Металлоискатели схемы: Металлоискатель своими руками – 12 принципиальных схем

alexxlab | 22.09.1971 | 0 | Разное

Содержание

Металлоискатель своими руками – 12 принципиальных схем

Металлоискатель своими руками – как это следует из самого названия, такие устройства изготавливаются самостоятельно и предназначены для поиска металлических предметов, используются по достаточно узкому назначению. Однако способы их реализации достаточно разнообразны и составляют целое направление в радиоэлектронике.

Металлоискатель Н. Мартынюка

Металлоискатель по схеме Н. Мартынюка (рис. 1) выполнен на основе миниатюрного радиопередатчика, излучение которого модулировано звуковым сигналом [Рл 8/97-30]. Модулятор — низкочастотный генератор выполнен по хорошо известной схеме симметричного мультивибратора.

Сигнал с коллектора одного из транзисторов мультивибратора подается на базу транзистора высокочастотного генератора (VT3). Рабочая частота генератора располагается в области частот УКВ-ЧМ радиовещательного диапазона (64… 108 МГц). В качестве катушки индуктивности колебательного контура использован отрезок телевизионного кабеля в виде витка диаметром 15.

. .25 см.

Рис. 1. Принципиальная схема металлоискателя Н. Мартынюка.

Если к катушке индуктивности колебательного контура приблизить металлический предмет, частота генерации заметно изменится. Чем ближе поднесен предмет к катушке, тем больше будет уход частоты. Для регистрации изменения частоты используется обычный ЧМ-радиоприемник, настроенный на частоту ВЧ генератора.

Систему автоподстройки частоты приемника следует отключить. В отсутствие металлического предмета из громкоговорителя приемника слышен громкий звуковой сигнал.

Если к катушке индуктивности поднести кусок металла, то частота генерации изменится, а громкость сигнала снизится. Недостатком устройства является его реакция не только на металлические, но и на любые другие токопроводящие предметы.

Металлоискатель на основе низкочастотного LC-генератора

На рис. 2 – 4 показана схема металлоискателя с другим принципом действия, основанным на использовании низкочастотного LC-генератора и мостового индикатора изменения частоты.

Поисковая катушка металлоискателя выполнена в соответствии с рис. 2, 3 (с коррекцией числа витков).

Рис. 2. Поисковая катушка металлоискателя.

Рис. 3. Поисковая катушка металлоискателя.

Выходной сигнал с генератора поступает на мостовую измерительную схему. В качестве нуль-индикатора моста использован высокоомный телефонный капсюль ТОН-1 или ТОН-2, который можно заменить стрелочным или иным внешним измерительным прибором переменного тока. Генератор работает на частоте f1, например, 800 Гц.

Мост перед началом работы балансируют на нуль подстройкой конденсатора С* колебательного контура поисковой катушки. Частоту f2=f1, при которой мост будет сбалансирован, можно определить из выражения:

Изначально в телефонном капсюле звук отсутствует. При внесении в поле поисковой катушки L1 металлического предмета, частота генерации f1 изменится, произойдет разбалансировка моста, в телефонном капсюле будет слышен звуковой сигнал.

Рис. 4. Схема металлоискателя с принципом действия, основанным на использовании низкочастотного LC-генератора.

Мостовая схема металлоискателя

Мостовая схема металлоискателя с использованием поисковой катушки, изменяющей свою индуктивность при приближении металлических предметов, представлена на рис. 5. На мост подается сигнал звуковой частоты от низкочастотного генератора. Потенциометром R1 мост балансируют на отсутствие звукового сигнала в телефонном капсюле.

Рис. 5. Мостовая схема металлоискателя.

Для повышения чувствительности схемы и повышения амплитуды сигнала разбаланса моста к его диагонали может быть подключен усилитель низкой частоты. Индуктивность катушки L2 должна быть сопоставима с индуктивностью поисковой катушки L1.

Металоискатель на основе приемника с СВ диапазоном

Металлоискатель, работающий совместно с радиовещательным супергетеродинным радиоприемником средневолнового диапазона, можно собрать по схеме, показанной на рис. 6 [Р 10/69-48]. В качестве поисковой катушки может быть использована конструкция, изображенная на рис. 2.

Рис. 6. Металлоискатель, работающий совместно с супергетеродинным радиоприемником СВ-диапазона.

Устройство представляет собой обычный генератор высокой частоты, работающий на частоте 465 кГц (промежуточная частота любого АМ-радиовещательного приемника). В качестве генератора можно использовать схемы, представленные в главе 12.

В исходном состоянии частота генератора ВЧ, смешиваясь в близкорасположенном радиоприемнике с промежуточной частотой принимаемого приемником сигнала, приводит к образованию сигнала разностной частоты звукового диапазона. При изменении частоты генерации (при наличии в поле действия поисковой катушки металла), тональность звукового сигнала меняется пропорционально количеству (объему) металлического предмета, его удалению, природе металла (одни металлы повышают частоту генерации, другие, напротив, понижают).

Простой металлоискатель на двух транзисторах

Рис. 7. Схема простого металлоискателя на кремниевом и полевом транзисторах.

Схема простого металлоискателя представлена на рис. 7. В устройстве использован низкочастотный LC-генера-тор, частота которого зависит от индуктивности поисковой катушки L1. При наличии металлического предмета частота генерации изменяется, что можно услышать с помощью телефонного капсюля BF1. Чувствительность такой схемы невысока, т.к. на слух определять малые изменения частоты достаточно сложно.

Металлоискатель малых количеств магнитного материала

Металлоискатель малых количеств магнитного материала может быть выполнен по схеме на рис. 8. В качестве датчика такого устройства использована универсальная головка от магнитофона. Для усиления слабых сигналов, снимаемых с датчика, необходимо использовать высокочувствительный усилитель низкой частоты, выходной сигнал которого поступает на телефонный капсюль.

Рис. 8. Схема металлоискателя малых количеств магнитного материала.

Схема индикатора металла

Иной метод индикации наличия металла использован в устройстве по схеме на рис.9. Устройство содержит высокочастотный генератор с поисковой катушкой индуктивности и работает на частоте f1. Для индикации величины сигнала использован простейший высокочастотный милливольтметр.

Рис. 9. Принципиальная схема индикатора металла.

Он выполнен на диоде VD1, транзисторе VT1, конденсаторе С1 и миллиамперметре (микроамперметре) РА1. Между выходом генератора и входом высокочастотного милливольтметра включен кварцевый резонатор. Если частота генерации f1 и частота кварцевого резонатора f2 совпадают, стрелка прибора будет на нуле. Стоит частоте генерации измениться в результате внесения металлического предмета в поле поисковой катушки, стрелка прибора отклонится.

Рабочие частоты таких металлоискателей обычно находятся в диапазоне 0,1…2 МГц. Для начальной установки частоты генерации этого и других приборов подобного назначения используют конденсатор переменной емкости или подстроечный конденсатор, подключенный параллельно поисковой катушке индуктивности.

Типовый металлоискатель с двумя генераторами

На рис. 10 приведена типовая схема самого распространенного металлоискателя. Его принцип действия основан на биениях частот эталонного и поискового генераторов.

Рис. 10. Схема металоискателя с двумя генераторами.

Рис. 11. Принципиальная схема блока-генератора для металлоискателя.

Однотипный узел, общий для обоих генераторов, показан на рис. 11. Генератор выполнен по общеизвестной схеме «емкостной трехточки». На рис. 10 показана полная схема устройства. В качестве поисковой катушки L1 применяется конструкция, представленная на рис. 2 и 3.

Начальные частоты генераторов должны быть одинаковы. Выходные сигналы с генераторов через конденсаторы С2, СЗ (рис. 10) подаются на смеситель, выделяющий разностную частоту. Выделенный звуковой сигнал через усилительный каскад на транзисторе VT1 поступает на телефонный капсюль BF1.

Металлоискатель на принципе срыва частоты генерации

Металлоискатель может работать и на принципе срыва частоты генерации. Схема такого устройства изображена на рис.12. При выполнении определенных условий (частота кварцевого резонатора равна резонансной частоте колебательного LC-контура с поисковой катушкой) ток в цепи эмиттера транзистора VT1 минимален.

Если резонансная частота LC-контура заметно изменится, то генерация сорвется, а показания прибора значительно возрастут. Параллельно измерительному прибору рекомендуется подключить конденсатор емкостью 1 …100 нФ.

Рис. 12. Схема металлоискателя что работает на принципе срыва частоты генерации.

Металлодетекторы для поиска мелких предметов

Искатели металла, предназначенные для поиска небольших металлических предметов в быту, могут быть собраны по представленным на рис. 13 — 15 схемам.

Такие металлоискатели работают также на принципе срыва генерации: генератор, в состав которого входит поисковая катушка индуктивности, работает в «критическом» режиме.

Режим работы генератора установлен подстроенными элементами (потенциометрами) так, что малейшее изменение условий его работы, например, изменение индуктивности поисковой катушки, приведет к срыву колебаний. Для индикации наличия/отсутствия генерации использованы светодиодные индикаторы уровня (наличия) переменного напряжения.

Катушки индуктивности L1 и L2 в схеме на рис. 13 содержат, соответственно, 50 и 80 витков провода диаметром 0,7…0,75 мм [Fs 8/75]. Катушки намотаны на ферритовом сердечнике 600НН диаметром 10 мм и длиной 100… 140 мм. Рабочая частота генератора около 150 кГц.

Рис. 13. Схема простого металлоискателя на трех транзисторах.

 

Рис. 14. Схема простого металлоискателя на четырех транзисторах со световой индикацией.

Катушки индуктивности L1 и L2 другой схемы (рис. 14), выполненной в соответствии с патентом ФРГ(№ 2027408, 1974 г.), имеют 120 и 45 витков, соответственно, при диаметре провода 0,3 мм [Р 7/80-61]. Использован ферритовый сердечник 400НН или 600НН диаметром 8 мм и длиной 120 мм.

Бытовой искатель металла

Бытовой искатель металла (БИМ) (рис. 15), выпускавшийся ранее заводом «Радиоприбор» (г. Москва), позволяет обнаружить мелкие металлические предметы на удалении до 45 мм. Намоточные данные его катушек индуктивности неизвестны, однако при повторении схемы можно ориентироваться на данные, приводимые для приборов аналогичного назначения (рис. 13 и 14).

Рис. 15. Схема бытового искателя металла.

 

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

СХЕМА МЕТАЛЛОИСКАТЕЛЯ

   Недавно опубликованная схема металлоискателя, вызвала большой интерес среди радиолюбителей. И это не удивительно, ведь по техническим характеристикам тот металлоискатель не уступал многим промышленным аппаратам среднего ценового уровня, а по своей простоте сборки и настройки превосходил их.


   За несколько месяцев схема металлоискателя была многократно повторена многими радиолюбителями, даже не очень опытными, и практически всегда на форуме оставляли самые положительные отзывы о нём. В отдельных случаях, конечно возникали проблемы с настройкой, что вызывало немало вопросов и долгих обсуждений на конференции, поэтому было решено систематизировать всю информацию по данному металлоискателю и вместе с обновлённой схемой разместить здесь.


   Принципиальная схема металлоискателя находится в архиве в виде файла sPlan. Как видно из схемы, некоторым изменениям подвергся входной каскад на LM358, появилась возможность кнопкой поменять фазу сигнала, добавлен светодиодный индикатор отклика от цели в земле, который позволяет визуально определить железо – цветмет и добавлен один транзистор в УНЧ. Теперь туда смело можно ставить обычный малогабаритный 8-ми Омный динамик. Именно его рекомендуется использовать для звукоизлучения, так как наушники будут мешать продираться через кусты, а ЗП-шка слишком тиха для поиска на берегу шумных рек и морей. 

   Корпус металлоискателя каждый делает из чего есть под рукой. Главное, чтоб он был достаточно прочный, влагонепроницаемый и желательно из металла. Дополнительная экранировка будет совсем не лишней, ведь в металлоискателе стоят очень чувствительные ОУ. Сзади стоят два тюльпана для подключения поисковых катушек качественным экранированным проводом.


   Питание металлоискателя 12В, но вполне допустимо снизить его и до 8. Выбирая источник питания учтите, что вам придётся ходить с ним на природе целый день, поэтому батарея должна держать часов 10. В авторском варианте, естественно с немного худшей чувствительностью, аппарат работал даже от двух старых литий-ионных аккумуляторов от мобильного телефона. Ток потребления металлоискателя около 50мА, так что в отдельных случаях можно поставить и 9-ти вольтовую крону, но такого питания хватит на 2 часа работы, не больше.


   Для заряда аккумуляторов выведено гнездо, на которое и подаётся питание с зарядного устройства или в простейшем случае с БП через резистор. Обязательно установите регулятор громкости, ведь иногда придётся искать в обстановке секретности (в тылу врага), ориентируясь только по светодиодам. С другой стороны передней панели находится регулятор Trash – порог. С его помощью выставляют момент, когда металлоискатель перестаёт пищать сам по себе, и звук появляется только при наличии металла в пределах видимости поисковой катушки.

   Об изготовлении катушки металлоискателя было написано немало, добавлю только некоторую свежую информацию. Начинаем с изготовления шаблона для намотки. 

   Материал любой подходящий (ДВП, фанера, оргстекло, пластик и т.д), изготавливается из 5 мм фанеры. Кромки готового шаблона обрабатываем и оклеиваем скотчем, чтоб шаблон не приклеился к катушке. Готовый шаблон зажимаем осью в тиски и мотаем на него 80 витков провода, пропитывая каждые 20 витков цапонлаком. Пропитывать эпоксидкой можно на свой страх и риск, на многих форумах пишут о том что попадаются партии смолы с разной электро проводностью, что сказывается на параметрах катушки не в лучшую сторону. После высыхания, разбираем шаблон, снимаем катушку и ”утягиваем” ее ”талию” фум лентой. Применение изоленты считаю нецелесообразным так как изолента имеет липкую сторону и может сместить витки – цапонлак не эпоксидка.

   Далее экранируем фольгой (я применяю фольгу на лавсане извлеченную из антенного кабеля типа RG-6U, куска длиной 2 метра вполне хватает на 2 катушки), затем обматываем луженым проводом, а сверху изолентой или фум лентой. В результате получаем абсолютно идентичные по параметрам, геометрии и добротности катушки, что немаловажно для балансного металлоискателя, так как балансники очень критичны к геометрии катушек. Затем настраиваем катушки в резонанс и начинаем сводить в ”0”. Следует помнить что для данной модели сведение в абсолютный ”0” нежелательно – пропадет дискриминация, так что достаточно разбаланса в 0,2-0,6 милливольт, хоть глубина обнаружения и снизится на пару сантиметров. Сведя катушки, фиксируем их между собой цианакрилатом и нитками, сушим. Теперь приступаем к изготовлению корпуса датчика.

   Самым оптимальным и дешевым, по моему мнению, является датчик изготовленный из потолочной плитки. Делаем шаблон, нарезаем заготовок и выклеиваем корпус. Щечки катушкодержателя не советую делать из оргстекла – очень хрупкое, лучше применить стеклотекстолит, а еще лучше – пластиковые вкладыши, которые путейцы под рельс на шпалу кладут (только поезд под откос не пустите). На выходе имеем вполне приличные, легкие и дешевые в изготовлении, поисковые датчики металлоискателя.


   В качестве несущих трубок, можно использовать телескопическую малярную штангу, урезанную до нужного размера. Пойдёт и раздвижной черенок от китайской швабры, или китайского трехколенного подсака для рыбной ловли.

   Про настройку контуров тоже было немало сказано. Предоставим слово гостям форума: Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Далее сведение в ноль. Проще припаять на выход 1-го каскада стрелочник (чувствительный вольтметр) и наложив катушки внахлёст примерно 1см сдвигать – раздвигать. А стрелка покажет точку нуля. Она может быть довольно точная и поймать её сразу нелегко. Но она есть. Если всё-же не получается, попробуйте перевернуть одну из катушек.


   Схему металлоискателя можно и нужно проверить сначала без катушек. Для этого мысленно разобъём её на блоки, которые настраиваем и запускаем по отдельности:

 Формирователь двухполярного напряжения на U6A – делает из 12В +-6В.
 Кварцевый генератор частоты на 561ЛА7 – создаёт 32768Гц.
 Делитель частоты на 561ТМ2 – делит 32768Гц на 4, получаем 8192Гц на выводах 1,2,12,13.
 Генератор тонального сигнала для динамика на U6B – генерирует писк на выводе 4.
 Управляемый усилитель звука на Q5, Q6, Q7 – усиливает звук генератора U6B, если есть сигнал отклика с U2B.
 Усилители сигнала отклика цели U1B, U2A, U2B – малое напряжение отклика разгоняют до нескольких вольт, что позволяет засвечивать светодиод и включать усилитель.

   Конечно здесь рассмотрены не все возможные вопросы, поэтому уточняйте дополнительную информацию по настройке металлоискателя на форуме. А мне остаётся отдельно поблагодарить Электродыча – за хороше описание конструкции катушки, slavake – за нарисованную новую схему, и всех остальных участников форума – за проявленный интерес к металлоискателю.

   Форум по металлоискателям

   Форум по обсуждению материала СХЕМА МЕТАЛЛОИСКАТЕЛЯ

ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ

ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ

   Почему именно Volksturm был назван лучшим металлоискателем? Главное – схема реально простая и реально рабочая. Из множества схем металлоискателей, которые я лично делал, именно здесь всё просто, глубинобойно и надёжно! Тем более при своей простоте, в металлодетекторе есть хорошая схема дискриминации – определение железо или цветной металл находится в земле. Сборка металлоискателя заключается в безошибочной пайке платы и настройке катушек в резонанс и в ноль на выходе входного каскада на LF353. Ничего тут суперсложного нет, было бы желание и мозги. Смотрим конструктивное исполнение металлоискателя и новую усовершенствованную схему Volksturm с описанием.

   Так как по ходу сборки возникают вопросы, чтоб сэкономить ваше время и не заставлять перелистывать сотни страниц форума, здесь приведены ответы на 10 самых популярных вопросов. Статья в процессе написания, так что некоторые пункты будут дополнены позже.

 1. Принцип работы и обнаружения целей этого металлоискателя?
 2. Как проверить Работает ли плата металлоискателя?
 3. Какой резонанс выбрать?
 4. Какие конденсаторы лучше?
 5. Как настроить резонанс?
 6. Как сводить катушки в ноль?
 7. Какой провод для катушек лучше?
 8. Какие детали и чем можно заменить?
 9. От чего зависит глубина поиска целей?
 10. Питание металлоискателя Volksturm?


Принцип работы металлоискателя Volksturm


   Постараюсь в двух словах о принципе работы: передача,прием и баланс индукции. В поисковом датчике металлоискателя устанавливают 2 катушки – передающую и приемную. Присутствие металла изменяет индуктивную связь между ними (в том числе и фазу), что влияет на принимаемый сигнал, который затем обрабатывается блоком индикации. Между первой и второй микросхемой стоит коммутатор управляемый импульсами генератора сдвинутого по фазе относительно передающего канала (т.е. когда передатчик работает, приемник отключен и наоборот если приемник включен передатчик отдыхает, а приемник спокойно ловит отраженный сигнал в этой паузе). Итак, вы включили металлоискатель и он пищит. Отлично, если пищит – значит многие узлы работают. Давай разберёмся почему именно он пищит. Генератор на у6Б постоянно генерирует тональный сигнал. Далее он поступает на усилитель на двух транзисторах, но унч не откроется (не пропустит тон) пока напряжение на выходе у2Б (7-й вывод) не разрешит ему этого. Данное напряжение выставляется изменением режима с помощью этого самого резистора трэш. Им надо выставить такое напряжение, чтоб унч почти открылся и пропустил сигнал с генератора. И входные пару милливольт с катушки металлоискателя пройдя усилительные каскады, превысят этот порог и он откроется окончательно и динамик запищит. Теперь проследим прохождение сигнала, точнее сигнала отклика. На первом каскаде (1-у1а) будет пару милливольт, можно до 50. На втором каскаде (7-у1Б) это отклонение увеличится, на третьем(1-у2А) будет уже пару вольт. Но без отклика везде на выходах по нулям.


Как проверить работает ли плата металлоискателя


   Вообще усилитель и ключ (CD 4066) проверяется пальцем на входной контакт RX при максимальном сопротивлении сенс и максимальным фоном на динамике. Если изменение фона есть при нажатии пальцем на секунду, то ключ и операционники работают, далее подключаем катушки RX с конденсатором контура параллельно, конденсатор на катушке TX последовательно, ложим одну катушку на другую и начинаем сводить в 0 по минимальному показанию переменного тока на первой ноге усилителя U1A. Далее берем что-нибудь большое и железное и проверяем есть в динамике реакция на металл или нет. Проверим напряжение на у2Б (7-й вывод) оно должно регулятором трэш, меняться +-пару вольт. Если нет – проблема в данном каскаде ОУ. Для начала проверки платы отключаем катушки и включаем питание.

   1. Должен идти звук при положении регулятора сенс на максимальное сопротивление, коснёмся пальцем на РХ – если есть реакция, все операционники работают, если нет – проверяем пальцем начиная с u2 и меняем (обследуем обвязку) нерабочего ОУ. 

   2. Работа генератора проверяется программой частотомер. Штекер от наушников припаять к 12 выводу CD4013 (561ТМ2) предусмотрительно выпаяв р23 (чтоб звуковую карту не спалить). В звуковой плате использовать In-lane. Смотрим частоту генерации, ее стабильность на 8192 гц. Если она сильно смещена, то надо выпаивать конденсатор с9, если и после она не четко выделена и/или много частотных всплесков рядом – заменяем кварц.

   3. Проверили усилители и генератор. Если все исправно, но все равно не работает – меняем ключ (CD 4066).


Какой резонанс катушек выбрать


   При подключении катушки в последовательный резонанс,увеличивается ток в катушке и общее потребление схемы. Увеличивается расстояние обнаружения цели, но это только на столе. На реальном грунте, земля будет чувствоваться тем сильнее, чем больше ток накачки в катушке. Лучше включение параллельного резонанса, а поднимать чутье входными каскадами. Да и батареек хватит намного дольше. Не смотря на то, что последовательный резонанс применяется во всех фирменных дорогих металодетекторах, в Штурме нужен именно параллельный. В импортных, дорогих приборах, хорошая схематика отстройки от земли, поэтому в этих приборах можно позволить последовательный.

Какие конденсаторы лучше установить в схему  металлоискателя

   Тип подключаемого к катушке конденсатора не при чём, а если экспериментально поменяли два и увидели что с одним из них резонанс лучше, то просто один из якобы 0,1 мкФ реально имеет 0,098 мкФ, а другой 0,11. Вот и разница между ними по резонансу получается. Я использовал советские К73-17 и зелёные импортные подушки.

Как настроить резонанс катушек  металлоискателя

   Катушка, как самый лучший вариант, получается из штукатурных терок, склеенных эпоксидной смолой с торцов до нужного вам размера. Причем, центральная ее часть с куском ручки этой самой терки, которая обрабатывается до одного широкого ушка. На штанге же, наоборот, вилка из двух ушек крепления. Такое решение позволяет решить проблему деформирования катушки, при затягивании пластикового болта. Пазы для обмоток делают обычным выжигателем, затем установка ноля и заливка. От холодного конца ТХ, оставим 50 см. провода, который изначально не заливать, а свить из него маленькую катушечку (диаметром 3 см.) и разместить ее внутри RX, перемещая и деформируя ее в небольших пределах, можно добиться точного ноля, но делать это лучше на улице, размещая катушку у земли (как при поиске) при отключенном GEBе, если он есть, затем окончательно залить смолой. Тогда отстройка от земли, работает более- менее сносно (исключение сильно минерализованный грунт). Такая катушка получается легкой, прочной, мало подверженной термодеформации, а обработанная и окрашенная очень симпатичная. И еще одно наблюдение: если металлоискатель собран с отстройкой от грунта (GEB) и при центральном расположении движка резистора выставить ноль очень маленькой шайбой, диапазон регулировки GEBа +- 80-100 мВ. Если установить ноль большим предметом- монета 10-50 коп. диапазон регулировки увеличивается до +- 500-600 мВ. За напряжением в процессе настройки резонанса не гонитесь – у меня при 12в питания около 40В при последовательном резонансе. Чтоб появилась дискриминация конденсаторы в катушках включаем параллельно (последовательное включение нужно только на этапе подбора кондеров для резонанса) – на черные металлы будет протяжный звук, цветные – короткий. 

   Или ещё проще. Подключаем катушки по очереди к передающему ТХ выходу. Настраиваем в резонанс одну, а настроив её – другую. Пошагово: Подключили, параллельно катушке ткнули мультиметром на пределе переменные вольты, так-же параллельно катушке припаяли конденсатор 0.07-0.08 мкф, смотрим показания. Допустим 4 В – очень слабо, не в резонансе с частотой. Ткнули параллельно первому конденсатору второй небольшой ёмкости – 0.01 мкф (0.07+0.01=0.08). Смотрим – уже показал вольтметр 7 В. Отлично, увеличим ещё ёмкость, подключим на 0.02 мкФ – смотрим на вольтметр, а там 20 В. Великолепно, едем дальше – ещё докинем пару тысяч пик ёмкости. Ага. Уже начало падать, откатим назад. И так добиться максимальных показаний вольтметра на катушке металлоискателя. Затем аналогично с другой (приёмной) катушкой. Настроить на максимум и подключить обратно к приёмному гнезду.

Как сводить катушки металлоискателя в ноль

   Для настройки нуля подключаем тестер на первую ногу LF353 и понемногу начинаем сжимать, растягивать катушку. После залива из эпоксидки – нолик точно убежит. Поэтому надо заливать не всю катушку, а оставить места для регулировки, и после высыхания доводить до нуля и заливать окончательно. Взять кусок шпагата и половину катушки обвязать одним витком к середине (к центральной части ,месту соединения двух катушек) вставить в петлю шпагата кусочек палочки после чего ее крутить (натягивать шпагат) – катушка будет сжиматься, поймав нолик шпагат пропитать клеем, после почти полного высыхания опять подправить нолик повернув палочку еще чуть-чуть и залить шпагат окончательно. Или проще: Передающая закреплена в пластмассе неподвижно, а приёмную накладываем на первую на 1 см, типа как свадебные кольца. На первом выводе U1A будет писк 8 кГц – можно контролировать вольтметром переменного тока, но лучше просто высокоомными наушниками. Так вот приёмную катушку металоискателя надо то надвигать, то сдвигать с передающей до тех пор, пока на выходе ОУ писк не стихнет до минимума (или показания вольтметра не упадут до нескольких милливольт). Всё, катушка сведена, фиксируем.

 

Какой провод для поисковых катушек лучше

   Провод для намотки катушек не имеет значения. От 0.3 до 0.8 пойдёт любой, всё равно придётся немного подбирать ёмкость для настройки контуров в резонанс и на частоту 8.192 кГц. Конечно и более тонкий провод вполне подходит, просто чем он толще, тем добротность и, как следствие чутьё – лучше. Но если намотать 1 мм – будет довольно тяжеловато таскать. На листе бумаги рисуем прямоугольник 15 на 23 см. От левого верхнего и нижнего угла откладываем по 2,5 см, и соединяем их линией. С правым верхним и нижними углами проделываем тоже самое, но откладываем по 3 см. По средине нижней части ставим точку и по точке слева и справа на расстоянии 1 см. Берем фанеру, накладываем этот эскиз и вбиваем гвоздики во все точки указанные. Берем провод ПЭВ 0,3 и мотаем 80 витков провода. Но честно говоря без разницы сколько витков. Всё равно частоту 8 кГц будем выставлять в резонанс конденсатором. Сколько намотали – столько и намотали. Я мотал 80 витков и конденсатор 0.1 мкф, если намотаете допустим 50 – ёмкость соответственно где-то 0.13 мкф поставить придётся. Далее, не снимая с шаблона обматываем катушку толстой ниткой – типа как обматывают жгуты проводов. После покрываем катушку лаком. Когда высохнет, снимаем катушку с шаблона. Затем идёт обмотка катушки изоляцией – фум лента или изолента. Далее – обмотка приёмной катушки фольгой, можно взять ленту из электролитических конденсаторов. TX катушку можно не экранировать. Не забудьте оставить РАЗРЫВ в экране 10 мм, по середине катушки. Дальше идёт обмотка фольги луженым проводом. Этот провод вместе с начальным контактом катушки у нас будет массой. И наконец обмотка катушки изолентой. Индуктивность катушек около 3,5мГ. Емкость получается около 0,1мкф. Что касается заливки катушки эпоксидкой, то я не заливал её вообще. Просто туго замотал изолентой. И ничего, два сезона отходил с этим металлоискателем без ухода настроек. Обратите внимание на влагоизоляцию схемы и поисковых катушек, ведь придётся по мокрой траве косить. Всё должно быть герметично – иначе попадёт влага и настройка поплывёт. Ухудшится чувствительность.


Какие детали и чем можно заменить


      Транзисторы
 BC546 – 3шт или КТ315.
 BC556 – 1шт или КТ361
      Операционники:

LF353 – 1шт или меняйте на более распространенную TL072. 
LM358N – 2шт 
      Цифровые микросхемы
CD4011 – 1шт
CD4066 – 1шт
CD4013 – 1шт
      Резисторы постоянные, мощностью 0,125-0,25 Вт: 
5,6К – 1шт
430К – 1шт
22К – 3шт
10К – 1шт
390К – 1шт
1К – 2шт
1,5К – 1шт
100К – 8шт
220К – 1шт
130К – 2шт
56К – 1шт
8,2К – 1шт
      Резисторы переменные
100К – 1шт
330К – 1шт
      Конденсаторы неполярные
1нФ – 1шт
22нФ – 3шт (22000пФ = 22нФ = 0.022мкФ)
220нФ – 1шт
1мкФ – 2шт
47нФ – 1шт
10нФ – 1шт
      Конденсаторы электролитические
220мкФ на 16В – 2шт

   Динамик миниатюрный. 
   Кварцевый резонатор на 32768 Гц. 
  Два сверхярких светодиода разного цвета.

   Если вы не можете достать импортные микросхемы, вот отечественные аналоги: CD 4066 – К561КТ3, CD4013 – 561ТМ2, CD4011 – 561ЛА7, LM358N – КР1040УД1. У микросхемы LF353 – прямого аналога нет, но смело ставим LM358N или лучше TL072, TL062. Совсем не обязательно ставить операционный усилитель именно – LF353, я просто поднял усиление на U1A заменив резистор в цепи отрицательной обратной связи 390 кОм на 1 мОм – чувствительность значительно возросла на процентов 50, правда после этой замены ушёл ноль, пришлось на катушку в определённом месте приклеить скотчем кусочек алюминиевой пластинки. Советские три копейки чувствует по воздуху на расстоянии 25 сантиметров и это при питании 6 вольт, потребляемый ток без индикации – 10 мА. И не забудь про панельки – удобство и простота настройки значительно повысятся. Транзисторы КТ814, Кт815 – в передающую часть металлоискателя, КТ315 в УНЧ. Транзисторы – 816 и 817 желательно подобрать с одинаковым коэффициентом усиления. Заменимы на любые соответствующей структуры и мощности. В генераторе металлоискателя установлен специальный часовой кварц на частоту 32768 Гц. Это стандарт абсолютно для всех кварцевых резонаторов, которые стоят в любых электронных и электромеханических часах. В том числе и наручных и дешёвых китайских настенных/настольных. Архивы с печатной платой для Volksturm SMD варианта и для Volksturm+GEB (вариант с ручной отстройкой от земли).
 

От чего зависит глубина поиска целей

 

    Чем больше диаметр катушки металлоискателя, тем глубже чутьё. А вообще, глубина обнаружения цели данной катушкой, зависит прежде всего от размера самой цели. Но при увеличении диаметра катушки наблюдается уменьшение точности обнаружения объекта и даже иногда потеря мелких целей. Для объектов с монету, этот эффект наблюдается при увеличении размера катушки свыше 40 см. Итого: большая поисковая катушка, имеет большую глубину обнаружения и больший захват, но менее точно обнаруживает цель, чем маленькая. Большая катушка идеальна для поиска глубоких и больших целей, таких как клады и крупные объекты. 

    По форме катушки делятся на круглые и эллиптичные (прямоугольные). Эллиптичная катушка металлоискателя обладает лучшей избирательностью по сравнению с круглой, потому что ширина магнитного поля у нее меньше и в поле ее действия попадает меньше посторонних объектов. Но круглая имеет большую глубину обнаружения и лучшую чувствительность к цели. Особенно на слабо минерализованных грунтах. Круглая катушка наиболее часто используется при поиске с металлоискателем. 

    Катушки диаметром меньше 15 см называют маленькими, катушки диаметром 15-30 см называют средними и катушки свыше 30 см – большие. Большая катушка генерирует большее электромагнитное поле, поэтому она имеет большую глубину обнаружения, чем маленькая. Большие катушки генерируют большое электромагнитное поле и соответственно, имеют большую глубину обнаружения и покрытие при поиске. Такие катушки используются для просмотра больших площадей, но при их использовании, может возникнуть проблема на сильно замусоренных площадках потому, что в поле действия больших катушек может попасться сразу несколько целей и металлоискатель среагирует на более крупную цель. 

    Электромагнитное поле маленькой поисковой катушки тоже маленькое, поэтому с такой катушкой лучше всего искать на территориях сильно замусоренных всякими мелкими металлическими предметами. Маленькая катушка идеальна для обнаружения маленьких объектов, но имеет небольшую площадь покрытия и сравнительно небольшую глубину обнаружения. 

    Для универсального поиска хорошо подойдут средние катушки. Такой размер поисковой катушки сочетает в себе достаточную глубину поиска и чувствительность к целям с разными размерами. Я делал каждую катушку диаметром примерно 16 см и обе эти катушки укладывал в круглую подставку из-под  старого  монитора 15″. В таком варианте глубина поиска этого металлоискателя будет такая: алюминиевая пластина 50×70 мм – 60 см, гайка М5-5 см, монетка – 30 см, ведро – около метра. Данные значения получены на воздухе, в земле будет на 30% меньше.
 

Питание металлоискателя

     Отдельно схема металлоискателя тянет 15-20 мА, при подключенной катушке + 30-40 мА, итого вместе до 60 мА. Конечно в зависимости от типа применяемого динамика и светодиодов это значение может изменяться. Простейший случай – питание взял 3 (или даже две) последовательно подключенные литий ионные батарейки от мобил на 3,7В и при заряде разряженных аккумуляторов, когда подключаем любой блок питания на 12-13в, ток заряда начинается от 0,8А и падает до 50ма за час и тогда вообще не надо что-то добавлять, хотя ограничительный резистор конечно же не помешает. Как вообще самый простейший вариант – крона на 9В. Но учтите, что металлоискатель съест её за 2 часа. Но для настройки этот вариант питания самое оно. Крона при любых обстоятельствах не выдаст большой ток, который может спалить что-то в плате.

 

Самодельный металлоискатель 

   А теперь описание процесса сборки металлодетектора от одного из посетителей. Так как из приборов имею только мультиметр, скачал с инета виртуальную лабораторию Записных О.Л. Собрал адаптер, простенький генератор и прогнал в холостую осциллограф. Вроде показывает какую-то картинку. Далее занялся поиском радиодеталей. Так как печатки в основном выкладывают в формате «lay», скачал «Sprint-Layout50». Выяснил, что такое лазерно-утюжная технология изготовления печатных плат и как их травить. Вытравил плату. К этому времени все микросхемы были найдены. Что не нашел у себя в сарайчике, пришлось покупать. Приступил к пайке перемычек, резисторов, сокетов микросхем, и кварца из китайского будильника на плату. Периодически проверяя сопротивление на шинах питания чтобы не было соплей. Решил для начала собрать цифровую часть прибора, как наиболее легкую. То-есть генератор, делитель и коммутатор. Собрал. Поставил микросхему генератора (К561ЛА7) и делитель (К561ТМ2). Микросхемы б/ушные, выдрал из каких-то плат, обнаруженных в сарайчике. Подал питание 12В контролируя ток потребления по амерметру, 561ТМ2 стала теплой. Заменил 561ТМ2, подал питание – ноль эмоций. Меряю напряжение на ногах генератора – на 1 и 2 ногах 12В. Меняю 561ЛА7. Включаю – на выходе делителя, на 13 ноге есть генерация (наблюдаю на виртуальном осциллографе)! Картинка правда не ахти какая, но за неимением нормального осциллографа – пойдет. Но на 1, 2 и 12 ногах ничего нет. Значит генератор работает, нужно менять ТМ2. Установил третью микросхему делителя – красота на всех выходах есть генерация! Для себя сделал вывод, что выпаивать микросхемы нужно как можно аккуратнее! На этом первый шаг постройки сделан.

   Теперь настраиваем плату металлоискателя. Не работал регулятор “SENS” – чувствительность, пришлось выкинуть конденсатор C3 после этого регулировка чувствительности заработала как надо. Не нравился звук возникающий в крайнем левом положении регулятора “THRESH” – порог, избавился от этого заменив резистор R9 цепочкой из последовательно соединённых резистор на 5,6 кОм + конденсатор на 47,0 мкФ (отрицательный вывод конденсатора со стороны транзистора). Пока нет микросхемы LF353 вместо неё поставил LM358, с ней советские три копейки чувствует по воздуху на расстоянии 15 сантиметров.

   Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Обмотки TX и RX у меня содержат по 100 витков провода диаметром 0,4. Начинаем сведение на столе, без корпуса. Просто чтоб было два обруча с проводами. А чтоб убедиться в работоспособности и возможности сведения вообще – разведём катушки друг от дрга на полметра. Тогда ноль будет точно. Затем наложив катушки внахлёст примерно 1см (как свадебные кольца) сдвигать – раздвигать. Точка нуля может быть довольно точная и поймать её сразу нелегко. Но она есть.

   Когда, я поднял усиление в RX тракте МД, он начал работать неустойчиво на максимальной чувствительности, это проявлялось в том что после прохождения над целью и её обнаружении выдавался сигнал, но он продолжался и после того когда цели перед поисковой катушкой ни какой уже небыло, это проявлялось в виде прерывистых и колеблющихся звуковых сигналов. При помощи осциллографа была обнаружена и причина этого: при работе динамика и незначительной просадке питающего напряжения уходит “ноль” и схема МД переходит в автоколебательный режим, выйти из которого можно только загрубив порог срабатывания звукового сигнала. Это меня не устраивало поэтому я поставил по питанию КР142ЕН5А + сверх яркий белый светодиод чтобы поднять напряжение на выходе интегрального стабилизатора, стабилизатора на более высокое напряжение у меня небыло. Такой светодиод можно использовать даже для подсветки поисковой катушки. Динамик подключил до стабилизатора, МД после этого стал сразу очень послушный всё начало работать как надо. Думаю Volksturm действительно лучший самодельный металлоискатель!

   Недавно была предложенна данная схема доработки, что позволит превратить Volksturm S в Volksturm SS + GEB. Теперь прибор станет обладать хорошим дискриминатором а также селективностью металлов и отстройкой от грунта, прибор паяется на отдельной плате и подключается вместо конденсаторов с5 и с4. Схема доработки и печатная плата в архиве. Отдельная благодарность за информацию по сборке и настройке металлоискателя всем, кто принимал участие в обсуждении и модернизации схемы, особенно помогли в подготовке материала Электродыч, феска, xxx, slavake, ew2bw, redkii и другие коллеги радиолюбители.

   Форум по металлоискателям

Как сделать самодельный металлоискатель своими руками

Содержание

  1. О принципе действия металлоискателя
  2. Из чего сделать прибор?
  3. Сложный способ создания устройства
  4. Простой способ изготовления металлоискателя

 

1. О принципе действия металлоискателя

Прежде чем задаваться вопросом, как сделать самодельный металлоискатель своими руками, предлагаем ознакомиться с его принципом работы. Он основывается на законе магнитного притяжения. Есть две катушки: одна из них создает магнитное поле, которое направляется в почву, вторая служит приемником и воспринимает сигналы от находящихся в грунте металлических элементов. Катушку с блоком управления соединяет держатель, представляющий собой длинную штангу. Блок управления имеет плату, микродинамик и элементы питания. О находке пользователя оповещает тональный сигнализатор. Когда металлический предмет находится на глубине, доступной для генерируемого магнитного поля,  сигнализатор меняет тональность. Это свидетельствует  о том, что находка близка к участку сканирования. На чувствительность прибора влияет размер катушки, создающей магнитное поле. Чем она больше, тем чувствительнее металлоискатель.

Знаний этого принципа и основ школьного курса физики вполне достаточно для того, чтобы собрать металлоискатель своими руками. Причем вам не нужно делать серьезных вложений. Большинство деталей можно найти дома и приобрести в магазине радиоэлектроники. А необходимый инструмент есть у каждого практичного хозяина. Перечислим, что же вам понадобится…

 

2. Из чего сделать прибор?

  • Плата из текстолита
  • Микросхемы
  • Резисторы
  • Транзистор
  • Конденсаторы
  • Выключатель питания (например, MTS-1)
  • Медный провод сечением 0,25 – 0,3 мм (без оболочки)
  • Медный провод сечением 0,5 мм (без оболочки)
  • Провод двухжильный для соединения блока и катушки
  • Низкоомные наушники (можно от плеера)
  • Разъем для наушников
  • Батарейка крона на 9 В
  • Пластиковый контейнер для блока управления
  • Изолента
  • Фольга
  • Черенок от лопаты
  • Саморезы

Из инструментов вам понадобится

 

3. Сложный способ создания устройства

Есть множество способов изготовления металлоискателя своими руками – начиная от простых, на которые уходит всего несколько минут, и заканчивая сложными, требующими пайки компонентов плат. Сначала расскажем о методе, который заинтересует любителей радиотехники и умельцев, имеющих опыт пайки.

Собираем блок управления

В основе работы лежит плата с основными рабочими элементами. Во-первых, это поисковый генератор (его компоненты IC1.3, IC1.4, C3, R4, R5, R6), к которому будет подключена катушка. Во-вторых, эталонный генератор (его компоненты IC1.3, IC1.4, C3, R4, R5, R6). Он работает на той же частоте, что и поисковый. В-третьих, смеситель (собран на IC1.2) – именно на него будет поступать сигнал с генераторов. В-четвертых, фильтр (сконструирован на R3, C4), который принимает сигнал со смесителя и передает его без высокочастотных помех. В-пятых, есть усилитель (VT1), через который в наушники подается низкочастотный сигнал.

Помимо основных рабочих компонентов на плате предусмотрены: резистор для установки нужной громкости наушников (R2), переменный резистор для установки тональности (R4), усилитель звука с питанием от батарейки, стабилизатор напряжения (IC2) для питания микросхемы IC1.

Все компоненты платы припаиваются в соответствии со схемой. Важно, чтобы паяльник контактировал с выводами не более 1 секунды, чтобы избежать перегрева. Пример представлен на рисунке ниже.

Схема самодельного металлоискателя

Совет: вы можете нарисовать плату в специальной программе, распечатать ее на глянцевой фотобумаге и перевести на заготовку из текстолита. Для этого приложите распечатку к поверхности платы и нагрейте утюгом. Для более глубокого пропечатывания рисунка можно прибегнуть к травлению в растворе соли. Только помните, что распечатывать нужно зеркальное отражение схемы.

Делаем поисковую катушку

Прежде чем делать катушку для металлоискателя, определитесь с ее размером. Подумайте, какие именно предметы вы хотите искать. К примеру, для обнаружения арматуры и металлического профиля достаточно катушки диаметром до 90 мм. Если ваша цель – монеты и так называемое пляжное золото, диаметр катушки должен быть 130 – 150 мм. Для поиска металлолома больших размеров данный параметр увеличивается до 200 – 500 мм.
Возьмите любой цилиндрический предмет, подходящий по диаметру под будущую катушку. Начинайте обматывать его проводом диаметром в 0,25 или 0,3 мм. Нужно сделать 70 – 80 витков. К примеру, можно взять ведро и наматывать провод в нижней его части плотными витками. После этого получившийся моток снимают. Не забудьте оставить выводы с катушки – 2 провода длиной около 4 см. Полученный круг нужно плотно обмотать изолентой. Лучше сначала зафиксировать ее по окружности короткими отрезками – в 8 местах вполне хватит.

Следующим шагом будет изготовление экрана поисковой головки. Для данной цели подойдет фольга из электролитических конденсаторов. Перед использованием ее обязательно нужно хорошо промыть и просушить. Только потом можно будет наматывать на катушку. Делайте плотную намотку, а концы фольги закрепите изолентой – в процессе эксплуатации она не должна разматываться.  Не забудьте оставить отверстия для вывода проводов. Далее с провода диаметром в 0,5 мм требуется снять лаковое покрытие – для этого подойдет наждачная бумага. Затем поверхность провода следует облудить паяльником, после чего его используют для обмотки катушки по окружности с шагом между витками в 1 см.  Остается только вывод на 12 см. В местах выводов между началом и концом намотки оставляют зазор. Затем выполняют обмотку заготовки еще несколькими слоями изоляционной ленты. Вы получите катушку с 3 выводами. Последним шагом на данном этапе будет создание контактной площадки для крепежа. Возьмите небольшую пластину из металла и припаяйте ее к выводу от экрана.

Соединяем все составляющие

Плату помещают в пластиковый контейнер, который будет служить блоком управления. Он крепится на черенке сверху. Можно прикрутить его саморезами. Лучше использовать деревянный черенок. Если же вы используете металлическую штангу либо рукоять из другого материала, то ее низ должен быть неметаллическим. Один из выводов катушки нужно зафиксировать с помощью самореза на штанге. Место соединения следует заизолировать. Чтобы соединить катушку с блоком управления, используют двужильный провод. Его концы припаиваются к выводу экрана катушки и к общей шине на плате.

Выполнение настройки и тестирование прибора

Чтобы убедиться в том, что собранный своими руками прибор будет работать, необходимо выполнить основные регулировки. Порядок действий будет следующим. На плате требуется выставить в среднее положение резисторы – подстрочный R2 и переменный R4, а подстрочный R5 перевести в любое крайнее. Затем включается питание. Наденьте наушники и начните вращать R5. Вы услышите сигнал, громкость и частота которого будут меняться от вращения резистора. Найдите такое положение, в котором звук будет самым громким. При дальнейшем вращении он должен снижаться и совсем пропадать. Запомните найденное положение и оставьте резистор в нем. Следующее действие: резистором R4 ищите низкочастотный сигнал. Приблизьте катушку к какой-либо металлической вещи – частота сигнала будет меняться. Если потребуется изменить интенсивность звукового сигнала, в этом поможет резистор R2.

В итоге вы получите поисковый прибор с катушкой на штанге, который удобно удерживать в руках и исследовать местность, не нагибаясь к земле.

 

4. Простой способ изготовления металлоискателя

Если ваш интерес в изготовлении поискового прибора не заходит так далеко, чтобы паять платы, вы можете пойти простым путем. Достаточно взять радио и калькулятор. Основой для простейшего металлоискателя будет плотная картонная обложка от книги. На одну ее внутреннюю часть крепят калькулятор, на другую – радио. Можно зафиксировать их двухсторонним скотчем. Радиоприемник в диапазоне АМ настраивается на свободную от трансляций волну, и включается максимальная громкость. Включите калькулятор – из динамика радио будет доноситься шум. Книжку складывают до такого положения, пока шум не снизится, а в идеале – совсем не пропадет. Антенна не будет принимать импульсы. В этом положении нужно зафиксировать книжку распоркой и резинкой. Поиск металла осуществляется следующим образом: книжку подносят к исследуемому участку и начинают медленно водить ею. Как только послышится звук из динамика радиоприемника, можно догадаться о находке.

Теперь вы можете попробовать сделать металлоискатель своими руками по одной из представленных инструкций. Возможно, это будет для вас первым шагом к искательству. А когда это станет настоящим увлечением, появится повод задуматься о более серьезном приборе. Тогда можно купить металлоискатель известного бренда. Современные модели обладают множеством полезных функций и заметно упрощают процесс. В настройках можно задавать параметры поиска предметов из конкретных металлов, чтобы не копать зря, натыкаясь на ненужный лом. Желаем удачных поисков!

Схемы Металлоискателей – Паятель.Ру – Все электронные схемы

КАТЕГОРИИ СХЕМ

СПРАВОЧНИК

ИНТЕРЕСНЫЕ СХЕМЫ


Схема простого металлоискателя для чайников
 

Этот металлоискатель пригодится для “чайников”, тех кто впервые собирает такой прибор. Он может обнаружить скрытые крупные металлические предметы на глубине до 0,6 м. Его удобно использовать для поиска засыпанных снегом или землей, стройматериалами, колодцев водоснабжения, можно обнаружить неглубоко проложенные трубы водоснабжения. Принцип действия традиционный: сравниваются частоты двух генераторов, частота одного генератора постоянная, частота второго зависит от внешних индуктивностей, следовательно от расположенных на некотором расстоянии от контурной катушки металлических предметов.
Подробнее…

Своими руками – простой металлоискатель
 

Принцип действия металлоискателя основан на сравнении двух частот, частоты стабильной, и частоты изменяемой под действием внешнего металлического предмета, при приближении изменяющего индуктивность контурной катушки второго генератора. В исходном состоянии частоты равны и нулевые биения между ними минимальны, при приближении металла индуктивность катушки одного генератора изменяется и соответственно изменяется его частота, в результате разность частот этих двух генераторов увеличивается и соответственно увеличивается разностная частота, а так-же тон воспроизводимого звукового сигнала.
Подробнее…

Схема простого металлоискателя на одной микросхеме
 

Металлоискатель, схема которого приведена на рисунке сделан на одной микросхеме. Он состоит из двух одинаковых LC генераторов и детектора , к выходу которого подключены головные телефоны. Генераторы высокочастотные, работают на частоте около 465 кгц. Один из генераторов имеет неперестраиваемый контур, контур второго имеет объемную катушку L2, индуктивность которой изменяется при приближении к металлическому предмету.
Подробнее…

Схема металлоискателя скрытой проводки
 

Металлоискатель обнаруживает водопроводную трубу под слоем стены толщиной до 150 мм, канализационную трубу – до 250-300 мм, современную пятирублевую монету на глубине до 40 мм, электрический провод на глубине до 30 мм. В большинстве случаев, при проведении ремонтно-строительных работ такой чувствительности достаточно. Схема собрана на одной микросхеме CD40106, в которой содержится шесть триггеров Шмитта с инверторами на выходах.
Подробнее…

САМЫЕ ПОПУЛЯРНЫЕ СХЕМЫ

ТЕГИ


Металлоискатели, они же металлодетекторы: принципы работы и схемы

BFO металлоискатели на биениях, металлоискатели по принципу электронного
частотомера, импульсные металлоискатели.  Оптимальные частоты излучения.

Металлоискатель, он же металлодетектор – это электронный прибор, позволяющий обнаруживать металлические предметы в нейтральной или слабопроводящей среде за счёт наличия у этих предметов электрической проводимости.
Так, а кой же должна быть эта слабопроводящая среда, если мы знаем, что практически все материалы в той или иной степени проводят ток?
Ну, как минимум, на несколько порядков ниже, чем проводимость металлов. Золотой портсигар внутри танка, затонувшего в болоте, мы, само собой, не отыщем, а вот какую-нибудь железяку в грунте, воде, стене, древесине, чемодане, в чьём-либо организме, в конце концов, и т.д. и т.п. – это пожалуйста, добро пожаловать на металлодетекторное обследование.

Теперь – по какому принципу работают металлоискатели (металлодетекторы)?
Этих принципов работы несколько:

Металлоискатель по принципу “передача-приём” непрерывным сигналом.

Тут всё понятно и соответствует названию: Передающая катушка непрерывно стреляется переменным электро-магнитным полем в искомый металлический предмет, оказавший поблизости.
Под влиянием этого поля в предмете, выступающем в роли мишени, возникают электрические токи, которые, в свою очередь, создают собственное магнитное поле, с направленностью обратной магнитному полю передатчика.
Приёмная катушка регистрирует отражённый (или, как говорят, переизлучённый) от металлического предмета (мишени) сигнал. Далее этот сигнал усиливается и обрабатывается электроникой, предварительно отделив его от более мощного сигнала передатчика.
Чем больше предмет и чем он ближе расположен к катушкам, тем выше будет амплитуда переизлучённого сигнала.
Прибор данного типа подразумевают наличие как минимум двух катушек, одна из которых является передающей, а другая, приёмной. Мало того, необходимо позаботиться о таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки в отсутствие посторонних металлических предметов наводит минимальный (в идеале – нулевой) сигнал в приёмной катушке (или в системе приёмных катушек).


Рис.1

Существуют различные варианты взаимного расположения катушек, при которых не происходит непосредственной передачи сигнала из одной катушки в другую. Основные из них: катушки с перпендикулярными осями (Рис.1, а и б), а также вариант расположения приёмной катушки, скрученной в форме восьмёрки, внутри передающей (Рис.1 в).

Поскольку конструкция данных типов металлоискателей достаточно сложна, так как подразумевает наличие отдельных катушек на приём и передачу, широкого распространения в радиолюбительской практике она не нашла.

Совсем другое дело – металлоискатели, построенные на принципе биений, или так называемые BFO металлоискатели.

Принцип действия металлоискателя на биениях заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик – поисковую катушку индуктивности в своей частотозадающей цепи.
Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению индуктивности датчика и, как следствие, к изменению частоты соответствующего генератора. Это изменение, приведёт к изменению разностной частоты двух генераторов, которая выделяется специальным устройством (смесителем), на входы которого подаются сигналы обоих генераторов, а на выходе выделяется разностная частота, называемая частотой биений.
Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны, и кончая цифровыми способами измерения частоты.
Диапазоны рабочих частот BFO металлоискателей – 40-500 кГц.
При отсутствии металла в поле поисковой катушки разностная частота должна быть в пределах 500…1000 Гц.

В качестве примера приведу схему простейшего компактного металлоискателя на микросхеме К175ЛЕ5 (Источник Яворский В. Металлоискатель на К176ЛЕ5. // Радио, 1999, №8, с. 65).


Рис.2

Схема содержит два генератора (опорный и поисковый). Поисковый генератор собран на элементах DD1.1, DD1.2, а опорный – на элементах DD1.3 и DD1.4.
Переменным резистором R2 плавно изменяют частоту поискового генератора в диапазоне частот, установленном подстроечным резистором R1. Частота генератора на элементах DD1.3 и DD1.4 зависит от параметров колебательного контура L1, С2.
Сигналы с обоих генераторов поступают через конденсаторы C3 и С4 на детектор, выполненный на диодах VD1 и VD2.
Нагрузкой детектора являются наушники BF1, на которых выделяется разностный сигнал в виде низкочастотной составляющей, преобразуемый наушниками в звук.
Параллельно наушникам включен конденсатор С5, который шунтирует их по высокой частоте. При приближении поисковой катушки L1 к металлическому предмету происходит изменение частоты генератора на элементах DD1.3, DD1.4, в результате меняется тональность звука в наушниках. По этому признаку и определяют, находится ли в зоне поиска металлический предмет.


Рис.3

Катушка L1 размещается в кольце диаметром 200 мм, согнутом из медной или алюминиевой трубки с внутренним диаметром 8 мм. Между концами трубки должен быть небольшой изолированный зазор, чтобы не было короткозамкнутого витка. Катушка наматывается проводом ПЭЛШО 0,5. Через трубку необходимо протянуть любым способом максимальное число витков: чем больше, тем лучше.

Несмотря на бытующее мнение, что BFO металлоискатели не имеют чёткой селективности различных видов металлов, при наличии некоторого опыта, данным типом устройств можно-таки производить селекцию, анализируя и отфильтровывая сигналы на слух.

В теории чувствительность BFO металлоискателей должна быть таком же уровне, как и у устройств, построенных по принципу “передача-приём”. Однако существует существенная проблема, снижающая чувствительность приборов данного типа. Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации. А это, в свою очередь, не даёт возможности работы на низких начальных разностных частотах, на которых ухо имеет максимальную чувствительность к изменению тона звукового сигнала.

И тут, лёгким движением руки, BFO металлоискатель превращается в
Металлоискатель, работающий по принципу электронного частотомера.

Построенный по такому принципу электронный металлоискатель является несомненным родственником прибора “на биениях”, но в отличие от него содержит один генератор с частотозадающей поисковой катушкой, а изменение частоты фиксируется электронным устройством, работающим по принципу частотомера. Помимо повышения чувствительности приборы данного класса, обладают и возможностью оценки знака приращения частоты, а соответственно и возможностью селекции чёрных/цветных металлов.

Простейшую реализацию подобной конструкции без селектора видов металлов предложил Адаменко М.В. в книге “Металлоискатели”.

Рис.4

Предлагаемая конструкция является устройством, в основу которого положен принцип анализа девиации частоты опорного генератора под влиянием металлических предметов, попавших в зону действия поисковой катушки. Главными отличительными особенностями данного прибора можно считать интересное схемотехническое решение анализатора, выполненного на кварцевом элементе Q1, а также использование в качестве индикатора стрелочного прибора.

Основу схемы рассматриваемого металлодетектора (Рис.4) составляют измерительный генератор, буферный каскад, анализатор, детектор высокочастотных колебаний и индикаторное устройство.
Колебательный контур генератора высокой частоты, выполненного на транзисторе Т1, состоит из катушки L1 и конденсаторов С3-С6. Рабочая частота ВЧ-генератора зависит от девиации индуктивности катушки L1, которая одновременно является поисковой катушкой, а также от изменения ёмкостей подстроечного (С4) и регулировочного (С3) конденсаторов.
При отсутствии металлических предметов в зоне действия катушки L1 частота колебаний, возбуждаемых в ВЧ-генераторе, должна быть равна частоте кварцевого элемента Q1, то есть в данном случае – 1 МГц.
После того как в зоне действия поисковой катушки L1 окажется металлический предмет, её индуктивность изменится. Это приведёт к изменению частоты колебаний ВЧ-генератора. Далее сигнал ВЧ подаётся на буферный каскад, обеспечивающий согласование генератора с последующими цепями. В качестве буферного каскада используется эмиттерный повторитель, выполненный на транзисторе Т2.
С выхода эмиттерного повторителя сигнал ВЧ через регулировочный резистор R7 и кварц Q1 поступает на детектор, выполненный на диоде D2. Благодаря высокой добротности кварца малейший сдвиг частоты измерительного генератора будут приводить к уменьшению полного сопротивления кварцевого элемента. В результате на вход усилителя постоянного тока (база транзистора Т3) поступает сигнал, изменение амплитуды которого обеспечивает соответствующее отклонение стрелки индикаторного прибора.
Нагрузкой УПТ, выполненного на транзисторе Т3, является стрелочный прибор с током полного отклонения 1 мА. При замыкании выключателя S2 в цепь нагрузки включается генератор звукового сигнала, выполненный на транзисторе Т4.

Поисковая катушка L1 представляет собой кольцевую рамку, изготовленную из отрезка кабеля с внешним диаметром 8-10 мм (например, кабеля марки РК-50). Центральную жилу кабеля следует удалить, а вместо неё протянуть шесть жил провода типа ПЭЛ диаметром 0,1-0,2 мм и длиной 115 мм. Получившийся многожильный кабель необходимо согнуть на подходящей оправке в кольцо таким образом, чтобы между началом и концом образовавшейся петли остался зазор шириной примерно 25-30 мм.


Рис.5

Конец провода, являющийся началом первого витка, следует припаять к экранирующей оплётке кабеля, начало второго витка – к концу первого и так далее. В результате получится катушка, содержащая шесть витков провода. При изготовлении катушки L1 нужно особенно следить за тем, чтобы не произошло замыкания концов экранирующей оплётки, поскольку в этом случае образуется короткозамкнутый виток.

Непосредственное налаживание металлодетектора следует начать с установки нужной частоты колебаний, формируемых ВЧ-генератором. Частота колебаний ВЧ должна быть равна частоте кварцевого элемента Q1. Для выполнения данной регулировки рекомендуется воспользоваться цифровым частотомером. При этом значение частоты сначала грубо устанавливается изменением ёмкости конденсатора С4, а затем точно – регулировкой конденсатора С3.
При отсутствии частотомера настройку ВЧ-генератора можно провести по показаниям индикатора PA1. Поскольку кварц Q1 является элементом связи между поисковой и индикаторной частями прибора, то его сопротивление в момент резонанса весьма велико. Таким образом, о точной настройке колебаний ВЧ-генератора на частоту кварца будет свидетельствовать минимальное показание стрелочного прибора PA1.Уровень чувствительности данного устройства регулируется резистором R8.

Ну и закончу я обзор весьма популярными среди радиолюбительского сообщества –
Импульсными металлоискателями.

Не будем отвлекаться на различные виды импульсных конструкций. Рассмотрим однокатушечный вариант с временным способом разделения излучаемого и отражённого сигналов.
После воздействия импульса магнитной индукции в искомом проводящем объекте возникает и некоторое время поддерживается (вследствие явления самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отражённый сигнал. Он и несёт полезную информацию, его и надо регистрировать.
Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку, где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка имеет ярко выраженный индуктивный характер, всплески напряжения на ней могут достигать по амплитуде десятков-сотен вольт. В связи с этим, необходимо позаботиться: либо о блокировке входной цепи прибора на определённое время, либо об ограничении данного напряжения на входе приёмной части регистратора.
По истечении времени действия импульса тока в излучающей катушке и времени разрядки катушки в действие должен вступить блок обработки сигнала, предназначенный для преобразования входного электрического (отражённого от железяки) сигнала в удобную для восприятия человеком форму.

Приведу для примера простую и расхожую схему импульсного металлоискателя ПИРАТ.

Рис.6

Принцип работы этого металлоискателя основан на изменении времени затухания отражённого от металлического предмета импульса в поисковой катушке, которое увеличивается с приближением металлических предметов. Дискриминации в данном типе металлоискателя нет, цветной и чёрный металлы реагируют практически одинаково.
Прибор состоит из передающего блока (генератора импульсов на таймере NE555 и мощного ключа на полевом транзисторе) и приёмной части на операционном усилителе TL072.
По входу приёмника стоят встречно-параллельно включённые ограничивающие диоды, на входе второго каскада ОУ приёмника – фильтр, отсекающий импульсы, излучаемые передатчиком.
Поисковая катушка L1 намотана на оправку 180-200 мм и содержит 25-30 витков эмалированного провода диаметром 0.5-0.8 мм. Экранировать катушку не нужно.
Оптимальные параметры работы генератора на NE555 : частота 125-150 Гц, длительность импульса 125-150 мкс.
При соблюдении этих параметров аппарат потребляет минимальный ток и имеет максимальную чувствительность:
Потребляемый ток : 30-50 мА;
Чувствительность : Монета 25 мм — 20 см, крупные предметы — 150 см.
После сборки схемы наладить металлоискатель очень просто. Включаем питание и ждём окончания переходных процессов в течении 15 секунд, подбором резистора R11 добиваемся того, чтобы при среднем положении переменного резистора R12 в динамике не было слышно звука генератора, а слышались только редкие щелчки.
Поисковая катушка при настройке должна находиться вдали от металлических предметов. При приближении металла в динамике должен появляться звук с частотой работы таймера NE555.

И подытожим страницу информацией о том,
как частота металлоискателя влияет на качество поиска.

Условно частоты работы металлоискателей можно разделить следующим образом:
2-6 кГц — низкая частота;
6-15 кГц — средняя частота;
15-30 кГц — высокая частота;
от 30 кГц и выше — ну, очень высокая частота.

Низким частотам присущи следующие свойства: бóльшая способность проникать в глубину почвы, а потому и увеличенная глубина обнаружения, способность работать на почвах с высоким уровнем минерализации, способность хорошо справляться с задачей поиска целей с высокой проводимостью (медь, бронза, серебро).
Из недостатков: не очень хорошо подходят для поиска мелких объектов и поиска целей с низкой проводимостью, например, железа, никеля и т.д.

Высокие частоты обладают следующими свойствами: показывают отличные результаты при поиске мелких объектов, хорошо подходят для поиска целей с низкой проводимостью, обладают более высокой точностью, особенно при обнаружении целей, расположенных близко к поверхности.
Из недостатков: чувствительность к помехам, создаваемым высокоминерализованным грунтом, меньшая глубина обнаружения по сравнению с низкой частотой.

Средние частоты представляют собой компромисс между низкими и высокими. Средняя частота считается универсальной, подходящей под любой тип находок, поэтому практически все бюджетные одночастотные детекторы промышленного производства обладают стандартной рабочей частотой – 6-8 кГц.

 

САМОДЕЛЬНЫЙ МЕТАЛЛОИСКАТЕЛЬ

   В современной электронике и радиолюбительском быту, часто требуется собрать металлодетектор различной сложности, как правило это простейшие схемы. Хотя опытные радиолюбители замахиваются и на микроконтроллерные металлоискатели. Именно такие простые конструкции для поиска металлов, с одной катушкой датчиком, парой транзисторов и простейшим генератором, пользуются популярностью у любителей покопать весной и летом черный металл на скрытой поверхностью земли территории. На сайте до сих пор тема металлоискателей не поднималась, так что восстановим этот пробел и познакомим уважаемых посетителей с простым и популярным МД.

Схема самодельного металлоискателя

   Для таких целей есть схема довольно хорошего и проверенного в бою аппарата, который зовется “Пират” и получает широкое распространение среди копателей. Схема элементарна и повторяется не раз, я например под себя переделываю печатку и изготавливаю частенько по заказу такие приборы. Схема генератора строится на таймере 555 – тут главное для большей стабильности поставить пару пленочных хороших конденсаторов, проверив их ёмкость предварительно тестером. Часть резисторов паяю для удобства в смд исполнении, микросхема распространенная — операционник УД2, в качестве приемника импульсов. Заказал недавно их несколько десятков, но вы можете легко найти их в старой аппаратуре, таких как радиоприемнике или магнитофоне советских лет.

   Катушка прибора на каркасе мотается проводом что есть под рукой — от 0.3 мм до 0.6 мм, чем толще провод — тем лучше чувствительность на металлы, и больше дальность пробивания импульсов, но тем сложнее изготовить, каркас нужен более глубокий, укладывать провод более толстый тяжелее, фиксировать так же проблемно.

   Печатную плату выполняю из гетинакса, травлением в растворе хлорного железа, лужение пос-61 обычным плоским паяльником при достаточной температуре, работая с гетинаксом главное не перегреть – при излишних температурах можно запороть заготовку будущей печатной платы и все пойдет пузырями.

   Динамик использовать желательно высокоомным – так звук получается по-громче, питание схемы обязательно надо осуществлять от аккумулятора с емкостью от пары ампер, а напряжение к нему подводить проводами потолще, так как прибор то импульсный. Катушку с металлоискателем соединять проводами потолще тоже.

   Регуляторы ставлю пару – для грубой и точной настройки, например 100 ком и 10 ком, соответственно. Все выводы и особо опасные и малонадежные элементы закрепляю для большей надежности из термопистолета термоклеем.

Видео работы металлоискателя

   На выходе получается вот такой прибор, который нравится копателям, корпус и прочее уже подбираются под нужды и то что нравится, так сказать. Чувствительность на мелкие предметы из металла, например 5 коп СССР — до 30 см. Собрал и проверил устройство — redmoon.

Originally posted 2018-11-20 08:01:27. Republished by Blog Post Promoter

Принципиальная схема и работа металлоискателя

Металлоискатель

– очень распространенное устройство, которое используется для проверки людей, багажа или сумок в торговых центрах, гостиницах, кинозалах и т. Д., Чтобы убедиться, что человек не имеет при себе металлов или незаконных вещей, таких как пистолеты, бомбы и т. д. Металлоискатели обнаруживают присутствие металлов.

Существуют различные типы металлоискателей, такие как ручные металлоискатели, проходные металлоискатели и металлоискатели с наземным поиском. Металлоискатели могут быть легко созданы, а схема базового металлоискателя не такая сложная.

В этом проекте мы разработали простую схему металлоискателя типа «сделай сам», используя очень простые компоненты, которые можно использовать в наших домах и садах.

Принципиальная схема

На следующем изображении показана принципиальная схема цепи металлоискателя.

Необходимые компоненты

  • 1 x TDA0161 Датчик приближения IC
  • 2 конденсатора по 47 нФ (код керамического конденсатора 473)
  • 1 резистор 1 кОм (1/4 Вт)
  • 1 резистор 330 Ом (1 / 4 Вт)
  • 1 резистор 100 Ом (1/4 Вт)
  • 1 потенциометр 5 кОм
  • 1 x 2N2222A (транзистор NPN)
  • 1 зуммер 5 В
  • Катушка (медный провод 26-30 AWG взят и намотан на катушку диаметром 5-6 см и 140-150 витков)
  • Дополнительные компоненты (для светодиода)
    • 1 резистор 220 Ом (1/4 Вт)
    • 1 светодиод x 5 мм

Описание компонента

TDA0161 ИС датчика приближения: TDA0161 – ИС датчика приближения, производимая STMicroelectronics.Его можно использовать для обнаружения металлических предметов, обнаруживая небольшие изменения в высокочастотных вихретоковых потерях.

Микросхема TDA0161 действует как генератор с помощью схемы с внешней настройкой. Изменения в токе питания будут определять выходной сигнал, т. Е. Ток высокий, когда рядом находится металлический объект, и низкий, когда металлического объекта нет.

TDA0161 имеет 8 контактов и поставляется в двухрядном корпусе (DIP). На следующем изображении показана схема выводов микросхемы TDA0161.

ПРИМЕЧАНИЕ: Согласно STMicroelectronics, микросхема датчика приближения TDA0161 устарела.Если он доступен на рынке, смело создавайте этот увлекательный проект. Если она недоступна, попробуйте найти новую микросхему. Мы постараемся обновить, если будет доступна подобная микросхема. Если вы найдете какие-либо микросхемы датчика приближения, укажите это в разделе комментариев.

Катушка

(индуктор): для этого проекта мы использовали медный провод 30 AWG. Затем он наматывается на катушку с использованием эталона диаметром 5,8 см. Катушка состоит из 140 – 150 витков.

Описание цепи металлоискателя

  • Когда LC-цепь, которая является L1 и C1, имеет резонансную частоту от любого металла, который находится рядом с ней, будет создано электрическое поле, которое приведет к индукции тока в катушке и изменению прохождение сигнала через катушку.
  • Переменный резистор используется для изменения значения датчика приближения, равного LC цепи, лучше проверять значение, когда катушка находится не рядом с металлом. Когда металл обнаружен, в цепи LC изменится сигнал. Измененный сигнал подается на датчик приближения (TDA 0161), который обнаруживает изменение сигнала и соответствующим образом реагирует. Выходной сигнал датчика приближения будет составлять 1 мА, когда металл не обнаружен, и около 10 мА, когда катушка находится рядом с металлом.
  • Когда на выходном контакте высокий уровень, резистор R3 будет подавать положительное напряжение на транзистор Q1.Q1 будет включен, светодиод будет светиться, а зуммер издаст сигнал. Резистор r2 используется для ограничения протекания тока.

Блок-схема металлоискателя

В цепи металлоискателя есть три основных части: LC-цепь, датчик приближения, выходной светодиод и зуммер. Катушка и конденсатор С1, включенные параллельно, образуют LC-цепь.

Датчик приближения (TDA0161) срабатывает этой LC-цепью при обнаружении любого металла.Затем датчик приближения включит светодиод и подаст сигнал тревоги с помощью зуммера.

LC Цепь: LC-цепь имеет индуктивность и конденсатор, подключенные параллельно. Эта цепь начинает резонировать, когда рядом находится материал той же частоты. Цепь LC заряжает конденсатор и катушку индуктивности поочередно. Когда конденсатор полностью заряжен, заряд передается на катушку индуктивности.

Индуктор начинает заряжаться, и когда заряд на конденсаторе равен нулю, он снимает заряд с индуктора в обратной полярности.Затем заряд индуктора уменьшается, и снова процесс повторяется. Обратите внимание, что индуктор является устройством хранения магнитного поля, а конденсатор – устройством хранения электрического поля.

Датчик приближения: Датчик приближения может обнаруживать объекты без каких-либо физических помех. Датчик приближения будет работать так же, как инфракрасный датчик, приближение также выдает сигнал, он не будет выдавать выходной сигнал до тех пор, пока не будет изменений в отраженном обратном сигнале.

Если есть изменение в сигнале, он обнаружит и выдаст соответствующий выходной сигнал.Существуют различные датчики приближения, например, для обнаружения пластикового материала, мы можем использовать приближение емкостного типа, а для металлов мы должны использовать индуктивный тип.

Рабочий

Цепь LC, которая состоит из L1 (катушка) и C1, является основной частью цепи металлоискателя. С помощью этой LC-цепи, которая также называется Tank Circuit или Tuned Circuit, микросхема TDA0161 действует как генератор и колеблется с определенной частотой.

Когда LC-цепь обнаруживает любую резонирующую частоту от любого металла, который находится рядом с ней, будет создано электрическое поле, которое приведет к индукции тока в катушке и изменению потока сигнала через катушку.

Переменный резистор используется для изменения значения датчика приближения, равного LC цепи, лучше проверять значение, когда катушка не находится рядом с каким-либо металлическим предметом. Когда металл обнаружен, в цепи LC изменится сигнал.

Измененный сигнал подается на датчик приближения (TDA 0161), который обнаруживает изменение сигнала и соответствующим образом реагирует. Выходной сигнал датчика приближения будет меньше 1 мА, когда металл не обнаружен, и около 10 мА (обычно больше 8 мА), когда катушка находится рядом с металлом.

Когда на выходном контакте высокий уровень, резистор R3 подает положительное напряжение на транзистор Q1. Q1 загорится и загорится светодиод (на схеме не показан) и включится зуммер.

Преимущества

  • Схема металлоискателя на основе микросхемы бесконтактного детектора TDA0161 – это очень простой и легкий в сборке металлоискатель, который можно использовать для обнаружения мелких металлов в наших домах, офисах и садах.
  • Нужен любой микроконтроллер, так как датчика приближения будет достаточно для реализации проекта.

Недостатки

  • Основным недостатком данной схемы металлоискателя является дальность обнаружения. Металлический объект должен находиться на расстоянии 10 мм, чтобы детектор его обнаружил.

Приложения

  • Этот простой металлоискатель может использоваться для идентификации металлов, таких как железо, золото, серебро и т. Д.
  • Поскольку это простой проект, мы можем использовать его в нашем доме для сканирования гвоздей, металлических отходов и т. Д. которые нелегко обнаружить невооруженным глазом.

Похожие сообщения:

Цепь металлоискателя со схемой и схемой

Цепь металлоискателя

Я всегда хотел сделать металлоискатель, глядя, как это круто во всех голливудских, болливудских фильмах. Я понял одну вещь: все не так сложно, как вы думаете. В конце концов, я обнаружил, что металлоискатель действительно прост и легок в изготовлении. В этом посте я делюсь с вами «Как сделать металлоискатель»

Описание

Это принципиальная схема недорогого металлоискателя , использующего одну транзисторную схему и старый карманный радиоприемник.Это не что иное, как генератор Колпитца , работающий в средней полосе частот, и радиоприемник , настроенный на ту же частоту. Во-первых, радиоприемник и схема ставятся рядом. Затем радио настраивается так, чтобы из радио не было звука. В этом состоянии радиоприемник и схема будут работать на одной и той же частоте, и одинаковые частоты будут отбиваться, чтобы не издавать звука. Это установка. Когда цепь металлоискателя размещается рядом с металлическим объектом, индуктивность его катушки изменяется, как и частота колебаний.Теперь две частоты будут разными, отмены не будет, и радио будет издавать шипящий звук. Это означает, что обнаружен металлический объект.

Простая, га.

CircuitsToday представил список книг, которые помогут вам получить знания по основам электроники. Эти книги написаны некоторыми известными авторами в области электроники и их можно купить в Интернете. Пожалуйста, нажмите на эту ссылку: – 4 ОТЛИЧНЫХ КНИГИ ДЛЯ ИЗУЧЕНИЯ ОСНОВНОЙ ЭЛЕКТРОНИКИ.

Банкноты
  • Чтобы сделать L1, сделайте 60 витков эмалированного медного провода 36SWG на трубке из ПВХ диаметром 1 см.
  • Питание схемы от адаптера, а не от батареи вызывает шум. Радиопроекты всегда хорошо питать от батареи.

Электрическая схема металлоискателя и перечень деталей Принципиальная схема


Эта простая схема состоит из следующих частей;
  • Резистор – 3,3 кОм – 1 шт.
  • Резистор – 2,2 кОм – 1 шт.
  • Сопротивление – 68 Ом – 1 шт.
  • Конденсатор – 10 мкФ / 16 В – 1 шт.
  • Конденсатор – 10пФ – 1 шт.
  • Конденсатор – 100 пФ – 1 шт.
  • Аккумулятор – 6 В
  • Транзистор
  • NPN – BC548 – 1 шт.

Приложения

Применения металлоискателей много.Вы можете увидеть их в аэропортах и ​​везде, где требуется проверка безопасности при входе. Помимо этого;

  • Можно использовать как крутой мини-проект для инженерии, ну или хотя бы для показухи
  • Для обнаружения металлических предметов на конвейерных лентах. В пищевой промышленности важно, чтобы металлы не попадали случайно, поэтому наличие металлоискателя рядом с конвейерными лентами, на которых транспортируются предметы для упаковки, сработает.
Похожие сообщения

Простой модуль металлоискателя – Электрохимика.com

Некоторое время назад я купил этот модуль бесконтактного металлоискателя в интернет-магазине, чтобы посмотреть, как он работает и что мне нужно для его сборки.

В дешевом модуле, который я получил из Китая, не было инструкции по эксплуатации или принципиальной схемы, поэтому мне пришлось долго искать в Google, чтобы найти его базовую схему. В этом кратком учебнике вы найдете схему и все другие детали, которые вам нужно знать, если вы хотите сделать простой металлоискатель самостоятельно.Итак, начнем!

Продуманной частью конструкции является одиночная прямоугольная катушка, образованная путем вытравливания одной непрерывной дорожки на печатной плате. Если вы очень внимательно посмотрите на печатную плату, вы увидите, что прямоугольная катушка отводится за один оборот, то есть одна катушка с точным отводом за один оборот. Катушка начинается с верхней стороны двусторонней печатной платы и образует квадратные петли к центру, переходное отверстие в центре печатной платы переносит катушку на другую сторону печатной платы и тот же набор гусеницы находятся на нижней стороне.Довольно приятно!

Остается несколько общедоступных дискретных компонентов, включая три транзистора с биполярным переходом, несколько резисторов и конденсаторы. Звуковой сигнализатор в модуле представляет собой стандартный активный пьезо-зуммер, а также есть небольшой подстроечный регулятор для точной настройки схемы. Вот основная схема модуля металлоискателя. Я позаимствовал его со страницы продавца.

Далее представлена ​​схема другой версии модуля металлоискателя, на печатной плате которого выгравирована круглая катушка.В этом почти идентичном дизайне вы также можете увидеть светодиодный сигнализатор.

Это фотография второй версии (у меня пока нет под рукой):

Принцип работы модуля бесконтактного металлоискателя не очень сложен для понимания. Ниже приводится очень краткое объяснение, поэтому этот сеанс лучше всего читать вместе с учебным пособием www.talkingelectronics.com/projects/200TrCcts/MetalDetectors/MetalDetectors-1.html. Оба элемента вместе помогут вам понять схемы металлоискателя.

Как указывалось ранее, сенсорная головка схемы представляет собой “печатную” катушку на 50 витков (25T вверху + 25T внизу) с отводом на первом витке. Одновитковая (1Т) катушка обратной связи (L1) направляется к базе Q1 через C2, а база Q1 смещается на R1, в то время как конец катушки (50T) подключен напрямую к коллектору Q1.

Настроенная схема (катушка плюс конденсатор на ней), сформированная здесь, генерирует гладкий синусоидальный сигнал.Имейте в виду, что сигнал, создаваемый здесь, исходит от естественной способности катушки и конденсатора, проходящего через нее, и вряд ли нуждается в каких-либо других компонентах. Но Q1 помогает настроенной схеме генерировать синусоидальный сигнал, поскольку Q1 подает необходимый импульс энергии в нужный момент в каждом цикле (он включается в начале каждого цикла и подает импульс энергии, а затем выключается).

Как эта установка продолжает работать? Это немного сложный процесс, требующий подробного объяснения, но прохождение упомянутой выше ссылки на учебник упростит его, так что вы больше не будете в тумане.

Обратите внимание, что сигнал, исходящий из L1, не совпадает по фазе с сигналом L2. Здесь L1 подает сигнал, который увеличивает шум, производимый Q1, для создания генератора с определенной амплитудой. Мы можем контролировать амплитуду с помощью подстроечного регулятора VR1. Этот сигнал передается в Q2, где он получает подъем и предотвращает зарядку C4 через R2, таким образом отключает Q3, и пьезоэхолот SP1 не издает шума в состоянии покоя.

С другой стороны, если металлический объект находится в непосредственной близости от катушки (головки датчика), амплитуда магнитных волн от L2 несколько уменьшается вместе с амплитудой генератора.Это эффективно отключает Q2, но создает небольшое напряжение на базе и эмиттере Q3, чтобы он слегка сработал. Пьезоизлучатель издает заметный звуковой сигнал, потому что на его выводах имеется небольшое постоянное напряжение.

Основным преимуществом схемы этого типа металлоискателя является простая конструкция как самого устройства, так и его поисковой головки (катушки), но одним недостатком является низкая чувствительность (очень короткий диапазон обнаружения). Это гениальная дизайнерская идея для изучения того, как работают простые металлоискатели / локаторы.Вот и все.

О, хватит пока теоретических разговоров! Давайте приступим к тестированию китайского модуля металлоискателя за 5 долларов. Что ж, исходя из основных характеристик модуля, модуль предназначен для работы от любого слаботочного источника питания 3–5 В постоянного тока, но рекомендуется использовать батарею 3 В (1,5 В x 2 AA или AAA).

Согласно прилагаемому руководству пользователя, потребление тока модулем в режиме ожидания составляет менее 3 мА (при 3 В постоянного тока), которое достигает примерно 30 мА в активном состоянии.Предполагаемое расстояние обнаружения модуля металлоискателя составляет 60 мм.

Эксперимент с питанием от батарейного блока 3 В показал мне нелепую дальность обнаружения, которая составляет чуть менее 10 мм при тестировании с монетой диаметром 20 мм в качестве объекта.

Повторные испытания показали, что тестируемый модуль металлоискателя пригоден только для обнаружения крупных металлических предметов на очень близком расстоянии. Также замечено, что модуль часто срывается, особенно в случае даже небольших колебаний уровня входного напряжения.Кроме того, подстроечный резистор необходимо часто перенастраивать после каждого включения и выключения питания – это довольно неудобная задача!

Как видно, частота генератора схемы (в состоянии покоя) составляет около 300 кГц. Если подключить щуп осциллографа к коллекторному выводу Q1, можно увидеть красивую синусоидальную волну, создаваемую резонансным контуром.

Примечание: если вы являетесь счастливым обладателем профессионального металлоискателя / локатора, вы можете найти «частотный» диапазон в его руководстве пользователя.Что означает частота при обнаружении металла? Понимаете, в металлоискателе его частота – это количество электронных волн, посылаемых в землю для обнаружения металлических предметов. Например, частота 8 кГц означает, что ваш металлоискатель будет отправлять и получать сигналы 8000 раз в секунду. Частоты коммерческих металлоискателей, как правило, находятся в диапазоне от 3 до 100 кГц (https://metaldetectorsa.co.za). Низкая частота имеет более длинные волны и приобретает большую глубину, поскольку длинные волны легче проникают в землю. Высокая частота имеет более короткие длины волн (меньшую глубину), но лучше подходит для обнаружения целей с низкой проводимостью.Замечено, что многие металлоискатели-любители предпочитают частоту 6–8 кГц для достижения наилучшего компромисса между глубиной и чувствительностью.

Кроме того, для обнаружения металлов используется несколько проверенных методов. Генератор частоты биений (BFO) – один из самых простых и наиболее распространенных методов обнаружения металлов. Во-вторых, это метод индукционного баланса (IB) – еще один старый добрый подход, который все еще используется сегодня. Далее, обнаружение металла с помощью импульсной индукции (PI) работает по совершенно другому (и немного сложному) принципу, хотя он основан на том же принципе изменения индуктивности поисковой катушки, когда металл находится рядом с ней.Два других популярных метода – это внерезонанс (OR) и передача / прием (T / R).

Дальше

Теперь вам нужно знать, чтобы начать работу над проектами металлоискателей своими руками. Приятно иметь чрезвычайно дешевый и компактный модуль металлоискателя, готовый к забавным применениям. Веселая? Да, вы можете попробовать этот модуль, чтобы создать для ваших детей великолепную научную модель, все, что вам нужно, – это аккумулятор и, конечно же, немного хитрых ноу-хау.

Беда только в том, что в модуле металлоискателя есть нечувствительная поисковая катушка на борту.Если я почувствую вдохновение, я могу использовать свой паяльник, чтобы снять отдельные компоненты с платы и включить их в будущую, более эффективную конструкцию, конечно, с улучшенной поисковой головкой (поисковой катушкой). Я приберегу этот проект для еще одной бессонной летней ночи!

Наконец, если вам понравилась эта короткая статья, следите за обновлениями, чтобы найти расширение этой статьи, которое также включает в себя немного продвинутый проект металлоискателя на основе микроконтроллера.

Справочная информация

Металлоискатели – теория и практика

Металлоискатели

Теория и практика

Металлоискатели используются в широком спектре приложений, от обнаружения наземных мин до обеспечения безопасности в аэропортах, офисных зданиях или школах.Они также могут быть полезны в доме, чтобы помочь найти потерянные монеты, украшения, ключи и газопровод.

Металлоискатели помогли археологам обнаружить драгоценные артефакты и монеты, которые когда-то были предметом повседневного обихода наших предков. До недавнего времени эта привилегия предоставлялась тем немногим счастливчикам, которые могли позволить себе дорогой инструмент. Но с развитием электроники и технологий цена на эти машины упала до доступного уровня.

Сегодня недорогие, высококачественные металлоискатели, ориентированные на потребителя, предоставляют миллионам любителей по всему миру возможность обнаруживать спрятанные сокровища, обеспечивая расслабление, волнение, острые ощущения от открытий и, почему бы и нет, прибыль.

Начав поиск идеального металлоискателя, вы быстро обнаружите, что существует множество металлоискателей, из которых можно выбирать. Существуют машины, использующие различные технологии, такие как BFO (генератор частоты биений), Off-Resonance, IB (индукционный баланс), VLF (очень низкая частота), VLF / TR, TR (передача-прием), PI (импульсная индукция) или RF (радиочастотные или двухкамерные детекторы). Инновации в области обнаружения металлов продолжаются – каждый день появляются новые патенты и оригинальные разработки.

Мы рассмотрим только три основных типа металлоискателей, с которыми вы, вероятно, столкнетесь в поисках идеального металлоискателя для поиска и исследования сокровищ:

  • VLF или очень низкая частота
  • PI или импульсная индукция
  • BFO или генератор частоты биений

Очень низкочастотные детекторы (VLF) являются наиболее универсальными типами металлоискателей, в зависимости от диапазона металлических предметов, которые вы можете найти с ними.Это детекторы с индукционным балансом (IB), использующие очень низкие частоты. Как и все конструкции IB, детектор VLF объединяет две сбалансированные катушки: внешняя катушка действует как передатчик, используя переменный ток для создания магнитного поля, которое искажается металлическим объектом, а внутренняя катушка действует как приемник, считывая вторичное магнитное поле. создается проводящим объектом. Это магнитное поле усиливается и преобразуется в звуковой сигнал. Фазовые демодуляторы помогают различать типы объектов.

Пример конструкции УНЧ: УНЧ-металлоискатель Heathkit Groundtrack GR-1290

Импульсная индукция Металлоискатели (PI) посылают повторяющиеся импульсы электрического тока на поисковую катушку, создавая магнитное поле. Катушка передает импульс к земле, генерируя ответный импульс от целевого объекта. Схема дискретизации измеряет импульс и отправляет его интегратору, который генерирует звуковой сигнал.

PI превосходит VLF / TR в областях, где находится мало мусора, на пляжах с соленой водой или минерализованном грунте, поскольку они способны одновременно игнорировать как проводящие соли, так и минерализацию.

Детекторы с импульсной индукцией способны обнаруживать объекты, закопанные глубоко под землей, но они чувствительны к железу и не способны различать различные типы металлов. Этот недостаток чрезвычайно затрудняет их использование на внутренних участках.

Пример схемы PI: принципиальная схема White’s Surfmaster PI

Генератор частоты биений (BFO) – это самый простой (и самый старый) тип технологии металлоискателей и хорошая отправная точка для изучения того, как работают металлоискатели.В базовом металлоискателе с частотой биений используются два радиочастотных генератора, настроенных примерно на одну и ту же частоту. Первый называется поисковым генератором , а другой – опорным генератором .

Выходы двух генераторов подаются в смеситель, который вырабатывает сигнал, содержащий компоненты суммарной и разностной частот. Этот сигнал подается на фильтр нижних частот , удаляющий гармоники.Пока два генератора настроены на одну и ту же частоту, на выходе не будет сигнала.

Когда металлический объект нарушает магнитное поле поисковой катушки, частота поискового генератора немного сдвигается, и детектор будет выдавать сигнал в диапазоне звуковых частот.

Хотя когда-то популярные, BFO больше не производятся профессиональными производителями металлоискателей. Они просты и недороги, но не обеспечивают точности и контроля современных детекторов PI или VLF.Были предприняты попытки добавить новые функции, такие как дискриминация, и более совершенные модели были произведены в 1970-х годах, но вскоре они были заменены новейшими, более сложными технологиями.

Конструкции BFO по-прежнему используются в дешевых портативных устройствах и в некачественных детекторах игрушечного типа. Старинный детектор BFO – это скорее диковинка и предмет коллекционирования, чем полезная часть оборудования.

Пример схемы BFO: Простая схема металлоискателя BFO

Цепь детектора золота

– новейшие детекторы золота и металла

Схема детектора золота состоит просто из группы простых элементов, состоящих из источника питания,

, который обычно представляет собой группу из нескольких стандартных щелочных батареек размера AA или литий-ионных батарей, а затем

провод для передачи энергии в электрические условия, которые являются частью цепи и бывают двух типов

приемно-передающая катушка в электромагнитных металлоискателях.

На практике схема более сложная и содержит больше элементов, чем обычная электрическая схема

элементов, таких как резисторы, конденсаторы и другие электрические элементы, такие как любые электрические устройства

Схема детектора золота

Принципиальная схема детектора золота представлена ​​в соответствии с электрической схемой, на которой показаны элементы

используются в схеме и их взаимосвязь друг с другом и могут быть простыми из нескольких основных элементов

такие как источник питания – резисторы – конденсаторы – автоматические выключатели и управляющие переключатели.

Или он может быть очень сложным и содержать сотни различных элементов, которые будут напечатаны в виде

интегральной схемы при составлении электрической схемы.

Вот на следующих рисунках пример простой самодельной схемы металлоискателя и других

профессиональный металлоискатель от Fisher Labs:

Источник: https://www.metaldetectorsforgold.net/homemade-metal-detector.html

источник: Fisher Labs

Принципиальная схема дальнего обнаружения золота

Принципиальная схема для металлоискателя дальнего действия

может быть более сложным, с другим дизайном и элементами, недоступными в электромагнитных металлоискателях.

Ниже приведен пример принципиальной схемы дальнего детектора золота

.

http://www.longrangelocators.com/forums/showthread.php?t=17391

Детектор золота 3D

Детектор золота

3D – это сложный и сложный металлоискатель с более совершенными схемами и большим количеством функций.

Эти устройства называются металлоискателями 3D Imaging – устройством, в котором используются специальные зонды для сканирования земли.

Результаты сканирования обычно отображаются на экране компьютера или планшете в виде трехмерной диаграммы

, показывающий структуру местности в зоне поиска и закопанные в ней цели.

Эти устройства характеризуются высокой точностью и охватом широкого поля сканирования и множеством функций.

, которые обеспечивают точные результаты для изыскателей и профессиональных искателей.

Примеры: Nokta Invenio, OKM EXP 6000

Сканер металла

Металлический сканер или 3D сканеры грунта – самый мощный и профессиональный тип

металлоискателя с точными и надежными результатами.

Лучшие инструменты для раскопок древних сокровищ на очень больших глубинах, таких как бронзовые статуи – древние

единиц оружия, таких как мечи и щиты – золотые копилки.И т. Д.

Сканер металла выполняет сканирование земли с помощью специального датчика, который измеряет магнетизм

из нескольких точек в прямоугольной области поиска и записывает результаты, собирает и представляет

их в виде трехмерного рисунка на экране металлоискателя или

скорее всего на экране планшета или компа.

Результаты анализируются с помощью специального приложения или программы, которая позволяет просматривать

трехмерное пространственное представление просканированного участка и локаций и

Тип

металла обнаруживает цели, а также их точную глубину.

Подводный поиск металлов

Некоторые металлоискатели отличаются своей водонепроницаемостью, то есть их можно использовать под водой

для поиска потерянных полезных ископаемых, например, в реках, озерах, на берегу моря или океана.

Обычно эти устройства предназначены для покрытия их относительно простой глубины

от 3 до 5 метров без влияния на их электрические цепи, например:

С другой стороны, есть профессиональные устройства, разработанные специально для исследований на глубинах

морей и океанов, и может выдерживать, например, глубину более 60 метров.

Металлоискатели

Инструменты для обнаружения металлов включают множество классификаций различных устройств или инструментов, которые помогают в процессе обнаружения.

Например, мы упоминаем:

  • Металлоискатели
  • Катушки поисковые для электромагнитных металлоискателей.
  • Инструменты для сверления, такие как лопата, лопаты и т. Д.
  • Указатели, представляющие собой малогабаритные устройства, используемые после сверления для точного определения местоположения
  • Магнитометр для обнаружения магнитных металлов
  • Вспомогательные инструменты, такие как сумка или мешочки для хранения находок, таких как монеты – мелкие металлические детали

Последнее обновление 14 декабря 2020 г.

Схема металлоискателя с индуктивным датчиком приближения

Gadgetronicx> Электроника> Принципиальные и электрические схемы> Схемы датчиков> Схема металлоискателя с индуктивным датчиком приближения