Коэффициент теплопроводности чем больше тем лучше: «Чем выше показатель теплопроводности, тем лучше или хуже утеплитель?» — Яндекс Кью
alexxlab | 03.05.2023 | 0 | Разное
Теплопроводность материалов. Как считают? Сравнительная таблица
Дмитрий Крылов
Эксперт по частным домам. Опыт загородного проживания: 30 лет.
Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).
Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.
Коэффициент теплопроводности Лямбда. Что это такое?
Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.
Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.
Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.
Таким образом формула расчет будет выглядеть так:
Q = λ (S ΔTt / d)
отсюда лямбда:
λ = (Q / t) · (d / S ΔT)
где:
- λ (лямбда) — коэффициент теплопроводности;
- ΔQ — количество тепла, протекающего через тело;
- t — время;
- L — длина тела;
- S — площадь поперечного сечения корпуса;
- ΔT — разность температур в направлении теплопроводности;
- d — толщина перегородки.
За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.
От чего зависит теплопроводность?
Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.
Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.
Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.
В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.
Значения теплопроводности для различных материалов
Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:
Материал | Теплопроводность [Вт / (м · К)] |
Полиуретановая пена | 0,025 — 0,045 |
Воздух | 0,03 |
Минеральная вата | 0,031 — 0,045 |
Пенополистирол | 0,032 — 0,045 |
Войлок, маты и плиты из минеральной ваты | 0,042 — 0,045 |
Дерево | 0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб) |
Кирпич | 0,15 – 1,31 |
Портландцемент | 0,29 |
Вода | 0,6 |
Обычный бетон | 1 — 1,7 |
Железобетон | 1,7 |
Стекло | 0,8 |
Армированное стекло | 1,15 |
Полиэфирная смола | 0,19 |
Гипсовая штукатурка | 0,4 — 0,57 |
Мрамор | 2,07 – 2,94 |
Нержавеющая сталь | 17 |
Чугун | 50 |
Применение коэффициента теплопроводности в строительстве
В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.
В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.
Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.
Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта.
Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.
Какой же строительный материал самый теплый?
В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.
Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:
А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).
Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.
Разница между теплопроводностью и теплопередачей
Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.
Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.
Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.
Была ли эта статья для вас полезной? Пожалуйста, поделитесь ею в соцсетях:
Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.
Теплопроводность строительных материалов. Основные показатели
Ни для кого не секрет, что каждый материал обладает своими исключительными качествами. Одним из таких является теплопроводность.
Давайте рассмотрим пример того какой должна быть толщина стенки из разных материалов в помещении для обеспечения пригодной для жизни температуры в 18 градусов Цельсия, когда на улице мороз -26 градусов.
Если строить из пустотелого кирпича, вам придется возвести стенку толщиной в 51 сантиметр, из керамзитобетона – 30 сантиметров, стенка из древесины может не превышать 15 см, а бетонная с применением утеплителя и вовсе может едва достигать 14 см. Почему это так? Каждый из этих материалов обладает своей теплопроводностью.
Как мы видим, очень важно определиться с проектом на начальных этапах строительства, дабы не попасть впросак. Чем точнее данные – тем выше вероятность качественного расчета и выбора строительных материалов. Чтобы определиться с сырьем и не ошибиться – воспользуйтесь данными ниже. Эквивалентная теплопроводность строительных материалов:
- пенополиуретан — 80
- пенополистирол — 160
- минвата — 200
- дерево — 548
- керамзит — 640
- газобетон — 800
- кирпич — 1520
- гранит — 2500
- бетон — 3440
Теплопроводность – что это
Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:
- Кирпич — 210 см
- Керамзитобетон — 90 см
- Дерево — 53 см
- Газобетон — 44 см
- Минеральная вата — 18 см
- Пенополистерол — 12 см
Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции.
Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:
алюминий асбест асфальтобетон бетон, желоззобетон битум бронза винипласт вода при температурі вище 0 войлок шерстяной гипсокартон гранит древесина из дуба, волокна размещены вдоль древесина из дуба, волокна размещены поперек древесина из сосны или ели, волокна размещены вдоль древесина из сосны или ели, волокна размещены поперек | до 221 Вт/м2 0,151 Вт/м2*К 1,05 Вт/м2*К 0,35 Вт/м2*К до 1,51 Вт/м2*К 0,27 Вт/м2*К 64 Вт/м2 0,163 Вт/м2*К 0,6 Вт/м2*К 0,047 Вт/м2*К 0,15 Вт/м2*К 3,49 Вт/м2*К 0,23 Вт/м2*К 0,1 Вт/м2*К 0,18 Вт/м2*К до 0,15 Вт/м2*К | плита древесно-стружечная или плита ориентировано-стружечная железобетон Картон используемый для облицовки Керамзит, плотность 200кг / м3 Керамзит, плотность 800кг / м3 Керамзитобетон, плотность 500кг / м3 Керамзитобетон, плотность 1800кг / м3 Кирпич керамический, пустотелый брутто 1000, плотность 1200кг / м3 Кирпич керамический, пустотелый брутто брутто 1400, плотность 1600кг / м3 Кирпич красный глиняный Кирпич силикатный Кладка из изоляционного кирпича Кладка из обыкновенного кирпича Кладка из огнеупорного кирпича Краска масляная | 0,15 Вт / м2К 1,69 Вт / м2К 0,18 Вт / м2К 0,1 Вт / м2К 0,18 Вт / м2К 0,14 Вт / м2К 0,66 Вт / м2К 0,35 Вт / м2К 0,41 Вт / м2К 0,56 Вт / м2К 0,7 Вт / м2К до 0,209 Вт / м2К до 0,814 Вт / м2К 1,05 Вт / м2К 0,233 Вт / м2К |
Факторы, влияющие на теплопроводность
На каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?
- Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
- Плотность.Этот показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
- Влажность.Чем выше данный фактор влияния — тем выше теплопроводность.
Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикам
Дерево
| Щелевой кирпич
|
Поризований блок
| Керамзитобетон
|
Пінобетон
| Газобетон
|
Коэффициент теплопроводности и его практическое применение.

Материалы, зачастую, различают по теплоизоляционным и конструкционным характеристикам. Чем выше показатели конструкционных характеристик, тем более пригодны эти материалы для построения стен, ограждений, перекрытий.
Используя данные описанные выше, гораздо проще будет определить возможности теплообмена каждого из материалов. Чем ниже этот показатель – тем тоньше должна быть постройка. Если использования материалов с высоким коэффициентом теплоотдачи не избежать – рекомендуется применять дополнительные утепляющие и изолирующие компоненты.
Утепление построек. Способы утепления. Виды утеплителей. Теплопроводность материалов для строительства, основные показатели
Ни для кого не секрет, что каждый материал обладает своими исключительными качествами. Одним из таких является теплопроводность.
Давайте рассмотрим пример того какой должна быть толщина стенки из разных материалов в помещении для обеспечения пригодной для жизни температуры в 18 градусов Цельсия, когда на улице мороз -26 градусов.
Если строить из пустотелого кирпича, вам придется возвести стенку толщиной в 51 сантиметр, из керамзитобетона – 30 сантиметров, стенка из древесины может не превышать 15 см, а бетонная с применением утеплителя и вовсе может едва достигать 14 см. Почему это так? Каждый из этих материалов обладает своей теплопроводностью.
- пенополиуретан — 80
- пенополистирол — 160
- минвата — 200
- дерево — 548
- керамзит — 640
- газобетон — 800
- кирпич — 1520
- гранит — 2500
- бетон — 3440
Теплопроводность – что это
Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:
- Кирпич — 210 см
- Керамзитобетон — 90 см
- Дерево — 53 см
- Газобетон — 44 см
- Минеральная вата — 18 см
- Пенополистерол — 12 см
Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке.
Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:
Факторы, влияющие на теплопроводностьНа каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?
- Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
- Плотность. Этот показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
- Влажность. Чем выше данный фактор влияния — тем выше теплопроводность.
Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикамКоэффициент теплопроводности и его практическое применение. Материалы, зачастую, различают по теплоизоляционным и конструкционным характеристикам. Чем выше показатели конструкционных характеристик, тем более пригодны эти материалы для построения стен, ограждений, перекрытий.
Используя данные описанные выше, гораздо проще будет определить возможности теплообмена каждого из материалов. Чем ниже этот показатель – тем тоньше должна быть постройка. Если использования материалов с высоким коэффициентом теплоотдачи не избежать – рекомендуется применять дополнительные утепляющие и изолирующие компоненты.
Если проект создается впервые гораздо проще предусмотреть все возможные теплопотери. Но если здание уже построено и планируется ремонт – первое на что стоит обратить внимание – утечки тепла через проемы, двери, щели в полу и стенах. Если этому моменту уделить недостаточно внимания – придется довольствоваться отопительными приборами и обогревать улицу.
Обратите внимание, что если при строительстве здания были использованы стандартные материалы, такие как камень, бетон или кирпич – утепление дополнительными элементами является обязательным.
Здания, построенные на основе деревянного каркаса, тоже нуждаются в утеплении и теплоизоляции. Для этого утеплитель следует расположить непосредственно в пространстве между панелями.
Здания, построенные из шлакоблоков или кирпича, обычно утепляются с наружной стороны.
Чтобы четко выбрать качественный утеплитель следует обратить внимание на ряд факторов:
- Влияние повышенных температур
- Тип сооружения
- Уровень влажности
Кроме того, не лишним будет учесть параметры утепляющих конструкций, а именно:
- Влагопоглощение Важно учитывать для наружных видов утеплений.
- Горючесть. Если материал высокого качества – горение не должно поддерживаться.
- Безопасность
- Теплопроводность. Этот показатель создает общее влияние на весь процесс теплоизоляции.
- Толщина утеплителя. Особенно важна при использовании его внутри помещения. Чем тоньше утеплитель – тем больше полезной площади сохраняется для использования.
- Термоустойчивость. Чем выше этот фактор, тем большие перепады температур способен выдержать утеплитель.
- Звукоизоляция. Дает дополнительную защиту от шума.
Виды утеплителей:
- Минеральная вата. Материал с низкой теплопроводностью, экологичен, не подвергается горению.
- Пенопласт. Высокие утеплительные качества, легкий, влагоустойчивый, простой в монтаже. В основном применяют для нежилых и коммерческих помещений.
- Базальтовая вата. По своим характеристикам схожа с минеральной, но имеет улучшенные показатели устойчивости к влаге.
- Пеноплэкс. Относительно новый материал с хорошими показателями теплопроводности. Достаточно просто устанавливается, отличается высокой устойчивостью к влаге, повышению температур и огню, служит долгие годы.
- Пенополиуретан. Приметен высокой пожаробезопасностью и водоотталкивающими качествами.
- Пенополистирол экструдированный.
Имеет хорошую обработку, равномерную структуру.
- Пенофол. Это полиэтилен вспененный, состоит из большого количества слоев. Отличается высокими теплоизоляционными характеристиками, покрыт фольгой для лучшего отражения.
Иногда теплоизоляцию обеспечивают при помощи сыпучих видов материалов. В основном, это перлит или гранулы бумажные. Отличаются хорошей стойкостью к возгоранию и влаге. Реже применяются покрытие пробковое, древесное волокно и лен.
При выборе теплоизолирующих материалов обязательно обращайте внимание на экологичность, и способность противостоять возгоранию. Совет: При рассмотрении теплоизолирования помещения отдельное внимание следует уделить гидроизоляции. Ее наличие позволит уменьшить теплопотери и не допустить высокую влажность в помещение.Сравнительные характеристики теплопроводностей и других показателей некоторых материалов, применяемых в строительствеРазобраться с некоторыми показателями поможет точное описание для некоторых наиболее применяемых материалов.
- Железобетон – применяемый в расчетах теплопроводности коэффициент 2,04 Вт/(м°С)
- Бетон на гравии или щебне из природного камня – применяемый в расчетах теплопроводности коэффициент 1,86 Вт/(м°С)
- Керамзитобетон – применяемый в расчетах теплопроводности коэффициент 0,92 Вт/(м°С)
- Кирпичная кладка из сплошного кирпича глиняного обыкновенного (ГОСТ 53080) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,81 Вт/(м°С)
- Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,64 Вт/(м°С)
- Кирпичная кладка из керамического пустотного кирпича плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,58 Вт/(м°С)
- Кирпичная кладка из силикатного кирпича на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,87 Вт/(м°С)
- Пенополистирол – применяемый в расчетах теплопроводности коэффициент 0,05 Вт/(м°С)
- Плиты минераловатные – применяемый в расчетах теплопроводности коэффициент 0,055 Вт/(м°С)
Чтобы рассчитать все самостоятельно следует толщину прослойки теплоизолятора разделить на теплопроводности коэффициент. Иногда это значение можно встретить на упаковке изоляции. А для дома материалы следует измерить самостоятельно, это касаемо толщины. Коэффициенты же доступны в таблицах.
Вот так просто выбрать и приобрести качественный материал и быть уверенным в том, что он соответствует всем желаемым требованиям.
алюминий асбест асфальтобетон асбесто-цементные плиты бетон, железобетон битум бронза винипласт Вода при температуре више 0 Войлок шерстяной гипсокартон гранит древесина из дуба, волокна размещены вдоль древесина из дуба, волокна размещены поперек древесина из сосны или ели, волокна размещены вдоль древесина из сосны или ели, волокна размещены поперек | до 221 Вт/м2 0,151 Вт/м2К 1,05 Вт/м2К 0,35 Вт/м2К до 1,51 Вт/м2К 0,27 Вт/м2К 64 Вт/м2 0,163 Вт/м2К 0,6 Вт/м2К 0,047 Вт/м2К 0,15 Вт/м2К 3,49 Вт/м2К 0,23 Вт/м2К 0,1 Вт/м2К 0,18 Вт/м2К до 0,15 Вт/м2К | плита древесно-стружечная или плита ориентировано-стружечная железобен картон используемый для облицовки керамзит, плотность 200кг/м3 керамзит, плотность 800кг/м3 керамзитобетон, плотность 500кг/м3 керамзитобетон, плотность 1800кг/м3 кирпич керамический, пустотелый брутто 1000, плотность 1200кг/м3 кирпич керамический, пустотелый брутто 1400, плотность 1600кг/м3 кирпич красный глиняный кирпич силикатный Кладка из изоляционного кирпича Кладка из обыкновенного кирпича Кладка из огнеупорного кирпича Краска масляная | 0,15 Вт/м2К 1,69 Вт/м2К 0,18 Вт/м2К 0,1 Вт/м2К 0,18 Вт/м2К 0,14 Вт/м2К 0,66 Вт/м2К 0,35 Вт/м2К 0,41 Вт/м2К 0,56 Вт/м2К 0,7 Вт/м2К до 0,209 Вт/м2К до 0,814 Вт/м2К 1,05 Вт/м2К 0,233 Вт/м2К | |
Дерево
| Щелевой цегла
| |||
Поризованный блок
| Керамзитобетон
| |||
Пенобетон
| Газобетон
|
Что такое теплопроводность и всегда ли она хороша для термопасты? — Кулинг Монстр
Исследование производительности
Автор Дэниел Чен
Если вы читали наши идеи, то знаете, что мы часто упоминаем «теплопроводность». Мы часто говорим о важности теплопроводности термопасты, поскольку она связана с передачей тепла от процессора к радиатору или водоблоку для рассеивания. Это стандартный процесс охлаждения процессора.
Но что такое «хорошая» теплопроводность и какое отношение она имеет к термопасте? В этом посте мы поговорим именно об этом и других аспектах того, что делает термопасту «хорошей» с точки зрения консистенции, использования и качества.
Что такое теплопроводность термопасты?Чтобы говорить о том, что такое теплопроводность термопасты , сначала нужно поговорить о том, что такое теплопроводность есть.
Теплопроводность показывает, насколько хорошо вещество может пропускать через себя тепловую энергию при разнице температур. На более техническом — но не слишком техническом — уровне это будет зависеть от наличия у вещества электронов для переноса энергии. Вот почему мы используем металлические сплавы (или чистые металлы, такие как серебро) в термопасте, поскольку они имеют свободные электроны, которые могут легко переносить тепло туда, куда оно должно идти — в нашем случае к радиатору.
(Металлические сплавы, которые чаще всего используются в термопасте, включают: оксид алюминия, нитрид бора, оксид цинка и нитрид алюминия)
Так какое же это имеет значение для термопасты? Напомним, термопаста — это не только эти сплавы. Существует также масляная (чаще всего силиконовая) основа для их размещения. Следовательно, чем больше сплава вы добавите в основу, тем выше будет ваша теплопроводность и тем выше способность термопасты отводить тепло к радиатору.
Здесь мы переходим от теории к реальности. Потому что большую часть времени наша термопаста не просто находится в вакууме — ее нужно правильно наносить и функционировать в течение длительного периода времени.
Термопаста ТОЛЬКО с высокой теплопроводностью не является хорошейМы только что посвятили раздел, говорящий о том, что более высокая теплопроводность соответствует более высокой способности передавать тепло. Но, к сожалению, это не так.
Достичь «высокой» теплопроводности (в данном случае, скажем, 10 Вт/мК+) на самом деле очень просто — все, что вам нужно сделать, это продолжать добавлять наполнитель (металлический сплав), пока вы не достигнете такого уровня теплопроводности. Но работа термопасты заключается не только в передаче тепла — это еще и заполнитель зазоров для микродефектов между поверхностью ЦП и радиатором, где может задерживаться кислород.
Если вы добавите слишком много наполнителя, вы рискуете сделать термопасту слишком трудной для нанесения, что приведет к образованию толстых неравномерных слоев, что приведет к ухудшению реальных характеристик. А из-за отсутствия основы термопасты с высоким содержанием наполнителей также будут значительно быстрее разлагаться при реальном использовании, что быстро приведет к снижению производительности. Обратите внимание, что хотя Kooling Monster KOLD-01 не обладает самой высокой теплопроводностью на рынке, он распределяется более равномерно и является более эффективным заполнителем зазоров, чем термопаста торговой марки. Это означает, что он будет более эффективно передавать тепло в целом и прослужит значительно дольше.
Чтобы доказать вышесказанное, мы провели исследование:
Мы протестировали термопасты двух торговых марок 8 Вт/мК и 13,9 Вт/мК с нашим собственным Kooling Monster KOLD-01 и сравнили температуру процессора при полной нагрузке. (использовался метод 5 точек)
Тестовая сборка:
ЦП: Intel Core i3-10105F
Материнская плата: Asus H510M-E
0003 Память: ADATA DDR4 (8G) Программное обеспечение: HWiNFO (Измерение), AIDA64 (Стресс) Как видно из данных, при полной нагрузке температура процессора с помощью нашего KOLD -01 на ~2°C ниже, чем у рыночного бренда 8 Вт/мК, и на ~3°C ниже, чем у рыночного бренда 13,9 Вт/мК. Это связано с тем, что консистенция KOLD-01 позволяет наносить его тонким и равномерным слоем, что обеспечивает лучшую теплопередачу, опережая даже пасту с более высоким рейтингом. Приведенная выше диаграмма совершенно ясно показывает, почему выбор другой термопасты на основе теплопроводности и других факторов чрезвычайно важен для охлаждения вашего ПК. До сих пор мы говорили о теплопроводности и распространении термопасты, поскольку они связаны с теплопередачей. Однако на самом деле и то и другое является частью реальной общей цели достижения более низких 9 баллов.0015 тепловое сопротивление
Теплопроводность – как сказано, способность вещества передавать тепло между двумя средами
Толщина линии связи – буквальная толщина слоя, на который мы наносим вещество
Контактное сопротивление – типы материалов, используемых на каждой поверхности, с которой взаимодействует вещество
Все они включают термическое сопротивление, которое можно описать как теплопроводную способность пакета материалов. Таким образом, мы говорим обо всей системе: ЦП, термопасте и радиаторе.
В этом случае особенно важна толщина линии склеивания – или толщина слоя, используемого для нанесения термопасты. Чем тоньше слой, тем ниже термическое сопротивление и выше эффективность теплопередачи. Поэтому термопасту необходимо наносить тонким слоем, чтобы обеспечить максимально возможную эффективность теплопередачи. К сожалению, в большинстве термопаст используются органические растворители, которые при нанесении тонким слоем быстро высыхают из-за воздействия высоких температур.
В Kooling Monster KOLD-01 не используются органические растворители, что делает его долговечным, и его очень легко наносить тонким слоем, поэтому вам не нужно беспокоиться о частом повторном нанесении.
Как добиться долгосрочной эффективности теплопередачи?После того, как вы услышали обо всех этих технических особенностях, у вас может возникнуть одна мысль: «Кого это волнует?» И вы абсолютно правы. В вашей жизни нет места мелочам, если нет реальных приложений. Итак, как вы используете все эти знания, чтобы в конечном итоге ваш компьютер работал быстрее и холоднее? Мы рекомендуем следующее:
1. Выберите хороший кулер или радиатор. нестандартный контурный кулер с большими радиаторами, способными рассеивать огромное количество тепла.
Если вам нужна базовая конфигурация и вы хотите запустить несколько игр или посмотреть видео на своем компьютере, вам поможет простое воздушное охлаждение. Воздушные кулеры начинают намного дешевле, чем жидкостные кулеры, около 20-30 долларов. Если вы планируете разгон, игры с высокой графикой или в виртуальной реальности или интенсивное редактирование видео, лучшим выбором может быть высококлассный (читай: дорогой) воздушный кулер или система жидкостного охлаждения. С этой целью цена, на которую вы будете смотреть, составляет 160 долларов +. И помните ПЛЮС. Потому что жидкостное охлаждение может исчисляться сотнями.
2. Используйте термопасту хорошего качества
Как мы выяснили, термопаста хорошего качества — это та, которая может быть нанесена равномерным тонким слоем без высыхания под воздействием тепла, а также обладает отличной теплопроводностью. Мы рекомендуем Kooling Monster KOLD-01. Его формула неорганического растворителя означает, что он обладает высокой долговременной стабильностью без какого-либо неожиданного высыхания, а его особая вязкость обеспечивает легкость применения. И, конечно же, теплопроводность. Если вам нужно еще раз взглянуть на доказательство, прокрутите вверх.
3. Правильно нанесите термопасту
Используйте любой рисунок по вашему выбору (хотя мы рекомендуем «тост с маслом» или «5 точек»), чтобы равномерно нанести Kooling Monster KOLD-01 на поверхность процессора. (Подробнее о том, как нанести термопасту на ЦП? [Пошаговое руководство для начинающих, 2022 г.])
Дэниел Чен
Что такое теплопроводность? – Определение из Corrosionpedia
Последнее обновление: 8 января 2018 г.
Что означает теплопроводность?
Теплопроводность — это свойство материала, определяющее скорость, с которой он может передавать тепло. Теплопроводность каждого материала определяется константой λ, которая рассчитывается как:
λ = (Q x L) / (A x t x ΔT)
, где Q — тепло, L — толщина поверхности, A — площадь поверхности. , t — время, ΔT — разница температур.
Теплопроводность материала является фундаментальным свойством. Те материалы с высокой теплопроводностью будут быстро передавать тепло, либо получая тепло от более горячего материала, либо отдавая тепло более холодному материалу. Наоборот, материалы с низкой теплопроводностью действуют как теплоизоляторы, препятствуя передаче тепла.
Поскольку коррозия является процессом, зависящим от температуры, контроль теплопередачи является важным конструктивным фактором установок. Выбор металла, сплава и соответствующих материалов покрытия влияет на способность передавать тепло в зависимости от теплопроводности каждого материала.
Реклама
Коррозионпедия Объясняет Теплопроводность
Теплопроводность работает на границе двух поверхностей, где сторона с более высокой температурой передает энергию и нагревает сторону с более низкой температурой. На молекулярном уровне молекулы передают эту энергию посредством столкновений на границе раздела. Теплопроводность материала определяется тем, насколько легко и какие механизмы доступны для передачи энергии через материал.
Одним из механизмов передачи тепла через материал является вибрация. Атомы твердого материала образуют решетку, и вибрации, известные как фононы, распространяются через материал, передавая колебательную энергию соседним атомам. Этот механизм является основным механизмом теплопроводности неметаллических материалов.
Для большинства металлических материалов доступен дополнительный механизм теплопередачи благодаря свободным электронам материала. Этот механизм связан с электронной проводимостью этих материалов и легкостью прохождения электронов через зону проводимости материала. Таким образом, материалы с высокой электропроводностью также обладают высокой теплопроводностью.
На двух концах шкалы теплопроводности находятся теплоизоляторы и радиаторы с низкой и высокой теплопроводностью соответственно.