Конус развертка: Онлайн калькулятор: Развертка (выкройка) конуса
alexxlab | 11.07.2023 | 0 | Разное
прямой, наклонный и усеченный конус
Развертка поверхности конуса – это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.
Варианты построения развертки:
- Прямой круговой конус
- Наклонный конус
- Усеченный конус
Развертка прямого кругового конуса
Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.
В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.
Алгоритм построения
- Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
- Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.
Пример
На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.
Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B 0 с точками A0 и S0.
Грани S0B0C0, S0C0D0, S0D0E0, S0E0F0, S0F0A0 пирамиды SABCDEF строим аналогично треугольнику S0A0B0.
Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.
Развертка наклонного конуса
Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).
Алгоритм
- Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
- Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5. - Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020 , S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.
Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.
Перенос линии с поверхности конуса на развертку
Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.
Алгоритм
- Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
- Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
- Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
- Соединяем точки A0, B0, C0 плавной линией.
Развертка усеченного конуса
Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.
Алгоритм
- Строим вспомогательный конус ε, подобный конусу ω, как это показано на рисунке выше. Для удобства построения величину диаметра d выбираем таким образом, чтобы соотношение t=D/d выражалось целым числом. В рассматриваемом примере t=2.
- Строим развертку боковой поверхности конуса ε – S0A01020304050A0 и на биссектрисе угла A0S0A0 отмечаем точку O0, выбрав ее расположение произвольно.
- Проводим прямые O0A0, O010, O020, O030, O040, O050, O0A0 и на них откладываем отрезки [O0A10]=t×|O0A0|, [O0110]= t×|O010|, [O0210]=t×|O020|, [O0310]=t×|O030|, [O0410]=t×|O040|, [O0
510]=t×|O050|, [O0A10]=t×|O0A0| соответственно, где t=D/d.Соединяем точки A10, 110, 210, 310, 410, 510, A10 плавной линией.
- Из точек A10, 110, 210, 310, 410, 510, A10 проводим лучи, которые параллельны соответственно прямым A0S0, 10S0, 20S0, 30S0, 40S0, 50S0, A0S0, и на них откладываем отрезки A10B10, 110120, 210220, 310320, 410420, 5 10520, A10B10, равные l – образующей усеченного конуса. Проводим линию B10120220320420520B10.
Заказать чертеж
Построение развертки конуса.

Геометрия как наука сформировалась в Древнем Египте и достигла высокого уровня развития. Известный философ Платон основал Академию, где пристальное внимание уделялось систематизации имеющихся знаний. Конус как одна из геометрических фигур впервые упоминается в известном трактате Евклида “Начала”. Евклид был знаком с трудами Платона. Сейчас мало кто знает, что слово “конус” в переводе с греческого языка обозначает “сосновая шишка”. Греческий математик Евклид, живший в Александрии, по праву считается основоположником геометрической алгебры. Древние греки не только стали преемниками знаний египтян, но и значительно расширили теорию.
История определения конуса
Геометрия как наука появилась из практических требований строительства и наблюдений за природой. Постепенно опытные знания обобщались, а свойства одних тел доказывались через другие. Древние греки ввели понятие аксиом и доказательств. Аксиомой называется утверждение, полученное практическим путем и не требующее доказательств.
В своей книге Евклид привел определение конуса как фигуры, которая получается вращением прямоугольного треугольника вокруг одного из катетов. Также ему принадлежит основная теорема, определяющая объем конуса. А доказал эту теорему древнегреческий математик Евдокс Книдский.
Другой математик древней Греции, Аполлоний Пергский, который был учеником Евклида, развил и изложил теорию конических поверхностей в своих книгах. Ему принадлежит определение конической поверхности и секущей к ней. Школьники наших дней изучают Евклидову геометрию, сохранившую основные теоремы и определения с древних времен.
Основные определения
Прямой круговой конус образован вращением прямоугольного треугольника вокруг одного катета. Как видно, понятие конуса не изменилось со времен Евклида.
Гипотенуза AS прямоугольного треугольника AOS при вращении вокруг катета OS образует боковую поверхность конуса, поэтому называется образующей. Катет OS треугольника превращается одновременно в высоту конуса и его ось. Точка S становится вершиной конуса. Катет AO, описав круг (основание), превратился в радиус конуса.
Если сверху провести плоскость через вершину и ось конуса, то можно увидеть, что полученное осевое сечение представляет собой равнобедренный треугольник, в котором ось является высотой треугольника.
где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.
Формула расчета объема конуса
Для расчета объема конуса используется следующая формула:
где S является площадью основания конуса. Так как основание — круг, его площадь рассчитывается так:
Отсюда следует:
где V — объем конуса;
n — число, равное 3,14;
R — радиус основания, соответствующий отрезку AO на рисунке 1;
H — высота, равная отрезку OS.
Усеченный конус, объем
Имеется прямой круговой конус. Если плоскостью, перпендикулярной высоте, отсечь верхнюю часть, то получится усеченный конус. Два его основания имеют форму круга с радиусами R 1 и R 2 .
Если прямой конус образуется вращением прямоугольного треугольника, то усеченный конус — вращением прямоугольной трапеции вокруг прямой стороны.
Объем усеченного конуса рассчитывается по следующей формуле:
V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.
Конус и его сечение плоскостью
Перу древнегреческого математика Аполлония Пергского принадлежит теоретический труд «Конические сечения». Благодаря его работам в геометрии появились определения кривых: параболы, эллипса, гиперболы. Рассмотрим, причем здесь конус.
Возьмем прямой круговой конус. Если плоскость пересекает его перпендикулярно оси, то в разрезе образуется круг. Когда секущая пересекает конус под углом к оси, то в разрезе получается эллипс.
Секущая плоскость, перпендикулярная основанию и параллельная оси конуса, образует на поверхности гиперболу. Плоскость, разрезающая конус под углом к основанию и параллельная касательной к конусу, создает на поверхности кривую, которую назвали параболой.
Решение задачи
Даже простая задача о том, как изготовить ведро определенного объема, требует знаний. Например, необходимо рассчитать размеры ведра, чтобы оно имело объем 10 литров.
V=10 л=10 дм 3 ;
Развертка конуса имеет вид, схематически приведенный на рисунке 3.
L – образующая конуса.
Чтобы узнать площадь поверхности ведра, которая вычисляется по следующей формуле:
S=n*(R 1 +R 2)*L,
необходимо вычислить образующую. Ее находим из величины объема V=n*(R 1 2 +R 2 2 +R 1 *R 2)*H/3.
Отсюда H=3V/n*(R 1 2 +R 2 2 +R 1 *R 2).
Усеченный конус образуется вращением прямоугольной трапеции, в которой боковая сторона является образующей конуса.
L 2 =(R 2- R 1) 2 +H 2 .
Теперь у нас имеются все данные, чтобы построить чертеж ведра.
Почему пожарные ведра имеют форму конуса?
Кто задумывался, почему пожарные ведра имеют, казалось бы, странную коническую форму? А это не просто так. Оказывается, коническое ведро при тушении пожара имеет много преимуществ перед обычным, имеющим форму усеченного конуса.
Во-первых, как оказывается, пожарное ведро быстрее наполняется водой и при переноске она не расплескивается. Конус, объем которого больше обычного ведра, за один раз позволяет перенести больше воды.
Во-вторых, воду из него можно выплеснуть на большее расстояние, чем из обычного ведра.
В-третьих, если коническое ведро сорвется с рук и упадет в огонь, то вся вода выливается на очаг возгорания.
Все перечисленные факторы позволяют сэкономить время — главный фактор при тушении пожара.
Практическое применение
У школьников часто возникает вопрос о том, зачем учить, как рассчитывать объем разных геометрических тел, в том числе конуса.
А инженеры-конструкторы постоянно сталкиваются с необходимостью рассчитать объем конических частей деталей механизмов. Это наконечники сверл, части токарных и фрезерных станков. Форма конуса позволят сверлам легко входить в материал, не требуя первоначальной наметки специальным инструментом.
Объем конуса имеет куча песка или земли, высыпанная на землю. При необходимости, проведя несложные измерения, можно рассчитать ее объем. У некоторых вызовет затруднение вопрос о том, как узнать радиус и высоту кучи песка. Вооружившись рулеткой, измеряем окружность холмика C. По формуле R=C/2n узнаем радиус. Перекинув веревку (рулетку) через вершину, находим длину образующей. А вычислить высоту по теореме Пифагора и объем не составит труда. Конечно, такой расчет приблизителен, но позволяет определить, не обманули вас, привезя тонну песка вместо куба.
Некоторые здания имеют форму усеченного конуса. Например, Останкинская телебашня приближается к форме конуса. Ее можно представить состоящей из двух конусов, поставленных друг на друга. Купола старинных замков и соборов представляют собой конус, объем которого древние зодчие рассчитывали с удивительной точностью.
Если внимательно присмотреться к окружающим предметам, то многие из них являются конусами:
- воронки-лейки для наливания жидкостей;
- рупор-громкоговоритель;
- парковочные конусы;
- абажур для торшера;
- привычная новогодняя елочка;
- духовые музыкальные инструменты.
Как видно из приведенных примеров, умение рассчитать объем конуса, площадь его поверхности необходимо в профессиональной и повседневной жизни. Надеемся, что статья придет вам на помощь.
Развертка поверхности конуса – это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.
Варианты построения развертки:
Развертка прямого кругового конуса
Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.
В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.
Алгоритм построения
- Вписываем в коническую поверхность многоугольную пирамиду.
Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
- Строим развертку боковой поверхности пирамиды способом треугольников . Точки, принадлежащие основанию конуса, соединяем плавной кривой.
Пример
На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.
Рассмотрим треугольник S 0 A 0 B 0 . Длины его сторон S 0 A 0 и S 0 B 0 равны образующей l конической поверхности. Величина A 0 B 0 соответствует длине A’B’. Для построения треугольника S 0 A 0 B 0 в произвольном месте чертежа откладываем отрезок S 0 A 0 =l, после чего из точек S 0 и A 0 проводим окружности радиусом S 0 B 0 =l и A 0 B 0 = A’B’ соответственно. Соединяем точку пересечения окружностей B 0 с точками A 0 и S 0 .
Грани S 0 B 0 C 0 , S 0 C 0 D 0 , S 0 D 0 E 0 , S 0 E 0 F 0 , S 0 F 0 A 0 пирамиды SABCDEF строим аналогично треугольнику S 0 A 0 B 0 .
Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.
Развертка наклонного конуса
Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).
Алгоритм
- Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
- Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’ 1 занимает положение, при котором она параллельна фронтальной плоскости π 2 . Соответственно, S’’5’’ 1 – натуральная величина S5. - Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S 0 1 0 6 0 , S 0 6 0 5 0 , S 0 5 0 4 0 , S 0 4 0 3 0 , S 0 3 0 2 0 , S 0 2 0 1 0 . Построение каждого треугольника выполняется по трем сторонам. Например, у △S 0 1 0 6 0 длина S 0 1 0 =S’’1’’ 0 , S 0 6 0 =S’’6’’ 1 , 1 0 6 0 =1’6’.
Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.
Перенос линии с поверхности конуса на развертку
Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.
Алгоритм
- Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
- Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой.
В рассматриваемом примере SA=S’’A’’, SB=S’’B’’ 1 , SC=S’’C’’ 1 .
- Находим положение точек A 0 , B 0 , C 0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S 0 A 0 =S’’A’’, S 0 B 0 =S’’B’’ 1 , S 0 C 0 =S’’C’’ 1 .
- Соединяем точки A 0 , B 0 , C 0 плавной линией.
Развертка усеченного конуса
Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.
В геометрии усеченным конусом называется тело, которое образовано вращением прямоугольной трапеции около той ее боковой стороны, которая перпендикулярна основанию. Как рассчитывают объем усеченного конуса , всем известно еще из школьного курса геометрии, а на практике эти знания нередко применяют конструкторы различных машин и механизмов, разработчики некоторых товаров народного потребления, а также архитекторы.
Расчет объема усеченного конуса
Формула расчёта объёма усеченного конуса
Объем усеченного конуса рассчитывается по формуле:
V | πh (R 2 + R × r + r 2) |
h – высота конуса
r – радиус верхнего основания
R – радиус нижнего основания
V – объем усеченного конуса
π – 3,14
С такими геометрическими телами, как усеченные конусы , в повседневной жизни все сталкиваются достаточно часто, если не сказать – постоянно. Их форму имеют самые разнообразные емкости, широко используемые в быту: ведра, стаканы, некоторые чашки. Само собой разумеется, что конструкторы, которые их разрабатывали, наверняка использовали формулу, по которой рассчитывается объем усеченного конуса , поскольку эта величина имеет в данном случае очень большое значение, ведь именно она определяет такую важнейшую характеристику, как емкость изделия.
Инженерные сооружения, представляющие собой усеченные конусы , часто можно увидеть на крупных промышленных предприятиях, а также тепловых и атомных электростанциях. Именно такую форму имеют градирни – устройства, предназначенные для того, чтобы охлаждать большие объемы воды с помощью нагнетания встречного потока атмосферного воздуха. Чаще всего эти конструкции используются в тех случаях, когда требуется в короткие сроки существенно снизить температуру большого количества жидкости. Разработчиками этих сооружений в обязательном порядке определяется объем усеченного конуса формула для вычисления которого достаточно проста и известна всем тем, кто в свое время хорошо учился в средней школе.
Детали, имеющие эту геометрическую форму, достаточно часто встречаются в конструкции различных технических устройств. Например, зубчатые передачи, используемые в системах, где требуется изменить направление кинетической передачи, чаще всего реализуются с помощью конических шестеренок. Эти детали являются неотъемлемой частью самых разнообразных редукторов, а также автоматических и механических коробок переключения передач, используемых в современных автомобилях.
Форму усеченного конуса имеют некоторые широко применяемые на производстве режущие инструменты, например, фрезы. С их помощью можно обрабатывать наклонные поверхности под определенным углом. Для заточки резцов металлообрабатывающего и деревообрабатывающего оборудования часто используются абразивные круги, также представляющие собой усеченные конусы. Кроме того, объем усеченного конуса требуется определять конструкторам токарных и фрезерных станков, которые предполагают крепление режущего инструмента, оснащенного коническим хвостовиками (сверл, разверток и т. п.).
Вместо слова «выкройка» иногда употребляют «развертка», однако этот термин неоднозначен: например, разверткой называют инструмент для увеличения диаметра отверстия, и в электронной технике существует понятие развертки. Поэтому, хоть я и обязан употребить слова «развертка конуса», чтобы поисковики и по ним находили эту статью, но пользоваться буду словом «выкройка».
Построение выкройки для конуса — дело нехитрое. Рассмотрим два случая: для полного конуса и для усеченного. На картинке (кликните, чтобы увеличить) показаны эскизы таких конусов и их выкроек. (Сразу замечу, что речь здесь пойдет только о прямых конусах с круглым основанием. Конусы с овальным основанием и наклонные конусы рассмотрим в следующих статьях).
1. Полный конус
Обозначения:
Параметры выкройки рассчитываются по формулам:
;
;
где .
2. Усеченный конус
Обозначения:
Формулы для вычисления параметров выкройки:
;
;
;
где .
Заметим, что эти формулы подойдут и для полного конуса, если мы подставим в них .
Иногда при построении конуса принципиальным является значение угла при его вершине (или при мнимой вершине, если конус усеченный). Самый простой пример — когда нужно, чтобы один конус плотно входил в другой. Обозначим этот угол буквой (см. картинку).
В этом случае мы можем его использовать вместо одного из трех входных значений: , или . Почему «вместо «, а не «вместе «? Потому что для построения конуса достаточно трех параметров, а значение четвертого вычисляется через значения трех остальных. Почему именно трех, а не двух и не четырех — вопрос, выходящий за рамки этой статьи. Таинственный голос мне подсказывает, что это как-то связано с трехмерностью объекта «конус». (Сравните с двумя исходными параметрами двухмерного объекта «сегмент круга», по которым мы вычисляли все остальные его параметры в статье .)
Ниже приведены формулы, по которым определяется четвертый параметр конуса, когда заданы три.
4. Методы построения выкройки
- Вычислить значения на калькуляторе и построить выкройку на бумаге (или сразу на металле) при помощи циркуля, линейки и транспортира.
- Занести формулы и исходные данные в электронную таблицу (например, Microsoft Exel). Полученный результат использовать для построения выкройки при помощи графического редактора (например, CorelDRAW).
- использовать мою программу , которая нарисует на экране и выведет на печать выкройку для конуса с заданными параметрами. Эту выкройку можно сохранить в виде векторного файла и импортировать в CorelDRAW.
5. Не параллельные основания
Что касается усеченных конусов, то программа Cones пока строит выкройки для конусов, имеющих только параллельные основания.
Для тех, кто ищет способ построения выкройки усеченного конуса с не параллельными основаниями, привожу ссылку, предоставленную одним из посетителей сайта:
Усеченный конус с не параллельными основаниями.
Иногда возникает задача – изготовить защитный зонт для вытяжной или печной трубы, вытяжной дефлектор для вентиляции и т.п. Но прежде чем приступить к изготовлению, надо сделать выкройку (или развертку) для материала. В интернете есть всякие программы для расчета таких разверток. Однако задача настолько просто решается, что вы быстрее рассчитаете ее с помощью калькулятора (в компьютере), чем будете искать, скачивать и разбираться с этими программами.
Начнем с простого варианта — развертка простого конуса. Проще всего объяснить принцип расчета выкройки на примере.
Допустим, нам надо изготовить конус диаметром D см и высотой H сантиметров. Совершенно понятно, что в качестве заготовки будет выступать круг с вырезанным сегментом. Известны два параметра – диаметр и высота. По теореме Пифагора рассчитаем диаметр круга заготовки (не путайте с радиусом готового конуса). Половина диаметра (радиус) и высота образуют прямоугольный треугольник. Поэтому:
Итак, теперь мы знаем радиус заготовки и можем вырезать круг.
Вычислим угол сектора, который надо вырезать из круга. Рассуждаем следующим образом: Диаметр заготовки равен 2R, значит, длина окружности равна Пи*2*R — т.е. 6.28*R. Обозначим ее L. Окружность полная, т.е. 360 градусов. А длина окружности готового конуса равна Пи*D. Обозначим ее Lm. Она, естественно, меньше чем длина окружности заготовки. Нам нужно вырезать сегмент с длиной дуги равной разности этих длин. Применим правило соотношения. Если 360 градусов дают нам полную окружность заготовки, то искомый угол должен дать длину окружности готового конуса.
Из формулы соотношения получаем размер угла X. А вырезаемый сектор находим путем вычитания 360 – Х.
Из круглой заготовки с радиусом R надо вырезать сектор с углом (360-Х). Не забудьте оставить небольшую полоску материала для нахлеста (если крепление конуса будет внахлест). После соединения сторон вырезанного сектора получим конус заданного размера.
Например: Нам нужен конус для зонта вытяжной трубы высотой (Н) 100 мм и диаметром (D) 250 мм. По формуле Пифагора получаем радиус заготовки – 160 мм. А длина окружности заготовки соответственно 160 x 6,28 = 1005 мм. В тоже время длина окружности нужного нам конуса — 250 x 3,14 = 785 мм.
Тогда получаем, что соотношение углов будет такое: 785 / 1005 x 360 = 281 градус. Соответственно вырезать надо сектор 360 – 281 = 79 градусов.
Расчет заготовки выкройки для усеченного конуса.
Такая деталь бывает нужна при изготовлении переходников с одного диаметра на другой или для дефлекторов Вольперта-Григоровича или Ханженкова. Их применяют для улучшения тяги в печной трубе или трубе вентиляции.
Задача немного осложняется тем, что нам неизвестна высота всего конуса, а только его усеченной части. Вообще же исходных цифр тут три: высота усеченного конуса Н, диаметр нижнего отверстия (основания) D, и диаметр верхнего отверстия Dm (в месте сечения полного конуса). Но мы прибегнем к тем же простым математическим построениям на основе теоремы Пифагора и подобия.
В самом деле, очевидно, что величина (D-Dm)/2 (половина разности диаметров) будет относиться с высотой усеченного конуса Н так же, как и радиус основания к высоте всего конуса, как если бы он не был усечен. Находим полную высоту (P) из этого соотношения.
(D – Dm)/ 2H = D/2P
Отсюда Р = D x H / (D-Dm).
Теперь зная общую высоту конуса, мы можем свести решение задачи к предыдущей. Рассчитать развертку заготовки как бы для полного конуса, а затем «вычесть» из нее развертку его верхней, ненужной нам части. А можем рассчитать непосредственно радиусы заготовки.
Получим по теореме Пифагора больший радиус заготовки — Rz. Это квадратный корень из суммы квадратов высоты P и D/2.
Меньший радиус Rm – это квадратный корень из суммы квадратов (P-H) и Dm/2.
Длина окружности нашей заготовки равна 2 х Пи х Rz, или 6,28 х Rz. А длина окружности основания конуса – Пи х D, или 3,14 х D. Соотношение их длин и дадут соотношение углов секторов, если принять, что полный угол в заготовке – 360 градусов.
Т.е. Х / 360 = 3,14 x D / 6.28 x Rz
Отсюда Х = 180 x D / Rz (Это угол, который надо оставить, что бы получить длину окружности основания). А вырезать надо соответственно 360 – Х. 2 = 364 мм.
Определяем угол сектора нашей заготовки: 180 х 300 / 618,5 = 87.3 градуса.
На материале чертим дугу с радиусом 618,5 мм, затем из того же центра – дугу радиусом 364 мм. Угол дуги может имеет примерно 90-100 градусов раскрытия. Проводим радиусы с углом раскрытия 87.3 градуса. Наша заготовка готова. Не забудьте дать припуск на стыковку краев, если они соединяются внахлест.
Ridgid 35020 Spiral Reamer Cone
. Вы в настоящее время совершаете покупки как {{ authInfo.email }}
Вопросы относительно онлайн-заказа? Пожалуйста, позвоните по телефону 724-834-2811 .
Заказы, размещенные с использованием этой учетной записи, будут обрабатываться через Scott Electric Supply (дочерняя компания Scott Electric)..
Вы совершаете покупки как гость . Войдите в систему как учетная запись клиента Scott Electric или Scott Electric Supply, чтобы просмотреть полную информацию о ценах и наличии.
Цену уточняйте по телефону (800) 442-8045
{{ checkForQtyBreaks(продукт) | валюта }}{{ getUnitOfMeasure(product.per) }}
Превышение количества
· Более {{ brk.qty-1 }}: {{ brk.price | валюта }}{{ getUnitOfMeasure(product.per) }}
Также известен как: ,
{{alert.msg}}
Как вы это называете?
Кто-то просмотрит ваш поисковый запрос и добавит его в наш список «Также известен как».
Количество:
Этот товар необходимо заказывать в количестве {{ product.standardPackaging }}
Позвоните, чтобы узнать о наличии
Позвоните, чтобы узнать о наличии
Стоимость резки: {{ getCutCharge(product) | валюта }}
ПЕРЕВОЗКИ
min > 0 && totalcartamt < defaultSt.min”> БЕСПЛАТНАЯ ДОСТАВКА0″> Этот товар необходимо заказать до 20:00 по восточному поясному времени для доставки на следующий день. 0″> Этот товар может быть недоступен для доставки на следующий день
Для выбранного адреса доставки требуется минимальный заказ {{ defaultSt.min | валюта }}, чтобы претендовать на бесплатную доставку. В противном случае вы можете забрать свой заказ в {{ getBranch(defaultSt.branch) }}.
Компания Scott Electric предлагает бесплатную стандартную наземную доставку всех товаров, продаваемых через Интернет, только на территории США, если не указано иное.
СЛУЖБА ПОДДЕРЖКИ
Наш отдел обслуживания клиентов доступен с понедельника по пятницу с 8:00 до 17:00 по восточному поясному времени, чтобы ответить на ваши вопросы.
Обратите внимание: Ваш заказ будет обработан через компанию Scott Electric Supply (дочерняя компания Scott Electric).
Скотт Электрик является оптовым дистрибьютором электроэнергии. Если у вас нет учетной записи у нас, пожалуйста, свяжитесь с нами наш кредитный отдел и откройте учетную запись, чтобы получить доступ к местным ценам и доступности всего нашего онлайн-инвентаря.
- Описание
- Технические характеристики
- Технические характеристики
{{ product.fulldescription }}
{{ атрибут.![]() | {{ атрибут.значение }} |
{{ атрибут.имя }} | {{ атрибут.значение }} |
РАЗВЕРТКИ MANSON ИНСТРУМЕНТЫ ДЛЯ НАГНЕТАНИЯ КОНУСА
Получите все свои оружейные инструменты на сайте Brownells.com, нажав здесь.
Время от времени появляется инструмент, который революционизирует процесс, каким бы малоизвестным или кажущимся неважным он ни был. В то время как отличные инструменты для нагнетания конуса не являются необходимыми для жизни на планете, те, которые хорошо работают, очень удобны для тех, кто использует их даже нерегулярно, не говоря уже о ежедневном использовании. Дэйв Мэнсон из Manson Precision Reamers предоставил профессиональным оружейникам и любителям набор инструментов, который представляет собой качественный скачок вперед.
Стволы револьверов имеют скос на устье, прямо перед дульным срезом цилиндра, обычно называемый «напорным конусом». Цель этого скромного конического выреза состоит в том, чтобы провести пулю в нарезы с минимальной стружкой и деформацией и часто определяет разницу между точным револьвером и молотком с плакатом «Разыскивается». У старинных револьверов часто не было ничего, кроме фаски под углом от 45 до 60 градусов, что мало помогало. Потом в голове у какого-то остроумного мальчишки мелькнула лампочка, и он увидел, что более длинный и пологий угол скоса для попадания пули в ствол с меньшими повреждениями был бы гораздо лучше. Со временем большинство производителей револьверов остановились на угле около 11 градусов, и с миром все было в порядке.
Форсирующий конус и развертки для снятия фаски, а также точечная фреза,
, все со съемными направляющими, облегчают работу со стволом револьвера.
Но почему?
Время от времени оружейникам и производителям револьверов нужно будет вырезать или перерезать конусы нагнетания. Реликтовые револьверы с принудительными скосами нуждаются в обработке, чтобы заставить их работать. Более поздние орудия могут иметь более крутые углы конуса и могут быть улучшены. Сильно используемые пистолеты могут иметь сгоревшие или иным образом поврежденные конусы, которые необходимо заменить. Для вновь установленных стволов часто требуется углубление существующего надлежащего напорного конуса до нужного диаметра. Для стволов, изготовленных на заказ, нужен только конус, и точка.
До сих пор это упражнение часто вызывало разочарование из-за существующей конструкции инструмента. Традиционная конусообразная фреза была снабжена резьбой для привода инструмента с Т-образной рукояткой. Направляющие втулки в том виде, в каком они были, надевались на вал приводного инструмента. Подгонка к валу была небрежной, а диаметр втулки был универсальным. Часто резьба фрезы и приводного инструмента не была соосной. Инструмент часто был слишком небрежным, чтобы выровнять изогнутый эксцентричный нагнетающий конус, поскольку фреза просто следовала за петлеобразным существующим вырезом. Плохая подгонка втулки к стволу вызвала дребезжание режущей кромки, что привело к грубой, жевательной отделке, что вызвало острые и недобрые комментарии.
Плотно прилегающие направляющие втулки помогают свести к минимуму вибрацию и обеспечивают плавный рез.
Внизу: приводной вал с Т-образной рукояткой имеет подпружиненную центрирующую направляющую
и кольцо предварительной нагрузки, помогающее удерживать ножи на одной линии. Очень круто.
Собаки и кошки?
Инструмент Manson Precision Reamers решает все эти проблемы одним махом благодаря своей запатентованной конструкции. Мало того, что направляющая втулка находится на самой фрезе — для идеального выравнивания между фрезой и втулкой — сами втулки являются съемными и доступны в различных диаметрах с шагом 0,0005″. Помимо пилотируемого резака, приводная рукоятка имеет нейлоновый центрирующий конус, удерживаемый пружиной на дульном срезе. Скользящая муфта предварительного заряжания позволяет легко приспосабливать стволы разной длины и регулировать центрирующее натяжение по своему вкусу. Благодаря идеальному выравниванию фрез и посадке втулки результаты поразительны. Гладкие, концентрические нагнетающие конусы — это детская игра. Даже собаки и кошки могли использовать этот инструмент. Ладно, даже собаки могли, насчет кота не обещаю.
В дополнение к базовому 11-градусному конусному резаку, Manson может поставить 45-градусный отрезной инструмент для снятия внутренней кромки только что срезанного конуса, что предотвратит сгорание этой кромки под воздействием высокой температуры и давления. Доступный инструмент для торцевания под углом 90 градусов помогает срезать последние несколько тысячных дюйма при установке стволов или открытии зазоров между стволом и цилиндром.
Две 11-градусные конусные и две 45-градусные конические фрезы подходят для калибров от .357 до .50. Четыре 9Резцы с углом наклона 0 градусов охватывают практически все известные диаметры хвостовика револьвера. В каждом калибре есть несколько втулок для наилучшей посадки ствола. Набор калибров штифтов с шагом 0,0005″ для обычного диапазона диаметров отверстия будет полезен при заказе правильного. Просто имейте в виду, что нужно проверять казенную часть ствола, так как многие стволы установлены жестко и имеют небольшое сужение. Цены на отдельные фрезы начинаются от 48 долларов, а втулки — по 12 долларов за штуку. Ручка резака с центрирующей направляющей стоит 24 доллара.
Нагнетающие конусы должны быть вырезаны в пределах довольно узкого диапазона диаметров устья. Общее эмпирическое правило заключается в том, что ружья с хорошей дальностью действия, вероятно, должны иметь более короткие конусы меньшего размера, поскольку излишне длинные конусы дают больше возможностей пороховым газам поглотить смазку пули и смягчить открытые стороны пуль, чтобы лучше припаять ствол. Если ружье хорошо стреляет, подойдет более короткий конус. Обратитесь в Brownells или Midway, чтобы узнать о штангах и конусных калибрах.
После первого использования этого инструмента теперь я могу выполнять эту простую повседневную работу без страха и трепета. Настоящим испытанием будет то, воспользуются ли им эльфы, если мы оставим его на верстаке на ночь. Скрестите пальцы.
Для получения дополнительной информации: Manson Precision Reamers, www.mansonreamers.com, (810) 953-0732,; Браунеллс, (800) 741-0015, www.brownels.com; Midway USA, (800) 243-3220, www.midwayusa.com
Подпишитесь на American Handgunner
Получите все свои оружейные инструменты на сайте Brownells.com, нажав здесь.
Думаем, вам это тоже будет интересно
Следующий уровень…
Если дома, на работе, в Северной Корее или на борту Международной космической станции жизнь пойдет наперекосяк, вы действительно не найдете лучшего средства защиты.
1
Вот немного…
Вы когда-нибудь принимали наркотики через грязь? Как насчет того, чтобы тебя назвали палкой в грязи? Звучит ясно, как грязь, верно? Ну вот вам и грязь в глаза, если вы…
11
Примите участие, чтобы выиграть…
Примите участие, чтобы выиграть American Handgunner Розыгрыш подарков от Les Baer, Kershaw Knives и Versacarry за июль/август 2023 года.