Конструкция центробежного насоса – устройство и принцип действия, схема и классификация

alexxlab | 18.09.2019 | 0 | Разное

Содержание

Устройство центробежного насоса для воды (технология)

Содержание   

Центробежные насосы сейчас являются едва ли не самыми популярными устройствами, что используются для подкачки жидкости. Они необходимы для бытового и промышленного применения, а также создания систем постоянного и автономного обеспечения водой загородных домов.

Простейшая схема перемещения жидкости внутри камеры центробежного насоса

Неудивительно, что и устройство центробежного насоса для подкачки воды у многих вызывает довольно серьезный интерес. Об этом мы сейчас и поговорим.

Особенности и назначение центробежных насосов

Центробежные насосы используются практически везде. Они завоевали свою популярность за счет исключительной практичности, надежности и высокой эффективности. При перекачке чистой воды из источников с нормальным дебитом центробежный насос погружного или поверхностного типа демонстрирует довольно внушительные характеристики.

Читайте также: особенности вибрационных насосов для скважин.

Причем работа его проходит по довольно простой и понятной схеме. Насос нетребователен, потребляет сравнительно мало электричества и может питаться от стандартных бытовых сетей электропитания.

Более того, простота конструкции позволяет производить его ремонт и замену своими руками, что тоже очень удобно. Однако вам нужно заранее подумать, прежде чем начинать разбирать или ремонтировать устройство самостоятельно. Если вам не хватает опыта, деталей или времени, то лучше доверьте эту работу специалисту.

Если же мы рассматриваем капитальный ремонт устройства, то здесь уже альтернативы мастеру просто не существует. Ведь капитальный ремонт предусматривает необходимость наличия большого количества оборудования и знаний. Своими руками с такой работой вам не справиться.

Устройство водяного центробежного насоса сложностью не отличается. Он, как правило, имеет протяжный цилиндрический корпус вытянутой формы. Диаметр устройства погружного типа может равняться всего 100 мм. Поверхностные модели больше, но они компенсируют свои габариты крупными рабочими колесами.

Внутри корпуса располагается несколько основных элементов: входные и выходные каналы, нагнетатели, рабочее колесо, ротор, двигатель и т.д.

Поверхностный центробежный насос

Рабочее колесо содержится на роторной оси, которую вращает движок. На самом колесе расположены лопасти, что направлены в противоположную сторону центрального направления вращения. За счет этого налаживается работа насоса и действие центробежной силы.

Теперь обратимся к принципу действия устройства. Для закачки воды используются входные каналы или патрубки. По ним внутрь погружного или поверхностного типа вода и попадает.

Читайте также: как устроен вакуумный насос, каковы его параметры, и где он применяется?

Там она натыкается на вращающееся рабочее колесо. За счет его вращения, жидкость нагнетается и отбрасывается к стенкам рабочей камеры. Этому способствует центробежный эффект от вращения и область высокого давления, что создается на краях камеры.

Оттесненная к борту жидкость автоматически всасывается в выводные каналы, что оборудованы возле стенок камеры. Как правило, на выводах вмонтированы спиралевидные или кольцевые нагнетательные трубки. Проходя через них, для потока воды создается еще более серьезный нагнетательный вектор.

В итоге она под высоким давлением подается в шланг, где без всякого сопротивления поднимается выше по системе и распределяется по трубопроводам.

Читайте также: как устроен циркуляционный насос для воды, и зачем он необходим?

В этот же момент в центральной области рабочего колеса появляется зона разреженного или пониженного давления. Она же, в свою очередь, провоцирует эффективную подкачку свежих потоков воды в устройство. Таким образом, работа центробежного насоса становится постоянной, а цикл не имеет завершения до тех пор, пока устройство не будет выключено.

Описанный выше принцип относится к моделям как погружного, так и поверхностного типа. В любом случае работу выполняет одно или несколько рабочих колес.

Центробежные насосы нельзя эксплуатировать без жидкости – это приводит к их быстрому износу. Если вы проигнорируете это требование, то в скором времени вас наверняка заинтересует технология ремонта центробежных насосов или контакты опытного мастера.

Рабочее колесо центробежного насоса, поверхностного типа

И если с погружными моделями все довольно просто (они и так находятся в воде, а поплавковые выключатели не дают им запускаться, если уровень воды в источнике упал ниже критической отметки). То поверхностные в этом плане намного привередливее. За состоянием рабочей камеры агрегата придется следить постоянно.

К счастью, проблема решается вмонтированными в конструкции насоса обратными клапанами, что сохраняют достаточное количество жидкости в системе, и автоматикой, что провоцирует аварийное отключение механизмов в случае обнаружения признаков сухого хода.

Центробежные насосы погружного и поверхностного типа чаще применяются для подкачки воды из источников с хорошим дебитом. Если же скважина или колодец дают слишком слабый изначальный напор и приток жидкости, то можно купить или расточить особенные рабочие колеса, что способы стабилизировать уровень давления на выходе.

Читайте также: преимущества бытовых самовсасывающих насосов для воды.

к меню ↑

Виды центробежных насосов

Современные разновидности центробежных устройств тоже следует иметь в виду. Именно этими факторами определяется работа, которую насос может выполнять. Если необходимо выполнить капитальный или обычный ремонт оборудования, то без знания базовых разновидностей вам тоже не обойтись.

По типу рабочего применения их делят на:

Погружные центробежные насосы применяются непосредственно в источнике. Их подвешивают на тросе и оставляют в скважине до тех пор, пока не появится необходимость в замене аппарата или его обслуживании.

Поверхностные образцы монтируются возле скважины, а подкачка жидкости осуществляется через специальный шланг. Технология ремонта центробежных насосов поверхностного типа считается более простой, да и возни с ней меньше на порядок.

Читайте также: какие фильтры под мойку лучше покупать и почему?

Конструкция и принцип действия центробежных насосов

Но они не способны всасывать жидкость на глубине ниже 10-13 метров, больше подвержены возможностью работы вхолостую, а по производительности и напору либо равны, либо уступают погружным моделям.

Так, погружной насос, при меньших габаритах, способен выдавать от 40 метров водяного столба, в то время как аналогичная поверхностная модель выдаст только 25-30 метров, и это при полной загрузке.

В погружных насосах используется одно или несколько малогабаритных рабочих колес, что вмонтированы друг за другом. В поверхностных рабочее колесо, чаще всего будет одним. Но по диаметру оно минимум в 2 раза превышает габариты деталей, что используются в погружных насосах.

По количеству ступеней их делят на:

  • Одноступенчатые;
  • Многоступенчатые.

Первая разновидность – это большинство поверхностных моделей и слабые погружные образцы. Многоступенчатые же чаще всего встречаются в погружном применении. Их работа обеспечивается несколькими рабочими колесами. Чем их больше, тем мощнее будет насос.

Это объясняется увеличением производительности насоса, за счет увеличения его рабочей камеры, выводов и самих колес. Впрочем, увеличенное количество колес делает систему более сложной, ей чаще требуется капитальный ремонт или обслуживание. Особенно в ситуациях, когда рабочая жидкость имеет мелкие примеси.

Еще одно важное деление – это деление по типу ротора. В этом плане центробежники делят на образцы с:

  • Мокрым ротором;
  • Сухим ротором.

Популярные модели погружных центробежных насосов

Насосы с мокрым ротором смазываются самостоятельно, за счет прохождения через них воды. Они имеют пониженную мощность, так как основные рабочие части устройства ограничиваются за счет необходимости их контакта с жидкостью.

Модели с сухим ротором намного мощнее. Здесь уже движок и ротор находятся в отдельной камере, а передаточное усилие идет на само колесо, что отделено герметичными заслонками. Такие насосы имеют высокую мощность, потребляют много электричества и довольно шумны.

Читайте также: технические характеристики погружного насоса Макита.

к меню ↑

Ремонт и его нюансы

Ремонт насосов центробежного типа – это довольно частое явление. К счастью, при должном умении его можно выполнить своими руками. Это не касается случаев, когда нужен капитальный ремонт. Здесь уже своими усилиями не обойтись.

Для начала вам нужно запомнить два правила, что могут свести к нулю необходимость выполнения ремонтных работ. Именно их игнорирование провоцирует 90% поломок центробежников:

  1. Насос нельзя использовать без жидкости в его камере.
  2. Центробежники, если только это не дренажные модели, могут перекачивать только чистую воду без посторонних вкраплений. Наличие даже мелкого песка изнашивает механизм, засоряет подшипники и приводит к появлению поломок.

Читайте также: какие бывают насосы для песка, ила и других загрязнений.

Теперь рассмотрим основные неполадки, что случаются с насосами центробежного типа. Очень часто капитальный ремонт необходим, если у вас перегорел или перегрелся движок.

Случается такое, если насос эксплуатировался в неподходящих условиях. Например, длительное время качал горячую жидкость или работал вхолостую. С движком шутки плохи, поэтому его лучше заменить или отдать в мастерскую.

Впрочем, если насос отказывается запускаться, то это еще не стопроцентное свидетельство проблем с двигателем. Отсыреть или перегореть могли и его контакты.

Поверхностный центробежник, предназначенный для применения в промышленности

Иногда перебивается даже кабель питания. В частности, такое случается с погружными моделями. Для диагностики и ремонта этой поломки можно воспользоваться электрическим тестером. Отсыревшие контакты чистят или меняют, а кабель заделывают.

Проблемы с рабочим колесом, как правило, случаются редко. Чаще выходят из строя его подшипники и крепежи на роторе. Здесь провоцирующим фактором будет песок или грязь в воде. В работе такой агрегат будет выдавать посторонние звуки, вращаться прерывисто и подавать воду хаотично.

При обнаружении подобных признаков сразу же разберите весь механизм, почистьте или замените расходники.

Иногда забиваются выводные спиралевидные каналы, что нагнетают жидкость из камеры. Чистить их самостоятельно можно только в случае, если у вас есть к ним доступ и личный опыт выполнения подобных операций. В противном случае, самостоятельно разбираться с этой проблемой мы не рекомендуем.
к меню ↑

Технология монтажа центробежных насосов

Монтируют центробежные насосы так же, как и все остальные. Погружные модели необходимо подключить ко всем коммуникациям и подвесить непосредственно в источнике. Предварительно к нему подключают поплавковый выключатель, дабы исключить возможность сухого хода.

С погружными устройствами повозиться придется порядочно, но ничего действительно сложного в их установке нет. Просто занимает она немного больше времени.

Поверхностные насосы достаточно просто установить вблизи источника. Желательно, чтобы они были защищены от атмосферных осадков и перепадов температур. Идеальным местом будет отапливаемая подсобка.

Насос полностью подключают, подводят к системе водоснабжения, а в источник опускают рабочий шланг с обратным клапаном. Затем остается только в первый раз заполнить камеру и запустить работу агрегата.
к меню ↑

Принцип действия центробежного насоса с одним рабочим колесом (видео)

 Главная страница » Насосы

byreniepro.ru

Конструкция Центробежного Насоса, Типы: Характеристики

Насос центробежный консольной конструкции

В общей классификации присутствует более полусотни различных конструкций насосного оборудования, но самую большую группу представляют модели лопастные. Причиной тому гениальная в своей простоте конструкция центробежного насоса, позволяющая осуществлять подачу с такой глубины, где другие агрегаты бессильны.

А потому, интерес читателей к ним не иссякает в принципе. Наша инструкция представит вам информацию об их разновидностях и сферах применения. Мы так же предложим к просмотру видео в этой статье, темой которого является конструкция центробежных консольных насосов.

Особенности центробежного механизма

Если говорить о принципе действия центробежного насоса, как такового, то в общих чертах он таков. Основной его рабочей деталью является колесо с лопастями, которое состоит из двух параллельно установленных дисков.

Оно насажено на общий с двигателем вал и крепится к нему посредством ступицы, соединённой с задним диском. В передней части колеса есть всасывающее отверстие, через которое жидкость попадает внутрь.

Благодаря взаимодействию лопаток колеса с обтекающим их потоком, жидкости передаётся вращательное движение. В результате она через спиральную камеру выбрасывается в отводящий патрубок.

С увеличением скорости вращения колеса возрастает и напор жидкости. Так как вращает вал двигатель, то при увеличении мощности привода можно увеличить и частоту вращения колеса.

Секционные насосы

Но, чтобы получить агрегат с более высокими расходными и напорными характеристиками, недостаточно просто поставить более мощный двигатель. Для достижения этой цели в насосе увеличивается число колёс или, как их ещё называют, ступеней. Подобная конструкция насоса центробежного так и называется — многоступенчатая (см. Многоступенчатые центробежные насосы: особенности конструкций), и маркируется литерой «М».

  • На фото снизу вы видите схематичное изображение ряда последовательно установленных колёс. Общий напор при этом будет представлять собой сумму аналогичных характеристик каждой ступени. Фактически, корпус такого насоса состоит из нескольких отдельных секций, изолированных друг от друга уплотнителями.

Многоступенчатый центробежный насос: из чего состоит

  • Чтобы при стабильной подаче можно было регулировать напор, достаточно увеличить или уменьшить количество ступеней в насосе. В бытовых моделях обычно бывает до 10 секций, ну а в агрегатах промышленного назначения их может быть и в 10-15 раз больше.
  • Недостатками насосов секционного типа являются: высокая цена, относительно небольшой КПД, а так же сложность разборки и обратной сборки своими руками. Но такую конструкцию имеют почти все скважинные насосы, потому что только многоступенчатый насос способен поднять на поверхность воду с большой глубины.
  • Колёса внутри корпуса могут быть установлены не только в последовательном порядке, но и параллельно. При таком их расположении общий поток жидкости делится на несколько параллельных струй, которые, объединяясь на выходе, дают суммированный напор. Такие модели называют многопоточными.

Конструкция центробежных насосов: тип «Д»

Существуют ещё и насосы типа «Д», в которых предусмотрен двухсторонний вход жидкости. То есть, к лопастям колеса попадают два потока из разных входных отверстий и соединяются они уже в спиральном отводе, на выходе. Такие агрегаты наиболее компактны и обладают большой мощностью — их, в основном, используют в производственных целях.

Насосы консольного типа

Одними из самых используемых моделей можно считать насосы типа «К» (консольные). К ним относятся одноступенчатые насосы с горизонтальным расположением вала. В промышленности используют варианты с отдельно расположенным двигателем.

  • А вот в бытовых моделях двигатель находится с колесом в одном корпусе, и поэтому насос маркируется буквами «КМ» (моноблочный). Конструкция консольного центробежного насоса представляет собой спиральный корпус с одним колесом, выполненный из чугуна либо стали и расположенный на консоли вала двигателя. Отсюда, собственно, и его название.

Насос типа «К» (консольный)

  • Опирается корпус на станину, фиксируясь на ней с помощью фланца и четырёх болтов. Как правило, отводящий патрубок направлен вверх, но когда условия эксплуатации делают невозможным такое подключение, может быть предусмотрен поворот под углом 180 или 90 градусов. Об этом позаботится производитель, получивший соответствующий заказ на насос.
  • Одна интересная деталь, делающая привлекательной такую конструкцию для потребителя: входной патрубок в данном случае отливается как единое целое с передней крышкой. Благодаря этому, механик, обслуживающий данное оборудование, может оценить состояние деталей, находящихся внутри корпуса, без демонтажа насоса.

Грязевой насос консольного типа с измельчителем

  • Если окажется, что агрегату требуется ремонт и разбирать его всё-таки придётся, вода сливается из камеры через специальные отверстия — в обычное время они закрыты заглушками. Колесо в консольном насосе чаще всего закрытого типа, то есть его лопатки закрыты дисками с двух сторон. Их кольцевые выступы образуют узлы уплотнения, разделяющие в корпусе зоны с высоким и низким давлением.
  • Для изготовления вала насоса используется высококачественная легированная сталь. Опорами для него служат подшипники, расположенные в масляной ванночке опорного кронштейна. С внешней стороны опора смазывается специальными смазками, а внутри охлаждается жидкостью, которую перекачивает насос.

Отверстие, через которое в корпус входит вал, защищено сальниковым уплотнением. Это сменная втулка, которая значительно повышает ресурс механизма и уменьшает износ вала.

Это касается в основном промышленных агрегатов, к насосам бытового назначения, имеющим мощность менее 10 кВт, такие предосторожности не применяются.

Моноблочные

В быту и на небольших производствах используют, в основном, моноблочные насосы (КМ). Они намного меньше по габаритам — таким насосам не требуется опорная стойка и, благодаря столь компактному исполнению, не занимают много места. А это важно как для предприятия, так и для частного пользователя.

  • В моноблочных насосах колесо с лопатками крепится на вал с помощью шпонки и гайки с винтом. Вал, кстати, может быть и удлинённым. Конструкция их проточной части выполняется аналогично насосам типа «К», поэтому их КПД примерно одинаков.

Моноблочный консольный насос

В насосах моноблочного типа вал уплотняется не сальниковой набивкой, а при помощи резиновой манжеты. Она запрессована в отверстие на корпусе, специально расточенное для этой цели.

Погружные

К моноблочным насосам можно отнести и все погружные насосы. Но они отличаются от агрегатов типа «КМ» тем, что могут иметь не только одно колесо, но и многоступенчатую структуру.

А ещё, у них совсем другое исполнение корпуса. Он вертикальный и объединяет в себе не только спиральную камеру, но и двигатель – этот нюанс является отличительной особенностью погружных моделей.

Разновидность погружной модели: насос для дренажа

  • Здесь колесо так же располагается на валу двигателя, но вода движется несколько по другому принципу. Она проходит через двойной канал: один из них предназначен для охлаждения статора двигателя — и только после этого жидкость поступает в напорную часть.
  • Такие насосы очень надёжны и не требуют неусыпного контроля. Скважинные модели погружаются глубоко в толщу воды, не менее чем в двух метрах от водоприёмной части водозабора. Это важный нюанс, так как, в противном случае, сетчатый фильтр, как и подающий патрубок, может быстро забиваться.

Насосы для питьевых скважин

  • Вообще, для скважинных насосов очень важно качество воды. Длительность их срока службы может быть обеспечена только при условии такого содержания в жидкости твёрдых примесей, которое не превышает указанную производителем норму.

Что касается моделей, предназначенных для перекачки гидросмесей, то им твёрдые включения не страшны. Развивать такие напоры, как насосы скважинные, они не способны – но в данном случае, этого и не требуется.

Достоинства насосов бустерного типа

Все перечисленные выше разновидности поверхностных насосов находят своё применение в коммунальном и сельском хозяйстве, промышленности, горно-обогатительных и прочих производствах. Но у большинства из них есть один общий недостаток: чтобы снизить уровень шума, а так же вибрацию насоса, под него приходится сооружать фундамент.

Консольные насосы на фундаменте

 Итак:

  • На производствах для них ещё монтируют и водоотводную систему, так как в процессе эксплуатации происходит утечка жидкости через сальники. Поэтому их необходимо постоянно контролировать, ну и, конечно, регулярно менять.
  • Всё это требует определённых затрат – в том числе и связанных с необходимостью содержания технического персонала. При установке такие насосы приходится центровать – а это ещё одна проблема: малейшая ошибка, и вибрация механизма многократно усиливается.
  • Существует такая конструктивная разновидность центробежных насосов, которая всех этих недостатков лишена — это насосы бустерного типа. Что это такое? Вообще, термин «бустер», применяется к вспомогательным устройствам, предназначенным увеличить скорость или силу действия основного механизма.

Горизонтальные бустерные насосы

  • Применительно к насосам это выглядит следующим образом: есть герметичная гильза, заполненная водой, в которой и размещается насос. По сути, он работает в условиях, аналогичных тем, что создаются для погружного насоса внутри скважины. Жидкость, окружающая корпус насоса, гасит вибрацию, охлаждает двигатель.
  • Такие агрегаты не требуют центровки, а так как у них нет сальников, то и не нуждаются в постоянном контроле. Бустерные насосы развивают мощнейшие напоры, поэтому установки на их основе используют для обеспечения давления в магистральных водопроводных сетях, водоснабжении высотных зданий, системах пожаротушения.
  • Исполнение корпуса бустерного насоса может быть и горизонтальным, и вертикальным. Горизонтальные варианты чаще устанавливают в производственных цехах — их можно видеть на приведённом выше примере. А вот для сборки повысительных установок используют насосы с вертикальным исполнением корпуса. Они занимают гораздо меньше места, что позволяет сделать установку максимально компактной.

Установка бустерная с вертикальными насосами

Нельзя не отметить, что модели бустерного типа очень экономичны, так как потребление ими электроэнергии на порядок меньше, чем у насосов других конструкций. Благодаря бесшумной работе, они могут быть установлены даже в подвале жилого дома, причём, с минимальными затратами по времени и финансам.


moikolodets.ru

Конструкция центробежных насосов

АППАРАТЫ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

В химической промышленности, помимо обычных водяных центро­бежных насосов, широко применяют центробежные насосы для пере­качки жидкостей, отличающихся большой вязкостью, химической агрес­сивностью или содержанием твердых взвешенных частиц. Поэтому к кон­струкциям центробежных насосов для химических производств предъяв­ляются требования долговечности и надежности работы, простоты экс­плуатации. Детали насосов должны быть массивны и иметь простую форму, облегчающую их отливку и обработку.

Типы насосов. Весьма распространенным типом насоса в химиче­ской промышленности является одноступенчатый горизонтальный насос с односторонним всасыванием, изготовленный из химически стойкого материала. В качестве конструкционных материалов для изготовления таких насосов широко применяют кислотоупорные чугуны (ферросилид), нержавеющие стали, сурьмянистый свинец, а также керамику, диабаз и другие химически стойкие материалы. Внутренние части насосов для защиты от коррозии обкладывают эбонитом и резиной (гуммируют).

На чугунной станине кислотоупорного насоса (рис. 50) при помощи чугунного фланца 3 укреплен на болтах корпус 4 насоса, изготовленный из ферросилида. Массивный консольный вал 6 надежно центрируется на шарикоподшипниках 9. Роль добавочного подшипника для вала, в непосредственной близости от рабочего колеса насоса, выполняет сальник 7. Часть вала, соприкасающаяся с кислотой, защищена ферро- силидовой втулкой 8. Рабочее колесо закреплено на валу при помощи шпонки и натяжной гайки 1, запрессованной в головку из ферросилида.

С другой стороны оно пришлифовано к соприкасающейся с ним торцо­вой поверхности втулки 8. Насос имеет развитый сальник с мягкой набив­кой (обычно—асбестовый шнур, пропитанный кислотостойким соста­вом). Для разгрузки сальника на втулке рабочего колеса имеется крыль-

Рис. 50. Кислотоупорный центробежный насос: /—гайка; 2—крыльчатка; 3—фланец; 4—корпус; 5—станина; 6— вал; 7—сальник; 8—втулка; 9—шарикоподшипники.

Чатка 2, при помощи которой кислота отводится от сальника к всасы­вающему патрубку насоса. Сальник и весь корпус насоса вынесены за пределы фундаментной плиты, с тем чтобы предотвратить попадание

Рис. 51. Тішьі сальников: I— сальник с гидравлическим затвором: /—фонарь; 2—сальник. II—сальник для кислот: 1, 2—кольцевые полости; 3, 4—отводные отверстия, III—сальник пружинный: /—прокладка; 2— пружина.

На нее капель кислоты. Привод насоса осуществляется непосредственно от электродвигателя через эластичную муфту; двигатель монтируется с насосом на одной плите.

Насосы такого типа изготовляют производительностью от 1 до 110 м3/час.

Для насосов с сальниками большое значение имеет надежность их конструкции, так как неудовлетворительная работа сальников влечет за собой повышенный износ вала, длительные простои насоса, резкое увеличение эксплуатационных расходов. Для увеличения срока службы эластичной набивки сальника не следует допускать вибрации (биения) вала насоса и сальник необходимо разгружать от воздействия давления

Рабочей жидкости. Это достигается устройством сальника с гидравличе­ским затвором (рис. 51, /). Жидкость (вода или смазка, нерастворимая в рабочей жидкости) подводится через фонарь 1 в среднюю часть саль­ника 2 с давлением, большим давления перекачиваемой жидкости, и идет по валу в обе стороны — внутрь насоса и наружу, с понижением давле­ния до атмосферного. Вследствие такого устройства набивка испыты­вает значительно меньшее давление. Так как абсолютной герметичности набивки нельзя достичь, часто применяют сальники (рис. 51, //), имеющие

Рис. 52. Бессалышковый насос:

/—корпус; 2—крышка; 3—рабочее колесо; 4— втулка корпуса; 5—фасонная втулка;

5— втулка; 7—левый диск; 5—шпилька; 9—правый f диск; 10— стяжная шпилька; //—пружина; 12—вал; 13, 14—кольца.

Втулку с кольцевыми полостями 1,2, в которых скапливается кислота; просачивающаяся через набивку кислота отводится наружу через отвер­стия 3, 4. Иногда в качестве дополнительной меры, для предупреждения утечки кислоты по валу насоса, устраивают сальник насоса с двойным уплотнением.

В некоторых конструкциях насосов применяют также пружин­ные сальники (рис. 51, III).

Сальники насосов требуют внимательного надзора и частой смены набивки; неправильная затяжка сальника вызывает его перекос, что приводит к одностороннему износу вала насоса.

Поэтому для перекачки кислот применяют также бессальнико­вые насосы, в которых кислота, попадающая за рабочее колесо, через зазор между колесом и корпусом отсасывается ко входу на лопатки в специаль­ные эжекторные каналы, отлитые в колесе. Отсасывание происходит вследствие того, что давление кислоты за колесом, равное давлению на его окружности, всегда больше, чем у основания лопаток.

Во время остановки насоса уплотнение достигается металлическими пришлифованными плоскостями, прижимаемыми при помощи пружин. При пуске насоса в ход вал автоматически передвигается, и истирание уплотняющих деталей устраняется вследствие образующегося зазора.

На рис. 52 изображен бессальниковый насос, изготовляемый из ферросилида или сурьмянистого свинца. Особенностью конструкции на-
coca является разгрузочное приспособление, состоящее из левого диска 7 и правого диска 9, соединенных стяжными шпильками 10 с пружинами 11. Если насос не работает, то пружины удерживают вал 12 в положении, изображенном на рисунке, т. е. сдвинутым вправо. При этом между гай­ками двух противолежащих шпилек 8, не имеющих пружин, и левым диском имеется зазор 0,5 мм\ фасонная втулка 5, служащая для защи­ты вала от кислоты, просачивающейся через отверстие корпуса, укреп­лена неподвижно на валу и пришлифована к втулке 4 корпуса. При останов­ке насоса втулка 5 зажимается между втулками 4 и 6, создавая необходимое уплотнение. При пуске насоса в ход вал вследствие действия осевого давления перемещается влево, сжимает пружины 11 и на 0,5 мм перемещает влево втулку 4, создавая зазор между ней и кольцами 13 и 14 корпуса. Этим предотвращается быстрый износ втулки 4. Однако из­нос втулки все же довольно велик, а ее замена сложней перенабивки сальника. Это является существенным недостатком данной кон­струкции насоса. Кроме того, сборка насоса должна быть выполнена исключительно тщательно и точно.

Разновидностью бессальникового насоса являет­ся центробежный насос с вертикальным \ валом (рис. 53).

Корпус насоса состоит из нижней части 1 и верх­ней 2, на которой укреплен вертикальный вал 3. На нижнем конце вала находится рабочее колесо 4, по­груженное в кислоту. Кислота поступает через шту­цер 5 и находится все время на некоторой высоте, не достигая, однако, места расположения подшипни­ков. На случай внезапной остановки насоса корпус снабжен переливным штуцером 6, соединенным с пи­тающим сборником кислоты. Через этот штуцер* при остановке насоса избыток кислоты, поступающей обратно в насос через штуцер 7 нагнетательного трубопровода, сливается в сборник.

Производительность насоса 10—15 м3/час, высота подачи ~22 м. Насос приводится в действие непо­средственно от двигателя, установленного на крышке. Достоинства конструкции—отсутствие сальников, что устраняет возможность попадания кислой жидкости в подшипники; недостатки—малый к. п. д. и значитель­ная длина вала.

Для перекачки соляной, азотной и других кис­лот, за исключением плавиковой, применяют кера­миковые насосы.

Вследствие низкой механической прочности кера­мики корпус насоса заключают в стальной кожух или скрепляют обоймами.

Производительность керамиковых насосов равна 450—730 л! мин при высоте напора 10,5—35 м.

Имеются также самовсасывающие центробежные насосы, которые не требуют заливки жидкостью перед пуском и установки обрат­ного клапана на входе во всасывающий трубопровод. Такие насосы снаб­жаются вспомогательным вакуум-насосом, приводимым в движение от вала рабочего колеса.

Рис. 53. Насос с вертикальным ва­лом:

/—нижняя часть кор­пуса; 2— верхняя часть корпуса; 3—вал; 4— ра­бочее колесо; 5—всасы­вающий штуцер; 6— пе­реливной штуцер; 7—нагнетательный шту­цер.

На рис. 54 показана конструкция пропеллерного насоса завода «Борец», предназначенного для циркуляции горячих щелоков в выпар­
ных аппаратах (см. главу IX). Ввиду агрессивности перекачиваемой жидкости и высокой ее температуры (140°) подшипники и сальники насоса вынесены наружу и для них предусмотрено специальное охлажде­ние. Щелок подводится к насосу под напором —5 м для того, чтобы из­бежать парообразования внутри насоса.

Подвод охлаждающей воды

Рис. 54. Горизонтальный пропеллерный насос: /—корпус; 2—вал; 3— рабочее колесо

Сравнительная оценка центробежных и поршневых насосов. Не­смотря на то, что центробежные насосы обладают несколько меньшим (на 10—15%) к. п. д., чем поршневые, они имеют перед последними ряд неоспоримых преимуществ.

1. Центробежные насосы компактны и имеют непосредственный привод от двигателя. Стоимость их изготовления и установки, а также эксплуатационные расходы значительно ниже, чем поршневых.

2. Центробежные насосы наиболее пригодны во всех случаях, когда требуется большая производительность при относительно небольшом напоре, т. е. для большинства химических производств.

3. Центробежные насосы лучше приспособлены для перекачки жидкостей, содержащих твердые взвешенные вещества, так как в этих насосах отсутствуют легко засоряющиеся клапаны.

Вследствие больших зазоров, допускаемых в конструкциях центро­бежных насосов по сравнению с поршневыми, они подвержены мень­шему износу от абразивных взвесей, находящихся в перекачиваемых жидкостях. Специальные конструкции центробежных насосов допускают проход через насос крупных твердых частиц, что исключается у поршне­вых насосов.

4. Центробежные насосы особенно эффективны для проведения некоторых операций в химических производствах, например для подачи жидкости на фильтрпрессы (см. главу V). С ростом толщины осадка на фнльтрпрессе центробежные насосы автоматически уменьшают подачу и одновременно повышают напор. В тоже время вследствие ограничен­ности максимального напора уменьшается опасность прорыва ткани и поломки центробежного насоса во время фильтрации.

5. Простота конструкции центробежных насосов позволяет более легко изготавливать их из химически стойких, но плохо отливающихся и трудно обрабатываемых материалов, например ферросилида и др.

Вследствие этих особенностей центробежные насосы получили ши­рокое распространение в химической промышленности.

Вместе с этим в ряде случаев поршневые насосы обладают преиму­ществами перед центробежными. В тех случаях, когда прежде всего требуется экономия энергии, а стоимость установки и удобства эксплуа­тации имеют второстепенное значение, отдают предпочтение поршне­вым насосам, как обладающим более высоким к. п. д.

І

Наконец, поршневые насосы применяют во многих случаях, когда требуются: небольшие подачи жидкости при высоких давлениях, напри­мер в гидравлических прессах, или небольшие подачи сильно колеблю­щихся количеств жидкости, или для перекачивания пожароопасных и взрывоопасных жидкостей.

Производство и продажа дозаторов шнековых для фасовки смесей пылящих и трудно-сыпучих Цена – 24000грн(950дол.США) без дискрета(дозатор равномерный с регулируемыми оборотами шнека) или 35000грн с дискретом(дозатор порционный с системой точного дозирования) …

Простейшая схема экстракционной установки периодического дей­ствия для экстрагирования твердых тел показана на рис. 401. Смесь, подле­жащая экстрагированию, загружается в экстрактор 1, куда одновременно заливается и определенное количество чистого растворителя. Через’ …

Молекулярная диффузия. При равновесии фаз их состав остается постоянным. Диффузионные процессы протекают лишь при нарушении фазового равновесия, при этом распределяемый между фазами компо­нент переходит из одной фазы в другую. В …

msd.com.ua

Конструкции центробежных и осевых насосов

В данной статье приведены описания конструкций насосов, применяемых в системах водоснабжения и канализации, а также в основных отраслях промышленности и коммунального хозяйства.

Консольные центробежные насосы общего назначения для воды.
Консольные одноступенчатые насосы — наиболее массовый тип центробежных насосов для подачи от 5 до 350 м3/ч. Консольные насосы применяют для перекачивания не только воды, но и химически активных жидкостей, суспензий и эмульсий. Поэтому конструкции и узлы таких насосов более унифицированы и стандартизированы, чем конструкции насосов других типов. Консольные насосы для воды изготовляют по ГОСТ 22247—76Е «Насосы центробежные консольные общего назначения для воды. Технические условия».

Рис. 2.11. Консольный насос типа К
1— рабочее колесо; 2 — корпус; 3 — гайка; 4 — вал; 5 — сальник; 6 — опорная часть; 7—подшипники; 8 — упорное кольцо


Промышленность выпускает насосы на отдельной стойке (рис. 2-11 и моноблочные, т. е. закрепленные на опорном фланце электродвигателя. Рабочее колесо консольного насоса закрытого типа Литое закреплено на валу. Корпус насоса спиральный литой крепится к опорному кронштейну. Вал насоса вращается в двух подшипниковых опорах. Уплотнение насоса — мягкий сальник. Насос и электродвигатель закреплены на общей фундаментной плите. Привод от электродвигателя осуществляется через упругую муфту с монтажной приставкой, что позволяет демонтировать насос без отсоединения его от трубопровода и демонтажа электродвигателя, Подвод жидкости— осевой, отвод — вертикально вверх; напорный патрубок расположен по оси насоса.

 

 


Общий вид насосного агрегата представлен на рис. 2.12. 

Рис. 2.12. Общий вид насосного агрегата с насосом типа К

Насосы поставляются как с монтажной приставкой, так и без нее. Насосы изготовляют шести типоразмеров — по подаче и 14 — по напору. Консольные насосы поставляются заводами, как правило, в виде насосного агрегата, т. е. смонтированными на одной плите с двигателем.
Моноблочные насосы (рис. 2.13) более компактны, чем насосы на стойке, что позволяет существенно экономить площадь для их установки. Моноблочные насосы малых типоразмеров можно устанавливать без фундамента, закрепляя их на трубопроводе. Консольные насосы, изготовляемые ранее (рис. 2.14), были более громоздки и металлоемки, чем новые насосы. Их конструкция не позволяла производить демонтаж без отсоединения трубопровода и двигателя.
В обозначение насоса, кроме букв, входят две группы цифр. Большая буква обозначает тип насоса, малая буква — обточку рабочего колеса, первая группа цифр — подачу, м3/ч, вторая группа — напор, м. После тире ставится климатическое исполнение (по ГОСТ 15150—69) и обозначение ГОСТа. Например, насос на отдельной стойке с подачей 45 м3/ч и напором 55 м обозначается так: К 45/55—У2 ГОСТ 22247—76, а моноблочный насос с теми же параметрами, но обточенными до минимального значения, обозначается так: КМ 45/55 б — У2 ГОСТ 22247—76. Ранее насосы, в том числе и консольные, обозначались через диаметр напорного патрубка и коэффициент быстроходности, при этом диаметр, выраженный в миллиметрах, делили на 4, а коэффициент быстропроходности – на 10. В табл. 2.2 приведена сравнительная маркировка насосов типа К.

Рис. 2.13. Моноблочный насос типа КМ 1 — рабочее колесо; 2 — корпус; 3 — сальник;

4 — электродвигатель; 5 — опорная часть


 

Рис. 2.14. Консольный насос типа К ранней конструкции
1 — крышка с входным патрубком; 2— корпус; 3— упорное кольцо; 4 — рабочее колесо;
5 — гайка; 6 — сальник; 7 — втулка; 8 — упорное кольцо сальника; 9 — вал; 10 — опорный
кронштейн; 11 — подшипники; 12 — соединительная муфта 

Центробежные горизонтальные насосы с двусторонним подводом воды.

Насосы этого типа получили широкое распространение в системах водоснабжения и теплоснабжения. Они изготовляются согласно ГОСТ 10272—77 «Насосы центробежные двустороннего входа. Технические условия». Центробежные насосы типа Д (рис. 2.15) снабжены чугунным корпусом с осевым разъемом. В нижней части корпуса расположены всасывающий и напорный патрубки, направленные в противоположные стороны перпендикулярно оси насоса. Такое расположение патрубков обеспечивает компактность насосных установок, удобство расположения трубопроводов, простоту монтажа, эксплуатации и ремонта насосных агрегатов без демонтажа всасывающего и напорного трубопроводов. Благодаря двустороннему подводу жидкости к рабочему колесу уравновешиваются осевые усилия, возникающие при работе насоса. Стальной вал вращается в шариковых подшипниках, установленных на выносных опорах, против часовой стрелки (если смотреть со стороны муфты). Уплотняющие кольца — чугунные и легко снимаются. В сальниках насоса предусмотрено гидравлическое уплотнение, в которое вода подается по трубкам из спиральной камеры насоса. Муфта с упругими вкладышами служит для соединения насоса с электродвигателем.

 

Прежнее обозначениеОбозначение по ГОСТ 22247-76Прежнее обозначениеОбозначение по ГОСТ
22247—76

 

Прежнее обозначениеОбозначение по ГОСТ
22247—76

 

1 1/2K-6

2К-9

2К-6

ЗК-9

ЗК-6

К 8/18

К 20/18

К 20/30

К 45/30

К 45/55

4К-18

4К-12

4К-8

4К-6

К 45/85

К 90/20

К 90/35

К 90/55

К 90/85

6К-12

6К-8

8К-12

8К-6

К 160/20

к 160/30

К 290/18

К 290/30

 

Для систем теплоснабжения применяют насосы двустороннего входа типа СЭ. По конструкции они близки к насосам типа Д, но отличаются тем, что могут перекачивать воду с температурой до 180 °С. Для охлаждения подшипников и сальников предусмотрены водяные рубашки, питаемые охлаждающей водой. Эти насосы имеют относительно высокий напор (70—160 м). Основные параметры этих насосов регламентированы ГОСТ 22465—77. Обозначаются насосы типа Д и СЭ по такому же принципу, что и насосы типа К, например, Д 1250/40. Насосы типа Д поставляются как в виде насосных агрегатов (с подачей до 1600 м3/ч), так и отдельно (более крупные насосы).

Одноступенчатые вертикальные центробежные насосы для воды. Крупные одноступенчатые вертикальные насосы (рис. 2.16) применяются для установки в заглубленных насосных станциях в целях сокращения их площади и стоимости зданий.
Корпус вертикального насоса спиральный с разъемом в горизонтальной плоскости. Насос соединен с электродвигателем вертикальным промежуточным валом. При большой длине вала через каждые 1,5—2,5 м устанавливают направляющие подшипники, укрепленные на вертикальной ферме. Осевые усилия, возникающие в насосе, воспринимаются пятой электродвигателя.
Основные параметры центробежных вертикальных насосов регламентированы ГОСТ 19740—74 «Насосы центробежные вертикальные». Согласно этому ГОСТу вертикальные насосы должны изготовляться с подачей от 1,6 до 35 м3/с и напором от 22 до 105 м.

 

Рис. 2.15. Центробежный насос с двусторонним подводом воды к рабочему колесу (тип Д)
1 — корпус; 2 — крышка; 3— рабочее колесо; 4 — вал; 5 — защитно-уплотняющее кольцо; 6 — трубки для подвода воды к сальникам: 7 — сальник; 8 — подшипник
 

 

Рис. 2.16. Крупный вертикальный центробежный насос
1 – Корпус; 2~ крышка; 3 — опора подшипника, 4 — сменная втулка; 5 — вал; 6 — узел под-
«пника; 7 — узел уплотнения; 8 — уплотнение; 9 — рабочее колесо; 10 — подводящий конус

 

Рис. 2.17. Продольный разрез многоступенчатого насоса секционного типа
1— корпус подшипников; 2 — сальник; 3 — гидропята; 4 — напорный патрубок; 5 — секции; 6 — рабочие колеса; 7 — крышка камеры всасывания; 8 — стяжной болт; 9 — упругая муфта
 

 

 Рис. 2.18. Схема потока жидкости в многоступенчатых насосах спирального типа
 

К настоящему времени освоено изготовление вертикальных насосов с подачей до 16 м3/с.
Многоступенчатые горизонтальные насосы. Многоступенчатые центробежные насосы развивают большие напоры при относительно небольших подачах. Различают многоступенчатые насосы секционного и спирального типа. В секционном насосе жидкость поступает последовательно из одного колеса в другое через направляющие аппараты, которые имеются в каждой секции. Корпус многоступенчатого насоса секционного типа состоит из отдельных секций и двух крышек, соединенных стяжными болтами (рис. 2.17). Осевое давление в многоступенчатых насосах секционного типа воспринимается гидравлической пятой. Рабочие колеса и направляющие аппараты изготовляют обычно из чугуна, уплотняющие кольца — из бронзы, вал — из стали.
ГОСТ 10407—70 «Насосы центробежные многоступенчатые секционные» регламентирует параметры двух групп секционных насосов типа ЦНС с подачей от 8 до 850 м3/ч: нормальной и высоконапорной. Насосы нормальной группы развивают напор от 50 до 1440 м, а высоконапорной — от 600 до 1900 м.
В обозначение насоса входят две группы цифр. Первая группа цифр обозначает подачу, м3/ч, вторая группа цифр — напор, м, далее следует написание ГОСТа, например ЦНС 60—100 ГОСТ 10407—70. Ранее секционные многоступенчатые насосы обозначались буквами МС. К недостаткам секционных многоступенчатых насосов относятся большие осевые усилия, низкий КПД (0,6—0,75) и сложность изготовления, сборки и разборки.


Рис. 2.19. Осевой насос типа ОП
1 — рабочее колесо; 2 — камера; 3 — нижний подшипник; 4 — выправляющий аппарат; 5 —диффузор; 6 — отвод; 7 — вал;
8 — шток управления поворотом лопастей;
9 ~ верхний подшипник; 10 — электропривод механизма поворота лопастей; 11—указатель угла разворота лопастей;

 

Многоступенчатые насосы спирального типа конструктивно более совершенны и обладают более высоким КПД, чем секционные насосы. Насосы спирального типа изготовляют двух- и четырехступенчатыми. На рис. 2.18, а показана схема движения жидкости в двухступенчатом насосе спирального типа, а на рис. 2,18,6 — в четырехступенчатом. Как видно из схемы, колеса расположены таким образом, что осевые давления частично уравновешиваются. В двухступенчатых насосах жидкость поступает из одного колеса в другое по внутреннему перепускному каналу. В четырехступенчатых насосах жидкость поступает последовательно из первого колеса во второе, третье и четвертое по перепускным каналам или по наружной перепускной трубе. Корпус двухступенчатого насоса спирального типа имеет горизонтальный разъем, что дает возможность осматривать и ремонтировать насос, не демонтируя прилегающий трубопровод. Остаточные осевые усилия в таких насосах воспринимаются упорными или радиально-упорными подшипниками. Двухступенчатые спиральные насосы используют в основном в качестве конденсатных насосов на ТЭС. Многоступенчатые центробежные насосы спирального типа по сравнению с секционными обладают рядом преимуществ: более высоким КПД (0,75—0,78), уравновешенным осевым давлением, простотой сборки и разборки, отсутствием направляющих аппаратов, что позволяет значительно обтачивать колеса без заметного снижения КПД.

Кроме горизонтальных многоступенчатых насосов, изготовляют секционные многоступенчатые насосы с вертикальным валом, но они предназначаются в основном для подачи воды из скважин. Их описание см. далее в главе Водоподъемное оборудование водяных скважин.

Осевые насосы. Осевыми называются лопастные насосы, в которых жидкость движется через рабочее колесо в направлении его оси. Основные технические характеристики осевых насосов указаны в ГОСТ 9366—80 «Насосы осевые. Общие технические условия». Согласно этому ГОСТу, осевые насосы изготовляют двух типов: с жестко закрепленными лопастями колеса — жестколопастные насосы (типа О) и с поворотными лопастями колеса — поворотно-лопастные насосы (типа ОП). Возможность изменения угла установки лопастей в насосах типа ОП позволяет регулировать подачу и напор насоса в гораздо более широких пределах, чем в насосах типа О с жестко закрепленными лопастями колеса. Высокий КПД насоса типа ОП при этом сохраняется.

 

Рабочее колесо осевого насоса состоит из втулки обтекаемой формы, на которой укреплены лопасти. Втулки и лопасти осевого насоса в основном исполнении отливаются из чугуна или стали, а в морском- исполнении — из бронзы. Жидкость поступает в насос через входной патрубок. Во входных патрубках насосов некоторых типов имеются направляющие аппараты в виде неподвижных лопастей обтекаемой формы. Непосредственно за рабочим колесом (по ходу жидкости) расположен выправляющий аппарат для устранения вращательного движения жидкости.
В осевых насосах типа О и ОП в основном исполнении (рис. 2.19) жидкость отводится под углом 60° к вертикали. В малогабаритных осевых насосах жидкость отводится под углом’ 90°. Вал осевых насосов типа ОП полый, внутри него проходит шток механизма разворота лопастей. Механизм разворота лопастей может иметь ручной, электрический или гидравлический привод. Следует иметь в виду, что в случае ручного привода угол установки лопастей можно изменять только при неработающем насосе. Конструкция рабочего колеса осевого насоса предопределяет особенности его работы: такие насосы рассчитаны на подачу больших расходов жидкости (до 140 тыс. м3/ч) при относительно небольших напорах (4—20 м). Большой коэффициент быстроходности обусловливает и другую особенность осевых насосов — в большинстве случаев они рассчитаны на работу под заливом. Поэтому при проектировании насосных установок осевые насосы устанавливаются так, чтобы рабочее колесо размещалось ниже уровня воды в приемной камере.
Осевые насосы отличаются простотой конструкции и компактностью, меньшей по сравнению с центробежными насосами массой, возможностью подачи загрязненных жидкостей. Компактность конструкции особенно ценна при подаче больших расходов жидкости, так как позволяет значительно сократить размеры насосной станции. Осевые насосы применяют в оросительных установках и насосных станциях первого подъема систем водоснабжения, а также для перекачки сточной жидкости и активного ила на канализационных очистных сооружениях.
Насосы для сточных жидкостей (фекальные) и грунтовые насосы. Фекальные насосы предназначены для перекачивания сточных вод, илов и жидкостей, загрязненных механическими примесями, находящимися во взвешенном состоянии. Поэтому такие насосы должны им’еть достаточно большие проходные каналы, гарантирующие бесперебойную работу. С этой целью рабочие колеса фекальных насосов изготовляют с небольшим числом (2—4) лопастей обтекаемой формы. Кроме того, в корпусе устраивают специальные люки для осмотра и чистки насосов.
Основные параметры выпускаемых до настоящего времени центробежных фекальных насосов указаны в ГОСТ 11379—73 «Насосы центробежные фекальные. Основные параметры». По этому ГОСТу предусмотрен выпуск фекальных насосов четырех основных типов: горизонтальные типа ФГ, вертикальные типа ФВ, одноступенчатые и Двухступенчатые.

Рис. 2.20. Горизонтальный фекальный насос ФГ450/57.5
1 — рабочее колесо; 2 — корпус; 3 — гайка; 4 — втулка вала; 5, 8— подшипниковые опоры; 6 — вал; 7 — кронштейн; 9 — сальник


 

Рис. 2.21. Вертикальный фекальный насос
/ — корпус насоса; 2— опорная плита; 3—электродвигатель

 

Горизонтальный фекальный одноступенчатый консольный насос с осевым подводом жидкости показан на рис. 2.20. Опора насоса выполнена в виде кронштейна, к фланцу которого прикреплен корпус упрощенной формы со всасывающим и нагнетательным патрубками. Всасывающий патрубок снабжен люком для прочистки. Второй люк для прочистки устроен в верхней части корпуса насоса.

 

Напорный патрубок обычно расположен вертикально, при необходимости он может быть повернут на 90° в любую сторону. Вал насоса вращается в подшипниках качения, а у крупных насосов — Б подшипниках скольжения. Уплотнением вала является сальниковая набивка. Для охлаждения и промывки сальникового уплотнения, а также для создания гидравлического затвора во время работы насоса к сальнику подается техническая вода под давлением, на 0,03—0,05 МПа (0,3—0,5 кгс/см2) превышающим давление в напорном патрубке насоса.
Широкое распространение получили вертикальные фекальные насосы. Вертикальные насосные агрегаты с небольшой подачей конструктивно решены в виде блока с электродвигателем (рис. 2.21). Вал насоса имеет верхнюю и нижнюю опоры. В верхней опоре, укрепленной на плите, расположена пята, воспринимающая осевую силу вращающихся деталей насоса. Нижняя опора расположена в насосе и состоит из двух подшипников — радиального шарикового и текстолитового упорного. Корпус насоса с помощью трубы соединен с опорной плитой. Внутри трубы проходит вал насоса. Для смазки текстолитового подшипника к нему должна быть подведена чистая (техническая) вода.
Крупные вертикальные фекальные насосы выпускают с осевым подводом. Корпус насоса выполняется с разъемом в горизонтальной плоскости (рис. 2.22). Как видно из рисунка, насос и электродвигатель устанавливаются на раздельных фундаментах. Осевые силы и нагрузку от действия веса вращающихся частей в таких насосах воспринимает пята электродвигателя, находящаяся в масля-ной ванне.
С 1 января 1983 г. введен новый ГОСТ на насосы для сточных жидкостей —ГОСТ 11379—80Е «Насосы динамические для сточных жидкостей. Общие технические условия». Согласно этому ГОСТу должны изготовляться насосы типов СД—центробежные и СДС — свободно-вихревые. Насосы типа СД должны изготовляться в горизонтальном и вертикальном исполнении, а также полупогружные. Эта серия насосов должна обеспечивать подачу от 7 до 10800 м3/ч с напорами от 5,5 до ПО м при перекачивании жидкости, содержащей не более 1 % абразивных частиц размером до 5 юл. Основные технические характеристики насосов СД (подача, напор) близки к характеристикам фекальных насосов типа Ф.
В обозначениях насосов для сточных вод первые буквы означают тип насоса, первая группа цифр — подачу, м3/ч, вторая группа цифр — напор, м; далее ставят обозначение климатического исполнения и номер ГОСТа. Например, горизонтальный насос типа СД с подачей 100 м3/ч и напором 40 м, климатического исполнения У4 (по ГОСТ 15150—69) обозначается так: СД 100/40-У4-ГОСТ 11379—80Е. Сопоставление обозначений насосов, изготовляемых по ГОСТ 11379—73 и 11379—80Е, приведено в табл. 2.3.
За последнее время в нашей стране и за рубежом для упрощения эксплуатации насосов для перекачки сточных вод и других жидкостей, содержащих крупные взвешенные и плавающие включения, разрабатывается ряд насосов новых типов.  

 

Таблица 2.3

Обозначение по ГОСТ

Обозначение по ГОСТ

11379—73

11379—80Е

11379—73

11379—80Е

Ф 16/27
Ф 145/10
Ф 29/40
Ф 25,5/14,5

СД 16/25
СД 16/10
СД 32/40
СД 25/14

Ф 450/575
Ф 540/95
Ф 450/22,5

СД 450/56
СД 450/95
СД 450/22,5
СД 450/10

Ф 51/58
Ф 45/21
Ф 57,5/9,5

СД 50/56
СД 50/22,5
СД 50/10

Ф 800/33

СД 800/32
СД 800/14
СД 1400/56

Ф 115/38
Ф 81/31
Ф 81/18

СД 100/40
СД 80/32
СД 80/18

Ф 1440/17,5
Ф 2400/75,5
ФВ 2700/26,5

СД 1400/18
СД 2400/75
СДВ 2700/26,5

Ф 144/46
Ф 144/10,5
Ф 216/24

СД 160/45
СД 160/10
СД 250/22,5

ФВ 400/28

СДВ 4000/28
СДВ 3600/80
СДВ 7200/80

Ф 234/63
Ф 2555/39,5
Ф 255/15,5

СД 250/63
СД 250/40
СД 250/14

ФВ 7200/29
ФВ 9000/63
ФВ 9000/45

СДВ 7200/29
СДВ 9000/63
СДВ 9000/45

Центробежные фекальные насосы изготовляют с колесами, снабженными устройствами (ножами) для измельчения крупных включений.
Такой насос одновременно с перекачиванием жидкости выполняет функцию дробилки, т. е. является насосом-дробилкой. Применение таких насосов упрощает эксплуатацию насосных установок. Это в первую очередь касается автоматизированных насосных станций, на которых отпадает или существенно сокращается необходимость эксплуатации дробилок и устройств для удаления твердых включений, задержанных на решетках. В нашей стране такой насос разработан НИКТИ МКХ УССР (г. Киев).

 

 

Для перекачки сточных вод, содержащих включения больших размеров, используют свободно-вихревые насосы (СВН), которые по принципу действия относятся к лопастным насосам трения. От центробежных эти насосы отличаются тем, что открытое рабочее колесо размещено в кармане задней стенки корпуса насоса (рис. 2.23). При этом между торцом колеса образуется камера, свободная от вращающихся частей. Ширина этой камеры равна диаметру напорного патрубка на уровне языка створа. Через рабочее колесо проходит только часть общего потока поступающей в насос жидкости— так называемый циркуляционный поток, составляющий 15— 25 % подачи насоса. Остальной части жидкости, поступающей в насос, энергия передается путем вихревого энергообмена с циркуляционным потоком. Широкая проточная полость, свободная от движущихся деталей, и открытое рабочее колесо способствуют тому, что насос практически не засоряется, а следовательно, существенно снижаются трудовые затраты на его эксплуатацию. Однако КПД у свободно-вихревых насосов ниже, чем у центробежных, и составляет 45—55 %. В настоящее время промышленность выпускает свободно-вихревой насос ФГС 81/31 с номинальной подачей 81 м3/с и погружной центробежный моноблочный фекальный элек-тронасос марки ЦМФ 160-10-У5 с рабочим колесом свободно-вихревого типа.
Для перекачивания пульп, а также производственных сточных вод некоторых видов с большим количеством тяжелых механических примесей, в том числе абразивных (песок, окалина, шлак и т. п.), применяют грунтовые и песковые насосы.
Грунтовые насосы типа Гр одноступенчатые консольного типа с четырехлопастным рабочим колесом одностороннего входа изготовляются согласно ГОСТ 9075—75.
Корпусы таких насосов имеют разъем в вертикальной плоскости. Эти насосы предназначены для перекачивания пульп с плотностью до 1,3 кг/л.
Основные параметры Песковых центробежных насосов установлены ГОСТ 8388—77 «Насосы центробежные песковые. Типы и основные параметры». В настоящее время промышленность выпускает песковые насосы типа Пс с подачей от 50 до 200 м3/ч для перекачивания пульпы с плотностью до 2—3 кг/л (в зависимости от марки насоса). Конструкция пескового насоса типа Пр приведена на рис. 2.24. Как видно из рисунка, корпус насоса, входной и выходной патрубки гуммированы, что предотвращает быстрый износ насоса.
К сальниковым уплотнениям насосов типа Пр (так же, как и насосов типа Гр) необходимо подводить чистую воду под давлением, равным 0,8—1 рабочего давления насоса.


В последнее время получают распространение погружные канализационные электронасосы небольшой мощности. Разработана и освоена серия погружных электронасосов типа ЦМК (рис. 2.25). Это погружной моноблочный агрегат со встроенным электродвигателем, герметизированным от попадания сточной жидкости во внутреннюю полость. Насосная часть — одноступенчатый центробежный насос с двухлопастным рабочим колесом, закрепленным на консольной части вала электродвигателя. Отвод насоса — спиральный. Полости всасывания и нагнетания разделены с помощью лабиринтного уплотнения.
Канализационный электронасос комплектуется специальным приспособлением для автоматической стыковки его с напорным трубопроводом без использования обычных крепежных средств, что позволяет демонтировать насос без опорожнения колодца (резервуара), где он установлен.
При производстве строительных работ для открытого водослива, а также для перекачивания загрязненных, в том числе сточных, вод получили распространение погружные моноблочные центробежные электронасосы типа ГНОМ (рис. 2.26). Согласно ГОСТ 20763—75 эти насосы должны изготовляться с подачей от 10 до 400 м3/ч при напорах от 10 до 40 м.


 

Рис. 2.25. Погружной канализационный электронасос типа ЦМК
1 — рабочее колесо; 2— спиральный отвод; 3 — подшипниковый щит; 4 — электродвигатель; 5 — крышка; 6 — ручка; 7 — кабель электродвигателя

 

Рабочее колесо электронасоса типа ГНОМ полуоткрытого типа, литое, из износостойкого материала, закреплено на валу электродвигателя. Электродвигатель специального исполнения асинхронный с короткозамкнутым ротором. Ротор вращается в двух шарикоподшипниках, установленных в верхней и нижней крышках. Между рабочим колесом и нижним подшипником размещена масляная камера с расположенным в ней узлом уплотнения. Масло в камере предназначено для смазки и охлаждения пар трения торцевых уплотнений. Оно же служит гидравлическим затвором для предотвращения проникновения перекачиваемой жидкости в полость электродвигателя. Наличие масляной камеры несколько усложняет эксплуатацию насосов типа ГНОМ по сравнению с эксплуатацией насосов типа ЦМК. Перекачиваемая жидкость засасывается рабочим колесом и подается в кольцевую щель между электродвигателем и кожухом. Далее жидкость попадает в напорный патрубок и нагнетается через резиновый рукав. Насосы типа ГНОМ способны перекачивать жидкость плотностью до 1250 кг/м3 при содержании твердых механических примесей максимальным размером до 5 мм до 10 % по массе.
За рубежом погружные электронасосы для перекачивания сточных вод получили большое распространение. Шведская фирма «Флюгт» выпускает большой ряд типоразмеров погружных насосов для сточных вод, включая и крупные насосы с подачей до 4000м3/ч. На рис. 2.27 показан один из таких насосов. Применение погружных насосов для перекачки сточных вод позволяет существенно уменьшить размеры насосных станций, а следовательно, снизить их стоимость.

Насосы для химически активных жидкостей. Насосы этого класса предназначены главным образом для химической промышленности. В системах водного хозяйства такие насосы применяют для перекачивания растворов различных реагентов, в первую очередь раствора коагулянта. Применяют их и для перекачивания агрессивных по отношению к черным металлам сточных вод промышленных производств. Типы и основные параметры центробежных насосов для химических производств указаны в ГОСТ 10168—75. Основные технические требования к таким насосам приведены в ГОСТ 15110—79Е. Согласно этим ГОСТам, насосы для химических производств изготовляются следующих типов:
X, АХ, ТХ — горизонтальные, консольные на отдельной стойке; ХБ — горизонтальные, межопорные, одноступенчатые и многоступенчатые, с рабочими колесами одностороннего входа;
ХД — горизонтальные, межопорные, с рабочими колесами двустороннего входа;
ХИ, АХИ, ТХИ — погружные, вертикальные, с опорами вне перекачиваемой жидкости;
ХП, АХП — погружные, с опорами в перекачиваемой жидкости. 
Насосы указанных типов должны изготовляться следующих конструктивных исполнений: М — моноблочные; Р — с повышенным (избыточным) давлением на входе; О — обогреваемые или охлаждаемые; С — самовсасывающие.

Для особо химически активных жидкостей изготовляют центробежные одноступенчатые насосы из керамических материалов и эпоксидных смол. Типы и основные параметры таких насосов регламентированы ГОСТ 22570—77. Согласно этому ГОСТу насосы Должны изготовляться с подачей от 3 до 460 м3/ч и напором от 6 До 95 м. Наибольшее распространение имеют насосы типа X, АХ и ГХ. Эти насосы изготовляют на унифицированных опорных стойках и подшипниках. На рис. 2.28 показан разрез насоса X 20/31.

 
Рис. 2.28. Центробежный насос типа Х20/31
1 — рабочее колесо; 2 — сальник; 3 — защитная втулка; 4 — вал насоса; 5 — кронштейн


Материал проточной части насоса — высококремнистый сплав. Из такого же материала выполнена и защитная втулка вала.
Ранее в обозначения насосов для химических производств входили диаметр входного патрубка и число быстроходности. В ГОСТ 10168—75 приведена таблица замены устаревших обозначений насосов. Например, насос X 20/31 ранее обозначался 2Х-6, а насос АХ 90/19—5АХ-9.
 

 

www.nasosinfo.ru

Центробежные насосы конструкция – Справочник химика 21

    Центробежные насосы просты по устройству и обеспечивают непрерывную равномерную подачу жидкости в напорный трубопровод. Эти насосы легко автоматизировать и ими можно управлять дистанционно с диспетчерского пульта. Надежное уплотнение места прохода вала насосов является основой безопасного перекачивания ядовитых и легковоспламеняющихся жидкостей. Уплотнения вращающихся валов бывают следующих видов сальники, манжеты, лабиринты и торцевые уплотнения, уплотнения импеллерного или эжекторного типа. В последнее время широко применяют торцевые уплотнения, представляющие собой герметизирующие устройства, в которых плоские уплотняющие поверхности (торцевые поверхности втулок) расположены перпендикулярно оси вращения, а усилия, удерживающие эти поверхности в контакте, направлены параллельно оси вала. Торцевые уплотнения имеют самые различные конструкции, но работают они по одной и той же схеме. [c.99]
    Производительность центробежного насоса зависит от числа оборотов, диаметра рабочего колеса и конструкции агрегата. С увеличением числа оборотов прямо пропорционально повышается производительность насоса  [c.45]

    Рассматривая величины абсолютных скоростей на выходе, построенные при одинаковых значениях 2 и СУг, видим, что наибольшее значение скорости С2 получается в лопатках, загнутых вперед. Превращение кинетической энергии в потенциальную после выхода жидкости из рабочего колеса сопровождается тем большими гидравлическими потерями, чем больше скорость С2. Следовательно, насосы, имеющие рабочие колеса с загнутыми вперед лопатками, обладают наименьшим гидравлическим к. п. д., а насосы, у которых рабочие колеса с Р2центробежных насосах применяют исключительно лопатки, отогнутые назад. Что касается напора, который при этих лопатках меньше, чем при лопатках, загнутых вперед, то увеличение его достигается применением многоступенчатых насосов или увеличением числа оборотов. В большинстве конструкций центробежных насосов угол Р2 колеблется в пределах от 14 до 60°. [c.152]

    В производствах аммиака применяют поршневые и центробежные насосы. Безопасность их работы обеспечивается надежной и простой конструкцией, коррозионной стойкостью материала, герметичностью уплотнения движущихся частей и правильной эксплуатацией. К каждому виду насосов предъявляют свои требования безопасности, которые приводятся в технологических регламентах и должностных инструкциях. Однако имеются общие для всех видов насосов правила безопасной эксплуатации. [c.98]

    Коррозия при трении вызывается одновременным действием коррозионной среды и сил трения, например коррозия шеек валов, работающих в жидкости с взвешенными в ней твердыми частицами. Электрокоррозия вызывается главным образом воздействием блуждающих токов особенно опасна электрокоррозия для подземных металлических и железобетонных конструкций. Кавитационная коррозия возникает при воздействии гидродинамических нагрузок в условиях коррозионной среды, например в центробежных насосах. Коррозия под напряжением наблюдается при одновременном действии на металл коррозионной среды и механических напряжений, папример в аппаратах, работающих под давлением (коррозия при постоянной нагрузке), или в осях, штоках насосов, стальных канатах и других деталях со знакопеременными нагрузками (коррозия при переменной нагрузке). Во втором случае возникает коррозионная усталость — понижение предела усталости металла. [c.282]

    Конструкции основных деталей и узлов центробежных насосов [c.140]

    Для перекачки горячих нефтепродуктов применяются специальные центробежные насосы. Конструкция насоса обеспечивает свободное расширение корпуса и других деталей без нарушения их взаимного соединения и центровки валов. [c.158]

    В малогабаритных аппаратах (типа РГ с электрообогревом и типа РЦГ) полость электропривода, заполненная газом, не отделена от реакционной полости. Центробежный насос конструкцией не предусмотрен. Ротор установлен в шарикоподшипниках. [c.64]

    Конструкции центробежных насосов, как и поршневых, чрезвы-чанно разнообразны, классифицируют их по нескольким признакам. [c.132]

    Особенности эксплуатации насосов. Конструкция центробежных насосов и электродвигателей в достаточной степени известна. Одним из последних изменений в конструкции центробежных насосов явилась замена сальниковых уплотнений на торцевые. Одинарные и двойные торцевые уплотнения обеспечивают надежную герметичность оборудования при перекачивании нефтепродуктов, которая достигается за счет плотного прижимания друг к другу торцевых поверхностей вращающейся втулки на валу и неподвижной втулки в корпусе насоса. [c.61]

    Центробежные насосы. Эта группа насосов характеризуется менее громоздкой конструкцией, длительным сроком службы, низкими расходами на обслуживание, возможностью работы с абразивными жидкостями и т. д. В зависимости от конструкции корпуса центробежные насосы в США классифицируют на следующие типы улиткообразные, диффузорные или цилиндрические, турбинные, пропеллерные [56]. [c.45]

    В литературе [13] приведены графики зависимости = / (Л уст) для насосов различных конструкций, полученные обработкой прейскурантов оптовых цен на насосы. В частности, для одноступенчатых центробежных насосов, перекачивающих воду и другие чистые нейтральные жидкости, подобная зависимость в логарифмических координатах почти прямолинейна. Формула, аппроксимирующая эту зависимость, имеет вид  [c.40]

    Центробежный вентилятор отличается от одноступенчатого центробежного насоса только конструкцией его рабочих органов (рис. 15.7). Корпус насоса обычно литой, а у вентилятора сварной из листовой стали. Рабочее колесо составное, рабочие лопасти привариваются или приклепываются к несущему диску, который крепится болтами к ступице. [c.194]

    В химической промышленности США 75% всех установленных центробежных насосов являются горизонтальными, с односторонним всасыванием, с радиальными рабочими колесами. Однако для увеличения производительности предпочтительнее использовать вертикальный насос, так как он может быть больших размеров. Разъем корпуса горизонтальных одноступенчатых насосов чаще всего аксиальный, причем всасывающий и напорный трубопроводы подключены к нижней части корпуса. Такая конструкция дает возможность снимать верхнюю часть корпуса для осмотра, ремонта, замены отдельных деталей и всего колеса без демонтажа трубопроводов и электродвигателей [58]. [c.48]

    Центробежные насосы. Типов центробежных насосов много. Несмотря на принципиальное сходство конструкции, центробежные насосы разных типов имеют ряд особенностей, позволяющих эксплуатировать их в различных условиях. [c.9]

&e

www.chem21.info

Конструкции центробежных насосов.

Общие сведения о конструкциях центробежных насосов.

Конструкция одноступенчатого консольного насоса.

Конструкция насоса типа ЦНС.

Уплотнения в насосах.

Рабочее колесо лопастных насосов состоит из втулки и лопастей, соединенных с ней непосредственно или при помощи одного, или двух дисков.

В зависимости от числа дисков колеса изготавливают:

– открытыми (без дисков),

– полуоткрытыми (один диск),

– закрытыми (два диска).

Также колёса бывают с односторонним или двусторонним входом.

Лопасти могут быть:

– отогнуты назад (передача потоку жидкости потенциальной энергии — статический напор),

– радиальными,

– отогнуты вперед (передача потоку проходящей жидкости наибольшего количества энергии с преобладанием скоростной).

У насосов, предназначенных для перекачивания суспензий (песка, шлама, грунта и т.д.), каналы в рабочих колесах значительно расширены, а число лопастей уменьшено (до двух и даже до одной).

Подвод — канал для направления жидкой среды к рабочему колесу, обеспечивающий осесимметричный ее поток с равномерным распределением скоростей с минимальными гидравлическими потерями.

Конструктивно подводы выполняют в виде:

– конического прямого патрубка (конфузора), применяемого в консольных насосах;

– коленообразного входного патрубка;

– со спиральной формой канала (наиболее распространенная конструкция).

Подвод потока жидкой среды к рабочим колесам многоступенчатых насосов с лопаточными отводами осуществляется с помощью переводных каналов.

Отвод — устройство для направления жидкой среды из рабо­чего колеса в отводящий трубопровод насоса или в рабочее колесо следующей ступени, предусмотренное для снижения скорости потока с наименьшими гидравлическими потерями и обеспечения его осесимметричности, чтобы поток стал установившимся.

Конструктивно изготавливают спиральные, кольцевые и двухзавитковые отводы. Спиральный отвод состоит из канала переменной ширины и диффузора. Кольцевой отвод представляет собой цилиндрический канал пос­тоянной ширины. Двухзавитковый отвод применяют для уменьшения поперечной гидравлической силы, возникающей вследствие нарушения осевой симметрии потока.

Направляющий аппарат (лопаточный отвод), приме­няемый в многоступенчатых насосах, состоит из нескольких каналов со спиральными и диффузорными участками.

 

Центробежный насос (рис. 1.28) простейшей конструкции состоит из следующих основных деталей: корпуса 6, крышки 4, рабочей колеса 5, уплотнения 3, подшипникового кронштейна 2, вала 1. На рис. 12 показан насос с направляющий аппаратом 7, оснащенный уплотняющими кольцами 8 плавающего типа. В этом насосе жидкая среда поступает в центробежное рабочее колесо через осевой подвод и выходит из него через спиральный отвод в корпусе. Сальниковое уплотнение предотвращает вытекание жидкости из корпуса наружу и поступление атмосферного воздуха при вакууме в полость корпуса. Возникающее осевое усилие воспринимается радиально-упорными подшипниками.

Рисунок 1.28 – Центробежный консольный насос

Центробежные секционные насосы типа ЦНС предназначены для перекачивания воды и других жидкостей, сходных с водой по химической активности и вязкости.

Насосы типа ЦНС изготавливаются следующих модифи­каций:

ЦНС — для температуры перекачиваемой жидкости до 45°С;

ЦНСГ — для перекачивания жидкости с температурой до 105 °С;

ЦНСМ — для перекачивания турбинного масла марки Л22 с температурой до 60°С в масляной системе турбогенераторов.

Конструктивно центробежные секционные насосы типа ЦНС 300 состоят из корпуса и ротора.

Корпусные детали насоса (рис. 1.29): крышки входная 19 и нагнетания 12, корпусы направляющих аппаратов 13, 31, направляющие аппараты 14, передний 28 и задний 1 кронштейны.

Рисунок 1.29 – Конструкция насоса ЦНС300

Подвод жидкости к рабочему колесу I ступени 40 с уплотнительным кольцом 39 осуществляется через входной патрубок входной крышки, направленный под углом 90° к оси насоса и располагаемый в горизонтальной плоскости. Напорный патру­бок в крышке нагнетания направлен вертикально вверх.

Корпусы направляющих аппаратов, направляющие аппа­раты, входная крышка и крышка нагнетания крепятся друг к другу с помощью стяжных болтов 18 с шайбами 21 и 22. Стыки корпусов направляющих аппаратов уплотняются круг­лым резиновым шнуром 29.

Корпус направляющего аппарата 13 с уплотнительным коль­цом 15, направляющий аппарат 14 с уплотнительным кольцом 16 совместно с рабочим колесом 17 составляют секцию на­соса.

Ротор насоса представляет собой вал 2, на котором на шпо­ночных соединениях смонтированы рабочие колеса 17, 30 и 40, кольцо 25, защитная втулка вала 24, дистанционная втулка 11, регулировочные кольца 9, разгрузочный диск 7. Осевое пере­мещение деталей, смонтированных на валу, устраняется с по­мощью гайки ротора 4.

В местах выхода вала из ротора установлены сальниковые уплотнения 6 со втулкой 3, прижимающие набивку.

Для предупреждения подсасывания воздуха через сальник на стороне входной крышки предусмотрен гидравлический за­твор, при этом жидкость под давлением, равным давлению после I ступени, проходит через отверстие во входной крышке к втулке гидравлического затвора 23, в которой имеется отвер­стие для подвода жидкости к защитной втулке вала 24. Про­ходя по защитной втулке вала через сальниковую набивку, пе­рекачиваемая жидкость не только предупреждает попадание воздуха в насос, но и охлаждает сальниковое уплотнение.

 

Уплотнения применяют для уменьшения перетоков жид­костей вследствие разности давлений в соседних полостях, предуп­реждения утечек жидкости и засасывания атмосферного воздуха в область между вращающимися и неподвижными деталями насоса, применяются щелевые и концевые уплотнения различной конст­рукции.


Щелевые уплотнения — уплотнительные кольца, предназначенные для уменьшения перетоков жидкости в проточной части насоса, об­разуют между корпусом и рабочим колесом щель прямой, ступенча­той или лабиринтной формы (рис. 1.30, а-з).

Рисунок 1.30 – Виды щелевых уплотнений

 

В местах выхода вала из корпуса насоса устанавливают кон­цевые уплотнения — сальниковые или торцовые.

Сальниковое уплотнение (рис. 1.31, а) состоит из эластичной на­бивки 1 и нажимной втулки 2. При давлении всасывания ро ниже атмосферного в сальнике устанавливают кольцо 3 (рис. 1.31, б), к ко­торому из отводящего трубопровода насоса подводится поток жид­кости. Этим исключается подсасывание воздуха из атмосферы. Иногда предусматривают разгрузку сальника (рис. 1.31, в). Жид­кая среда, а этом случае через цилиндрический дросселирующий за­зор длиной l между валом и втулкой поступает в полость с пони­женным давлением. При перекачивании горячих жидкостей и сжиженных газов саль­ник охлаждается водой, омывающей снаружи его корпус (рис. 1.31, г) или защитную рубашку вала (рис. 1.31, д).

Рисунок 1.31 – Виды сальниковых уплотнений

Торцовые уплотнения по сравнению с сальниковыми, менее чув­ствительные к несоосности вала и корпуса, приспособлены к работе в более широком диапазоне температур и давлений. Трение в них уменьшено, а утечки сокращены. Широкое распространение получили торцевые уплотнения (рис. 1.32), состоящие из неподвижного кольца 1, закрепленного в корпусе насоса, и кольца 2, вращающегося с валом. Кольцо 2 прижимается к кольцу 1 пружиной 3, которая может располагаться и в неподвиж­ных деталях.

 

 

Рисунок 1.32 – Торцевое уплотнение

При применении заградительной жидкости, последняя подводится между двумя торцевыми уплотнениями. Давление на плоскости соприкосновения колец составляет 0,08-0,15 МПа. Коль­ца изготавливаются из износоустойчивых материалов (бронза, нержа­веющая сталь, керамика, твердые сплавы, обработанный для получе­ния повышенной твердости графит) и отличаются высокой точнос­тью размеров и чистотой обработки поверхностей. Торцевые уплот­нения применяются, в частности, в нефтяных магистральных насо­сах, подающих нефть и нефтепродукты с температурой от -15 до +80 °С и содержанием механических примесей по объему не более 0,2 %. Тор­цевые уплотнения обеспечивают герметичность в месте выхода вала из корпуса насоса. К материалам пар трения торцевых уплотнений предъявляются следующие требования: стойкость к воздействию по­даваемой среды (потери по массе за 60 сут не более 0,01 %), непрони­цаемость для подаваемой среды, отсутствие схватывания и заедания в момент пуска насоса, фрикционная теплостойкость (наработка до появления первой трещины не менее 3000 ч), значение коэффициен­та трения на контакте не более 0,1. Средняя наработка на отказ тор­цевых уплотнений нефтяных магистральных насосов составляет 10000 ч.

 

Контрольные вопросы:

1. Устройство насосов типа К и ЦНС.

2. Как производится уплотнение между ступенями?

  1. Назовите детали, ступени насоса.
  2. Как производится уплотнение концов вала?
  3. На каком принципе работают торцевые уплотнения вала?
  4. Как устроен узел гидравлической разгрузки?
  5. В чем особенность конструкций насосов для перекачек горячих жидкостей?

 


Похожие статьи:

poznayka.org

Устройство и принцип действия центробежных насосов. Классификация, характеристики

Если рассматривать устройства, которые используются для перекачки жидкостей, самым практичным будет центробежный насос. Данное оборудование обладает высокой производительностью и обеспечивает мощный напор, но конструкция при всех положительных особенностях является предельно простой. Насосные станции и бытовые помпы, которые используются для организации автономного водопровода или для полива дачных участков, относятся к данному типу.

Устройство насоса

Устройство и принцип действия центробежных насосов будут описаны в статье. Если рассматривать первую часть вопроса, то можно выделить, что рабочий элемент в простом исполнении состоит из корпуса, который внешне напоминает улитку или спираль. Внутри находится вал и рабочее колесо, последнее из которых закрепляется как раз на валу. Шпонка обеспечивает передачу вращения от вала к колесу. Рабочее колесо имеет в составе два диска и лопатки, которые закреплены между ними.

Лопатки обладают изогнутой формой и обращены выпирающей стороной к направлению вращения. Если вас заинтересовали характеристики центробежных насосов, то вы должны знать о том, что корпус изготавливается из чугуна или стали, а вот рабочие колеса, как правило, выполняются из полимеров. Вал рабочего колеса в разных моделях может быть консольным или двухопорным. В последнем случае конструкция дополняется подшипниками. Выходя за пределы корпуса и связываясь с ротором коленчатого или электрического вала с помощью муфты, хвостовик выступает в роли привода.

Для того чтобы исключить утечку перекачиваемого вещества через отверстия в корпусе, конструкция наделяется уплотнением.

Надежная герметичность

Если вас заинтересовали устройство и принцип действия центробежных насосов, то лучше всего в момент приобретения отдать предпочтение оборудованию, которое обладает торцевым уплотнением вала. Этот вариант отличается более высокой надежностью, чем сальниковая набивка, которая на сегодняшний момент уже считается устаревшей. Торцевое уплотнение обеспечивает полную герметичность корпуса даже в том случае, когда вал рабочего колеса оказывается смещенным. Высокая надежность гарантируется и при вибрациях, которых нельзя избежать в процессе работы насоса.

Принцип действия

После того как устройство и принцип действия центробежных насосов вам станут известны, вы можете приобрести оборудование и приступить к его установке. Однако перед этим стоит более подробно ознакомиться с тем, какой принцип работы использует описываемый агрегат. Таким образом, после того как двигатель будет запущен, вал насоса начинает вращаться. Лопатки колеса приводят в действие вещество, находящееся в рабочей камере. Жидкость начинает передвигаться по кругу, подвергаясь центробежной силе. Модуль данной силы будет больше, чем дальше молекулы перекачиваемой среды будут находиться от центра вращения. В конечном итоге вода окажется выброшенной на периферию рабочего колеса, после она поступит на выходной патрубок. Это обеспечивает поддержание давления за счет центробежной силы.

Классификация по числу ступеней

Для того чтобы сделать правильный выбор оборудования, необходимо знать устройство и принцип действия центробежных насосов. Это касается и классификации. Разделить агрегаты можно по ряду признаков, в том числе и по числу ступеней. Установки могут быть одноступенчатыми и многоступенчатыми. В первом случае в конструкции установлено только одно рабочее колесо, данная система является классической. Если же есть необходимость развить значительный напор, то используются многоступенчатые насосы, в которых несколько рабочих колес, установленных на один вал. Принцип работы такого оборудования заключается в том, что каждое колесо с рабочей камерой образует ступень. Корпус выполнен таким образом, что жидкость переходит с одной ступени на другую до тех пор, пока не достигнет выходного патрубка.

Классификация по направлению оси вращения

Если вас заинтересовали характеристики центробежных насосов, то вы должны для начала определиться, к какому классу относится то или иное оборудование. Подразделить устройства можно еще и по направлению оси вращения. Это указывает на то, что вал может находиться в горизонтальном или вертикальном положении.

Первый вариант считается наиболее распространенным, что обусловлено простотой обслуживания. Вторая разновидность предполагает меньше места для установки, так как двигатель находится под корпусом. К этому типу можно отнести большую часть скважинных насосов, которые предназначены для работы в стесненных условиях. Подобные центробежный насос для скважины обладают одним минусом, который выражен в том, что для обслуживания или ремонта корпуса придется снять двигатель.

Классификация насосов по способу установки и их характеристики

В продаже представлены центробежные промышленные насосы в широком ассортименте, они могут отличаться между собой по способу монтажа. В зависимости от поставленных перед оборудованием целей и условий использования, следует выбрать поверхностный, полупогружной или погружной насос. Поверхностные располагаются непосредственно около источника или в некотором отдалении от него. Заплатить за такое оборудование придется меньше. Устройство будет постоянно находиться на виду, что указывает на легкодоступность для обслуживания и контроля. Недостатком выступает условие, при котором уровень воды в источнике должен находиться в 8 метрах или выше относительно уровня установки агрегата. Именно поэтому с глубокими скважинами и колодцами такое оборудование работать не будет.

Характеристики полупогружных и погружных насосов

Рассматривая промышленные насосы, вы наверняка обратите внимание на полупогружные модели, в которых вал располагается вертикально. Некоторая часть корпуса будет погружена в источник, наиболее часто такое оборудование используется для выкачивания жидкости из приямков. Когда есть необходимость выкачать жидкость из глубоких скважин и колодцев, используются погружные насосы, которые в процессе эксплуатации подвешиваются на цепь или трос.

Устройство предстоит полностью погрузить в воду. Так как работа центробежного насоса погружного типа будет сопровождаться воздействием на корпус агрессивной среды, он должен обладать определенными характеристиками, среди которых – устойчивость к коррозии наружных элементов конструкции, герметичность корпуса и электрической части, а также исключение вероятности протечек машинного масла сквозь конструкцию насоса. Последнее требование очень важно, так как при попадании в колодец или скважину машинного масла, удалить его будет очень проблематично и дорого.

Классификация насосов по способу забора воды и характеристики оборудования

Производительность центробежного насоса будет зависеть от мощности двигателя, эту характеристику вы сможете найти в паспорте устройства. Не следует экономить, приобретая агрегат с минимальной мощностью, так как в этом случае при больших нагрузках оборудование будет работать на износ. Однако этот параметр является одним из самых важных при выборе. Требуется обратить перед приобретением еще и на то, какой способ забора воды используется той или иной моделью. Схема центробежного насоса вам позволит понять, из каких частей состоит конструкция, это особенно важно, если монтажные работы вы будете производить самостоятельно. Необходимо разобраться еще и с тем, какое перед вами оборудование: насос нормального всасывания или самовсасывающее устройство.

В первом случае вода может поступать самотеком, тогда как самовсасывающие модели будут способны поднять воду с определенной глубины. Как показывает практика, этот параметр не превышает 8 метров.

fb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *