Конденсатор дпс: ДПС 20 мкФ, 450 В, Конденсатор пусковой, Россия

alexxlab | 01.08.1983 | 0 | Разное

Содержание

Конденсаторы для фильтрации шумов в мини-коптерах

Конденсаторы помогут сделать видеосигнал более чистым, а коптер будет летать лучше. В этом руководстве мы расскажем о разных типах low-ESR конденсаторов, объясним, почему low-ESR — это важно; и покажем куда конденсаторы нужно ставить.

Оригинал: Capacitors For Noise Filtering in Mini Quad

Где купить конденсаторы?

Вот несколько надежных продавцов Low-ESR конденсаторов:

Припаиваемые на разъем XT60:

Припаиваемые к регуляторам скорости:

Что за «шум» и что его вызывает?

Шум (или помехи) появляется от скачков напряжения, тока и частоты в разных электронных цепях, даже плавно вращающиеся моторы могут вызвать такие скачки.

Если подумать об том, в каких режимах работают моторы в коптерах, то станет ясно, что электрическое окружение, в котором находится электроника коптера, можно описать как «враждебное». Чтобы ваш полетный контроллер, видеопередатчик, камера и другая периферия работали стабильно, им нужно стабильное окружение, а они работают по сути среди врагов.

С развитием технологий, моторы и регуляторы становятся всё более и более мощными, поэтому проблема с электрическими шумами/помехами только обостряется.

Проблема с помехами очень серьезная, если помех нет, то мы можем получить отличный коптер для FPV полетов; а с ними — что-то ужасное, на чем летать невозможно.

Почему именно Low-ESR конденсаторы так важны для мини-коптеров?

Добавление конденсатора может помочь очистить питание от шумов, что даст вам вот такие преимущества:

Мы предпочитаем Low-ESR конденсаторы. ESR означает «Equivalent Series Resistance» (эквивалентное последовательное сопротивление). Конденсаторы с более низким ESR лучше фильтруют электрический шум (это показано в видео, англ).

LC-фильтры тоже часто используются в FPV оборудовании для борьбы с помехами, но они защищают системы после того, как помеха уже появилась. Добавление конденсатора около источника питания/помехи наоборот защищает всю систему от шумов.

Вот пример, показывающий на сколько улучшается видео с камеры после установки конденсатора около разъема XT60.

Нужен ли конденсатор в моем коптере?

Конденсаторы устанавливать необязательно, но все же рекомендуется.

Если вы заметили вибрации (колебания коптера, сложность настройки PID) или есть шум на видео, то первое что бы я сделал — поставил бы конденсатор.

Вот так можно определить, что коптер слишком шумный и нужно ставить конденсатор:

  • Слушаем моторы и смотрим, есть ли колебания, которые вы не можете убрать при помощи настройки PID коэффициентов
  • Моторы будут горячими
  • Шумный видеосигнал с курсовой камеры — симптом наличия помех в линии питания
  • В редких случаях можно заметить рассинхрон работы регулей/моторов и «ролл смерти» — неожиданный ролл, из-за которого вы врезаетесь в землю. Помеха ведь может повлиять и на управляющий сигнал регуляторов.

Даже если этих симптомов нет, то все равно конденсатор лучше поставить. Лучше перебдеть, так ведь? 🙂 Гнутые и покоцаные пропеллеры также добавят шуму вашему коптеру.

Куда ставить конденсаторы в миникоптерах?

В первую очередь, запомните, что нужные нам конденсаторы имеют полярность. Если вы перепутаете полярность, то конденсатор как минимум не заработает, как максимум — взорвется, так что будьте осторожны! На картинке ниже более короткая нога — это «минус», на корпусе конденсатора она обозначена соответствующим знаком.

Чтобы эффект от конденсатора был максимальным, нужно подключить его к одному из трех «правильных» мест в коптере. Учтите, что ставить нужно только в одном месте!

1. На PDB, там, где припаивает провод питания.

2. Там, где провода питания регуляторов припаиваются к PDB

3. Или там, где питание подается на каждый из регуляторов (ИМХО это лучший вариант).

Чем ближе конденсатор к источнику помех, тем эффективнее он работает. Идеальное место — контакты на регуляторах, куда подается питание (вариант 3). Однако в этом случае нужно ставить 4 конденсатора, по одному на регуль; зато можно поставить небольшие конденсаторы, примерно на 330 мкФ.

Если конденсаторы у регуляторов занимают слишком много места, тогда припаяйте 1 или 2 более емких на PDB (1000 мкФ или 2 по 470 мкФ). Возможно это менее эффективное решение, т.к. мы удаляем конденсаторы от источника помех, но я уже неоднократно так делал, и это рабочий способ.

Чтобы уменьшить сопротивление, ножки конденсатора должны быть как можно короче, тоненькие проводки плохо подходят для больших токов.

Если места для конденсатора рядом с платой недостаточно, то ножки можно удлинить толстым проводом, например, 20AWG, такой провод не сильно повлияет на сопротивление.

Добавляем небольшой конденсатор к гироскопам

Если добавление конденсаторов около разъема XT60 не помогло избавиться от колебаний коптера, тогда есть смысл подумать о небольшом конденсаторе на шину питания гироскопов. Так мы можем уменьшить помехи, попадающий на гироскопы через стабилизатор.

Это решение подойдет только опытным пользователям. Найти место куда следует припаять конденсатор очень сложная задача, кроме того, нужно уметь хорошо паять.

Добавляем конденсатор на шину 3.3 вольта

Гироскопы в полетных контроллерах питаются от линейного регулятора напряжения (LDO) на 3.3 вольта, так что конденсатор можно припаять на ножку питания микросхемы гироскопов или на выход питания с LDO. Другую ножку припаиваем к земле.

Отличный вариант — танталовый конденсатор на 4 В 220 — 400 мкФ.

Чтобы получить наилучший результат — конденсатор должен располагаться как можно ближе к гироскопам.

Только очень немногие ПК имеют одну шину питания для гироскопов и приемников, но именно в них можно поставить конденсатор на контактную площадку для разъема. На мой взгляд это не очень хорошо — использовать один стабилизатор для питания и гироскопов и периферии, но зато добавить конденсатор очень просто.

Добавляем конденсатор на шину питания 5 вольт

LDO на 3.3 вольта для гироскопов получает питание с линии 5 вольт, так что некоторые пользователи ставят конденсатор по питанию 5 вольт, что тоже помогает снизить влияние шума на гироскопы. Это не всегда работает, но попробовать стоит.

Тут подойдут танталовые конденсаторы на 6 вольт 220 — 400 мкФ.

А точно нужно добавлять конденсаторы на шину питания гироскопов?

Если проблем с колебаниями коптера нет, то и не надо думать про конденсаторы. Если колебания есть, то вначале попробуйте более простые способы снизить шум.

В любом случае, я бы хотел, чтобы производители полетных контроллеров подумали над улучшением фильтрации линии питания гироскопов. Хорошо, что во многих современных ПК конденсаторы около гироскопов уже есть. Так что в будущем может и не придется что-либо допаивать.

Выбор конденсатора с низким ESR

В начале статьи я дал несколько ссылок на нормальные конденсаторы.

Ниже отличный список конденсаторов с низким ESR взятый из гугла, в таблице также указан размер и вес, так что вы легко сможете подобрать подходящий.

Конденсаторы, рассчитанные на 25 вольт подойдут для коптеров с 4S LiPo, хотя есть смысл выбрать конденсаторы на 35 вольт, чтобы был запас, т.к. скачки напряжения могут быть больше 25 вольт. Для коптеров с 5S и 6S LiPo напряжение должно быть ещё выше.

Дайте мне знать, где вы купили конденсаторы, и я добавлю их в эту статью.

330 мкФ — для отдельных регуляторов

25V

БрендСерияРазмер (Диаметр X длина)Сопротивление (Ω/100 kHz)
Panasonic
FM10×12.50.038
ElnaRJF10×12.50.039
Vishay160 RLA12.5×250.04
Panasonic
FM8×150.041
SamwhaML10×12.50.053
NipponKZE10×12.50.053
Panasonic
FR8×11.50.056
United Chemi-Con (UCC)KZH8×11.50.062
NipponKZH8×11.50.062
SamwhaMZ10×12.50.08
PanasonicFC8×150.085
PanasonicFC10×12.50.09
NichiconPW10×12.50.09
SamwhaMK10×12.50.098
PanasonicTP10×160.13
ElnaRJ410×12.50.81

35V

БрендСерияРазмер (Диаметр X длина)Сопротивление (Ω/100 kHz)
PanasonicFM10×160.026
ElnaRJF10×160.028
PanasonicFM8×200.03
SamwhaMZ10×160.038
NipponKZE10×160.038
Vishay160 RLA12.5×250.04
PanasonicFR10×12.50.043
United Chemi-Con (UCC)KZH10×12.50.045
NipponKZH10×12.50.045
PanasonicTP10×200.052
SamwhaML10×12.50.053
PanasonicFC8×200.065
SamwhaMK10×160.065
PanasonicFC10×160.068
NichiconPW10×160.068
ElnaRJ410×12.50.7

470uF – для регуляторов или PDB

25V

БрендСерияРазмер (Диаметр X длина)Сопротивление (Ω/100 kHz)
PanasonicFM10×160.026
ElnaRJF10×160.028
Vishay160 RLA16×250.029
PanasonicFR8×200.03
SamwhaMZ10×160.038
PanasonicFR8×150.041
NipponKZE8×200.041
PanasonicFR10×12.50.043
United Chemi-Con (UCC)KZH10×12.50.045
NipponKZH10×12.50.045
SamwhaML10×12.50.055
SamwhaMK10×200.06
SamwhaMK10×160.065
PanasonicTP8×200.067
PanasonicFC10×160.068
NichiconPW10×160.068
PanasonicTP10×170.13
ElnaRJ410×12.50.57

35V

БрендСерияРазмер (Диаметр X длина)Сопротивление (Ω/100 kHz)
PanasonicFM10×200.019
ElnaRJF10×200.02
NipponKZE10×200.023
SamwhaMZ10×200.027
PanasonicFR10×200.028
PanasonicFR10×160.028
PanasonicFR8×200.03
NichiconUHW10×160.03
NipponKZH10×160.032
United Chemi-Con (UCC)KZH10×160.032
Vishay160 RLA18×200.035
PanasonicTP12.5×200.038
SamwhaML8×200.038
SamwhaML10×160.041
SamwhaMK10×200.05
PanasonicFC10×200.052
NichiconPW10×200.052
SamwhaMK8×200.088
ElnaRJ410×160.5

25V

БрендСерияРазмер (Диаметр X длина)Сопротивление (Ω/100 kHz)
ElnaRJF12.5×200.017
PanasonicFR10×250.018
United Chemi-Con (UCC)KZH10×250.018
NipponKZH10×250.018
PanasonicFR10×200.02
NichiconUHW10×200.02
NipponKZE12.5×200.021
SamwhaMZ12.5×210.025
Vishay160 RLA16×310.027
SamwhaML10×200.033
Vishay136 RVI12.5×250.034
PanasonicFC10×300.035
PanasonicFC12.5×200.038
NichiconPW12.5×200.038
PanasonicFC16×150.043
SamwhaMK10×250.045
SamwhaMK10×200.05
ElnaRJ410×200.27

35V

БрендСерияРазмер (Диаметр X длина)Сопротивление (Ω/100 kHz)
PanasonicFM12×250.015
ElnaRJF12.5×250.015
NichiconUHW12.5×200.017
United Chemi-Con (UCC)KZH12.5×200.017
NipponKZH12.5×200.017
PanasonicFM12.5×200.018
NipponKZE12.5×250.018
SamwhaMZ12.5×250.022
Vishay160 RLA18×350.024
SamwhaML12.5×200.026
PanasonicFC16×200.029
SamwhaMK12.5×250.029
PanasonicFC12.5×250.03
NichiconPW12.5×250.03
SamwhaMK12.5×200.043
ElnaRJ412.5×200.23
  • Panasonic серии EB, EE, HD, NHG,GA, M, SU, KA и KS — не LowESR
  • Samwha серии SD, BH и RD — не LowESR, WL и WF — посредственные
  • United Chemi-Con (UCC) серии KZM сравнимы с KZH
  • Есть куча других Low-ESR конденсаторов от Vishay, но они слишком крупные
  • У Rubycon есть LowESR конденсаторы, но емкостью до 220 мкФ, поэтому их нет в нашем списке
  • Elna RJ3 и RJ4 сравнимы по характеристикам

История изменений

  • Май 2017 — первая версия статьи
  • Октябрь 2017 — добавлены конденсаторы, загружено видео чтобы показать эффективность фильтрации
  • Апрель 2018 — добавлен раздел «Нужен ли конденсатор в моем коптере?»
  • Август 2018 — добавлен раздел «Добавляем небольшой конденсатор к гироскопам»

Правила проверки и пайки конденсаторов

Считается, что около половины поломок электронных плат связаны с неисправностью конденсатора, без замены которого невозможно дальнейшее функционирование схемы.

Сами эти детали могут различаться как по характеристикам, так и по габаритам; однако всех их объединяет одно – наличие основного контролируемого параметра (ёмкости).

Для того чтобы проверить установленный в схеме конденсатор (включая так называемые «электролиты») необходимо измерить именно его ёмкость. Неисправную деталь придется выпаять из схемы и затем припаять новую. Некоторые виды конденсаторов паять не надо, поскольку они крепятся сваркой или зажимами.

Проверка ёмкости

Проверить электролитические конденсаторы (так же как неэлектролитические) на предмет сохранения ими своего номинала (ёмкости) можно несколькими способами.

Но вначале необходимо ознакомиться с измерительными приборами, которые позволяют правильно оценить величину ёмкости конкретного элемента, прежде чем что-то паять.

Для измерения конденсаторов с номинальными емкостями до 20-ти микрофарад может хватить обычного мультиметра, имеющего соответствующую функцию. В качестве такого измерителя может использоваться недорогой прибор типа DT9802A.

Для оценки состояния элементов с большими номиналами потребуется специальный прибор типа «измеритель RLC». Посредством такого устройства можно проверять не только конденсаторы, но и такие распространённые элементы, как резистор и катушка индуктивности.

Проверка конденсатора цифровым мультиметром:

Часто неисправный конденсатор вздувается, и заметен без применения всяких приборов.

Простой, но не достаточно эффективный метод выявления неисправности – проверка с помощью обычного омметра, по показанию которого можно судить о целостности прокладки из диэлектрика.

Данный способ применяется обычно при отсутствии в приборе функции измерения ёмкости. Для этих целей может использоваться простейший стрелочный прибор, переведённый в режим измерения сопротивления.

При прикосновении концами щупа к ножкам исправного элемента стрелка должна немного отклониться, а затем возвратиться в сходное состояние.

Если же показания на приборе изменились, а стрелка после отклонения остановилась на каком-то конечном значении сопротивления – это значит, что конденсатор пробит и подлежит замене.

Проверка в плате

Один из самых распространённых способов проверки конденсатора без его выпаивания из схемы – включение параллельно ещё одного, заранее исправного конденсатора с известным номиналом.

Указанный метод позволяет судить об исправности элемента по индикатору прибора, показывающего суммарную ёмкость двух параллельно включённых «кондёров». При параллельном включении конденсаторов их ёмкости складываются.

При этом подходе удаётся обойтись без пайки конденсатора с целью извлечения его из схемы, в которой он шунтируется параллельно включёнными элементами (резисторами).

Однако возможности применения этого метода ограничиваются допустимыми напряжениями, действующими в данной электронной схеме и в плате тестируемого устройства.

Способ эффективен лишь при небольших величинах потенциалов, сравнимых со значениями предельных напряжений, на которые рассчитан электролитический конденсатор.

Меры предосторожности при измерении

Тем, кто решил самостоятельно проверить исправность встроенных в схему конденсаторов и затем их паять, рекомендуем придерживаться следующих правил.

  • Обязательно проследите за тем, чтобы со схемы было полностью снято напряжение. Для этого тем же мультиметром, включённым в режим измерения напряжения, следует проверить отсутствие его во всех контрольных точках платы.
  • При измерении встроенных в схему «подозрительных» конденсаторов следует внимательно следить за тем, чтобы случайно не повредить включённые параллельно ему элементы.
  • И, наконец, паять дополнительно монтируемые в схему элементы нужно с предельной осторожностью, чтобы не повредить остальную её часть.

Лишь при соблюдении всех этих условий удаётся сохранить контролируемое устройство в рабочем виде.

Как перепаивать конденсатор на «материнке»

Прежде чем припаять новый конденсатор, надо выпаять старый. Выпаивать повреждённый или неисправный элемент из материнской платы следует максимально быстро, чтобы не перегреть контактные площадки, которые в противном случае могут просто отвалиться.

Чтобы освободить ножки выпаиваемого элемента от припоя, следует хорошо прогреть посадочное место. Только при условии его достаточного прогрева при выпаивании конденсатора удаётся не повредить дорожки платы.

Придерживая с одной стороны небольшой по размеру конденсатор нужно постараться не обжечься, поскольку его контакт раскаляется от нагревания паяльником.

Помимо этого, необходимо быть максимально внимательным и не прикладывать слишком много усилий, так как жало паяльника может сорваться и повредить соседние детали.

Последовательность действий такая:

  1. Вначале обесточивают компьютер, отключают не только сетевой кабель, но и другие питающие провода.
  2. Снимают крышку и отвинчивают материнскую плату.
  3. Осматривают плату и находят поврежденный элемент, изучают его параметры (на маркировке), покупают замену.
  4. Замечают, какая полярность подключения конденсатора была (можно сделать фото).
  5. С помощью паяльной станции или пальника выпаивают поврежденный конденсатор.
  6. Устанавливают и припаивают новый.

После удаления конденсатора остаётся свободное место, которое сначала следует аккуратно очистить от остатков пайки, воспользовавшись отсосом.

Некоторые радиолюбители используют для этого остро отточенную спичку (зубочистку), посредством которой посадочное отверстие прокалывается с одновременным прогревом остриём жала паяльника.

Ещё один способ освобождения отверстий от остатков пайки предполагает его высверливание подходящим по размеру сверлом.

По завершении подготовки места под новый элемент его ножки следует сначала сформовать соответствующим образом, так чтобы они легко входили в посадочные гнёзда. Всё, что остаётся сделать после этого – впаять его взамен сгоревшего.

Процесс пайки

Прежде чем паять, надо вставить ножки с посадочные гнезда, соблюдая полярность. Минусовая ножка детали обычно короче плюсовой, она устанавливается на «минус» площадки (обычно закрашено белым) Паять надо с обратной стороны, для этого плату переворачивают, и ножки загибают.

Припаять конденсатор будет значительно проще, если предварительно смочить контактные «пятачки» каплей флюса.

Паяльник разогревают, подносят к контактной площадке, и к ней же подносят проволочку припоя. Жалом дотрагиваются до припоя, чтобы капелька соскользнула на место пайки. Так последовательно надо паять все контакты, после чего откусить кусачками лишние торчащие ножки.

Возможно, с первого раза красиво паять не получится, и надо будет потренироваться. Обучаться методам пайки лучше заранее на ненужных деталях. После замены неисправного элемента следует попытаться включить материнскую плату и проверить её работоспособность.

Как паять резисторы

Для того чтобы запаять резистор в схему той же материнской платы или любого другого электронного изделия действуют точно так же, как в случае с конденсатором. Паять резисторы надо крайне осторожно, поскольку любое неаккуратное движение паяльником может повредить расположенные поблизости детали.

С особым вниманием следует менять переменные резисторы, у которых имеется три ножки. Для того чтобы выпаять его из платы, удобнее всего воспользоваться уже упоминавшимся ранее отсосом, посредством которого припой легко извлекается из крепёжных отверстий.

После его удаления резистор беспрепятственно достаётся из освобождённых гнёзд.

Паять миниатюрные элементы схем следует, стараясь подбирать соответствующий температурный режим нагрева паяльника, обычно это 270-300 ℃. В противном случае можно повредить как устанавливаемый элемент, так и контактную площадку, предназначенную для его монтажа.

маркировка и обозначение конденсаторов, керамических танталовых и прочих

Конденсаторы необходимы для накопления в себе энергии, с целью дальнейшей ее передачи далее по схеме в определенное время. Самый элементарный конденсатор состоит из пластин, сделанных из металла. Они называются обкладки. Также обязательно должен присутствовать диэлектрик, расположенный между ними. Каждый конденсатор имеет свою маркировку, которая наносится на него во время производства.

Любой человек, который занимается составлением схем и увлекается пайкой, должен понимать ее и уметь читать. В маркировке содержится вся информация о технических характеристиках данного конденсатора. Если к нему подключить питание, на обкладках конденсатора возникнет разнополярное напряжение и тем самым возникнет поле, которое будет притягивать их друг другу. Этот заряд накапливается между этими пластинами.

Основная единица измерения – фарады. Она зависит от размера пластин и расстояния между ними и величины проницаемости. В данной статье подробно рассмотрены все тонкости маркировки конденсаторов. Также статья содержит видеоролик и подробный файл с материалом по данной тематике.

Конденсатор.

Единицы измерения

Проще всего рассчитывается емкость плоского конденсатора. Если линейные размеры пластин-обкладок значительно превышают расстояние между ними то справедлива формула:

C= e*S/d

e – это величина электрической проницаемости диэлектрика, расположенного между обкладками.

  • S – площадь одной из обкладок(в метрах).
  • d – расстояние между обкладками(в метрах).
  • C – величина емкости вфарадах.

Что такое фарада? У конденсатора емкостью в одну фараду, напряжение между обкладками поднимается на один вольт, при получении электрической энергии количеством в один кулон. Такое количество энергии протекает через проводник в течении одной секунды, при токе в 1 ампер. Свое название фарада получила в честь знаменитого английского физика – М. Фарадея.

1 Фарада – это очень большая емкость. В обыденной практике используют конденсаторы гораздо меньшей емкости и для обозначения применяются производные от фарады:

  • 1 Микрофарада – одна миллионная часть фарады.10-6
  • 1 нанофарада – одна миллиардная часть фарады. 10-9
  • 1 пикофарада -10-12 фарады.
кодпикофарады, пФ, pFнанофарады, нФ, nFмикрофарады, мкФ, μF
1091.0 пФ
1591.5 пФ
2292.2 пФ
3393.3 пФ
4794.7 пФ
6896.8 пФ
10010 пФ0.01 нФ
15015 пФ0.015 нФ
22022 пФ0.022 нФ
33033 пФ0.033 нФ
47047 пФ0.047 нФ
68068 пФ0.068 нФ
101100 пФ0.1 нФ
151150 пФ0.15 нФ
221220 пФ0.22 нФ
331330 пФ0.33 нФ
471470 пФ0.47 нФ
681680 пФ0.68 нФ
1021000 пФ1 нФ
1521500 пФ1.5 нФ
2222200 пФ2.2 нФ
3323300 пФ3.3 нФ
4724700 пФ4.7 нФ
6826800 пФ6.8 нФ
10310000 пФ10 нФ0.01 мкФ
153 15000 пФ15 нФ0.015 мкФ
223 22000 пФ22 нФ0.022 мкФ
333 33000 пФ33 нФ0.033 мкФ
473 47000 пФ47 нФ0.047 мкФ
683 68000 пФ68 нФ0.068 мкФ
104100000 пФ100 нФ0.1 мкФ
154150000 пФ150 нФ0.15 мкФ
224220000 пФ220 нФ0.22 мкФ
334330000 пФ330 нФ0.33 мкФ
474470000 пФ470 нФ0.47 мкФ
684680000 пФ680 нФ0.68 мкФ
1051000000 пФ1000 нФ1 мкФ

Маркировка четырьмя цифрами

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например, 1622 = 162*102 пФ = 16200 пФ = 16.2 нФ.

Маркировка конденсатора.

Буквенно-цифровая маркировка

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ , 22p = 22 пФ , 2н2 = 2.2 нФ , 4n7 = 4,7 нФ , μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n». Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например: 0R5 = 0,5 пФ , R47 = 0,47 мкФ , 6R8 = 6,8 мкФ.

Материал в тему: Что такое кондесатор

Планарные керамические конденсаторы

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой.

Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*101пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*103пФ = 4700пФ = 4,7нФ

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Таблица маркировки конденсаторов по рабочему напряжению.

Планарные электролитические конденсаторы

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах.

Полоска на таких конденсаторах указывает положительный вывод. Пример: по таблице «A» — напряжение 10В, 105 — это 10*105 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Маркировка конденсаторов, перевод величин и обозначения (пФ, нФ, мкФ)

Полезная информация начинающим радиолюбителям по маркировке конденсаторов, обозначениям и переводу величин – пикофарад, нанофарад, микрофарад и других. Пожалуй, трудно найти электронное устройство, в котором бы вообще не былоконденсаторов. Поэтому важно уметь по маркировке конденсатора определять его основные параметры, хотя бы основные -номинальную емкость и максимальное рабочее напряжение.

Несмотря на присутствие определенной стандартизации, существует несколько способов маркировки конденсаторов. Однако, существуют конденсаторы и без маркировки, – в этом случае емкость можно определить только измерив её измерителем емкости, что же касается максимального напряжения., здесь, как говорится, медицина бессильна.

Цифро-буквенное обозначение

Если вы разбираете старую советскую аппаратуру, то там все будет довольно просто, – на корпусах так и написано «22пФ», что значит 22 пикофарад, или «1000 мкФ», что значит 1000 микрофарад. Старые советские конденсаторы обычно были достаточного размера чтобы на них можно было писать такие «длинные тексты».

Общемировая, если можно так сказать, цифро-буквенная маркировка предполагает использование букв латинского алфавита:

  • p – пикофарады,
  • n – нанофарады
  • m – микрофарады.

При этом полезно помнить, что если за единицу емкости условно принять пикофарад (хотя, это и не совсем правильно), то буквой «p» будут обозначаться единицы, буквой «n» – тысячи, буквой «m» – миллионы. При этом, букву будут использовать как децимальную точку. Вот наглядный пример, конденсатор емкостью 2200 пФ, по такой системе будет обозначен 2n2, что буквально значит «2,2 нанофарад». Или конденсатор емкостью 0,47 мкФ будет обозначен m47, то есть «0,47 микрофарад».

Причем у конденсаторов отечественного производства встречается аналогичная маркировка в кириллице, то есть, пикофарады обозначают буквой «П», нанофарады – буквой «Н», микрофарады -буквой «М». А принцип тот же: 2Н2 – это 2,2 нанофарад, М47 – это 0,47 микрофарад. У некоторых типов миниатюрных конденсаторов «мкФ» обозначается буквой R, которая тоже используется как децимальная точка, например:

1R5 =1,5 мкФ.

Небольшие замечания и советы по работе с конденсаторами

Необходимо помнить, что следует выбирать конденсаторы с повышенным номинальным напряжением при возрастании температуры окружающей среды,создавая больший запас по напряжению, для обеспечения высокой надежности. Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому, конденсаторы всегда работают с определенным запасом надежности. И все-же, желательно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 номинального.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике. Конденсаторы большой емкости с малыми токами утечки способны долго сохранять накопленный заряд после выключения аппаратуры. Что бы обеспечить более быстрый их разряд, для большей безопасности, следует подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

Материал по теме: Как подключить конденсатор

Заключение

В высоковольтных цепях нередко применяют последовательное включение конденсаторов. Для выравнивания напряжений на них, необходимо параллельно каждому конденсатору дополнительно подключить резистор сопротивлением от 220 к0м до 1 МОм. Для защиты от помех, в цифровых устройствах применяется шунтирование по питанию с помощью пары – электролитический конденсатор большей емкости + слюдяной, либо керамический – меньшей. Электролитический конденсатор шунтирует низкочастотные помехи, а слюдяной( или керамический) – высокочастотные.

Более подробно о маркировке конденсаторов можно узнать здесь. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.elektrikaetoprosto.ru

www.radiostorage.net

www.gamesdraw.ru

Предыдущая

КонденсаторыЧем отличаются параллельное и последовательное соединение конденсаторов

Следующая

КонденсаторыЧем отличается пусковой конденсатор от рабочего?

Конденсаторы

– Промышленные устройства и решения

  • Политика в отношении файлов cookie
  • Глобальный
Промышленные устройства и решения
  • верхний Глобальный
  • Продукты