7,5%) и гелий (90%)Высокий уровень защиты свариваемых частей от окисления
Низколегированная стальАргон и углекислый газ в соотношении 3:1Прочный сварной шов, высокая устойчивость дуги
Сплавы алюминияГелий (65%) и аргон (35%)Применяется для сплавления толстых металлов толщиной до 76 мм

Для получения хорошего, прочного шва лучше посоветоваться со специалистом, чтобы правильно подобрать сварочную смесь для полуавтомата.

Технология газовой сварки

Полуавтоматическая сварка основана на формировании электрической дуги между электродом аппарата и заготовкой. Ее температура достаточно велика, чтобы расплавить присадочную проволоку, которая непрерывно подается в свариваемое место и образует шов.

Газовая смесь формирует защитную среду вокруг плавящейся присадочной проволоки и поддерживает стабильность дуги, что ускоряет процесс сварки.

Без нее шов подвергается негативному воздействию со стороны атмосферного воздуха, что в результате приведет к образованию негерметичного соединения. Смесь содержится в специальных прочных баллонах и подается в горелку по трубам.

Процесс сварки полуавтоматом в газовой среде имеет следующие преимущества:

  1. Нет необходимости покупать дорогое оборудование.
  2. Можно сваривать оцинкованные изделия, не повреждая при этом покрытие.
  3. Оператор видит результат по ходу работы, т. к. шлак не перекрывает соединение.
  4. Можно сваривать тонкие стальные листы толщиной менее 1 мм.

Из недостатков отмечают сильное излучение дуги, из-за чего возникает необходимость использования маски для лица.

Китайский производитель сварочных аппаратов, Mma Tig Mig Mag, поставщик инверторных сварочных аппаратов

Дом Производители/Поставщики

Подробнее

Список продуктов

Выбранные поставщики, которые могут вам понравиться

Сварочный аппарат для арматурной сетки 5-12 мм

Рекомендуемый продукт

Свяжитесь сейчас

Автоматическая портативная машина для сварки арматурной сетки Цена

Свяжитесь сейчас

Автоматическая портативная машина для сварки арматурной сетки Цена

Свяжитесь сейчас

Suptec портативный цифровой семейный промышленный инверторный сварочный аппарат Precio Mesin Las Maquinas De Soldar

Рекомендуемый продукт

Свяжитесь сейчас

Suptec MMA-200 TIG Стабильная производительность и простота в эксплуатации Mini 200 Arc Welder Max Smart Accessories Duty IGBT Arc сварочный аппарат

Рекомендуемый продукт

Свяжитесь сейчас

Suptec Inversora De Solda Bivolt Soldadoras Inversoras 200 AMP DC инвертор дуговой сварочный аппарат цены портативный электросварочный аппарат постоянного тока

Рекомендуемый продукт

Свяжитесь сейчас

Ручной лазерный сварочный аппарат с источником волокна 1000 Вт, 5 мм

Свяжитесь сейчас

Ручной лазерный сварочный аппарат Accurl с непрерывной/модуляционной сваркой

Свяжитесь сейчас

Ручной лазерный сварочный аппарат Accurl с непрерывной/модуляционной сваркой

Свяжитесь сейчас

1000 Вт / 1500 Вт / 2000 Вт / 3000 Вт / 6000 Вт Оборудование с ЧПУ Цена Лазерная резка Сварка Резка металла 3015 Ss / CS / Алюминий / Латунь Волоконный лазерный резак

Рекомендуемый продукт

Свяжитесь сейчас

Ручной лазерный сварочный аппарат мощностью 1000 Вт, 1500 Вт, 2000 Вт, 3000 Вт для обработки листов

Свяжитесь сейчас

Ручной лазерный сварочный аппарат мощностью 1000 Вт, 1500 Вт, 2000 Вт, 3000 Вт для обработки листов

Свяжитесь сейчас

Цена по прейскуранту завода-изготовителя Long Life Low Cost Лазерный сварочный аппарат для волочения труб Сварочный станок из нержавеющей стали для волочения труб Обрабатывающая промышленность

Рекомендуемый продукт

Свяжитесь сейчас

Raycus 1500 Вт Портативное волоконное лазерное оборудование Волоконный лазерный сварочный аппарат Ручной волоконный лазерный сварочный аппарат для продажи

Рекомендуемый продукт

Свяжитесь сейчас

Raycus 1500 Вт Портативное волоконное лазерное оборудование Волоконный лазерный сварочный аппарат Ручной волоконный лазерный сварочный аппарат для продажи

Рекомендуемый продукт

Свяжитесь сейчас

Сварка MIG или дуговая сварка металлическим электродом в среде защитного газа (GMAW) сварка алюминия.

Дуга и сварочная ванна, сформированная с использованием электрода из оголенной проволоки, были защищены газообразным гелием, который в то время был легко доступен. Примерно с 1952 года этот процесс стал популярным в Великобритании для сварки алюминия с использованием аргона в качестве защитного газа и для углеродистых сталей с использованием CO 9 .0131 2
.

СО 2 и смеси аргона CO 2 известны как процессы с металлическим активным газом (MAG). MIG является привлекательной альтернативой MMA, предлагая высокую скорость наплавки и высокую производительность.


1 Направление перемещения

2 Контактная трубка

3 Электрод

4 СОЗДАТЕЛЬНЫЙ ГАЗ

5 СОЗДАТЕЛЬНЫЙ ПЕРЕДЕЛА

6 Отвержденный металл сварной железы

7 Рабочая пункт

. Характеристики

MIG – с MMA, что с MMA

. тепло для сварки производится за счет образования дуги между металлическим электродом и заготовкой; электрод плавится, образуя сварной шов.

Основные отличия заключаются в том, что металлический электрод представляет собой проволоку небольшого диаметра, подаваемую с катушки, и требуется внешняя подача защитного газа. Поскольку проволока подается непрерывно, этот процесс часто называют полуавтоматической сваркой.

Режим переноса металла

Способ, или режим, при котором металл переносится с электрода в сварочную ванну, во многом определяет рабочие особенности процесса. Существует три основных режима переноса металла.

  • Короткое замыкание
  • Капли/спрей
  • Импульсный

Короткое замыкание и импульсный перенос металла используются для слаботочных операций, в то время как перенос металла распылением используется только при высоких сварочных токах. При коротком замыкании или переносе «погружением» расплавленный металл, образующийся на кончике проволоки, переносится проволокой, погружающейся в сварочную ванну. Это достигается установкой низкого напряжения; для проволоки диаметром 1,2 мм напряжение дуги варьируется от 17 В (100 А) до 22 В (200 А). Внимание при установке напряжения и индуктивности в зависимости от скорости подачи проволоки необходимо для сведения к минимуму разбрызгивания. Индуктивность используется для контроля скачков тока, возникающих при погружении проволоки в сварочную ванну.

Для капельного или аэрозольного переноса необходимо гораздо более высокое напряжение, чтобы гарантировать, что проволока не вступит в контакт, т. е. короткого замыкания, со сварочной ванной; для проволоки диаметром 1,2 мм напряжение дуги варьируется примерно от 27 В (250 А) до 35 В (400 А). Расплавленный металл на конце проволоки переходит в сварочную ванну в виде брызг мелких капель (размером с диаметр проволоки и меньше). Однако существует минимальный уровень тока, порог, ниже которого капли не проецируются принудительно через дугу. Если попытаться использовать метод открытой дуги намного ниже порогового уровня тока, силы слабой дуги будет недостаточно для предотвращения образования больших капель на конце проволоки. Эти капли будут беспорядочно перемещаться по дуге под действием обычных гравитационных сил.

Импульсный режим был разработан как средство стабилизации открытой дуги при низких уровнях тока, т. е. ниже порогового уровня, во избежание короткого замыкания и разбрызгивания. Перенос металла достигается применением импульсов тока, сила каждого импульса достаточна для отрыва капли. Синергетический импульсный МИГ относится к особому типу контроллера, который позволяет настраивать источник питания (параметры импульса) на состав и диаметр проволоки, а частоту импульсов задавать скорость подачи проволоки.

типичная горелка MIG
(изображение предоставлено Fronius International)

Защитный газ

В дополнение к общей защите дуги и сварочной ванны защитный газ выполняет ряд важных функций.

  • формирует дуговая плазма
  • стабилизирует основание дуги на поверхности материала
  • обеспечивает плавный перенос капель расплава с проволоки в сварочную ванну

Таким образом, защитный газ будет оказывать существенное влияние на стабильность дуги и переноса металла, а также на поведение сварочной ванны, в частности, на ее проплавление. Защитные газы общего назначения для сварки MIG представляют собой смеси аргона, кислорода и CO 9 .0131 2 , а специальные газовые смеси могут содержать гелий. Газы, которые обычно используются для различных материалов:

Стали

  • CO 2
  • аргон от +2 до 5% кислорода
  • аргон от +5 до 25% CO 2

Цветные металлы

  • аргон
  • аргон/гелий

Газы на основе аргона, по сравнению с CO 2 , как правило, более устойчивы к настройкам параметров и создают более низкий уровень разбрызгивания в режиме переноса погружением. Однако существует больший риск отсутствия дефектов плавления, поскольку эти газы более холодные. Как СО 1 нельзя использовать в режимах открытой дуги (импульсный или струйный перенос) из-за высоких противоплазменных сил, обычно используются газы на основе аргона, содержащие кислород или CO 2 .

Применение

MIG широко используется в большинстве отраслей промышленности, и на его долю приходится более 50% всего наплавленного металла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *