Маркировка трубчатые конденсаторы: Маркировка постоянных конденсаторов
alexxlab | 17.03.2023 | 0 | Разное
Радиоэлементы из старой аппаратуры: конденсаторы
Вторым незаменимым элементом в электрических схемах является конденсатор. Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.
Конденсаторы неполярныеНеполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.
Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.
Рис. 1. Конденсаторы КПК
Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:
1 – вакуумные; 2 – воздушные; 3 – газонаполненные; 4 – твердый диэлектрик; 5 – жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 – подстроечный конденсатор с твердым диэлектриком.
Рис. 2 Современные подстроечные чип-конденсаторы
Для настройки радиоприемников на нужную частоту применяют
Рис. 3 Конденсаторы КПЕ
Их можно встретить только в приемо-передающей аппаратуре
1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 – переменный конденсатор для УКВ блоков с верньером
3 – переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.
Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются. 10 Ом.
Рис. 5 Конденсаторы КТК
Конденсаторы КТК – Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные – голубые и серые. Вообще этот тип очень хорош для ВЧ техники.
Таблица 1. Маркировка ТКЕ керамических конденсаторов
При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.
Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.
Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)
Таблица 2
Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться.
Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя – количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть “9”. При емкостях меньше 1.0 пФ первая цифра “0”. Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 – 0.5 пФ. Несколько примеров собраны в таблице:
Маркировка цифробуквенная:
2n2- 2.2 нанофарада
n10 – 100 пикофарад
Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).
В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов
Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.
Рис. 7 Конденсатор МБМ и К42У-2
Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.
Рис. 8. МБГО, МБГЧ
Рис. 9
Кроме обозначения, указывающего конструктивные особенности (КСО – конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая – особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.
Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.
Рис. 10. Различные типы конденсаторов
Рис. 11. Конденсатор типа К73-15
Основные типы конденсаторов, в скобочках импортные аналоги.
К10 -Керамический, низковольтный (Upa6<1600B)
К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)
Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка.
Рис. 12. Импортные слюдяные конденсаторы
На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.
Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %
Буквенное обозначение | лат. | рус. |
+/- 0,05p | A | |
+/- 0,1p | B | Ж |
+/- 0,25p | C | У |
+/- 0,5p | D | Д |
+/- 1,0 | F | Р |
+/- 2,0 | G | Л |
+/- 2,5 | H | |
+/- 5,0 | J | И |
+/- 10 | K | С |
+/- 15 | L | |
+/- 20 | M | В |
+/- 30 | N | Ф |
-0. | P | |
-10…+30 | Q | |
+/- 22 | S | |
-0…+50 | T | |
-0…+75 | U | Э |
-10…+100 | W | Ю |
-20…+5 | Y | Б |
-20…+80 | Z | А |
Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.
Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.
Номинальное напряжение, В | Буква обозначения |
1 | I |
1,6 | R |
2,5 | M |
3,2 | A |
4 | C |
6,3 | B |
10 | D |
16 | E |
20 | F |
25 | G |
32 | H |
40 | S |
50 | J |
63 | K |
80 | L |
100 | N |
125 | P |
160 | Q |
200 | Z |
250 | W |
315 | X |
350 | T |
400 | Y |
450 | U |
500 | V |
Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.
Рис. 13. Высоковольтные конденсаторы
К полярным конденсаторам относятся все электролитические, которые бывают:
Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.
Рис. 14. Электролитические конденсаторы. Снизу – для поверхностного монтажа.
Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.
Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.
Основные размеры танталовых чип-конденсаторов:
К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.
Рис. 15 Варикапы кв106б, кв102
Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.
К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10…100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В[4].
Рис. 16. Ионисторы
Источники:
www. powerinfo.ru
www.qrz.ru
www.go-radio.ru
форум cxem.net
Конденсатор трубчатый керамический маркировка
Конденсаторы относятся к массовым деталям радиоаппаратуры. Применяются они во всевозможных схемах для разделения переменной и постоянной составляющих тока; с помощью конденсаторов сглаживается пульсация напряжений выпрямителей; в сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре, и т. Каждый конденсатор обладает следующим важным свойством: он не пропускает постоянный ток, так как продолжительному движению электронов в одном направлении препятствует изолятор диэлектрик между пластинами. Зато переменный ток в цепи с конденсатором может проходить, так как электроны при переменном токе будут накапливаться то на одной, то на другой пластине конденсатора. Таким образом, конденсатор как бы пропускает переменный ток и является для него лишь некоторым сопротивлением.
Поиск данных по Вашему запросу:
Схемы, справочники, даташиты:
Прайс-листы, цены:
Обсуждения, статьи, мануалы:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.
Содержание:
- Файл:Радио 1975 г. №11.djvu
- 2.2.3.Система обозначений и маркировка конденсаторов.
- Маркировка и обозначения конденсаторов
- Юный техник – для умелых рук 1957-16, страница 4
- Конденсаторы.
- КОНДЕНСАТОРЫ. Классификация. Обозначения. Параметры.
- Трубчатый конденсатор
- Радиоэлементы из старой аппаратуры: конденсаторы
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: А ты знал? Конденсаторы. Тантал и ниобий)) Как отличить?
Файл:Радио 1975 г. №11.djvu
Конденсатором называется система из двух или более проводников обкладок , разделенных диэлектриком, предназначенная для использования ее электрической емкости. Электрическая емкость – способность накапливать на обкладках конденсатора электрический заряд.
Если взять две изолированные металлические пластины, расположенные на некотором расстоянии друг от друга, и зарядить их равными разноимёнными зарядами, то на одну из пластин при этом перейдёт некоторый отрицательный заряд добавится некоторое избыточное число электронов , а на другой появится равный ему положительный заряд соответствующее число электронов будет удалено из пластины.
Емкость характеризуется отношением заряда к величине напряжения на обкладках:. Емкость зависит от геометрических размеров обкладок, толщины диэлектрика и его диэлектрической проницаемости.
Диэлектрическая проницаемость в свою очередь у конденсаторов постоянной емкости – константа, а у нелинейных конденсаторов – зависит от напряженности электрического поля. Номинальная емкость – условное значение емкости, полученное на стадии проектирования, указываемое на корпусе электроэлемента или таре. Для справки: емкость Земли составляет мкФ. Промышленностью изготавливаются конденсаторы постоянной емкости от одного пФ до нескольких десятков тысяч мкФ.
Номинальные значения емкости выбираются из рядов Е3, Е6, Е12 и Е Основные конструкции конденсаторов изображены на рисунке 1. Для каждой из них емкость определяется по определенной формуле. Конструкции конденсаторов : а пластинчатая; б цилиндрическая; в спиральная. Допускаемое отклонение фактической величины от номинальной называется допуском и указывается в процентах или с помощью класса точности, аналогично резисторам.
Классы точности и допуски регламентированы ГОСТ Конденсаторы первого класса точности используются в колебательных контурах и в ответственных цепях, а в развязывающих и блокирующих цепях достаточно использовать элементы третьего класса.
U раб – напряжение, при котором конденсатор может работать длительное время до 10 тыс. Для его определения необходимо использовать значение реактивной мощности при заданной емкости и частоте сигнала:. Uисп – напряжение, которое конденсатор может выдержать без пробоя незначительное время от 5 с до 1 мин ;. Величина электрической прочности конденсатора в значительной мере определяется механизмом пробоя диэлектрика. При тепловом характере пробоя повышение температуры, частоты и напряжения снижает электрическую прочность конденсатора.
Наличие воздушных включений в диэлектрике и их ионизация под воздействием электрического поля приводит к местному перегреву и к снижению электрической прочности.
Последовательная эквивалентная схема конденсатора изображена на рис. Зависимость полного сопротивления конденсатора от частоты имеет U-образный характер рис. Величина fo в основном зависит от собственной индуктивности конденсатора. Собственная индуктивность снижается при уменьшении: размеров конденсаторной секции и длины внутренних соединений электроэлемента, длины выводов, а также при увеличении толщины выводов лучше всего выводы, изготовленные в виде лент.
На практике для обеспечения работы блокировочных конденсаторов, у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы, в широком диапазоне частот, параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.
При подаче напряжения через диэлектрик конденсатора начинает протекать ток утечки, обусловленный наличием в материале свободных ионов, перемещающихся под действием электрического поля, а также дефектами кристаллической решетки. Ток утечки замеряют после нахождения конденсатора под напряжением в течение одной минуты. Диапазон значений сопротивления изоляции: 10 Оно зависит от температуры и относительной влажности и с повышением этих параметров сопротивление изоляции может уменьшаться на несколько порядков.
Например, у бумажных конденсаторов ток утечки составляет десятые доли мкА, а у слюдяных – единицы мА. Наличие тока утечки является причиной саморазряда конденсатора. Скорость изменения напряжения снижение на выводах конденсатора в процессе саморазряда определяется постоянной времени:.
Для различных типов конденсаторов величина различна. Добротность – величина, обратная тангенсу угла потерь:. На низких частотах определяющими являются потери в диэлектрике, на высоких – в металле.
С повышением температуры, частоты и влажности потери в диэлектрике и металле увеличиваются, так как возрастают потери на проводимость. Параметры, характеризующие стабильность. Стабильность – это способность элементов сохранять свои первоначальные параметры в пределах, установленных ТУ и ГОСТ при воздействии внешних факторов.
В первую очередь учитывается температура окружающей среды. Изменения, вызываемые колебанием температуры делятся на обратимые и необратимые. Обратимое изменение параметра – это такое, при котором параметр изменяется в соответствии с изменением температуры, а после установления первоначальной температуры параметр возвращается к своему исходному значению. Такие изменения характеризуются температурным коэффициентом ТК.
ТК показывает относительное изменение величины параметра при изменении температуры на 1 градус Цельсия Кельвина :.
Необратимые изменения свидетельствуют о несовершенстве конструкции элемента, в котором могут возникать остаточные деформации и проявляться механизмы старения. Для сохранения настройки колебательных контуров при работе в широком диапазоне температур используется последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки.
Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура останется практически неизменной. Диэлектрическая абсорбция конденсаторов – явление, заключающееся в появлении напряжения на обкладках конденсатора после кратковременной разрядки конденсатора рис.
Обуславливается замедленными процессами поляризации в диэлектрике. Напряжение Uост зависит от длительности зарядки t1, времени разряда и времени, прошедшего после этих процессов. Абсорбция диэлектрика конденсаторов характеризуется коэффициентом Ка, значения которого минимальны у полистирольных и фторопластовых конденсаторов 0, С повышением температуры окружающей среды значение Ка увеличивается. Параметры, характеризующие надежность. По характеру изменения емкости конденсаторы по аналогии с резисторами делятся на следующие виды: постоянной емкости, переменной емкости и подстроечные.
На электрических схемах в зависимости от вида различается и обозначение конденсаторов см. Обозначение на электрической принципиальной схеме конденсаторов: а – постоянной емкости; б – переменной емкости и подстроечные. Конденсаторы с постоянной емкостью используются как элементы контуров в фильтрах вместе с катушками индуктивности и резисторами, для разделения сигналов, сглаживания колебаний напряжения и для блокировки.
Конденсаторы с переменной емкостью используются при настройке контуров и режимов работы схем при частых регулировка хв процессе работы аппаратуры. Изменение емкости может осуществляться механически, с помощью приложенного напряжения вариконды и варикапы и температуры термоконденсаторы.
Подстроечные конденсаторы используются при подгонке емкости до заданной величины в процессе настройки электронной аппаратуры. Конденсаторы постоянной емкости и подстроечные стандартизованы ГОСТ, а переменной емкости – выпускаются по индивидуальным заказам.
Поскольку электрические свойства и область применения конденсаторов в основном определяется диэлектриком, разделяющим обкладки, то классификация производится по типу диэлектрика. Буквенная кодировка обозначает тип, свойства и конструктивное исполнение конденсатора см.
Первый элемент обозначает вид электроэлемента: К – конденсатор постоянной емкости, КП – переменной емкости, КТ – подстроечные. Второй элемент – число, в котором закодирована группа конденсатора по типу диэлектрика и свойства электроэлемента рассмотрены ниже.
Конденсаторы постоянной емкости в зависимости от применяемого диэлектрика подразделяются на конденсаторы с воздушным и с твердым диэлектриком. Конденсаторы с воздушным диэлектриком обладают большими размерами и высокой стоимостью.
Находят в настоящее время ограниченное применение в контурах мощных радиопередатчиков и в промышленных генераторах высокой частоты ВЧ. В свою очередь конденсаторы с твердым диэлектриком делятся на: конденсаторы с органическим диэлектриком , к которым относится бумага, полистирол, фторопласт и другие органические пленки, нашедшие широкое применение в конденсаторостроении; и конденсаторы с неорганическим диэлектриком , к которым относятся керамика, стекло, стеклокерамика, слюда.
Конденсаторы с органическим диэлектриком изготавливают намоткой тонких длинных лент, а обкладки либо фольговые, либо напыляются.
Исключение составляют конденсаторы, изготовленные на основе неполярных пленок; для этой группы конденсаторов характерны емкости, достигающие нескольких десятков микрофарад. К низкочастотным пленочным относятся конденсаторы с диэлектриком из полярных и слабополярных пленок: бумажные, металлобумажные, полиэтилентерефталатные, комбинированные, лакопленочные, поликарбонатные и полипропиленовые. Частота работы до 10 5 Гц. К высокочастотным пленочным относятся конденсаторы на основе неполярных пленок: полистирольные и фторопластовые.
Частота работы до 10 7 Гц. В высоковольтных конденсаторах постоянного напряжения используется бумага, полистирол, политетрафторэтилен, полиэтилентерефталат, комбинированный состав. Импульсные высоковольтные конденсаторы производят на основе бумажного и комбинированного диэлектрика, они имеют относительно большое время заряда и малое время разряда.
Высоковольтные конденсаторы должны иметь большое сопротивление изоляции и возможность быстро разряжаться. Помехоподавляющие конденсаторы предназначены для ослабления электромагнитных помех в широком спектре частот. Они обладают малой собственной индуктивностью, из-за чего повышается резонансная частота и полоса подавляемых частот. Диэлектрик в таких конденсаторах бумажный, пленочный или комбинированный. Дозиметрические конденсаторы работают с низким уровнем токовых нагрузок, но они должны обладать малым саморазрядом, большим сопротивлением изоляции, а, следовательно, большой величиной постоянной времените.
Пусковые конденсаторы используются в асинхронных двигателях, в которых конденсатор используется только в момент пуска двигателя.
2.2.3.Система обозначений и маркировка конденсаторов.
В керамических конденсаторах диэлектриком служит трубка или диск из специальной конденсаторной керамики, а обкладками — тонкие слои серебра, напыленные на поверхность керамики.
Система обозначений и маркировка конденсаторов. конденсатор литой герметизированный, КТ -керамический трубчатый и т. д.
Маркировка и обозначения конденсаторов
Он-лайн калькулятор дает возможность рассчитать номинальное значение радиоэлементов таких как резистор, конденсатор и индуктивность, имеющие на своем корпусе вместо цифрового обозначения цветные полоски на корпусе.
Юный техник – для умелых рук 1957-16, страница 4
Вторым незаменимым элементом в электрических схемах является конденсатор. Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.
Циклевка паркета цены Мастер Паркетов циклевка паркета.
Конденсаторы.
Слюдяной конденсатор, применяется в высокочастотных цепях, фильтрах, как шунтрирующие и др. Конструкция всех слюдяных конденсаторов в общем-то одинакова, К отличаются корпусом – капсула из эпоксидного компаунда. Конденсаторы фольгированные полиэтилентерефталантные. Предназначены для работы в цепях постоянного, переменного, и пульсирующего токов. К 47nK NA8, изготовитель – логотип непонятен
КОНДЕНСАТОРЫ. Классификация. Обозначения. Параметры.
Далее: Конденсаторы переменной емкости. Конденсаторы постоянной емкости применяют в различных схемах для разделения переменной и постоянной составляющих тока и сглаживания пульсации напряжений выпрямителя. В сочетании с другими элементами схем конденсаторы образуют резонансные контуры, широко используемые в радиоаппаратуре. Конденсаторы постоянной емкости классифицируют по величине номинальной емкости, классу точности, номинальному рабочему напряжению, назначению, материалу диэлектрика и по конструктивным признакам.
Конденсаторы трубчатые керамические серии КТК предназначены для нужд народного хозяйства в качестве комплектующих изделий. Конденсаторы.
Трубчатый конденсатор
Конденсатором называется система из двух или более проводников обкладок , разделенных диэлектриком, предназначенная для использования ее электрической емкости. Электрическая емкость – способность накапливать на обкладках конденсатора электрический заряд. Если взять две изолированные металлические пластины, расположенные на некотором расстоянии друг от друга, и зарядить их равными разноимёнными зарядами, то на одну из пластин при этом перейдёт некоторый отрицательный заряд добавится некоторое избыточное число электронов , а на другой появится равный ему положительный заряд соответствующее число электронов будет удалено из пластины.
Радиоэлементы из старой аппаратуры: конденсаторы
MКC Настоящий стандарт разработан методом прямого применения международного стандарта МЭК “Коды для маркировки резисторов и конденсаторов” с дополнительными требованиями, отражающими потребности народного хозяйства. Раздел, в котором приведена ссылка. Обозначение отечественного нормативно-технического документа, на который дана ссылка.
Система обозначения отечественных конденсаторов.
Рассматриваются основные параметры и характеристики различных классов конденсаторов, выпускаемых промышленностью. Приводится классификация конденсаторов, рассматриваются их конструктивные разновидности. Предлагаются рекомендации по выбору, применению и эксплуатации конденсаторов в радиоаппаратуре. Для широкого круга радиолюбителей. Настоящий Справочник представляет собой достаточно полное издание, содержащее сведения о широкой номенклатуре конденсаторов.
В настоящее время принята система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая – особенности диэлектрика или эксплуатации см. Например, обозначение К означает керамический низковольтный конденсатор с 17 порядковым номером разработки. Кроме того, применяются обозначения, указывающие конструктивные особенности: КСО – конденсатор слюдяной спрессованный, КЛГ – конденсатор литой герметизированный, КТ -керамический трубчатый и т.
Таблица кодов конденсаторов
Европейские коды материалов конденсаторов
FKC
Металлическая фольга и поликарбонатная диэлектрическая пленка. См. MKC для более подробной информации.
ФКП
Металлическая фольга и полипропиленовая диэлектрическая пленка. См. MKP для более подробной информации.
MKC
Металлизированная поликарбонатная пленка. Чрезвычайно термостабильный с допуском емкости менее 1% в диапазоне от -55ºC до +125ºC. Небольшой размер, высокая добротность и стабильность емкости делают их идеально подходящими для сетевых фильтров и других высокочастотных приложений с малыми потерями.
MKI / PPS
Металлизированная фольга из полифениленсульфида. Чрезвычайно термостабильный с допуском емкости менее 1% в диапазоне от -55ºC до +125ºC. Небольшой размер, высокая добротность и стабильность емкости делают их идеально подходящими для сетевых фильтров и других высокочастотных приложений с малыми потерями.
МКП/ПП/полипропилен
Металлизированная полипропиленовая фольга. Известные как силовые пленочные конденсаторы. Очень низкое ESR, высокая стабильность и могут быть найдены в версиях с допуском 1% и могут работать при температурах до 110°C.
МКС/ПС/полистирол
Металлическая фольга и полистирольная диэлектрическая пленка. Металлизированный вариант оказался неудачным из-за низкой температуры плавления диэлектрика. Подходит для схем с точной настройкой благодаря исключительной стабильности в диапазоне от 0°C до +50°C и долговременной стабильности. Диэлектрик имеет максимальную рабочую температуру +85°C. Плавится при +100°C.
МКТ / ПЭТ / майлар / полиэстер
Металлизированная полиэфирная фольга. Конденсаторы из майлара, полиэстера или полиэтилентерефталата ПЭТ. Низкий ESR и может работать при температурах до 125°C без значительного снижения напряжения. Подходит для использования в высокочастотной фильтрации, для наружного применения, где влажность может быть проблемой, при пиках высокого напряжения или тока в цепях, а также в цепях связи и развязки.
Расшифровка кодов конденсаторов
Глядя на наш конденсатор, мы увидим его маркировку 474J, это следует читать следующим образом, 47-кратное значение, которое можно найти в таблице 1, соответствующее 3-му числу, в данном случае 10000. 47 * 10000 = 470000 пФ = 470 нФ = 0,47 мкФ, где J означает допуск 5%. Вторая буква будет температурным коэффициентом, если он присутствует. Судя по размеру и типу конденсаторов, вы быстро научитесь определять, указано ли значение на конденсаторе в пФ, нФ или мкФ.
Если конденсатор напр. обозначенный 2A474J, емкость расшифровывается, как описано выше, два первых знака — это номинальное напряжение, которое можно расшифровать из таблицы 2 ниже. 2A соответствует номинальному напряжению 100 В постоянного тока в соответствии со стандартом EIA.
Некоторые конденсаторы имеют маркировку только 0,1 или 0,01, в основном в этих случаях значения указаны в мкФ.
Некоторые конденсаторы малой емкости могут быть помечены буквой R между цифрами, напр.
Table 1 – Capacitor codes with letters and tolerances
3rd number | Multiply with | Letter | Tolerance | |||
0 | 1 | D | 0.5pF | |||
1 | 10 | F | 1% | |||
2 | 100 | G | 2% | |||
3 | 1,000 | H | 1,000048 | H | 1,000 | H | .0047 3%
4 | 10,000 | J | 5% | |||
5 | 100,000 | K | 10% | |||
6 | 1,000,000 | M | 20% | |||
7 | Не используется | M | 20% | |||
8 | 0,01 | P | +100%/-0% | .![]() |
Таблица 2A – Электронная промышленность Альянс (EIA) – код напряжения постоянного тока Таблица
0E = 2,5 В.Д. 2q = 110 В постоянного тока | 3L = 1,2 кв. | ||
0L = 5,5 В пост. | |||
1a = 10 В постоянного тока | 2Z = 180 В пост. Д. | 3C = 1,6 кв. | |
1C = 16 В пост. Д. | 2D = 200 Вд. VDC | 3E = 2,5 KVDC | |
1E = 25 В пост. | 1G = 40 В пост. тока | 2 В = 350 В пост. тока | 3H = 5 KVDC |
1H = 50 В постоянного тока | 2G = 400 В пост | 3i = 6 KVDC | |
1J = 63 Вд. | 2W = 45046 VDC | . = 70 В постоянного тока2J = 630 В пост. | 4A = 10 кВ постоянного тока |
Таблица 2B – Альянс электронных отраслей (EIA) – код напряжения переменного тока Таблица
2Q = 125 Вак | 2T = 250 В перемятель | I0 = 305 В переменного тока | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L0 = 350 Вак | 2Y = 400 Вак | P0 = 440 Вак | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Q0 = 4507 вак | V0 = 63048 | 98 | .![]() Вот список распространенных конденсаторов и шкала между различными разрядами единицы Фарада в системе СИ. Таблица 3-Код конденсатора Таблица
I hope you found all эта информация полезна. Пожалуйста, оставьте комментарий с изображением, чтобы помочь определить конденсатор. Опубликовано: 5 ноября 2009 г. Обновлено: 27 декабря 2020 г. Куда подключать внешнюю фольгу на конденсаторах
Общий Некоторые неэлектролитические конденсаторы имеют ленточный конец, иногда обозначаемый как «внешняя фольга». Эти конденсаторы обычно изготавливаются из длинной узкой полоски изоляционного материала и с обеих сторон помещаются полоски металлической фольги. Два куска фольги становятся пластинами конденсатора, а изолятор — диэлектриком. Почему маркируется внешняя фольга? Почему производители конденсаторов утруждают себя маркировкой внешней фольги полосой? Разве электролитические конденсаторы не единственные, где имеет значение полярность? Хотя это правда, что полярность неэлектролитического конденсатора не имеет значения для сигнала, внешняя фольга помечена, потому что ее можно использовать в качестве экрана от наложения электрического поля на конденсатор. Чтобы воспользоваться экранирующими свойствами внешней фольги, конденсатор должен быть подключен к цепи в определенной ориентации. Куда подключать внешнюю фольгу?
Что делать, если у конденсатора нет оборванного конца?
|