Медь температура плавления и кипения: Температура плавления меди – при какой температуре плавится медь
alexxlab | 21.10.1986 | 0 | Разное
кипения, какая зависимость сопротивления, рекристаллизации, график
Содержание:
- 1 Необходимая температура для плавления меди
- 2 Как изменяется металл под термическим воздействием
- 3 Отжиг меди
- 4 Видео: Плавление меди в микроволновке
Медные заготовки
Сегодня медь является одним из самых востребованных металлов. Высокий спрос объясняется отличительными характеристиками, присущими этому металлу. Медь проводит электроток лучше любых других металлов, кроме серебра, благодаря этому ее используют в производстве кабелей и электропроводов. Температура плавления меди не высокая, металл пластичный и легко поддается обработке, благодаря этому качеству стало возможным ее применение в строительстве в качестве водопроводных тр. Этот металл имеет высокое сопротивление к внешним раздражающим факторам, поэтому долговечен и может быть использован несколько раз, после переплавки. Это качество меди высоко ценят экологи, поскольку при повторной обработке металла тратится значительно меньшее количество энергии, чем при добыче и обработки руды, к тому же сохраняются земные недра. Добыча медной руды не проходит бесследно, на месте отработанных рудников появляются токсичные озера, наиболее известное во всем мире такое озеро – Беркли-Пит в штате Монтана в США.
Необходимая температура для плавления меди
Медь не является легкоплавким металлом
Люди нашли применение меди еще в древние времена, тогда ее добывали в виде самородков. Ввиду низкой температуры, необходимой для осуществления процесса плавления ее стали широко применять для изготовления орудий труда и охоты, самородки можно плавить на костре. В наши дни технология получения металла мало чем отличается от придуманной в древние времена, совершенствуются лишь печи, увеличена скорость обжига и объемы обработки. Здесь возникает уместный вопрос — какая температура плавления меди? Ответ на него можно найти в любом учебнике по физике и химии – медь начинает плавиться при температуре нагрева до 1083 оС.
Кипение меди уменьшает ее прочность
В процессе термического воздействия на металл происходит разрушение его кристаллической решетки, это достигается при определенной температуре, которая в течение некоторого времени остается постоянной. В этот момент и происходит плавка металла. Когда процесс разрушения кристаллов полностью завершен, температура металла снова начинает подниматься, и он переходит в жидкую форму и начинает кипеть. Температура плавления меди значительно ниже, чем та, при которой металл кипит. Процесс кипения начинается с появлением пузырьков, по аналогии с водой. На этом этапе любой металл, в том числе и медь, начинает терять свои характеристики, в основном это отражается на прочности и упругости. Температура кипения меди составляет 2560 оС. Во время остывания металла происходит похожая картина, как и при нагреве – сначала температура опускается до определенного градуса, в этот момент происходит затвердевание, которое длится некоторое время, затем продолжается остывание до обычного состояния.
Как изменяется металл под термическим воздействием
Любой нагрев меди влечет за собой изменение ее характеристик, наиболее значимой является величина ее удельного сопротивления. Медь является проводником электрического тока, при этом металл оказывает сопротивление движению носителям заряда. Отношение площади сечения проводника к оказываемому движению и называется удельным сопротивлением.
Термо обработка медной трубы
Так вот, эта величина для чистой меди составляет 0,0172 ОМ мм2/м при 20 оС. Этот показатель может измениться после термической обработки, а также вследствие добавления в состав различных примесей и добавок. Здесь наблюдается обратная зависимость сопротивления меди от температуры – чем выше была температура обработки металла, тем ниже будет ее сопротивление электрическому току. Для обеспечения наилучших электролитических характеристик медной проволоки, ее обрабатывают при 500 оС.
Во время термической обработки можно не только придавать металлу нужную форму и размер, но и создавать различные сплавы. Самыми распространёнными медными сплавами является бронза и латунь. Бронза получается путем смешивания меди с оловом, а латунь – с цинком. Добавление алюминия и стали увеличивает прочность материала, а добавление никеля повышает антикоррозийные свойства. Но стоит заметить, что любая примесь снижает главное свойство – электропроводность, поэтому для изготовления жил электрокабеля используют чистый состав металла.
Отжиг меди
Под отжигом меди следует понимать процесс ее нагрева с целью дальнейшей обработки и приданию необходимых форм изделию. В ходе отжига металл становится более пластичным и мягким, поддающимся различным трансформациям. При отжиге меди температура достигает 550 оС, она приобретает темно-красный оттенок. После нагрева желательно быстро производить ковку и оправлять изделие на охлаждение.
Оджиг позволяет деформировать без повреждений любое изделие из меди
Если подвергать материал медленному, естественному охлаждению, то возможно образование наклепа, поэтому чаще применяют мгновенное охлаждение путем помещения заготовки в холодную воду. Если превысить допустимую величину нагрева, металл может стать более хрупким и ломким.
Во время отжига осуществляется процесс рекристаллизации меди, в ходе которого образуются новые зерна или кристаллы металла, которые не искажены решеткой и отделены от прежних зерен угловыми границами. Новые зерна по размеру могут сильно отличаться от предшественников, при их образовании высвобождается большое количество энергии, увеличивается плотность и появляется наклеп. Рекристаллизация осуществляется только после деформации изделия, и только после достижения ее определенного уровня. Для меди критический уровень деформации составляет 5%, если он не достигнут процесс формирования новых зерен не начнется. Температура рекристаллизации меди составляет 270 оС. Следует отметить, что при этой температуре процесс роста кристаллов только начинается, но он достаточно медленный, поэтому для достижения необходимого результата медь необходимо нагреть до 500 оС, тогда времени для остывания хватит для завершения процесса рекристаллизации.
Видео: Плавление меди в микроволновке
необходимые условия процесса на производстве и дома
Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие. Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду. Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.
- Нахождение в природе
- Физические свойства
- При какой температуре плавится медь
- Плавление в домашних условиях
Нахождение в природе
Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.
В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.
- На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
- В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
- Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
- Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
- В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
- Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
- Часто месторождения имеют вид осадочных пород.
- Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.
Физические свойства
Металл пластичен и на открытом воздухе покрывается оксидной пленкой за короткое время. Благодаря этой пленке медь и имеет свой желтовато-красный оттенок, в просвете пленки цвет может быть зеленовато-голубым. По уровню уровнем тепло- и электропроводности Cuprum на втором месте после серебра.
- Плoтность — 8,94×103 кг/ м3 .
- Удельная теплоемкость при Т=20 ° C — 390 Дж/кг х К.
- Электрическoе удельное при 20−100 ° C — 1,78×10−8 Ом/м.
- Температура кипeния — 2595 ° C.
- Удельная электропрoводность при 20 ° C — 55,5−58 МСм/м.
При какой температуре плавится медь
Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .
При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.
Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.
Плавление в домашних условиях
Благодаря низкой температуре плавления

Для расплавки меди в домашних условиях понадобится:
- древесный уголь;
- тигель и специальные щипцы для него;
- муфельная печь;
- бытовой пылесос;
- горн;
- стальной крюк;
- форма для плавления.
Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.
При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.
Если под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.
Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.
Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы. Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность. Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.
Температура испарения меди
Главная » Разное » Температура испарения меди
Температура плавления меди – при какой температуре плавится медь
Благодаря тому, что температура плавления меди достаточно невысокая, этот металл стал одним из первых, которые древние люди начали использовать для изготовления различных инструментов, посуды, украшений и оружия. Самородки меди или медную руду можно было расплавить на костре, что, собственно, и делали наши далекие предки.
Этап плавления меди
Несмотря на активное применение человечеством с древних времен, медь не является самым распространенным природным металлом. В этом отношении она значительно уступает остальным элементам и занимает в их ряду только 23-е место.
Как плавили медь наши предки
Благодаря невысокой температуре плавления меди, составляющей 1083 градуса Цельсия, наши далекие предки не только успешно получали из руды чистый металл, но и изготавливали различные сплавы на его основе. Чтобы получить такие сплавы, медь нагревали и доводили до жидкого расплавленного состояния. Затем в такой расплав просто добавляли олово или выполняли его восстановление на поверхности расплавленной меди, для чего использовалась оловосодержащая руда (касситерит). По такой технологии получали бронзу – сплав, обладающий высокой прочностью, который использовали для изготовления оружия.
Какие процессы происходят при плавлении меди
Что характерно, температуры плавления меди и сплавов, полученных на ее основе, отличаются. При добавлении в медь олова, имеющего меньшую температуру плавления, получают бронзу с температурой плавления 930–1140 градусов Цельсия. А сплав меди с цинком (латунь) плавится при 900–10500 Цельсия.
Во всех металлах в процессе плавления происходят одинаковые процессы. При получении достаточного количества теплоты при нагревании кристаллическая решетка металла начинает разрушаться. В тот момент, когда он переходит в расплавленное состояние, его температура не повышается, хотя процесс передачи ему теплоты при помощи нагрева не прекращается. Температура металла начинает вновь повышаться только тогда, когда он весь перейдет в расплавленное состояние.
Диаграмма состояния системы хром-медь
При охлаждении происходит противоположный процесс: сначала температура резко снижается, затем на некоторое время останавливается на постоянной отметке. После того, как весь металл перейдет в твердую фазу, температура снова начинает снижаться до полного его остывания.
Как плавление, так и обратная кристаллизация меди, связаны с параметром удельной теплоты. Данный параметр характеризует удельное количество теплоты, которая требуется для того, чтобы перевести металл из твердого состояния в жидкое. При кристаллизации металла такой параметр характеризует количество теплоты, которое он отдает при остывании.
Более подробно узнать о плавлении меди помогает фазовая диаграмма, показывающая зависимость состояния металла от температуры. Такие диаграммы, которые можно составить для любых металлов, помогают изучать их свойства, определять температуры, при которых они кардинально меняют свои свойства и текущее состояние.
Кроме температуры плавления, у меди есть и температура кипения, при которой расплавленный металл начинает выделять пузырьки, наполненные газом. На самом деле никакого кипения меди не происходит, просто этот процесс внешне очень его напоминает. Довести до такого состояния ее можно, если нагреть до температуры 2560 градусов.
Как понятно из всего вышесказанного, именно невысокую температуру плавления меди можно назвать одной из основных причин того, что сегодня мы можем использовать этот металл, обладающий многими уникальными характеристиками.
Температура кипения и плавления металлов, температура плавления стали
Температура кипения и плавления металлов
В таблице представлена температура плавления металлов tпл, их температура кипения tк при атмосферном давлении, плотность металлов ρ при 25°С и теплопроводность λ при 27°С.
Температура плавления металлов, а также их плотность и теплопроводность приведены в таблице для следующих металлов: актиний Ac, серебро Ag, алюминий Al, золото Au, барий Ba, берилий Be, висмут Bi, кальций Ca, кадмий Cd, кобальт Co, хром Cr, цезий Cs, медь Cu, железо Fe, галлий Ga, гафний Hf, ртуть Hg, индий In, иридий Ir, калий K, литий Li, магний Mg, марганец Mn, молибден Mo, натрий Na, ниобий Nb, никель Ni, нептуний Np, осмий Os, протактиний Pa, свинец Pb, палладий Pd, полоний Po, платина Pt, плутоний Pu, радий Ra, рубидий Pb, рений Re, родий Rh, рутений Ru, сурьма Sb, олово Sn, стронций Sr, тантал Ta, технеций Tc, торий Th, титан Ti, таллий Tl, уран U, ванадий V, вольфрам W, цинк Zn, цирконий Zr.
По данным таблицы видно, что температура плавления металлов изменяется в широком диапазоне (от -38,83°С у ртути до 3422°С у вольфрама). Низкой положительной температурой плавления обладают такие металлы, как литий (18,05°С), цезий (28,44°С), рубидий (39,3°С) и другие щелочные металлы.
Наиболее тугоплавкими являются следующие металлы: гафний, иридий, молибден, ниобий, осмий, рений, рутений, тантал, технеций, вольфрам. Температура плавления этих металлов выше 2000°С.
Приведем примеры температуры плавления металлов, широко применяемых в промышленности и в быту:
- температура плавления алюминия 660,32 °С;
- температура плавления меди 1084,62 °С;
- температура плавления свинца 327,46 °С;
- температура плавления золота 1064,18 °С;
- температура плавления олова 231,93 °С;
- температура плавления серебра 961,78 °С;
- температура плавления ртути -38,83°С.
Максимальной температурой кипения из металлов, представленных в таблице, обладает рений Re — она составляет 5596°С. Также высокими температурами кипения обладают металлы, относящиеся к группе с высокой температурой плавления.
Плотность металлов в таблице находится в диапазоне от 0,534 до 22,59 г/см3, то есть самым легким металлом является литий, а самым тяжелым металлом осмий. Следует отметить, что осмий имеет плотность большую, чем плотность урана и даже плутония при комнатной температуре.
Теплопроводность металлов в таблице изменяется от 6,3 до 427 Вт/(м·град), таким образом хуже всего проводит тепло такой металл, как нептуний, а лучшим теплопроводящим металлом является серебро.
Температура плавления стали
Представлена таблица значений температуры плавления стали распространенных марок. Рассмотрены стали для отливок, конструкционные, жаропрочные, углеродистые и другие классы сталей.
Температура плавления стали находится в диапазоне от 1350 до 1535°С. Стали в таблице расположены в порядке возрастания их температуры плавления.
Сталь | tпл, °С | Сталь | tпл, °С |
---|---|---|---|
Стали для отливок Х28Л и Х34Л | 1350 | Коррозионно-стойкая жаропрочная 12Х18Н9Т | 1425 |
Сталь конструкционная 12Х18Н10Т | 1400 | Жаропрочная высоколегированная 20Х23Н13 | 1440 |
Жаропрочная высоколегированная 20Х20Н14С2 | 1400 | Жаропрочная высоколегированная 40Х10С2М | 1480 |
Жаропрочная высоколегированная 20Х25Н20С2 | 1400 | Сталь коррозионно-стойкая Х25С3Н (ЭИ261) | 1480 |
Сталь конструкционная 12Х18Н10 | 1410 | Жаропрочная высоколегированная 40Х9С2 (ЭСХ8) | 1480 |
Коррозионно-стойкая жаропрочная 12Х18Н9 | 1410 | Коррозионно-стойкие обыкновенные 95Х18…15Х28 | 1500 |
Сталь жаропрочная Х20Н35 | 1410 | Коррозионно-стойкая жаропрочная 15Х25Т (ЭИ439) | 1500 |
Жаропрочная высоколегированная 20Х23Н18 (ЭИ417) | 1415 | Углеродистые стали | 1535 |
Источники:
- Волков А.
И., Жарский И. М. Большой химический справочник. — М: Советская школа, 2005. — 608 с.
- Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
Тепловые и термодинамические свойства меди
Рассмотрим тепловые и термодинамические свойства меди.
Температура плавления 1083°С, температура кипения 2573°С, характеристическая температура ΘD 345 К, удельная теплота плавления 239 кДж/кг, удельная теплота испарения 4790 кДж/кг. Удельная теплоемкость меди при 293 К при постоянном давлении Ср= 384,2 Дж/(кг*K), а жидкой (при температуре плавления) 495 Дж/(кг*К). Удельная электронная теплоемкость Срэл = [0,688 мДж/(моль*К2)] *Т. Теплопроводность λ при 293 К равна 397 Вт/(м*К), при температуре 1356 К 165,8 Вт/(м*К).
Зависимость теплопроводности λ, от температуры (чистота 99,999 %):
Т, К |
λ, Вт/(м*К) |
Т, К |
λ, Вт/(м*К) |
Т, К |
λ, Вт/(м*К) |
2 5 20 50 |
523,5 1487,0 2518,0 1189,5 |
100 150 200 250 |
481,3 428,4 413 406,0 |
300 350 400 |
401,2 397,2 393,7 |
Теплопроводность меди заметно не изменяется под влиянием висмута, свинца, серы, селена, сильно понижается под влиянием незначительных количеств мышьяка, алюминия, снижается под влиянием сурьмы. Температурный коэффициент линейного расширения при 293 К α = 16,7*10-6К-1.
Изменение α в зависимости от температуры (чистота 99,999%):
Т, К |
α*106 К-1 |
Т, К |
α*106 К-1 |
Т, К |
α*106 К-1 |
5 |
0,0024 |
20 |
0,23 |
400 |
17,58 |
7 |
0,01062 |
40 |
2,28. |
600 |
18,92 |
10 |
0,0294 |
60 |
5,40 |
800 |
20,09 |
13 |
0,06322 |
100 |
10,33 |
1000 |
22,1 |
15 |
0,9634 |
200 |
15,18 |
1200 |
24,5 |
|
|
|
|
1300 |
27,0 |
Температурный коэффициент объемного расширения при 293 К β = 49,2*10-6 К-1, в диапазоне 293-1356 К: β= (45,0+0,016 Т)*10-6К-1, где β Д коэффициент объемного расширения, К-1; Т Д температура, К.
Молярная энтропия s° в зависимости от температуры:
Т, К |
298 |
500 |
1000 |
1500 |
2000 |
2500 |
3000 |
s°, Дж/(моль*К) |
33,39 |
44,8 |
65,28 |
87,19 |
96,20 |
103,24 |
215,53 |
Поверхностное натяжение при 1083 °С σ =1351 мН/м. Поверхностная энергия v =1115 мДж/м2, для грани (100) v =1060, а для (111) v = 926 мДж/м3. Энергия дефекта упаковки 67 МДж/м2. Давление пара р в зависимости от температуры:
Т, К |
Р, Па |
Т, К |
Р, Па |
700 800 900 |
31,066*10-15 38,514*10-12 97,804*10-10 |
1000 1100 |
82,22*10-8 30,968*10-6 |
Давление пара при температуре плавления Р =50,47 мПа. Энергия активации самодиффузии в интервале 1135Д1330 К Е= 205 КДж/моль.
Параметры взаимной диффузии (предэкспоненциальный множитель Do и энергия активации Е) некоторых элементов в меди:
Диффундирующий элемент |
T, К |
Образующаяся фаза |
D0, м2/с |
Е, кДж/моль |
Н |
– |
Твердый раствор |
5,6*10-8 |
38,52 |
Be |
– |
Твердый раствор |
2,32*10-8 |
117,23 |
Si |
– |
Твердый раствор |
3,7*10-6 |
167,47 |
S |
1403Д1673 |
Жидкая фаза |
3,44*10-7 |
28,85 |
S |
1073Д1273 |
Твердый раствор |
8,24*10-5 |
196,78 |
Мп |
973Д1348 |
Твердый раствор |
5*10-5 |
192,59 |
Fe |
973Д1343 |
Твердый раствор |
1,4*10-4 |
216,88 |
Co |
973Д1348 |
Твердый раствор |
1,93*10-4 |
226,51 |
Ni |
973Д1348 |
Твердый раствор |
2,7*10-4 |
236,55 |
Zn |
878Д1323 |
Твердый раствор |
3,4*10-5 |
190,92 |
Ge |
952Д1288 |
Твердый раствор |
3,97*10-5 |
187,5 |
As |
1083Д1328 |
Твердый раствор |
2*10-5 |
176,6 |
Rh |
1023Д1328 |
Твердый раствор |
3,3*10-4 |
242,5 |
Pd |
1080Д1328 |
Твердый раствор |
1,71*10-4 |
227 |
Ag |
973Д1173 |
Твердый раствор |
1,3*10-6 |
161,6 |
Cd |
998Д1223 |
Твердый раствор |
9,35*10-5 |
191,34 |
In |
1023Д1343 |
Твердый раствор |
1,3*10-4 |
193 |
Sn |
973Д1189 |
Твердый раствор |
1,0*10-4 |
190,5 |
Sb |
873Д1273 |
Твердый раствор |
3,4*10-5 |
175,85 |
Au |
– |
Твердый раствор |
1*10-5 |
187,99 |
Tl |
1058Д1269 |
Твердый раствор |
7,1*10-5 |
181,29 |
Таблица температуры плавления (tпл) металлов и сплавов при нормальном атмосферном давлении
Металл или сплав | tпл.![]() |
---|---|
Алюминий | 660,4 |
Вольфрам | 3420 |
Германий | 937 |
Дуралюмин | ~650 |
Железо | 1539 |
Золото | 1064?4 |
Инвар | 1425 |
Иридий | 2447 |
Калий | 63,6 |
Карбиды гафния | 3890 |
ниобия | 3760 |
титана | 3150 |
циркония | 3530 |
Константин | ~1260 |
Кремний | 1415 |
Латунь | ~1000 |
Легкоплавкий сплав | 60,5 |
Магний | 650 |
Медь | 1084,5 |
Натрий | 97,8 |
Нейзильбер | ~1100 |
Никель | 1455 |
Нихром | ~1400 |
Олово | 231,9 |
Осмий | 3030 |
Платина | 17772 |
Ртуть | – 38,9 |
Свинец | 327,4 |
Серебро | 961,9 |
Сталь | 1300-1500 |
Фехраль | ~1460 |
Цезий | 28,4 |
Цинк | 419,5 |
Чугун | 1100-1300 |
Вернуться в раздел аналитики
Запись опубликована автором admin в рубрике Полезные материалы. Добавьте в закладки постоянную ссылку.
Медные сплавы — Температура плавления
Для медных сплавов, обладающих температурой плавления до 1000° и выше, применяются исключительно машины с холодной камерой давления, работающие по принципу прессования. [c.413]
Тугоплавкие (твердые) припои применяются, когда необходимо иметь прочный спай, выдерживающий высокую температуру. Применяются медно-цинковые тугоплавкие припои ПМЦ-36, ПМЦ-48 и ПМЦ-54. Указанные цифры в обозначении припоя указывают на содержание в нем меди, остальное — цинк и небольшое количество примесей железа (0,1%) и свинца (0,5%). Температура полного расплавления указанных припоев соответственно 825, 865 и 880° С, твердость припоев ПМЦ-48 и ПМЦ-54 составляет НВ 130 и 90, предел прочности при растяжении 21 и 25 кгс/мм (210—250 МПа). Чем больше в сплаве меди, тем припой прочнее, но более тугоплавок чем больше цинка, тем припой менее прочен и более хрупок, но более легкоплавок. Припой ПМЦ-36 применяется для пайки латуни Л-62, ПМЦ-42 — для пайки деталей из медных сплавов с температурой плавления выше 900—920° С, когда паяное соединение не подвергается ударным нагрузкам, вибрации и изгибу. Припой ПМЦ-54 применяют для пайки деталей из меди, бронзы и стали, не испытывающих ударных нагрузок и изгиба. В случае, когда паяное соединение должно обладать высокой прочностью и хорошей сопротивляемостью ударным и изгибающим нагрузкам, в качестве припоев применяются латуни Л-62 и Л-68. Припои медно-цинковые поставляются в форме зерен.
[c.298]
Применение индукционного нагрева обычно экономически оправдано при пайке среднеплавкими припоями (медь, латунь, ферромарганец, медно-серебряные сплавы) с температурой плавления 400—1200 °С. [c.219]
Припои. Различают легкоплавкие (мягкие) припои (оловянносвинцовые, висмутовые и кадмиевые) с температурой плавления до 300° С и тугоплавкие (твердые) припои (серебряные, медно-цинковые) с температурой плавления свыше 500° С. Мягкими припоями паяют медь, медные славы, луженую сталь, луженый никель и др. Наиболее распространенными мягкими припоями являются сплавы олова и свинца (с содержанием олова от 90 до 18%) — ПОС и сплавы олова, свинца и кадмия — ПОСК, или висмута — ПОСВ. Они отличаются малой твердостью и сравнительно низкими механическими
[c.407]
В случае пропитки медью железных или стальных прессовок составляющая основу железная матрица (или скелет) нагревается, находясь в контакте с медным сплавом, до температуры, несколько превышающей температуру плавления меди, обычно лежащей в диапазоне 1095-1150 °С. Под действием капиллярных сил расплавленный медный сплав проникает в сообщающиеся друг с другом поры и в идеальном случае заполняет весь объем пор. [c.87]
Сплавы на медной основе. При получении медных сплавов широко применяют лигатуры в виде двойных сплавов Си — Мп Си—N1 Си—81 Си—А1 Си—Р и др. Лигатурами называются сплавы металлов, температура плавления которых ниже температуры плавления тугоплавкого компонента, входящего в состав сплава.
[c.222]
Твердый припой представляет собой тугоплавкий сплав с температурой плавления от 600 до 900° С. В табл. 35 приведен состав наиболее часто применяемых медно-цинковых и серебряных твердых припоев. [c.285]
Для пайки конструкционных сталей и сплавов чаще всего используют припои с температурой плавления до 1050 °С, для меди и медных сплавов – до температуры 800 °С. [c.456]
Железо с медью образует раствор, в котором предельная растворимость железа в меди при температуре плавления последней составляет около 3% (рис. 215). Но только при содержании в меди 10—15% железа можно получить сплав с температурой плавления 1330—1370 °С, близкой к температуре плавления чугунов. В этом случае обеспечивается смешиваемость составляющих самого расплава с чугуном. Однако после затвердевания наплавка представляет собой мягкую медную основу с различными по форме и величине вкраплениями очень твердой стальной составляющей. Эти включения и затрудняют механическую обработку металла. Частично диффундируя в основной металл, медь проявляет себя как графитизатор, поэтому на участке 1 околошовной зоны отбел проявляется слабо.
[c.363]
Медно-цинковые припои представляют собой двойные сплавы меди и цинка в разных соотношениях. От химического состава сплава зависит температура плавления его. Механические свойства медно-цинковых припоев также зависят от процентного содержания в них меди. [c.29]
В атмосфере углекислоты медь неустойчива. Хлор, бром и йод при температурах ниже точек плавления их соединений с медью разрушают ее, а с повышением температуры скорость коррозии сильно возрастает. Медь можно применять в газообразных НС1 и lo при температурах ниже 225 и 260° С соответственно. Азот не действует на медь п ее сплавы, а окислы азота разрушают медные сплавы. Аммиак также вызывает окисление меди и ее сплавов. В условиях диссоциации аммиака наблюдается водородная коррозия меди.
[c.255]
Для выплавки тугоплавких металлов (титана, хрома, циркония, ниобия, молибдена, вольфрама и рения) традиционные огнеупорные материалы (динас, магнезит, шамот, хромомагнезит) непригодны, так как они обладают недостаточной огнеупорностью (1300 – 1600°С), а температура плавления титанового сплава составляет более 2000°С. Поэтому все тугоплавкие технически чистые металлы выплавляют в специальных медных водоохлаждаемых тиглях-кристаллизаторах. [c.302]
Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.
[c.469]
Возможна пайка друг с другом хорошо пригнанных деталей из сплава без внесения припоя при нагреве их выше температуры плавления меди (или медно-никелевого расплава) за счет капиллярного втягивания расплава в зазор. При этом детали не теряют своих размеров. [c.113]
Для стальных деталей припоем обычно служит чистая электролитическая медь (марки М1 и М2). Она весьма жидкотекуча в восстановительной атмосфере, даёт прочное, чистое соединение, не требует флюса, за исключением некоторых плохо смачиваемых сортов стали. Применение флюсов вообще удорожает процесс пайки и требует последующей очистки. Флюсы требуются при содержании в стали более 1—2о/о хрома, марганца, кремния, ванадия и алюминия, образующих окисные плёнки, не восстанавливаемые газовой атмосферой и ухудшающие смачивание. Никель, наоборот, усиливает смачивание и является желательным элементом в сталях для пайки. Иногда в качестве припоя используется латунь, которая обычно требует применения флюса для уменьшения окисления цинка и растворения образовавшейся окиси. В процессе пайки латунь может повышать температуру плавления вследствие испарения части цинка. С флюсом латунь растекается почти так же хорошо, как и чистая медь. Для меди и медных сплавов, не-
[c.448]
Машинное масло — Теплоемкость 39 Медные сплавы — Температура плавления 71 Медный блеск 371 Медный колчедан 371 Медь 371 [c.718]
Газовую сварку чугуна цветными сплавами без подогрева детали в сочетании с дуговой сваркой широко применяют в ремонтном производстве для сварки трещин на обрабатываемых поверхностях корпусных деталей. Присадочным материалом для газовой сварки является латунь, которая более соответствует требованиям сварки по сравнению с другими цветными сплавами на медной основе. Температура плавления латуни ниже температуры плавления чугуна (880—950 °С), поэтому ее можно применить для сварки, не доводя чугун до плавления и не вызывая в нем особенных структурных изменений и внутренних напряжений.
[c.111]
Медно-никелевые электроды (монель МНЧ-2) состоят из 27—30 % меди и 66—68 % никеля [14]. Монель имеет температуру плавления 1260—1340 °С, что соответствует температуре плавления чугуна, и благодаря никелю хорошо сплавляется с чугуном. Однако этот сплав дает значительную усадку, что приводит к появлению высоких внутренних напряжений, способствующих образованию трещин. Поэтому монель наплавляют короткими валиками длиной 40—50 мм и сразу же после этого проковывают шов молотком. Прочность сварного соединения в этом случае не превышает 100 МПа.
[c. 117]
Сплавы изготовляли в индукционной печи в вакууме путем нагрева S в толстостенных танталовых тиглях с последующим сбрасыванием в водоохлаждаемый медный приемник. Температуру плавления сплавов измеряли капельным методом. Часть диаграммы состояния системы показывает наличие в системе эвтектического равновесия Ж (pS ) + + (Та) при 1519 °С с эвтектической точкой при 3,2% (ат.) Та. Растворимость Та в жидком S можно описать уравнением lg(N) = А/Т + В, где Л – атомная доля Та в жидком S Г- температура (К) А – В = [c.261]
Пока мы знаем лишь один способ выращивания частиц второй фазы в теле металла — распад твердого раствора при старении. Известные на сегодня стареющие медные сплавы (в основном разные типы бронз) вполне могут использоваться для наших целей при температурах не выше 400—500 °С. При более высоких температурах их прочность резко падает. Однако для ряда отраслей промышленности нужны сплавы, сохраняющие свои свойства до 1000—1050 °С, т. е. почти до температуры плавления меди. Поисками путей их изготовления мы сейчас и займемся.
[c.239]
На фотографии (рис. 141), снятой через электронный микроскоп, прекрасно видны оксидные частицы, вкрапленные в медную матрицу. Строго говоря, матрица не чисто медная в ней содержатся и кислород (концентрации Со), и остаточный (не выведенный в оксид) алюминий. Однако из-за низкого порога реакции окисления алюминия его содержанием в меди можно безбоязненно пренебречь. По крайней мере, при рабочих температурах сопротивление этого твердого раствора почти такое же, как и чистой меди. Зато прочность сплава из-за присутствия оксидных частиц станет намного выше. Причем оксид алюминия — вещество тугоплавкое и в меди почти не растворяется. А поэтому упрочняющий эффект сохраняется вплоть до температуры плавления металла. [c.243]
Твердые припои имеют температуру плавления 850—900° С и представляют собой сплавы меди с цинком твердость и прочность паяного ими шва — повышенные. Серебряные припои состоят из серебра и меди температура плавления их 740—830° С они имеют ще большую прочность. Пайка ими медных проводов почти не меняет их электропроводность. И здесь прочность спая обеспечивается образованием твердого раствора между припоем и соединяемым металлом.
[c.462]
Спекание. Для спекания порошковых сплавов применяют электропечи с металлическим сопротивлением, с угольными сопротивлениями в виде труб и высокочастотные. Спекание производится в защитной атмосфере. Для спекания медных сплавов, железа и фрикционных материалов применяют защитные атмосферы, получаемые при частич ом сжигании газа. При спекании вольфрама, молибдена, твердых сплавов, магнитных и электротехнических материалов применяют водород. Температура спекания составляет примерно температуры плавления металла, например для меди 800—850° С, для железа — [c.479]
Сурьма находит применение в качестве легирующего компонента сплавов на свинцовой, оловянной и медной основе (баббитов, припоев, сплавов для литья под давлением и т. д.). Температура плавления сурьмы 630 °С плотность при 20 °С 6700 кг/м , при температуре плавления 6550 кг/м .
[c.144]
При температуре прессования медных сплавов 350—650 °С используют щелочно-фосфатные стекла с температурой плавления 350—400 °С [167] при 800—1000 °С — боросиликатные двух- и многокомпонентные стекла. [c.223]
К твердым припоям относят такие, температура плавления которых 600-1083 °С, а прочность спая высокая (ог =400-500 МПа). К этим припоям относят чистую медь и сплавы меди с цинком и серебром. Наиболее часто применяют медно-цинковые припои марок ПМЦ-42, ПМЦ-47, ПМЦ-52, которые содержат соответственно 42, 47 и 52 % меди и застывают в интервале температур 890-830 С. [c.347]
Пропитка пучков вольфрамовых волокон жидкими двойными медными сплавами осуществлялась в условиях, идентичных используемым ранее для композиций с матрицей из чистой меди. Содержание легирующего элемента каждого двойного медного сплава было ограничено количеством, которое позволило обеспечить температуру плавления, равную 1150° С или ния е, чтобы произвести пропитку при 1200° С. Сравнивалось влияние легирующих элементов на свойства композиций, упрочненных волокнами вольфрама, и системы, образованной взаимно нерастворимыми компонентами (в случае матрицы из чистой меди). В качестве легирующих элементов изучались алюминий, хром, кобальт, ниобий, никель и титан.
[c.240]
Марки оловянно-свинцовых припоев состоят из букв и цифр. Марка припоя, например, ПОС-90 означает П — припой О — олово С — свинец цифра 90 указывает, что в этом припое 90% (по весу) олова, остальное — свинец. Припой ПОСС-4-6 содержит олова— 4%, сурьмы — 6%, остальное — свинец. Твердые припои представляют собой тугоплавкие сплавы с температурой плавления от 700° С и выше. Они используются в тех случаях, когда необходимо получить высокую прочность соединения. В качестве твердых припоев наиболее часто применяют медно-цинковые и серебряные сплавы (табл. 22). [c.106]
Медно-цинковые Л68 ЛОК59-1-0,3 68 Си 32 2п 59 Си 39,7 2п 1 8п 0,3 81 940 905 Для пайки заготовок из углеродистой, легированной сталей и сплавов, имеющих температуру плавления выше 1000 С
[c. 279]
При литье под давлением можно, как мы видели выше, получать отливки из сплавов, имеющих температуру плавления, не выше точки плавления медных сплавов. Производство литья поддавлением из черных сплавов в производственных масштабах пока еще не освоено. Кроме того, при литье поддавлением формы в большинстве случаев имеют линию разъема, что ограничивает область применения этого способа. [c.265]
Припои представляют собой сплавы цветных металлов сложного состава. Все припои по температуре плавления подразделяют на особо легкоплавкие (температура плавления с 145 °С), легкоплавкие (температура плавления 145с 450 °С), среднеилавкие (температура плавления 450 температура плавления >1050 °С). К особолегкоплавким и легкоплавким припоям относятся оловянно-свинцовые, на основе висмута, индия, кадмия, цинка, олова, свинца. К среднеплавким и высокоплавким припоям относятся медные, медно-цинковые, медно-никелевые, с благородными металлами (серебром, золотом, платиной). Припои изготовляют в виде прутков, проволок, листов, полос, спиралей, дисков, колец, зерен и т. д., укладываемых в место соединения.
[c.240]
Серебро. Среди металлов серебро — наиболее низкоомный проводник величина р = 0,016 ом Температурный коэффициент сопротивления TKR = 3,6 10 /1 град. Температура плавления серебра 960° С. Серебро отличается небольшой твердостью оно является высокопластичным металлом, легко претерпевающим упругие деформации. Его окисление на воздухе при нормальной температуре протекает весьма медленно, поэтому его используют для покрытий проводников в высокочастотных элементах. При высоких частотах сопротивление посеребренного проводника может быть в десятки раз ниже, чем медного. При повышенных температурах (свыше 200° С) серебро на воздухе начинает окисляться. Если в воздухе присутствуют сернистые соединения, то на поверхности образуется слой сернистого серебра AgjS с высоким удельным сопротивлением. Для защиты серебряного покрытия от окисления и воздействия сернистых соединений в некоторых случаях, на него наносят слой лака или весьма тонкий слой (толщиной доли микрона) палладия. Из серебра выполняют электроды слюдяных и керамических конденсаторов проводниковые элементы схем, провода высокочастотных катушек и т. п. Серебро является компонентом различных сплавов и контактных материалов.
[c.274]
Возможно, что избирательный переход частиц меди в режиме трения, представленном на рис. 18, происходит отчасти благодаря образованию трибоплазмы в локальных точках в период приработки пар трения медный сплав — сталь, когда имеет место взаимодействие отдельных микровыступов контактных поверхностей. По-видимому, ИП в какой-то степени обусловлен субмикроплаз-менным напылением в местах фактического касания трущихся поверхностей продуктов возбуждения, в основном меди, так как температура плавления и прочность меди значительно меньше температуры плавления и прочности стали, и в плазме преобладают атомы и ионы меди наряду с другими более легкоплавкими, чем сталь, продуктами износа. Это предположение объясняет и многие другие экспериментальные данные. Например, почему ИП имеет место при трении пар никель—сталь, серебро—сталь, сталь—сталь (при наличии в смазке частиц меди) и проявляется только в местах фактического касания поверхностей.
[c.43]
Литий — серебристо-белый очень мягкий металл, легко окисляющийся на воздухе. По ГОСТ 8774—75 устанавливаются три марки лития ЛЭ-1 (содержание чистого лития не менее 99,5%), Л9-2(98,8%) и ЛЭ-3 (98,0%). Применяется в машиностроении для дегазации и раскисления стали, чугуна, бронз и латуни, в баббитах — вместо олова для повышения температуры плавления и апти-фрикгцгонных свойств. Повышает качество алюминиевых, магниевых, медных, свинцовых и других сплавов, улучшает их антикоррозионные и литейные свойства и т. д., образует твердые припои для пайки без флюсов. Поставляетс.ч в виде чушек массой до 2,5 кг и хранится в плотно закрытых (запаянных) банках из белой жести (по 12—20 чушек — до 50 кг), залитых смесью трансформаторного масла (50%) и парафина (50%) с надписью Осторожно, от воды загорается . [c.170]
Никель и богатые никелем снлавы принадлежат к числу тугоплавких металлов. Данные о температурах плавления и разливки никеля и его сплавов приведены в табл. 183. Плавку ведут в отапливаемых мазутом или газом тиглях, индукционных печах типа Аякс и в высокочастотных электропечах. Особенно хорошие результаты даёт плавка в высокочастотных электропечах, снабжённых вакуумной установкой, последняя предотвращает поглощение газов жидким металлом. Ввиду высокой температуры плавления медно-нике-левых сплавов графитовые тигли непригодны, так как их материал разъедается расплавленным металлом, причём образуются карбиды
[c.193]
Термодинамическая активность компонентов сплава характеризует концентрахщю свободных ионов, способных вступить во взаимодействие с кислородом. Она зависит от концентращ1и компонентов сплава и выражается формулой а — где с — концентрация компонента в сплаве у – коэффициент активности [ 16]. Термодинамическая активность является одной из важных предпосылок для образования в окааине окислов легирующих элементов. Наиболее пригодны в качестве основы никель и железо медные сплавы имеют относительно низкую температуру плавления. В гл. IV будут рассмотрены экспериментальные данные по исследованию наиболее распространенных сплавов для нагревателей.
[c.16]
Фосфор является интенсивным рас-кислителем медных сплавов и упроч-нителем как по растворному типу, так и вследствие образования химических соединений. Фосфор снижает температуру плавления и улучшает практическую жид котеку честь. [c.199]
Некоторые критические температуры меди и ее сплавов — температуры плавления, отжига, рекристаллизации, сильного роста и пережога — приведены в табл. 3. Медные сплавы склонны к пережогу в интервале температур 800—900 °С. В медиых сплавах пережогу способствуют примеси висмута, в никелевых сплава — серы, т. е. приводящие к горячеломкости вследствие образования. чегкоплавких эвтектик с основой сплава. Для предотвращейия пережога медиых сплавов процесс пайки следует вести на 100 С ниже температуры их солидуса [12, 17]. [c.40]
ICSC 0303 – НАФТЕНАТ МЕДИ
ICSC 0303 – НАФТЕНАТ МЕДИ
НАФТЕНАТ МЕДИ | ICSC: 0303 (Апрель 2006) |
CAS #: 1338-02-9 |
EINECS #: 215-657-0 |
ОСОБЫЕ ОПАСНОСТИ | ПРОФИЛАКТИЧЕСКИЕ МЕРЫ | ТУШЕНИЕ ПОЖАРА | |
---|---|---|---|
ПОЖАР И ВЗРЫВ | Воспламеняющееся.![]() |
НЕ использовать открытый огонь, НЕ допускать образование искр, НЕ КУРИТЬ. | Использовать порошок, пену, двуокись углерода. В случае пожара: охлаждать бочки и т.д. распыляя воду. |
СИМПТОМЫ | ПРОФИЛАКТИЧЕСКИЕ МЕРЫ | ПЕРВАЯ ПОМОЩЬ | |
---|---|---|---|
Вдыхание | См. примечания. | Применять вентиляцию. | Свежий воздух, покой. |
Кожа | Покраснение. Шершавая кожа. | Защитные перчатки. | Снять загрязненную одежду. Ополоснуть и затем промыть кожу водой с мылом. |
Глаза | Покраснение. | Использовать средства защиты глаз. | Промыть большим количеством воды в течение нескольких минут (снять контактные линзы, если это возможно сделать без затруднений).![]() |
Проглатывание | Не принимать пищу, напитки и не курить во время работы. Мыть руки перед едой. | Прополоскать рот. Дать выпить один или два стакана воды. Обратиться за медицинской помощью . |
ЛИКВИДАЦИЯ УТЕЧЕК | КЛАССИФИКАЦИЯ И МАРКИРОВКА |
---|---|
Индивидуальная защита: костюм химической защиты и респиратор с фильтром для органических газов и паров, подходящий для концентрации вещества в воздухе. НЕ допускать попадания этого химического вещества в окружающую среду. Как можно быстрее собрать пролитую жидкость в емкости с крышками. Тщательно собрать оставшееся. |
Согласно критериям СГС ООН ОСТОРОЖНО Горючая жидкость и парМожет причинить вред при проглатывании Транспортировка |
ХРАНЕНИЕ | |
Обеспечить огнестойкость.![]() |
|
УПАКОВКА | |
Не перевозить с продуктами питания и кормами для животных. |
Исходная информация на английском языке подготовлена группой международных экспертов, работающих от имени МОТ и ВОЗ при финансовой поддержке Европейского Союза. |
НАФТЕНАТ МЕДИ | ICSC: 0303 |
ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА | |
---|---|
Агрегатное Состояние; Внешний Вид
Физические опасности
Химические опасности
|
|
ВОЗДЕЙСТВИЕ НА ОРГАНИЗМ И ЭФФЕКТЫ ОТ ВОЗДЕЙСТВИЯ | |
---|---|
Пути воздействия
Эффекты от кратковременного воздействия
|
Риск вдыхания
Эффекты от длительного или повторяющегося воздействия
|
Предельно-допустимые концентрации |
---|
ОКРУЖАЮЩАЯ СРЕДА |
---|
Это вещество попадает в окружающую среду при нормальном использовании.![]() |
ПРИМЕЧАНИЯ |
---|
Растворители-носители, используемые в коммерческих формуляциях, могут изменять физические и токсикологические свойства. Technical products contain between 1 and 12 % of copper. |
ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ |
---|
Классификация ЕС Символ: Xn, N; R: 10-22-50/53; S: (2)-60-61; Примечание: A |
(ru) | Ни МОТ, ни ВОЗ, ни Европейский Союз не несут ответственности за качество и точность перевода или за возможное использование данной информации. © Версия на русском языке, 2018 |
Вольфрам | Plansee
Хорош во всех отношениях.
Вольфрам относится к группе тугоплавких металлов, то есть металлов, температура плавления которых выше, чем у платины (1772 °C). В тугоплавких металлах энергия связи между отдельными атомами особенно высока. Такие металлы отличаются высокой температурой плавления и одновременно низким давлением пара, хорошей жаропрочностью, а в случае вольфрамо-медных композитов — еще и высоким модулем упругости. Для них также характерны низкий коэффициент теплового расширения и относительно высокая плотность.
Вольфрам имеет самую высокую температуру плавления среди всех металлов, а также чрезвычайно высокий модуль упругости. В целом его свойства аналогичны молибдену. Оба металла относятся к одной группе в периодической системе химических элементов. Однако некоторые свойства вольфрама более ярко выражены по сравнению с молибденом. Благодаря превосходным термическим свойствам вольфрам легко выдерживает самые высокие температуры.
Чтобы придать выпускаемому вольфраму и его сплавам нужные свойства, мы используем разные виды и количества легирующих элементов и соответствующим образом настраиваем технологический процесс.
Мы используем преимущественно легированные вольфрамовые материалы. Например, в WVM и WК65 добавляется небольшое количество калия. Калий положительно влияет на механические свойства материала, особенно при высоких температурах. Добавлением La2O3 можно не только улучшить обрабатываемость сплава, но и, что особенно важно, снизить работу выхода электронов, что позволит использовать вольфрам для изготовления катодов.
Рений мы добавляем, чтобы повысить пластичность вольфрама. Медь же улучшает электропроводность материала. Благодаря хорошей обрабатываемости наши тяжелые сплавы подходят также для производства изделий сложной геометрии. Они могут использоваться, например, в качестве материала для экранирующих пластин или амортизирующих и абсорбирующих компонентов.
Медь Температура плавления и физико-химические свойства
Медь (от латинского cuprum ) — очень популярный химический элемент, относящийся к группе переходных металлов. Его добывали в древности на Кипре, отсюда и его латинское название. Проверим, какими свойствами обладает медь и при какой температуре она плавится.
Свойства меди
Медь
славится отличной электропроводностью (59,6⋅10 6 См/м) и теплопроводностью.Он имеет плотность 8,96 г/см³ и легко поддается обработке, как в холодном, так и в горячем виде (при температуре 650–800 °С). Интересен тот факт, что медь является одним из четырех металлов с естественным цветом, отличным от серого или серебряного (например, осмий голубоватый, а желтоватый становится золотым и цезием). В нормальных условиях чистая медь окрашивается в оранжево-красный цвет, но темнеет из-за окисления на открытом воздухе. Медь, как и алюминий, может быть успешно переработана, как и алюминий.
Температура плавления меди
Медь плавится при 1084,62°С . Температура кипения, в свою очередь, составляет 2562 °С.
Интересно, что медь является третьим наиболее извлекаемым металлом после железа и алюминия по объему. По глобальным оценкам, используется до 80% когда-либо добытой меди. Неудивительно, поскольку, по данным « The World Copper Factbook », переработка в 2002–2008 годах обеспечивала почти 35% потребляемой меди.Еще одним интересным фактом является то, что медь в небольших количествах попадает в питьевую воду из медной сантехники, а в теплой воде ее больше.
Можно ли плавить медь в домашних условиях? Теоретически можно, но это достаточно сложная задача с точки зрения подготовки позиции. Во-первых, проблема может заключаться в генерации достаточно высокой температуры — более тысячи градусов по Цельсию. Как правило, пропан-кислородная горелка и подходящий сосуд, напр.глиняный тигель. Также эффективно построить самодельную коксовую печь с солидным дутьем.
Кшиштоф Камзол
Главный редактор Joblife.pl
.
Основы физики: тепло, термодинамика
Внутренняя энергия пленки, часть 1 и 2 (начало прибл. 37 мин 30 с), температура
Температурное расширение кузова пленка
Определение удельной теплоемкости воды. фильм
Пример расчета удельной теплоемкости (введение в баланс) фильм
Тест 2017 для обучения ответ
Теоретические вопросы к тесту:
- Дайте определение первому закону термодинамики. Сохраните шаблон.
- Введите определение теплоты и запишите формулу.
- Введите определение удельной теплоемкости и напишите формулу
- Объясните, что такое тепловой баланс.
- Введите определение теплоты плавления и запишите формулу.
- Введите формулу для перевода температуры из градусов Кельвина в градусы Цельсия и наоборот.
- Введите определения теплоты парообразования и запишите формулу.
Примеры задач (аналогичные), которые могут возникнуть при испытании:
- Какая температура установится в сосуде, если бросить 1 кг меди при температуре 200 0 С в 10 литров воды при температуре из 70 0 С? Удельная теплоемкость воды 4200 Дж/кг 0 С.
Удельная теплоемкость меди 380 Дж/кг 0 С.
- Керосин в баке был нагрет до 5 0 С, потреблено 21000 Дж тепла. Сколько керосина было в баке? cN = 2100 Дж/кг 0 С.
- Преобразование из абсолютной шкалы температуры 33 К в градусы 0 С и из шкалы Цельсия температуры -60 0 С в градусы К.
- Какая температура установится в сосуде, если в 20 литров воды при 30 0 С бросить 800 г меди при 100 0 С? Удельная теплоемкость воды 4200 Дж/кг 0 С.Удельная теплоемкость меди 380 Дж/кг 0 С. (4 балла)
- Кусок железа массой 1 кг и температурой 100 0 С остыл до температуры 10 0 С. Рассчитайте энергию (тепло), выделившуюся в окружающую среду. cFe = 450 Дж/кг 0 С. (3 балла)
- Преобразование абсолютной температуры 45 К в градусы 0 С и температуры по шкале Цельсия -250 0 С в градусы К.
.
Температура плавления некоторых металлов, их сплавов и сталей в градусах Цельсия.
Температура плавления некоторых металлов и их сплавов и сталей в градусах Цельсия.
Металл | Температура плавления |
---|---|
Латунь (Cu-69%, Zn 30%, Sn-1%) | 900 – 940 |
Алюминий | 660 |
Алюминиевые сплавы | 463 – 671 |
Алюминиевая бронза | 600 – 655 |
Сурьма | 630 |
Берилл | 1285 |
Медный берилл | 865 – 955 |
Висмут | 271.4 |
Латунь | 1000 – 930 |
Кадмий | 321 |
Серый чугун | 1175 – 1290 |
Хром | 1860 |
Кобальт | 1495 |
Медь | 1084 |
Мельхиор | 1170 – 1240 |
Золото, 24К | 1063 |
Хастеллой С | 1320 – 1350 |
Инконель | 1390 – 1425 |
Инколой | 1390 – 1425 |
Иридий – Иридий | 2450 |
Кованое железо | 1482 – 1593 |
Чугун, серый чугун | 1127 – 1204 |
Ковкий чугун | 1149 |
Свинец | 327,5 |
Магний | 650 |
Магниевые сплавы | 349 – 649 |
Марганец | 1244 |
Марганцево-коричневый | 865 – 890 |
Меркурий | 90 015-38.|
Молибден | 2620 |
Монель | 1300 – 1350 |
Никель | 1453 |
Ниобий (колумбий) | 2470 |
Осм | 3025 |
Палладий | 1555 |
Люминофор | 44 |
Платина | 1770 |
Плутон | 640 |
Калий | 63.3 |
Красная латунь | 990 – 1025 |
Рен | 3186 |
Стержень | 1965 |
Рутений | 2482 |
Селен | 217 |
Кремний | 1411 |
Серебро, Монета | 879 |
Чистое серебро | 961 |
Серебро 92,5% + надбавка | 893 |
Натрий | 97.83 |
Углеродистая сталь | 1425 – 1540 |
Нержавеющая сталь | 1510 |
Тантал | 2980 |
Трек | 1750 |
Олово | 232 |
Титан | 1670 |
Вольфрам | 3400 |
Уран | 1132 |
Ванадий | 1900 |
Желтая латунь | 905 – 932 |
Цинк | 419.![]() |
Циркон | 1854 |
.
Точка плавления меди / Paulturner-Mitchell.com
Историки предполагают, что первобытные люди находили медь в виде самородков, иногда достигавших значительных размеров. Латинское название меди (Cuprum) происходит от острова Кипр, где ее добывали древние греки. Благодаря тому, что температура плавления меди не очень высока и составляет 1083°С, медные самородки или руды можно переплавлять на костре. Это обеспечило производство меди и позволило использовать ее в изготовлении оружия и предметов быта.
Несмотря на то, что медь с древних времен широко использовалась людьми, распространяясь по земной коре, среди других элементов они занимают 23-е место. Чаще всего встречается в природе в виде соединений, входящих в состав сульфидных руд. Наиболее распространенными из них являются медный блеск и медный колчедан. Существует несколько технологий получения меди из руды, и каждая из них имеет несколько стадий.
Как уже было сказано, низкотемпературная плавка меди позволяла эффективно ее перерабатывать еще в самом начале развития цивилизации.И надо отдать должное древней металлургии, их возможностям получать и использовать не только чистую медь, но и ее сплавы. Плавление – это переход металла из твердого состояния в жидкое. Для этого использовали нагрев, а низкая температура плавления меди позволяла успешно проводить такую операцию.
Затем в жидкую медь добавляли олово или олово, извлекая его из касситерита (оловосодержащей руды) на поверхности меди. В результате они получили бронзу, более прочную, чем купрум, и использовали ее для изготовления оружия.Теперь, однако, я хотел бы более подробно остановиться на операции плавки, позволяющей получить из руды достаточно чистый материал.
Температура плавления каждого металла своя и зависит от наличия примесей в исходном материале. Так, медь, имеющая температуру плавления 1083°С, при добавлении олова образует бронзу, которая в зависимости от содержания олова плавится при 930-1140°С. Латунь, сплав меди и цинка, имеет температуру плавления 900-1050°С.
В процессе нагрева металл разрушается в кристаллической решетке. Вначале по мере нагревания температура повышается, а затем, начиная с некоторого значения, остается постоянной, хотя нагрев продолжается. В этот момент он тает. Это продолжается до тех пор, пока весь металл не растворится, и только тогда температура начнет повышаться. Это касается всех металлов, температура плавления меди также не меняется.
После охлаждения картина обратная: сначала температура снижается до начала затвердевания металла, затем остается постоянной и после полного отверждения металла снова начинает снижаться.Такое поведение металла, если его нанести на график, называется фазовой диаграммой, показывающей состояние, в котором находится вещество при определенной температуре. Для ученых фазовая диаграмма является одним из инструментов изучения поведения металлов при плавлении.
Если продолжать нагревать расплавленный металл, то при определенной температуре начинается процесс, аналогичный кипению. Так, температура кипения меди составляет 2560 °С. Название процесс получил из-за внешнего сходства с кипением жидкостей, когда начинают выделяться пузырьки газа.То же самое происходит и с металлом, например, при достаточно высокой температуре расплавленного железа начинает улетучиваться образовавшийся при окислении углерод.
В статье рассматривается процесс плавления металлов, дается понятие температуры плавления и ее поведение при плавлении. Объяснил, насколько низкой была температура плавления меди для развития цивилизации и металлургии.
.
Физические свойства металлов. Температура плавления и плотность металлов и сплавов
Температура плавления металлов, которая колеблется от низшей (-39°С для ртути) до высшей (3400°С для вольфрама), а также плотность твердых металлов при 20°С и плотность жидких металлов при температуры плавления приведены в таблице плавки цветных металлов .
Таблица 1. Выплавка цветных металлов
Атомный вес | Температура плавления t и , °С | Плотность ρ , г/см3 | ||
устойчивый при 20°С | редко в т и | |||
Алюминий | ||||
Вольфрам | ||||
Марганец | ||||
молибден | ||||
Циркон |
Сварка и плавка цветных металлов
Сварка меди . Температура плавления металлической Cu почти в шесть раз выше температуры плавления стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064 °С) ниже, чем у меди (1083 °С). Когда жидкая медь затвердевает, эвтектика располагается по границам зерен, что делает медь хрупкой и склонной к растрескиванию. Поэтому основной задачей при сварке меди является защита ее от окисления и активное раскисление сварочной ванны.
Наиболее распространена газовая сварка меди кислородно-ацетиленовым пламенем с использованием горелок в 1,5…2 раза мощнее стальной сварочной горелки. Связующее — медные стержни, содержащие фосфор и кремний. Если толщина изделий больше 5…6 мм, их сначала нагревают до температуры 250…300°С. Сварочные флюсы представляют собой обожженную буру или смесь 70 % буры и 30 % борной кислоты. Повышают механические свойства и улучшают структуру наплавленного металла, медь после сварки проковывают при температуре ок. 200…300°С. Затем его повторно нагревают до 500-550°С и охлаждают в воде. Медь также сваривают электродугой с электродами, в токе защитных газов, под слоем флюса, на конденсаторных машинах методом трения.
сварка латуни . Латунь представляет собой сплав меди и цинка (до 50%). Основным загрязнением в этом случае является испарение цинка, в результате чего шов теряет свои свойства, в нем появляются поры.Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, которое образует на поверхности ванны пленку тугоплавкого оксида цинка, ограничивающую дальнейшее прогорание и испарение цинка. Флюсы используются так же, как и для сварки меди. Они образуют на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь также сваривают в защитных газах и на контактных машинах.
бронзовая сварка .В большинстве случаев бронза является литейным материалом, поэтому сварка
применяется при устранении дефектов или при ремонте. Наиболее часто используется сварка металлическим электродом. Связующее изготавливается из стержней того же состава, что и основной металл, а флюсы или покрытие электродов представляют собой соединения хлоридов и фторидов калия и натрия.
. Основными факторами, препятствующими сварке алюминия, являются его низкая температура плавления (658°С), высокая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, имеющих температуру плавления 2050°С. С, т.е. технология плавки цветных металлов , , такие как медь или бронза, не подходят для плавки алюминия.Кроме того, эти оксиды плохо реагируют как с кислотными, так и с основными флюсами и поэтому плохо удаляются из сварного шва.
Самый распространенный факел для газовой сварки алюминия с ацетиленом. В последние годы получили широкое распространение также сварка под флюсом и автоматическая дуговая сварка металлическими электродами в среде аргона. Для всех способов сварки, за исключением аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят соединения фтора и хлора, лития, калия, натрия и других элементов. Проволока или стержни того же состава, что и основной металл, используются в качестве связующего для всех способов сварки.
Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.
Сварка алюминиевых сплавов . Алюминиевые сплавы с магнием и цинком свариваются без особых осложнений
, так же как и алюминий. Исключение составляет дюралюминий – алюминиево-медные сплавы.Эти сплавы термически упрочняются после закалки и последующего старения. При температуре плавления цветных металлов выше 350°С в них происходит снижение прочности, не восстанавливаемое термической обработкой. Поэтому при сварке дюралюминия в околошовной зоне прочность падает на 40…50 %. Если дюраль сваривают в защитных газах, то такое снижение можно восстановить термической обработкой до 80…90 % по отношению к прочности основного металла.
Сварка магниевых сплавов . При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных флюсов не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами из-за низкого качества сварных швов до сих пор не применялась. При сварке магниевых сплавов наблюдается значительное увеличение зерна на участках, близких к шву, и сильное развитие столбчатых кристаллов в шве.Поэтому предел прочности сварных соединений составляет 55…60 % предела прочности основного металла.
Таблица 2. Физические свойства промышленных цветных металлов
Недвижимость | М м и высокий | |||||||||||
Атомный номер | ||||||||||||
Атомный вес | ||||||||||||
при температуре 20°С, кг/м² 3 | ||||||||||||
Температура плавления, °С | ||||||||||||
Температура кипения, °С | ||||||||||||
Атомный диаметр, нм | ||||||||||||
Скрытая теплота плавления, кДж/кг | ||||||||||||
Скрытая теплота парообразования | ||||||||||||
Удельная теплоемкость при температуре 20°С, Дж/(кг . | ||||||||||||
Удельная теплопроводность, 20°С, Вт/(м – °С) | ||||||||||||
Коэффициент линейного расширения при температуре 25°С, 10 6 – ° З – 1 | ||||||||||||
Удельное электрическое сопротивление при температуре 20°С, мкОм – м | ||||||||||||
Модуль нормальной упругости, ГПа | ||||||||||||
Модуль сдвига, ГПа |
Плавильный тигель
Неотъемлемой частью производства металла и металлических изделий является их использование в процессе производства тиглей для производства, плавки и переплава черных и цветных металлов. Тигли являются составной частью металлургического оборудования для литья различных металлов, сплавов и тому подобного.
Керамический тигель для плавки цветных металлов используется для плавки металлов (медь, бронза) с древних времен.
После кристаллизации убедитесь, что вещество достаточно чистое. Наиболее простым и эффективным методом выявления и определения меры чистоты вещества является определение его температуры плавления ( Т пл). Температура плавления – это диапазон температур, при котором твердое вещество становится жидким.Все чистые химические вещества имеют узкий температурный диапазон перехода из твердого состояния в жидкое. Этот диапазон температур для чистых веществ составляет максимум 1-2 o C. Использование температуры плавления в качестве меры чистоты вещества основано на том, что наличие примесей (1) снижает температуру плавления и ( 2) расширяет диапазон температур плавления. Например, чистый образец бензойной кислоты плавится в интервале 120-122°С, а слабозагрязненный образец плавится при 114-119°С.
Использование температуры плавления для идентификации, конечно, сопряжено с большой неопределенностью, поскольку существует несколько миллионов органических соединений, и многие из них неизбежно совпадают с их точками плавления. Однако, во-первых, Т мкл вещества, полученного в синтезе, почти всегда отличается от Т мкл исходных соединений. Во-вторых, можно использовать технику «задания температуры плавления смешанного образца». Если Т пл смеси равных количеств испытуемого вещества и известного образца не отличаются от Т пл последнего, то оба образца представляют собой одно и то же вещество.
МЕТОД ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ . Тщательно растереть испытуемое вещество в мелкий порошок. Капилляр заполняют веществом (высотой 3-5 мм; капилляр должен быть тонкостенным, запаянным с одной стороны, внутренним диаметром 0,8-1 мм и высотой 3-4 см). Для этого осторожно вдавливают открытый конец капилляра в порошок вещества и периодически постукивают его запаянным концом о поверхность стола 5-10 раз. Для полного вытеснения порошка к запаянному концу капилляра его насыпают в вертикальную стеклянную трубку (длиной 30-40 см и диаметром 0,5-1 см) на твердой поверхности.Вставьте капилляр в металлический патрон, прикрепленный к наконечнику термометра (рис. 3.5), и поместите термометр с патроном в прибор для определения температуры плавления.
В приборе термометр с капиллярами нагревается электрической катушкой, напряжение на которую подается через трансформатор, а скорость нагрева зависит от приложенного напряжения. Сначала аппарат нагревают со скоростью 4-6°С в минуту и на 10°С, а затем ожидаемый Т пл нагревают со скоростью 1-2°С в минуту.За температуру плавления принимают расстояние от размягчения кристаллов (смачивания вещества) до полного их плавления.
Полученные данные заносятся в лабораторный журнал.
Перегонка
Дистилляция является важным и широко используемым методом очистки органических жидкостей и разделения жидких смесей. Этот метод включает кипячение и испарение жидкости, а затем конденсацию паров в дистиллят. Разделение двух жидкостей, имеющих разность температур кипения 50-70°С и более, можно осуществить простой перегонкой.Если разница меньше, необходимо применять фракционную перегонку в более сложном аппарате. Некоторые жидкости с высокой температурой кипения разлагаются при перегонке. Однако при падении давления температура кипения падает, что позволяет перегонять высококипящие жидкости без разложения в вакууме.
При котором кристаллическая решетка металла разрушается и переходит из твердого состояния в жидкое.
Температура плавления металлов – показатель температуры нагретого металла, при которой начинается процесс (плавление).Сам процесс противоположен кристаллизации и неразрывно с ней связан. Расплавить металл? Он должен быть нагрет внешним источником, нагрет до точки плавления, а затем продолжать обеспечивать тепло для преодоления энергии фазового перехода. Дело в том, что значение температуры плавления металлов само по себе указывает на температуру, при которой материал будет находиться в фазовом равновесии на границе жидкость-твердое тело. При этой температуре чистый металл может находиться как в твердом, так и в жидком состоянии одновременно.Для осуществления процесса плавления необходимо перегреть металл немного выше равновесной температуры, чтобы обеспечить положительный термодинамический потенциал. Усильте процесс.
Температура плавления металлов постоянна только для чистых веществ. Наличие примесей будет смещать равновесный потенциал в ту или иную сторону. Это связано с тем, что металл с примесями образует другую кристаллическую решетку, и силы взаимодействия атомов в них будут отличаться от таковых в чистых материалах.В зависимости от температуры плавления металлы делят на легкоплавкие (до 600°С, например галлий, ртуть), среднеплавкие (600-1600°С, медь, алюминий) и тугоплавкие (>1600°С, вольфрам, молибден).
В современном мире чистые металлы редко используются из-за их ограниченных физических свойств. В промышленности давно и плотно используются различные сочетания металлов – сплавов, разновидностей и свойств которых гораздо больше. Температура плавления металлов, из которых состоят различные сплавы, также будет отличаться от точки плавления их сплава.Различные концентрации веществ определяют порядок их плавления или кристаллизации. Однако существуют равновесные концентрации, при которых металлы, входящие в состав сплава, затвердевают или плавятся одновременно, т. е. ведут себя как однородный материал. Такие сплавы называются эвтектическими.
Знание температуры плавления очень важно при работе с металлом, это значение необходимо как на производстве, для расчета параметров сплава, так и при эксплуатации металлических изделий, когда изменяется температура фазового перехода материала, из которого изготовлено изделие делается решает.ограничения в его использовании. Для удобства эти данные сведены в единую плавку металлов — суммарный результат физических характеристик различных металлов. Аналогичные таблицы есть и для сплавов. Температура плавления металлов также зависит от давления, поэтому данные в таблице приведены для конкретного значения давления (обычно это нормальные условия, когда давление составляет 101,325 кПа). Чем выше давление, тем выше температура плавления, и наоборот.
Одним из основных направлений в металлургической промышленности является литье металлов и их сплавов в связи с дешевизной и относительной простотой процесса.Вы можете отливать формы любого контура различных размеров, от маленьких до больших; подходит как для массового производства, так и для индивидуального производства.
Литье является одним из древнейших направлений металлообработки и берет свое начало примерно в бронзовом веке: 7-3 тысячелетия до н.э. мне. С тех пор было открыто много материалов, что привело к технологическому прогрессу и повышению требований в литейной промышленности.
В настоящее время существует множество направлений и видов литья, отличающихся технологическим процессом.Одно остается неизменным – физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать, при какой температуре начинают плавиться разные виды металлов и их сплавов.
процесс плавки металла
Этот процесс относится к переходу вещества из твердого состояния в жидкое. После достижения температуры плавления металл может быть как твердым, так и жидким, дальнейший рост приведет к полному жидкостному переходу материала.
То же самое происходит и при затвердевании – как только будет достигнута точка плавления, вещество начнет переходить из жидкого состояния в твердое, а температура не изменится до полной кристаллизации.
При этом следует помнить, что это правило распространяется только на голое железо. Сплавы не имеют четкого температурного предела и совершают переходы состояний в определенном диапазоне:
- Солидус – Температурная линия, при которой наиболее легкоплавкий компонент сплава начинает плавиться.
- Ликвидус – это конечная температура плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.
Точка плавления таких веществ не может быть точно измерена, точка перехода состояния указывает числовой диапазон.
В зависимости от температуры, при которой начинается плавление металлов, их принято делить на:
- Плавкий до 600°С.
К ним относятся цинк, свинец и другие.
- Среднеплавкий, до 1600°С.Наиболее распространены сплавы и металлы, такие как золото, серебро, медь, железо, алюминий.
- Огнеупорный материал, температура выше 1600°С. Титан, молибден, вольфрам, хром.
Существует также точка кипения — точка, при которой расплавленный металл начинает выделяться газом. Он очень теплый, обычно в 2 раза выше температуры плавления.
Влияние давления
Температура плавления и равная ему температура замерзания зависят от давления, которое увеличивается с ростом давления.Это связано с тем, что при увеличении давления атомы сближаются друг с другом и должны быть отодвинуты, чтобы разрушить кристаллическую решетку. Для высокого кровяного давления требуется больше энергии теплового движения, и соответствующая температура плавления увеличивается.
Существуют исключения, когда температура, необходимая для сжижения, снижается с увеличением давления. К таким веществам относятся лед, висмут, германий и сурьма.
Таблица температуры плавления
Для всех, кто работает в сталелитейной промышленности, будь то сварщик, литейщик, сталевар или ювелир, важно знать, при каких температурах плавятся материалы, с которыми они работают.В таблице ниже приведены температуры плавления наиболее распространенных веществ.
Таблица температур плавления металлов и сплавов
Имя | Т.пл, °С |
---|---|
Алюминий | 660,4 |
Медь | 1084,5 |
Олово | 231,9 |
Цинк | 419,5 |
Вольфрам | 3420 |
Никель | 1455 |
Серебро | 960 |
Золото | 1064,4 |
Платина | 1768 |
Титан | 1668 |
Дюралюминий | 650 |
Углеродистая сталь | 11:00-15:00 |
11:10-14:00 | |
Железо | 1539 |
Меркурий | -38.![]() |
Мельхиор | 1170 |
Циркон | 3530 |
Кремний | 1414 |
Нихром | 1400 |
Висмут | 271,4 |
немецкий | 938,2 |
банка | 13:00-15:00 |
Коричневый | 930-1140 |
Кобальт | 1494 |
Калий | 63 |
Натрий | 93,8 |
Латунь | 1000 |
Магний | 650 |
Марганец | 1246 |
Хром | 2130 |
молибден | 2890 |
Свинец | 327,4 |
Берилл | 1287 |
, чтобы выиграть | 3150 |
Фехраль | 1460 |
Сурьма | 630,6 |
Карбид титана | 3150 |
карбид циркония | 3530 |
Гал | 29,76 |
Помимо плавильного стола есть много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа, дан в таблице кипящих веществ. Помимо кипения, металлы обладают рядом других физических свойств, таких как прочность.
Помимо возможности перехода из твердого состояния в жидкое, одним из важных свойств материала является его прочность – возможность твердого сопротивления растрескиванию и необратимым изменениям формы. Основным показателем прочности считается сопротивление, возникающее в результате разрушения предварительно отожженной заготовки.Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Прочность определяют в МПа – МегаПаскалях.
Группы прочности металла следующие:
- Хрупкий. Их сопротивление не превышает 50 МПа. К ним относятся олово, свинец, мягкие щелочные металлы
- Стабильный, 50-500 МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
- Высокая прочность, свыше 500 МПа. Например, молибден и .
Таблица прочности металла
Самые распространенные ноги в повседневной жизни
Как видно из таблицы, температуры плавления элементов значительно различаются, даже для материалов, распространенных в быту.
Ну и минимальная температура.У ртути температура плавления -38,9°С, так что она уже жидкая при комнатной температуре. Этим и объясняется тот факт, что бытовые термометры имеют более низкий показатель -39 градусов Цельсия: ниже этого показателя ртуть становится твердой.
Наиболее часто используемые в бытовом применении припои содержат значительный процент олова, имеющего температуру плавления 231,9°С, поэтому большинство припоев плавится при рабочей температуре паяльника 250-400°С.
Кроме того, существуют легкоплавкие припои с более низкой температурой плавления, до 30°С, и применяются, когда опасен перегрев припаиваемых материалов. Для этих целей применяют припой с висмутом, а плавление этих материалов находится в пределах 29,7 – 120°С.
Температура плавления высокоуглеродистых материалов колеблется от 1100 до 1500°С в зависимости от легирующих элементов.
Температуры плавления металлов и их сплавов лежат в очень широком диапазоне температур, от очень низких температур (ртутный) до нескольких тысяч градусов. Знание этих показателей, как и других физических свойств, очень важно для людей, работающих в металлургической промышленности. Например, знание температуры плавления золота и других металлов пригодится ювелирам, литейщикам и сталелитейщикам.
Каждый металл и сплав имеет свой уникальный набор физических и химических свойств, не последним из которых является температура плавления.Сам процесс означает переход тела из одного физического состояния в другое, в данном случае из кристаллического твердого состояния в жидкое. Чтобы расплавить металл, необходимо приложить к нему тепло, пока не будет достигнута температура плавления. Благодаря ему он еще может оставаться твердым, но при дальнейшем воздействии и повышении температуры металл начинает плавиться. Если температуру понизить, то есть отвести некоторое количество тепла, элемент затвердеет.
Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422 °С, самая низкая – у ртути: элемент плавится при – 39 °С.Как правило, точное значение для сплавов определить не удается: оно может существенно варьироваться в зависимости от процентного содержания компонентов. Обычно они записываются в виде диапазона чисел.
Как это происходит?
Все металлы плавятся примерно одинаково – при внешнем или внутреннем нагреве. Первый проходит в термической печи, второй при переходе – нагрев электрическим сопротивлением или индукционный нагрев в высокочастотном электромагнитном поле.Оба варианта воздействуют на металл схожим образом.
С повышением температуры амплитуда тепловых колебаний молекул также увеличивается, появляются дефекты структурной сетки, которые выражаются в росте дислокаций, скачках атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. При этом на поверхности тела образуется квазижидкий слой. Период разрушения сети и накопления дефектов называется плавлением.
В зависимости от температуры плавления металлы делятся на:
В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше оценка, тем сильнее она должна быть. Вы можете проверить температуру необходимого элемента в таблице.
Другим важным значением является температура кипения. Это значение, при котором жидкость начинает кипеть, оно соответствует температуре насыщенного пара, образующегося над плоской поверхностью кипящей жидкости. Обычно она почти в два раза выше температуры плавления.
Оба значения обычно указываются при нормальном давлении. Между собой прямо пропорциональны .
- Давление увеличивается – количество расплава увеличивается.
- Давление падает – количество плавления уменьшается.
Таблица металлов и легкоплавких сплавов (до 600°С)
Таблица среднеплавких металлов и сплавов (от 600°С до 1600°С)
.
химический элемент, температура плавления и кипения, пошаговая инструкция
Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.
Купрум: характеристика элемента
Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.
Физические свойства
Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.
- Температура плавления 1083 градуса.
- Температура кипения 2567 градусов.
- Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
- Плотность 8,92 г/см.
Нахождение в природе
В природе встречается в самородном виде и в виде соединений.
Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.
В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.
Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.
Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.
Медные сплавы
Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:
- Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
- Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец.
Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
- Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
- Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия.
Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
- Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.
Переплавка меди дома
Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.
График плавления меди
Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:
- Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
- При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
- После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.
В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.
Температура кипения
Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.
Способы плавки
Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.
Для этих целей годятся следующие приспособления:
- Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
- Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
- Паяльная лампа.
Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
- Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
- Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.
Пошаговая инструкция
Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:
- Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
- После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
- На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
- После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.
Практические рекомендации
Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.
Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.
В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.
В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.
- Автор: admin
- Распечатать
Оцените статью:
(0 голосов, среднее: 0 из 5)
Поделитесь с друзьями!
Температура плавления меди и ее сплавов, график, характеристики
Медные изделия отличаются хорошей прочностью, пластичностью, высокой электропроводностью, устойчивостью к коррозии и химически активным веществам. Для изготовления объектов используется медная руда, которая на заводах обогащается и переплавляется в однородные бруски, прутья или слитки. Чтобы изготовить какое-либо медное изделие, материал помещают в термостойкую форму, доводят до температуры плавления, а потом прекращают нагрев, что приводит к застыванию вещества. Но какая температура плавления меди? Можно ли расплавить медные заготовки в домашних условиях — или для этого требуются специальные печи? О каких правилах техники безопасности нужно знать?
Содержание
- 1 Общие сведения
- 2 Температура плавления меди
- 3 Плавление сплавов на основе меди
- 4 Как расплавить медь в домашних условиях?
- 4.1 Оборудование и правила техники безопасности
- 4.2 Алгоритм расплавления медных изделий
- 5 Заключение
Общие сведения
Температурой плавления называют температуру, при которой твердое вещество переходит в жидкость. Медь расплавляется при температуре 1083 градусов, поэтому этот металл относят к категории тугоплавких. При снижении этой температуры металл может вновь принять твердую форму. Плавят медь на заводах, хотя эту процедуру можно провести в домашних условиях. На химическом уровне расплавление возникает за счет деструкции кристаллической решетки, которая формирует твердую структуру вещества. Атомы меди в кристаллической решетке всегда находятся в непрерывном движении.
Однако их взаимное притяжение и отталкивание происходит сбалансировано, поэтому атомы сохраняют исходное положение в течение длительного времени. В случае повышения температуры атомы меди получают дополнительную энергию, что заставляет двигаться их более интенсивно. При небольшом повышении дополнительная энергия «гасится» за счет сбалансированного движения атомов в решетке. Однако при достижении определенной температуры нагрева количество энергии становится избыточным, а кристаллическая решетка начинает разрушаться.
В этот момент и происходит расплавление вещества. Взаимное притяжение атомов частично сохраняется, поэтому вещество принимает жидкую форму. Однако в случае дальнейшего нагрева энергия атомов усиливается еще сильнее, что может привести к окончательному разрыву связи атомов друг с другом. Эту точку перехода называют испарением (жидкость трансформируется в пар). В случае снижения температуры медного пара может переходить обратно в жидкость, а потом — в твердое состояние.
Температура плавления меди
При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:
- В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
- В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка.
Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
- При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
- При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
- При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией).
При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.
Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.
Плавление сплавов на основе меди
На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:
- При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
- При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами).
Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
- Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
- Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.
Как расплавить медь в домашних условиях?
Обычно медь и сплавы на ее основе плавят в специальных печах, где происходит не только расплавление материала, но и формовка новых деталей. Однако при желании медные изделия можно расплавить и в домашних условиях. Температура плавления меди в домашних условиях будет стандартной — 1083 градусов. Опытные металлурги рекомендуют нагревать вещество с небольшим запасом, чтобы минимизировать теплопотери и не допустить повторной кристаллизации вещества при его охлаждении. Во время домашнего расплавления необходимо соблюдать правила техники безопасности. Ниже мы рассмотрим эти правила, а потом узнаем, как именно нужно проводить домашнюю расплавку медных изделий.
Оборудование и правила техники безопасности
Для расплавления Вам понадобится купить или собрать специальное оборудование. В качестве исходного вещества подойдет чистая медь в слитках или брусках. Также для переплавки можно использовать различные детали и домашнюю утварь, содержащие большое количество меди. Это могут быть декоративные изделия, запчасти авто, очищенные провода и другие. Перед переплавкой проверьте удельное содержание меди (обычно ставится штамп с нужной информацией). Для нагрева объектов понадобится муфельная печь с регулятором температуры.
Для расплавления слитков или изделий понадобится не только печь, но и посуда-тигель, в которую будет помещаться медь. При выборе тигля отдайте свое предпочтение посуде, выполненной из тугоплавкой керамики или огнеупорной глины. Эти материалы не трескаются и не деформируются при большой нагреве. Из керамики или огнеупорной глины Вам также нужно выполнить форму, в которую будет заливаться расплавленная медь. Помимо этого Вам понадобится и ряд вспомогательных элементов — металлургические щипцы и крюк для работы с тиглем, древесный уголь (если Вы используете обычную печь), бытовой пылесос для удаления мусора с металлургической площадки и так далее.
Также стоит не забывать о правилах техники безопасности:
- Все работы рекомендуется проводить на улице либо в хорошо проветриваемом большом помещении с нормальным уровнем влажности воздуха. Это может быть гараж, пристройка к дому, мастерские.
- Для металлургических работ человеку понадобится купить защитную одежду, которая будет защищать его тело от маленьких капель расплавленной меди и термического воздействия высоких температур.
Защитная одежда должна покрывать не только туловище, но и руки, голову и ноги.
- В случае утечки металла из активной зоны нужно выключить печь, чтобы остановить процедуру переплавки. «Сбежавший» металл необходимо потушить, однако учтите — вода для этих целей не подходит. В случае тушения раскаленного металла водой жидкость может начать распадаться на молекулы кислорода и водорода, что может спровоцировать взрыв (молекулярный водород чрезвычайно взрывоопасен). Для тушения расплавленного металла следует использовать асбестовое одеяло либо сухую кальцинированную соду или хлорид натрия.
Алгоритм расплавления медных изделий
Переплавку медных изделий следует делать так:
- Возьмите медные изделия или слитки и поместите в тигель. Тигель с расходными материалами поместите в печь. Начните постепенно нагревать материал: сперва выставите температуру 100 градусов, потом — 200 и так далее. Доведите температуру до 1090-1150 градусов (медь плавится при температуре 1083 градусов, однако нужно брать температуру с небольшим запасом).
- Когда материал расплавится, достаньте его из печи с помощью металлургических щипцов. На поверхности смеси вы увидите остатки оксидной пленки. С помощью крюка ее нужно сдвинуть к одной из стенок тигля, чтобы она не попала в форму. После удаления пленки аккуратно перелейте расплавленную медь в форму (переливать жидкость нужно тонкой струей, чтобы не допустить утечку или распрыскивания металла).
- Выключите муфельную печь, накройте форму огнеупорной крышкой и дождитесь полного остывания формы вместе с расплавленным металлом. При желании Вы можете поставить форму обратно в печь, чтобы минимизировать контакт металла с атмосферным воздухом (однако перед помещением формы убедитесь, что печь выключена). После полного остывания и затвердения металла достаньте переплавленную запчасть из формы.При необходимости выполните финальную полировку или шлифовку.
Заключение
Твердая медь переходит в жидкое состояние при температуре 1083 градуса по Цельсию. Расплавление представляет собой сложный химический процесс, при котором разрушается твердая кристаллическая решетка вещества, что приводит к изменению его формы. Для повышения температуры меди нужно выполнить ее нагрев. На заводах и фабриках для этого используют специальные камеры и печи. Выполнить нагрев вещества можно в домашних условиях — для этого нужно собрать или приобрести мощную печь, которая может нагревать вещества до температуры выше 1100 градусов. Нагревать медь нужно с запасом, что связано с теплопотерями и особенностями процедуры нагрева.
Для переплавки меди в домашних условиях помимо печи нужно подготовить дополнительное оборудование — тигель, металлургические щипцы, крюк, керамическую форму и так далее. Переплавка выполняется просто — с помощью печи медь нагревается до 1083 градусов, а потом она переливается в форму для застывания. Расплавление медных сплавов отличается от расплавления чистой меди. Сплавы характеризуются «плавающей» температурой плавления. Например, латунь плавится при температуре от 880 до 950 градусов в зависимости от концентрации легирующих элементов. Металлурги рекомендуют плавить латуниевый сплав при температуре 950 градусов (точка ликвидуса).
Используемая литература и источники:
- Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — «Химия», 2000.
- Максимов М. М., Горнунг М. Б. Очерк о первой меди. — М.: Недра, 1976.
- Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006.
- Статья на Википедии
Температура плавления разных металлов. При каких условиях плавится медь
C проблемой, как расплавить медь в домашних условиях, сталкиваются многие хозяева. Одни хотят отлить медные изделия, у других скопился медный лом, который занимает много места, а выбросить его жаль. Тех, кто считает, что это сложный процесс и расплавить медь в домашних условиях не получится, можно успокоить. Древние люди умели это делать за несколько веков до н.э., не имея для этого никаких специальных приспособлений.
Среди металлов, нашедших широкое применение в промышленности, это среднее значение. Олово, свинец, магний, цинк, алюминий имеют существенно меньшую и золота она равна соответственно 960 °С и 1063 °C. У железа температура плавления равна 1539 °С. Поэтому медь, серебро и золото можно плавить в железной посуде. Добавление олова, свинца и цинка позволяет существенно снизить температуру плавления меди, но при этом образуется не чистая – бронза и латунь.
До начала плавления необходимо подготовить:
- стальные щипцы,
- крючок для сбора оксидной пленки с поверхности расплава,
- форму для заливки.
Крючок можно изготовить из стальной проволоки. Формой может служить любая стальная емкость, можно подготовить углубление в земле, как это делали наши предки. Для художественного литья потребуется специальная форма.
Плавление в муфельной печи
- Бытовые муфельные печи можно приобрести в специализированных магазинах. Современные печи снабжены регуляторами температуры и смотровым окном, могут быть с вертикальной или горизонтальной загрузкой. Печь среднего качества способна поддерживать температуру до 2000 °С, а профессиональная – до 3000°C. В ней можно расплавлять не только медь, но и железо.
Но следует учесть, что при температуре 2560 °С медный расплав начинает кипеть. После охлаждения слиток будет иметь пористую поверхность, которая способствует быстрому окислению и разрушению. Такой слиток имеет непрезентабельный вид, он лишен характерного медного блеска.
- Независимо от способа плавления, медный лом нужно измельчить. Это сократит время процесса и даст гарантию, что расплав получится однородным.
- Измельченный медный лом засыпают в тигель, тигель помещают в муфельную печь, предварительно нагретую выше 1083 °C.
- Убедившись, что медь расплавилась, тигель щипцами извлекают из печи и крючком удаляют оксидную пленку, которая всегда образуется на поверхности расплава. После этого расплав сразу следует вылить в форму.
Приобретать дорогостоящую муфельную печь ради одной плавки не стоит. Медь можно расплавить другими способами.
Плавление с помощью самодельных приспособлений
Расплавить медь можно с помощью газовой горелки
У некоторых автолюбителей в гаражах имеются самодельные горны, с помощью которых можно плавить металлы. Если горн найти не удалось, его можно сделать своими руками.
- На земле устанавливают опоры, например, силикатные кирпичи, на них кладут стальную сетку с мелкими ячейками.
- На сетку насыпают слой древесного угля и поджигают его. Чтобы получить высокую температуру, нужно увеличить приток воздуха. Проще всего это сделать с помощью пылесоса, работающего « на выдув», направив струю воздуха в место горения угля.
- Остается поставить на горящие угли тигель и дождаться, когда медь расплавится. Расплав контактирует с атмосферным кислородом, поэтому активно образуется оксидная пленка, которую постоянно следует убирать. Можно присыпать поверхность расплава мелкими углями или пеплом от них. Образуется шлак, который потом легко отделяется.
Медные сплавы бронзу и латунь можно расплавить с помощью газовой горелки автогенной сварки или паяльной лампой с насадкой для поворота пламени. Пламя должно нагревать тигель равномерно снизу.
Медные заготовки
Сегодня медь является одним из самых востребованных металлов. Высокий спрос объясняется отличительными характеристиками, присущими этому металлу. Медь проводит электроток лучше любых других металлов, кроме серебра, благодаря этому ее используют в производстве кабелей и электропроводов. Температура плавления меди не высокая, металл пластичный и легко поддается обработке, благодаря этому качеству стало возможным ее применение в строительстве в качестве водопроводных тр. Этот металл имеет высокое сопротивление к внешним раздражающим факторам, поэтому долговечен и может быть использован несколько раз, после переплавки. Это качество меди высоко ценят экологи, поскольку при повторной обработке металла тратится значительно меньшее количество энергии, чем при добыче и обработки руды, к тому же сохраняются земные недра. Добыча медной руды не проходит бесследно, на месте отработанных рудников появляются токсичные озера, наиболее известное во всем мире такое озеро – Беркли-Пит в штате Монтана в США.
Необходимая температура для плавления меди
Медь не является легкоплавким металлом
Люди нашли применение меди еще в древние времена, тогда ее добывали в виде самородков. Ввиду низкой температуры, необходимой для осуществления процесса плавления ее стали широко применять для изготовления орудий труда и охоты, самородки можно плавить на костре. В наши дни технология получения металла мало чем отличается от придуманной в древние времена, совершенствуются лишь печи, увеличена скорость обжига и объемы обработки. Здесь возникает уместный вопрос — какая температура плавления меди? Ответ на него можно найти в любом учебнике по физике и химии – медь начинает плавиться при температуре нагрева до 1083 о С.
Кипение меди уменьшает ее прочность
В процессе термического воздействия на металл происходит разрушение его кристаллической решетки, это достигается при определенной температуре, которая в течение некоторого времени остается постоянной. В этот момент и происходит плавка металла. Когда процесс разрушения кристаллов полностью завершен, температура металла снова начинает подниматься, и он переходит в жидкую форму и начинает кипеть. Температура плавления меди значительно ниже, чем та, при которой металл кипит. Процесс кипения начинается с появлением пузырьков, по аналогии с водой. На этом этапе любой металл, в том числе и медь, начинает терять свои характеристики, в основном это отражается на прочности и упругости. Температура кипения меди составляет 2560 о С. Во время остывания металла происходит похожая картина, как и при нагреве – сначала температура опускается до определенного градуса, в этот момент происходит затвердевание, которое длится некоторое время, затем продолжается остывание до обычного состояния.
Как изменяется металл под термическим воздействием
Любой нагрев меди влечет за собой изменение ее характеристик, наиболее значимой является величина ее удельного сопротивления. Медь является проводником электрического тока, при этом металл оказывает сопротивление движению носителям заряда. Отношение площади сечения проводника к оказываемому движению и называется удельным сопротивлением.
Так вот, эта величина для чистой меди составляет 0,0172 ОМ мм 2 /м при 20 о С. Этот показатель может измениться после термической обработки, а также вследствие добавления в состав различных примесей и добавок. Здесь наблюдается обратная зависимость сопротивления меди от температуры – чем выше была температура обработки металла, тем ниже будет ее сопротивление электрическому току. Для обеспечения наилучших электролитических характеристик медной проволоки, ее обрабатывают при 500 о С.
Во время термической обработки можно не только придавать металлу нужную форму и размер, но и создавать различные сплавы. Самыми распространёнными медными сплавами является бронза и латунь. Бронза получается путем смешивания меди с оловом, а латунь – с цинком. Добавление алюминия и стали увеличивает прочность материала, а добавление никеля повышает антикоррозийные свойства. Но стоит заметить, что любая примесь снижает главное свойство – электропроводность, поэтому для изготовления жил электрокабеля используют чистый состав металла.
Отжиг меди
Под отжигом меди следует понимать процесс ее нагрева с целью дальнейшей обработки и приданию необходимых форм изделию. В ходе отжига металл становится более пластичным и мягким, поддающимся различным трансформациям. При отжиге меди температура достигает 550 о С, она приобретает темно-красный оттенок. После нагрева желательно быстро производить ковку и оправлять изделие на охлаждение.
Если подвергать материал медленному, естественному охлаждению, то возможно образование наклепа, поэтому чаще применяют мгновенное охлаждение путем помещения заготовки в холодную воду. Если превысить допустимую величину нагрева, металл может стать более хрупким и ломким.
Во время отжига осуществляется процесс рекристаллизации меди, в ходе которого образуются новые зерна или кристаллы металла, которые не искажены решеткой и отделены от прежних зерен угловыми границами. Новые зерна по размеру могут сильно отличаться от предшественников, при их образовании высвобождается большое количество энергии, увеличивается плотность и появляется наклеп. Рекристаллизация осуществляется только после деформации изделия, и только после достижения ее определенного уровня. Для меди критический уровень деформации составляет 5%, если он не достигнут процесс формирования новых зерен не начнется. Температура рекристаллизации меди составляет 270 о С. Следует отметить, что при этой температуре процесс роста кристаллов только начинается, но он достаточно медленный, поэтому для достижения необходимого результата медь необходимо нагреть до 500 о С, тогда времени для остывания хватит для завершения процесса рекристаллизации.
Видео: Плавление меди в микроволновке
Содержание:
Каждый металл обладает способностью плавиться. Все они отличаются собственной температурой плавления, которая зависит от разных факторов. Прежде всего, на этот показатель влияет структура металла и наличие в нем каких-либо примесей. Температура плавления меди составляет 1084 градуса.
Процесс плавления металлов
Во время нагревания металлов их кристаллическая решетка начинает постепенно разрушаться. В начальной стадии, по мере нагревания, происходит повышение температуры. Достигнув определенного значения, она продолжает оставаться на одном и том же уровне, несмотря на продолжающийся нагрев. В такой момент и начинается процесс плавления. Он продолжается до тех пор, пока металл полностью не расплавится. После этого продолжается дальнейшее повышение температуры. Таким образом, происходит плавление всех, без исключения, металлов.
Во время охлаждения наблюдается обратное явление. Температура начинает снижаться до тех пор, пока металл не начнет твердеть. Она будет держаться на одном уровне до окончательного отвердения, а потом вновь начнет понижаться. Все происходящие процессы можно отобразить графически, в виде фазовой диаграммы. Она точно показывает состояние вещества при воздействии на него определенной температуры.
Если же расплавленный металл будет нагреваться и далее, то при достижении определенного предела он начнет кипеть. Однако в отличие от жидкости, жидкий металл начинает выделять не пузырьки газа, а углерод, который образуется во время окислительных процессов.
Свойства меди
Человек использовал медь для своих целей с древних времен. Плавление меди при сравнительно низких температурах, позволило проводить с этим металлом самые разные операции. Таким образом, была получена бронза, представляющая собой сплав меди с оловом. По своей прочности она значительно превосходила чистую медь, что позволило изготавливать более качественное оружие и инструменты.
В настоящее время медь также не используется в чистом виде. В составе меди, в большом количестве присутствуют разные компоненты. Их содержание достигает 1%. В качестве основных добавок используется никель, железо, мышьяк и сурьма. Тем не менее, несмотря на добавки, с технической стороны медь считается чистым металлом с высокими показателями теплопроводности и электропроводности. Поэтому она является идеальным материалом для кабельно-проводниковой продукции.
Сплав меди с другими металлами
Относительно невысокая температура плавления меди составляет 1084°С. Это позволяет получать на ее основе металлические сплавы, обладающие совершенно другими свойствами.
Среди них хорошо известна латунь, представляющая собой сплав меди и цинка, в процентном соотношении приблизительно 1:1. Полученное вещество, имеет более низкую температуру плавления, составляющую от 800 до 950 градусов. Конкретное значение этого показателя зависит от соотношения металлов, содержащихся в сплаве: с уменьшением количества цинка плавление латуни происходит при более низкой температуре. Данный материал используется в литейном производстве, а также в качестве листовых и прокатных изделий. Кроме цинка, в различные марки латуни добавляются другие компоненты, влияющие на процесс плавления.
Другим известным сплавом является бронза, в которой присутствует медь и олово. В некоторых случаях, вместо олова могут использоваться железные, алюминиевые или марганцевые добавки. Сплав с оловом плавится при диапазоне от 900 до 950 градусов. Для бронзы без олова этот показатель составляет от 950 до 1080 градусов. Этот материал применяется для производства различных трущихся деталей, а также при изготовлении декоративных украшений.
Благодаря тому, что температура плавления меди достаточно невысокая, этот металл стал одним из первых, которые древние люди начали использовать для изготовления различных инструментов, посуды, украшений и оружия. Самородки меди или медную руду можно было расплавить на костре, что, собственно, и делали наши далекие предки.
Несмотря на активное применение человечеством с древних времен, медь не является самым распространенным природным металлом. В этом отношении она значительно уступает остальным элементам и занимает в их ряду только 23-е место.
Как плавили медь наши предки
Благодаря невысокой температуре , составляющей 1083 градуса Цельсия, наши далекие предки не только успешно получали из руды чистый металл, но и изготавливали различные сплавы на его основе. Чтобы получить такие сплавы, медь нагревали и доводили до жидкого расплавленного состояния. Затем в такой расплав просто добавляли олово или выполняли его восстановление на поверхности расплавленной меди, для чего использовалась оловосодержащая руда (касситерит). По такой технологии получали бронзу – сплав, обладающий высокой прочностью, который использовали для изготовления оружия.
Какие процессы происходят при плавлении меди
Что характерно, температуры плавления меди и сплавов, полученных на ее основе, отличаются. При , имеющего меньшую температуру плавления, получают бронзу с температурой плавления 930–1140 градусов Цельсия. А сплав меди с цинком (латунь) плавится при 900–10500 Цельсия.
Во всех металлах в процессе плавления происходят одинаковые процессы. При получении достаточного количества теплоты при нагревании кристаллическая решетка металла начинает разрушаться. В тот момент, когда он переходит в расплавленное состояние, его температура не повышается, хотя процесс передачи ему теплоты при помощи нагрева не прекращается. Температура металла начинает вновь повышаться только тогда, когда он весь перейдет в расплавленное состояние.
При охлаждении происходит противоположный процесс: сначала температура резко снижается, затем на некоторое время останавливается на постоянной отметке. После того, как весь металл перейдет в твердую фазу, температура снова начинает снижаться до полного его остывания.
Как плавление, так и обратная кристаллизация меди, связаны с параметром удельной теплоты. Данный параметр характеризует удельное количество теплоты, которая требуется для того, чтобы перевести металл из твердого состояния в жидкое. При кристаллизации металла такой параметр характеризует количество теплоты, которое он отдает при остывании.
Более подробно узнать о плавлении меди помогает фазовая диаграмма, показывающая зависимость состояния металла от температуры. Такие диаграммы, которые можно составить для любых металлов, помогают изучать их свойства, определять температуры, при которых они кардинально меняют свои свойства и текущее состояние.
Кроме температуры плавления, у меди есть и температура кипения, при которой расплавленный металл начинает выделять пузырьки, наполненные газом. На самом деле никакого кипения меди не происходит, просто этот процесс внешне очень его напоминает. Довести до такого состояния ее можно, если нагреть до температуры 2560 градусов.
Как понятно из всего вышесказанного, именно невысокую температуру плавления меди можно назвать одной из основных причин того, что сегодня мы можем использовать этот металл, обладающий многими уникальными характеристиками.
Если вас хоть раз волновал вопрос о температуре плавления бронзы, то данная статья именно для вас. Некоторые исторические данные дают право полагать, что первобытные люди имели в обиходе медь, но она была в самородках, которые иногда могли быть внушительных размеров.
Что такое медь?
Название «медь» (на латыни «Cuprum») происходит от названия острова Кипр, на котором и добывали этот металл древние греки. Ввиду того, что медь имеет не слишком высокую температуру плавления, медную руду или сами самородки в древности плавили на костре. А медь использовали в оружейном деле, а также для изготовления разных предметов обихода. По наличию и распространению в земной толще медь находится на 23 месте относительно иных элементов, однако люди начали применять ее еще в древние времена. Как правило, в природе медь встречается в соединениях сульфидных руд, самыми популярными из которых считаются медный колчедан и медный блеск.
Способы получения меди
Технологии для получения меди существуют разные. Но каждая отдельная технология имеет не один этап. Медь получают из руды. Как сказано выше, температура плавления меди давала возможность даже древним людям справляться с ее обработкой. Само примечательное то, что уже в древности люди сумели выработать способ получения и дальнейшего применения как чистой меди, так и сплавов.
Процесс плавления – это изменение состояния металла от твердого к жидкому. Именно для этого и использовали костер, а благодаря низкой температуре плавления можно было проделать эту процедуру без особых сложностей. Для получения сплавов в расплавленную медь добавляли олово. Его можно было получить, восстановив из специальной оловосодержащей руды (касситерит). Такой сплав получил название бронза, которая намного прочнее меди. Бронзу также использовали в древности для изготовления оружия.
А также можно было добыть из медной руды при помощи плавления более чистый металл. Все знают, что каждый металл имеет свою температуру плавления, которая в свою очередь зависит от того, какое количество примесей присутствует в руде. Например, медь, у которой температура плавления равняется 1083 °С, при смешивании с оловом образует новый материал – бронзу. А температура плавления бронзы составляет 930-1140°С, а разная температура потому, что зависит от того, сколько в ней содержится олова. Ну а если вам интересно узнать подробнее, например, какой имеет бронза цвет или какой имеет бронза состав, то эту информацию также можно найти в интернете.
Латунь
Например, латунь – это сплав цинка и меди с температурой плавления 900-1050°С. Когда металл нагревается и плавится, то кристаллические решетки начинают разрушаться. При процессе плавления температура метала постепенно повышается, а далее с определенной отметки становится постоянной, однако нагрев остается таким же. Вот в момент, когда температура останавливается на определенном значении, начинается процесс плавления. И в момент плавления металла температура остается на одном и том же значении, но когда металл полностью расплавлен, температура снова будет увеличиваться.
Такой процесс происходит относительно любого металла. Ну а в процессе охлаждения идет обратный процесс, а именно: сперва температура падает до того момента, пока металл не начнет затвердевать, а уже далее остается постоянной. Когда металл полностью затвердеет, температура снова начинает снижаться. Так ведут себя все металлы, изображая этот процесс графически, он будет иметь вид диаграммы с фазами, на которой четко будет видно состояние вещества на определенно температурной отметке.
Многие ученые пользуются такими фазовыми диаграммами в качестве главного инструмента для исследования процессов, происходящих с металлами при плавлении. Например, если уже расплавленный металл продолжать нагревать, то при достижении определенной температуре масса начнет кипеть. Например, медь кипит при температуре 2560 °С. Относительно металлов такой процесс также назвали кипением, поскольку по аналогии кипящей жидкости на его поверхности появляются пузыри газа.
Видео: Плавка меди в графитовом тигле
термодинамика – Как литейные заводы предотвращают выкипание цинка при сплавлении с алюминием?
Спросил
Изменено 5 лет, 3 месяца назад
Просмотрено 4k раз
$\begingroup$
Каким образом литейные заводы предотвращают выкипание металлов с более низкой температурой кипения, таких как цинк, при сплавлении в печи с металлами с более высокой температурой кипения, такими как алюминий?
- термодинамика
- металл
- температура кипения
- металлургия
- сплав
$\endgroup$
$\begingroup$
Когда сплавы изготавливаются путем смешивания расплавленных металлов (фактически сплав должен содержать только один металл и, по крайней мере, еще одно соединение, металл или нет), металлы необходимо нагревать только до точки плавления, а не до точки кипения . oC}$ 9oC}$, оба металла обязательно расплавятся. Но при такой высокой температуре жидкий цинк также выкипал бы, а пары окислялись бы на воздухе. Метод, принятый в этом случае, состоит в том, чтобы сначала нагреть металл с более высокой температурой плавления, а именно медь. Когда это расплавлено, твердый цинк добавляется и быстро растворяется в жидкой меди до того, как очень много цинка выкипит. Тем не менее, при изготовлении латуни необходимо учитывать неизбежные потери цинка, которые составляют примерно одну двадцатую часть цинка. Следовательно, при взвешивании металлов перед легированием необходимо добавлять дополнительное количество цинка.
Резюме, TL;DR:
В вашем примере с алюминием и цинком каждый металл плавится значительно ниже любой из их температур кипения, так что потеря в результате улетучивания не является проблемой. Однако бывают случаи, например сплав меди и цинка, когда температура кипения одного металла ниже температуры плавления другого. Один из способов свести к минимуму (но не устранить) потерю более летучего металла — быстро растворить его в тугоплавком металле, а затем охладить раствор. Хотя это не устраняет потерь из-за улетучивания, но может значительно уменьшить проблему. И на самом деле, поскольку сплавы часто состоят преимущественно из одного металла, в любом случае на практике нередко растворяют меньшие компоненты в первичном компоненте.
Я надеюсь, что пример, который я привел, отвечает на ваш вопрос. Пожалуйста, не стесняйтесь обращаться за разъяснениями в комментариях ниже.
$\endgroup$
3
$\begingroup$
В реальных условиях потери цинка из латуни очень незначительны благодаря поддержанию температуры ниже точки кипения цинка и добавлению флюсов для создания покрытия из шлака. Когда литейщик перекручивает и перегревает печь, происходит «кипение цинка», образуется исключительно плотный белый «туман» оксида цинка. Я признаю, что сделал это однажды. В стали Zn, Pb и т. д. преднамеренно испаряются (и собираются в мешочных камерах) для очистки стали.
$\endgroup$
1
Твой ответ
Зарегистрируйтесь или войдите в систему
Зарегистрируйтесь с помощью Google
Зарегистрироваться через Facebook
Зарегистрируйтесь, используя электронную почту и пароль
Опубликовать как гость
Электронная почта
Требуется, но никогда не отображается
Опубликовать как гость
Электронная почта
Требуется, но не отображается
Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie
.
– Детекторы горнодобывающего оборудования для поиска золота Защита от змей
- НАЖМИТЕ ДЛЯ ПОИСКА
- Силовые шлюзы/высокие банки
- Шлюзовые коробки
- Ле Трап – Гео Шлюз
- Золотой колодец Вихревой шлюз
- Шлюзы Dream Mat
- Покрытие для шлюза
- Золотой куб
- Спиральный кастрюля Desert Fox
- Ручные земснаряды
- Черная магия
- Концентратор с синей чашей
- Аляска Пейдирт
- Колорадо Пайдирт
- Чистое извлечение золота
- Силовой шлюз CC 690
- Камнедробилки
- Золотые барабаны
- Пылесос Vac Pac Gold
- Стаканы для камней
- Кирки, лопаты и многое другое
- Плавление золота
- Геологоразведочные принадлежности
- Приятель Вудмана
- Классификатор землетрясений
- Золотые классификаторы
- Золотые кастрюли и комплекты
- Золотой коготь
- Сумки для инструментов
- Защита от змей
- Подарочные сертификаты
Металлодетекторы
- Garrett
- Металлоискатели Fisher
- Электроскопы
- Технетика
- Охотник за головами
- Пинпоинтеры
Информация
- О нас/Контакты
- Доставка/возврат
- Поисковый блог
- Ссылки/Ресурсы
- Изыскательские изделия
|
Группа 11/IB; Медь Группа
Группа 11/IB; Медная группаЭлементы меди, серебра и золота образуют группу 11 или медную группу. Медь соединения относительно многочисленны, также можно найти элементарную медь. Серебро и золото встречаются редко. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Элементарное золото и медь запустили техническое век металлов или, если быть более точным, «Век холодной обработки простых металлов». Медь использовалась для изготовления инструментов, золота и серебро для демонстрации богатства и власти; ср. это картина. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Все элементы этой группы достаточно
мягкие металлы.![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Серебро | обладает самой высокой удельной электропроводностью не только всех элементов, но и всех материалов (кроме сверхпроводников при низких температуры). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Таблица Основные данные | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
58 |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
В случае сомнений все номера указаны для комнаты температура | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ФКК =
лицо
центрированная кубическая; константа решетки = bcc = объемно-центрированная кубическая sc = простой кубический л. ![]() ГПУ = шестиугольный плотно упакованный; постоянные решетки a и c. оп = просто орторомбический, моноклиника, триклиника тп = просто четырехугольный диаметр = алмазная структура r = тригональный или ромбовидно-треугольный | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
С рамкой
Глоссарий
Периодическая таблица элементов
Возраст
Решетки и кристаллы Браве
Изображения большого формата
Алмаз и другие углеродные материалы
Решетка и кристалл
Единицы и константы
© Х. Фёлль (скрипт «Железо, сталь и мечи»)
Медь — Тепловые свойства — Температура плавления — Теплопроводность
О меди
Медь — мягкий, ковкий и пластичный металл с очень высокой тепло- и электропроводностью. . Свежая открытая поверхность чистой меди имеет красновато-оранжевый цвет. Медь используется как проводник тепла и электричества, как строительный материал и как составная часть различных металлических сплавов, таких как стерлинговое серебро, используемое в ювелирных изделиях, мельхиор, используемый для изготовления морского оборудования и монет, и константан, используемый в тензодатчиках и термопарах. для измерения температуры.
Тепловые свойства меди
Медь – температура плавления и температура кипения
Температура плавления меди 1084,62°C .
Температура кипения меди 2562°C .
Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.
Медь – Теплопроводность
Теплопроводность Медь составляет 401 Вт/(м·К).
Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводность , k (или λ), измеренная в Вт/м. K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.
Коэффициент теплового расширения меди
Коэффициент линейного теплового расширения меди 16,5 мкм/(м·K)
Тепловое расширение обычно это склонность материи изменять свои размеры в ответ на изменение температуры. Обычно его выражают в виде доли изменения длины или объема на единицу изменения температуры.
См. также: Механические свойства меди
Температура плавления элементов
Теплопроводность элементов
Тепловое расширение элементов
О температуре кипения и температуре кипения0005
Температура кипения
В общем, кипение является фазовым переходом вещества из жидкой фазы в газовую. температура кипения вещества — это температура, при которой происходит это фазовое превращение (кипение или испарение). Температура, при которой начинает происходить испарение (кипение) при заданном давлении, также известна как температура насыщения , и при этих условиях смесь пара и жидкости может существовать вместе. Можно сказать, что жидкость насыщена тепловой энергией. Любое добавление тепловой энергии приводит к фазовому переходу. точка кипения две фазы вещества, жидкость и пар, имеют одинаковую свободную энергию и, следовательно, с одинаковой вероятностью существуют. Ниже точки кипения жидкость является более стабильным состоянием из двух, тогда как выше предпочтительна газообразная форма. Давление, при котором начинается испарение (кипение) при данной температуре, называется давлением насыщения . Когда ее рассматривают как температуру обратного перехода из пара в жидкость, ее называют точкой конденсации.
Как видно, точка кипения жидкости варьируется в зависимости от давления окружающей среды. Жидкость в частичном вакууме имеет более низкую температуру кипения, чем когда эта жидкость находится при атмосферном давлении. Жидкость при высоком давлении имеет более высокую температуру кипения, чем при атмосферном давлении. Например, вода кипит при 100°C (212°F) на уровне моря, но при 93,4°C (200,1°F) на высоте 1900 метров (6233 фута). С другой стороны, вода кипит при 350°C (662°F) при 16,5 МПа (типичное давление PWR).
В периодической таблице элементов элемент с самой низкой температурой кипения — гелий. Обе точки кипения рения и вольфрама превышают 5000 К при стандартном давлении. Поскольку трудно точно и беспристрастно измерить экстремальные температуры, в литературе упоминаются оба вещества с более высокой температурой кипения.
Точка плавления
В общем, плавление является фазовым переходом вещества из твердого состояния в жидкое. Температура плавления вещества – это температура, при которой происходит это фазовое превращение. Точка плавления также определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии. Добавление тепла превратит твердое тело в жидкость без изменения температуры. В точке плавления две фазы вещества, жидкая и паровая, имеют одинаковую свободную энергию и поэтому с равной вероятностью существуют. Ниже точки плавления твердое состояние является более стабильным из двух, тогда как при температуре выше точки плавления предпочтительна жидкая форма. Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда ее рассматривают как температуру обратного перехода из жидкого состояния в твердое, ее называют точкой замерзания или точкой кристаллизации.
См. также: Депрессия точки плавления
Первая теория, объясняющая механизм плавления в объеме, была предложена Линдеманном, который использовал колебания атомов в кристалле для объяснения плавления. Твердые тела похожи на жидкости тем, что оба находятся в конденсированном состоянии, а частицы находятся гораздо ближе друг к другу, чем частицы газа. Атомы в твердом теле тесно связаны друг с другом либо в правильной геометрической решетке (кристаллические твердые тела, которые включают металлы и обычный лед), либо в неправильной (аморфное твердое тело, такое как обычное оконное стекло), и обычно имеют низкую энергию. движение отдельных атомов , ионов или молекул в твердом теле ограничивается колебательным движением вокруг фиксированной точки. Когда твердое тело нагревается, его частицы колеблются быстрее , поскольку твердое тело поглощает кинетическую энергию. В какой-то момент амплитуда колебаний становится настолько большой, что атомы начинают вторгаться в пространство своих ближайших соседей и возмущать их, и начинается процесс плавления. Точка плавления – это температура, при которой разрушительные колебания частиц твердого тела преодолевают силы притяжения, действующие внутри твердого тела.
Как и в случае с точками кипения, точка плавления твердого тела зависит от силы этих сил притяжения. Например, хлорид натрия (NaCl) представляет собой ионное соединение, состоящее из множества сильных ионных связей. Хлорид натрия плавится при 801°С. С другой стороны, лед (твердый H 2 O) представляет собой молекулярное соединение, молекулы которого удерживаются вместе водородными связями, что является эффективным примером взаимодействия между двумя постоянными диполями. Хотя водородные связи являются самыми сильными из межмолекулярных сил, прочность водородных связей намного меньше, чем у ионных связей. Температура плавления льда 0°С.
Ковалентные связи часто приводят к образованию небольших наборов лучше связанных атомов, называемых молекулами, которые в твердых телах и жидкостях связаны с другими молекулами силами, которые часто намного слабее, чем ковалентные связи, удерживающие молекулы вместе внутри. Такие слабые межмолекулярные связи придают органическим молекулярным веществам, таким как воски и масла, их мягкий объемный характер и низкие температуры плавления (в жидкостях молекулы должны прекратить наиболее структурированный или ориентированный контакт друг с другом).
О теплопроводности
Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м·K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.
Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. В общем:
Большинство материалов почти однородны, поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностями в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.
Теплопроводность металлов
Перенос тепловой энергии в твердых телах обычно может быть обусловлен двумя эффектами:
- миграцией свободных электронов
- решеточные колебательные волны (фононы)
Когда электроны и фононы переносят тепловую энергию, приводящую к теплопроводности в твердом теле, теплопроводность может быть выражена как:0042 являются твердыми телами и поэтому обладают кристаллической структурой, в которой ионы (ядра с окружающими их оболочками остовных электронов) занимают трансляционно эквивалентные позиции в кристаллической решетке. Металлы обычно имеют высокую электропроводность , высокую теплопроводность и высокую плотность. Соответственно перенос тепловой энергии может быть обусловлен двумя эффектами:
- миграцией свободных электронов
- решетчатых колебательных волн (фононов).
Когда электроны и фононы переносят тепловую энергию, приводящую к теплопроводности в твердом теле, коэффициент теплопроводности может быть выражен как: структура связана с наличием носителей заряда, в частности, электронов . Электрическая и теплопроводность металлов обусловлена тем фактом, что их внешние электроны делокализованы . Их вклад в теплопроводность обозначается как электронная теплопроводность , k e . Фактически, в чистых металлах, таких как золото, серебро, медь и алюминий, тепловой ток, связанный с потоком электронов, намного превышает небольшой вклад, обусловленный потоком фононов. Напротив, для сплавов вкладом k ph в k уже нельзя пренебречь.
Теплопроводность неметаллов
Для неметаллические твердые вещества , k определяется в первую очередь k ph , которое увеличивается по мере уменьшения частоты взаимодействий между атомами и решеткой. Фактически, решеточная теплопроводность является доминирующим механизмом теплопроводности в неметаллах, если не единственным. В твердых телах атомы колеблются вокруг своих положений равновесия (кристаллическая решетка). Колебания атомов не независимы друг от друга, а довольно сильно связаны с соседними атомами. Регулярность расположения решетки оказывает важное влияние на k ph , с кристаллическими (хорошо упорядоченными) материалами, такими как кварц , имеющими более высокую теплопроводность, чем аморфные материалы, такие как стекло. При достаточно высоких температурах k ph ∝ 1/T.
квантов поля колебаний кристалла называются « фононами ». Фонон представляет собой коллективное возбуждение в периодическом упругом расположении атомов или молекул в конденсированных средах, таких как твердые тела и некоторые жидкости. Фононы играют важную роль во многих физических свойствах конденсированного вещества, таких как теплопроводность и электропроводность. Фактически, для кристаллических неметаллических твердых тел, таких как алмаз, k ph может быть довольно большим, превышая значения k, связанные с хорошими проводниками, такими как алюминий. В частности, алмаз обладает самой высокой твердостью и теплопроводностью (k = 1000 Вт/м·К) среди всех объемных материалов.
Теплопроводность жидкостей и газов
В физике жидкость — это вещество, которое постоянно деформируется (течет) под действием приложенного напряжения сдвига. Жидкости являются подмножеством фаз материи и включают жидкости , газы , плазму и, в некоторой степени, пластичные твердые тела. Поскольку межмолекулярное расстояние намного больше, а движение молекул более хаотично для жидкого состояния, чем для твердого состояния, транспорт тепловой энергии менее эффективен. Таким образом, теплопроводность газов и жидкостей обычно меньше, чем у твердых тел. В жидкостях теплопроводность обусловлена атомной или молекулярной диффузией. В газах теплопроводность обусловлена диффузией молекул с более высокого энергетического уровня на более низкий уровень.
Теплопроводность газов
Влияние температуры, давления и химических веществ на теплопроводность газа можно объяснить с точки зрения кинетической теории газов . Воздух и другие газы обычно являются хорошими изоляторами при отсутствии конвекции. Следовательно, многие изоляционные материалы (например, полистирол) функционируют просто благодаря большому количеству заполненных газом карманов , которые предотвращают крупномасштабную конвекцию . Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей раздела, что приводит к быстрому снижению коэффициента теплопередачи.
Теплопроводность газов прямо пропорциональна плотности газа, средней скорости молекул и особенно средней длине свободного пробега молекулы. Длина свободного пробега также зависит от диаметра молекулы, причем более крупные молекулы с большей вероятностью столкнутся, чем мелкие молекулы, что представляет собой среднее расстояние, пройденное энергоносителем (молекулой) до столкновения. Легкие газы, такие как водород и гелий обычно имеют высокую теплопроводность . Плотные газы, такие как ксенон и дихлордифторметан, обладают низкой теплопроводностью.
Как правило, теплопроводность газов увеличивается с повышением температуры.
Теплопроводность жидкостей
Как уже писалось, в жидкостях теплопроводность обусловлена атомной или молекулярной диффузией, но физические механизмы объяснения теплопроводности жидкостей изучены недостаточно. Жидкости, как правило, обладают лучшей теплопроводностью, чем газы, а способность течь делает жидкость подходящей для отвода избыточного тепла от механических компонентов. Тепло можно отводить, пропуская жидкость через теплообменник. Теплоносители, используемые в ядерных реакторах, включают воду или жидкие металлы, такие как натрий или свинец.
Теплопроводность неметаллических жидкостей обычно уменьшается с повышением температуры.
О тепловом расширении
Тепловое расширение обычно это тенденция материи изменять свои размеры в ответ на изменение температуры. Обычно его выражают в виде доли изменения длины или объема на единицу изменения температуры. Тепловое расширение характерно для твердых тел, жидкостей и газов. В отличие от газов или жидкостей, твердые материалы, как правило, сохраняют свою форму при тепловом расширении. А коэффициент линейного расширения обычно используется для описания расширения твердого тела, в то время как коэффициент объемного расширения более полезен для жидкости или газа.
Коэффициент линейного теплового расширения определяется как:
, где L – это конкретная длина, а dL/dT – скорость изменения этого линейного размера на единицу изменения температуры.
Коэффициент объемного теплового расширения является основным коэффициентом теплового расширения и наиболее важным для жидкостей. Как правило, вещества расширяются или сжимаются при изменении их температуры, причем расширение или сжатие происходит во всех направлениях.
коэффициент объемного теплового расширения определяется как:
, где л – объем материала, а dV/dT – скорость изменения этого объема на единицу изменения температуры.
В твердом теле или жидкости существует динамическое равновесие между силами сцепления, удерживающими атомы или молекулы вместе, и условиями, создаваемыми температурой. Поэтому более высокие температуры подразумевают большее расстояние между атомами. Разные материалы имеют разную силу сцепления и, следовательно, разные коэффициенты расширения. Если кристаллическое твердое тело изометрично (имеет во всем одинаковую структурную конфигурацию), расширение будет равномерным во всех измерениях кристалла. Для этих материалов коэффициент площади и объемного теплового расширения соответственно примерно в два и три раза больше линейного коэффициента теплового расширения ( α V = 3α L ). Если он не изометричен, могут быть разные коэффициенты расширения для разных кристаллографических направлений, и кристалл будет менять форму при изменении температуры.
Сводка
Элемент | Медь |
Точка плавления | 1084,62 °С |
Точка кипения | 2562 °С |
Теплопроводность | 401 Вт/мК |
Коэффициент теплового расширения | 16,5 мкм/мК |
Плотность | 8,92 г/см3 |
Источник: www. luciteria.com
Свойства других элементов
Другие свойства меди
| |||||||||||||||||||||
7758-89-6(хлорид меди(I)) Связанный поиск: | |||||||||||||||||||||
Хлорид меди(I) ReagentPlus(R), очищенный, >=99% Хлорид меди(I), 99,999% на основе следовых металлов
Хлорид меди(I) >=99,995% следов металлов на основе Хлорид меди(I) безводный, шарики, >=99,99% следовых металлов
Медь(I) хлорид особо чистая, 97+% Хлорид меди(I) особо чистый, 99,99%
Хлорид меди(I), для анализа ACS, 90+% Хлорид меди(I) очищенный, особо чистый, 99%
МЕДИ ХЛОРИД 99,999% МЕДИХЛОРИДНЫЙ РЕАГЕНТ (ACS)
Хлорид меди(I)(99,999%-Cu)PURATREM Хлорид меди(I) безводный, 97+%
хлорид меди (i), ас МЕДЬХЛОРИД,ПОРОШОК,РЕАГЕНТ,ACS
МЕДЬХЛОРИДНАЯ ТЕХНИЧЕСКАЯ Купфер(I)-хлорид
Хлорид меди(I), ACS, 90+% Медь(I) хлорид, 99% (мет.![]() ![]() | |||||||||||||||||||||
Copyright 2017 © ChemicalBook. Все права защищены |
Тройные баллы
Тройные баллы
| Индекс Таблицы Справочник | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Гиперфизика***** Термодинамика | Назад |
![]()
| Индекс Таблицы Справочник | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Гиперфизика***** Термодинамика | Назад |
Primary fixed points in Международная температурная шкала. От Холлидея и Резника
| Указатель Таблицы Ссылка | |||||||||||||||||||||||||||||||||||||||
Гиперфизика***** Термодинамика | Назад |
| Указатель Таблицы Ссылка | ||||||||||||||||||||||||||||||||||
Гиперфизика***** Термодинамика | Назад |
|